JP4380204B2 - Silicon single crystal and single crystal growth method - Google Patents

Silicon single crystal and single crystal growth method Download PDF

Info

Publication number
JP4380204B2
JP4380204B2 JP2003106468A JP2003106468A JP4380204B2 JP 4380204 B2 JP4380204 B2 JP 4380204B2 JP 2003106468 A JP2003106468 A JP 2003106468A JP 2003106468 A JP2003106468 A JP 2003106468A JP 4380204 B2 JP4380204 B2 JP 4380204B2
Authority
JP
Japan
Prior art keywords
dopant
resistivity
crystal
single crystal
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003106468A
Other languages
Japanese (ja)
Other versions
JP2004307305A (en
Inventor
浩二 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2003106468A priority Critical patent/JP4380204B2/en
Publication of JP2004307305A publication Critical patent/JP2004307305A/en
Application granted granted Critical
Publication of JP4380204B2 publication Critical patent/JP4380204B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、CZ法により育成されたP(リン)ドープのn型シリコン単結晶、及びその単結晶育成方法に関する。
【0002】
【従来の技術】
半導体材料として使用されるシリコン単結晶は、もっぱらCZ法により製造されている。CZ法によるシリコン単結晶の製造では、石英ルツボ内に収容された原料融液に種結晶を浸漬し、この状態から種結晶及びルツボを回転させながら種結晶を引上げることにより、種結晶の下方にシリコン単結晶を育成する。ここで単結晶の抵抗率は、原料融液に添加されるドーパントにより調節される。ドーパントはn型用とp型用に大別されており、n型用ドーパントとしてはP(リン)が、又p型用ドーパントとしてはB(ボロン)が、シリコンに対する偏析係数が大きく単結晶中に取り込まれやすいことから多用されている。
【0003】
このようなCZ法による結晶育成における問題の一つが結晶軸方向における抵抗率の変動である。これはドーパントの偏析に起因する問題であり、その偏析のためにルツボ内のシリコン残液にドーパントが次第に濃縮されていき、残液中のドーパント濃度が徐々に高くなることにより、結晶の抵抗率が軸方向で連続的に変化する現象である。Pドープによるn型シリコン単結晶の場合は、結晶トップ部からボトム部にかけてP濃度が高まることにより、抵抗率が低下する。この結晶軸方向における抵抗率変化のために、抵抗率が規格範囲内に納まる製品部分が、Bドープによるp型シリコン単結晶の場合の半分程度と少なく、このことが歩留りが十分に上がらない原因の一つになっている。
【0004】
この問題を解決するために、導電型を規定する主ドーパントとは導電型が反対の副ドーパントをルツボ内の原料融液中に添加して、結晶軸方向におけるドーパントの偏析による抵抗率変化を相殺することが、特許文献1及び特許文献2により提示されている。
【0005】
【特許文献1】
特許第2550739号公報
【0006】
【特許文献2】
特開2002−128591号公報
【0007】
具体例としては、特許文献1では、Pドープのn型単結晶を育成する際に、結晶軸方向で抵抗率が一定になるように、p型ドーパントであるBを、結晶育成の進行に伴って増量しつつ原料融液中に連続的に投入していくことが説明されている。特許文献2では、Ga(ガリウム)ドープのp型単結晶を育成する際に、n型ドーパントであるBi(ビスマス)を原料融液中に初期添加した上で、結晶育成中に数回追加添加する方法と、結晶育成前の初期添加を行わずに結晶育成中の数回の追加添加のみを行う方法とが説明されている。。
【0008】
【発明が解決しようとする課題】
導電型が主ドーパントと異なる副ドーパントを使用することにより、結晶軸方向におけるドーパントの偏析による抵抗率変化を抑制することが可能である。しかしながら、特許文献1では、副ドーパントの添加は結晶育成中の追加添加を伴う形態で実施されている。結晶育成中に連続的、断続的に副ドーパントを追加添加する操作は、実際の操業では容易ではない。
【0009】
一方、特許文献2では、Pドープn型単結晶について結晶軸方向の抵抗率分布を均一化する方法が示されていない。Pのシリコンに対する偏析係数は0.35程度で、Bのシリコンに対する偏析係数(0.8程度)の半分以下である。このため、Pドープn型単結晶の歩留りはBドープp型単結晶のそれより相当に低いものになっている。
【0010】
本発明の目的は、Pドープのn型シリコン単結晶に関し、結晶育成中の副ドーパントの追加添加を行わず、結晶育成前の初期添加のみでも、結晶軸方向の抵抗率分布を均一化できるシリコン単結晶、及びその単結晶育成方法を提供することにある。
【0011】
【課題を解決するための手段】
上記目的を達成するために、本発明者らは主ドーパントであるPに対する副ドーパントとして、導電型が異なるp型で、且つ偏析係数が十分に小さいGa(ガリウム)、In(インジウム)及びAl(アルミニウム)に着目した。これらのシリコンに対する偏析係数は、Pの約0.35に対し、Gaは約0.008、Inは約0.0004、Alは約0.002であり、二桁から三桁の差がある。
【0012】
このような主ドーパントに対して偏析係数が十分に小さい副ドーパントを結晶育成前に初期添加した原料融液を用いると、育成初期は偏析係数が小さいために単結晶に取り込まれる量は僅かである。このため、副ドーパントによる影響は殆どない。ところが育成が進むと、主ドーパントに比べて副ドーパントの濃縮が著しく進み、副ドーパントによる影響がではじめる。この影響は育成が進むに従って加速度的に顕著になる。かくして、結晶育成中の追加添加を行わずとも、あたかもその追加添加を行ったかの如き効果が得られことになる。
【0013】
このような着想のもとで、本発明者らは種々の調査実験を行った。その結果、主ドーパントに対して偏析係数が十分に小さい副ドーパントを結晶育成前に初期添加する場合、結晶軸方向における抵抗率分布の均一性は、結晶育成開始期における副ドーパントの添加率、即ち初期添加率に支配され、その均一性を高めるためにはこの初期添加率の設定が重要であることが判明した。また、副ドーパントの種類が抵抗率分布の均一化に及ぼす影響度はGa、In及びAlの間で大差ないことが判明した。
【0014】
図1(a)〜(c)は副ドーパントの添加率が結晶軸方向の抵抗率分布に及ぼす影響をGa、In及びAlについて示すグラフである。添加率は結晶直胴部のトップ部分における副ドーパントと主ドーパントの濃度比で表しており、同トップ部分における抵抗率が同一(50Ω・cm)となるように調整している。
【0015】
初期添加率が0の場合、即ち副ドーパントを使用しない場合、引上げの進行に伴って抵抗率が低下する。副ドーパントを添加すると抵抗率の低下が緩和され、引上げ後半では副ドーパントの影響が勝るようになることから、抵抗率の変化が低下から上昇に転じる変曲点が現れる。この均一化の傾向は添加率が増えるほどに顕著になって、添加率30%から明確になり、抵抗率の低下が上昇に転じる時期も早くなる。これにより、抵抗率が規格範囲内に納まる製品部分が長くなる。添加率が更に増えると副ドーパントの影響が過大になり、引上げ初期より抵抗率が急激に上昇して抵抗率が規格範囲内に納まる製品部分が逆に短くなる。かかる傾向はGa、In及びAlの間でほぼ同じである。
【0016】
本発明はかかる知見に基づいて完成れたものであり、そのシリコン単結晶は、CZ法により育成されたPドープのn型シリコン単結晶であり、主ドーパントであるPと共に副ドーパントとしてGa、In又はAlの少なくとも1種を含んでおり、結晶直胴部のトップ部分における主ドーパントと副ドーパントの濃度差が当該部分における狙い抵抗率に対応すると共に、同トップ部分における副ドーパントと主ドーパントの濃度比が30〜70%に管理されたものである。
【0017】
また、本発明の単結晶育成方法は、CZ法によりPドープのn型シリコン単結晶を育成する際に、主ドーパントであるPに対する副ドーパントとしてGa、In又はAlの少なくとも1種を、結晶直胴部のトップ部分における主ドーパントと副ドーパントの濃度差が当該部分における狙い抵抗率に対応すると共に、同トップ部分における副ドーパントと主ドーパントの濃度比が30〜70%となるよう、結晶育成前に初期添加した原料融液を使用するものである。
【0018】
以下の説明では、単結晶直胴部のトップ部分に取り込まれる主ドーパントの濃度をCs1 、副ドーパントの濃度をCs2 でそれぞれ表す。従って、結晶直胴部のトップ部分における主ドーパントと副ドーパントの濃度差はCs1 −Cs2 、同トップ部分における副ドーパントと主ドーパントの濃度比はCs2 /Cs1 で表される。また、引上げ開始前のシリコン融液中のドーパント濃度Coと結晶中のドーパント濃度Csとの間には数式1の関係が成立する。
【0019】
【数1】
Cs=Co×k×(1−g)k-1
g:引上げ率
k:シリコンに対する偏析係数
【0020】
結晶直胴部のトップ部分における副ドーパントと主ドーパントの濃度比(Cs2 /Cs1 )が30%未満の場合は、結晶軸方向の抵抗率分布を均一化する効果が小さい。この濃度比(Cs2 /Cs1 )が70%を超える場合は、結晶軸方向の抵抗率分布に対する影響度が過大になることから、結晶軸方向の抵抗率分布を均一化する効果が得られなくなる。また、結晶直胴部のトップ部分における狙い抵抗率に対応する濃度差(Cs1 −Cs2 )を確保する必要上、ドーパントの添加量も過大となる。特に望ましい濃度比(Cs2 /Cs1 )は、下限については40%以上であり、上限については60%以下である。
【0021】
具体的な構成において、本発明の単結晶育成方法は、CZ法によりPドープのn型シリコン単結晶を育成する際に、主ドーパントであるPを添加し、これに対する副ドーパントとしてGa、In又はAlの少なくとも1種を添加した原料融液を用いて単結晶を育成する方法であって、結晶直胴部のトップ部分における濃度比を32〜61%の範囲で変動させ、前記濃度比を32%または結晶直胴部のトップ部分からボトム部分にかけて抵抗率が減少する場合には、前記結晶直胴部のトップ部分における狙い抵抗率を規格範囲における上限に設定し、それに対応するように濃度差を制御し、一方、前記濃度比を61%または結晶直胴部のトップ部分からボトム部分にかけて抵抗率が増大する場合には、前記結晶直胴部のトップ部分における狙い抵抗率を規格範囲における下限値に設定し、それに対応するように濃度差を制御し、単結晶育成中に副ドーパントの追加添加を行わないことを特徴とする。
そして、本発明の単結晶育成方法は、抵抗率の規格範囲が54〜66ΩcmのPドープn型シリコン単結晶を育成するのに好適な育成方法である。
なお、結晶直胴部のトップ部分とは、CZ法で実施される、シリコン単結晶径を所定の結晶径にまで増径する肩部形成工程が終了した直後の等径部開始位置のことをいう。
【0022】
【発明の実施の形態】
以下に本発明の実施形態を説明する。
【0023】
CZ法によりPドープのn型シリコン単結晶を育成する際に、主ドーパントであるPと共に、副ドーパントであるGa、In又はAlを初期添加したシリコン融液を、常法によりルツボ内に形成する。ここで、副ドーパントであるGa、In又はAlは単独で添加してもよいし、2種以上を組み合わせて複合添加してもよい。しかる後に、そのシリコン融液から常法によりシリコン単結晶を育成する。単結晶育成中、副ドーパントの追加添加は原則として行わない。
【0024】
副ドーパントの初期添加量は、シリコン融液から育成されるシリコン単結晶中の主ドーパント濃度をCs1 、副ドーパント濃度をCs2 として、同単結晶直胴部のトップ部分において、狙い抵抗率に対応する濃度差(Cs1 −Cs2 )と、30〜70%の濃度比(Cs2 /Cs1 )、望ましくは40〜60の濃度比(Cs2 /Cs1 )が確保されるように、前述した数式1に基づいて決定する。
【0025】
ここで、単結晶直胴部のトップ部分における狙い抵抗率について説明すると、単結晶の抵抗率がトップ部からボトム部にかけて減少する場合は、抵抗率の規格範囲における上限値近傍を狙い抵抗率とするのがよい。単結晶の抵抗率がトップ部からボトム部にかけて増加する場合は、抵抗率の規格範囲における下限値近傍を狙い抵抗率とするのがよい。単結晶の抵抗率がトップ部からボトム部にかけて減少の後、増加に転じる場合は、抵抗率の最小値が抵抗率の規格範囲における下限値に一致するように、上限値と下限値の間を狙い抵抗率とするのがよい。
【0026】
これは、単結晶直胴部のトップ部から中間部にかけての育成前半部を製品化する場合の狙い抵抗率の設定法であるが、単結晶直胴部の中間部を製品化することも可能であり、この場合のトップ部分における狙い抵抗率は、上記した狙い抵抗率からシフトしたものになり、抵抗率の規格範囲から外れることは言うまでもない。このうように、トップ部分における狙い抵抗率は、抵抗率の規格範囲から外れることもあり、必ずしも規格範囲を意味しない。
【0027】
なお、単結晶育成中の副ドーパントの追加添加については、原則としてこの操作を行わないが、この操作を完全に排除するものではない。単結晶育成中に副ドーパントの追加添加を行うとしても、その添加量や回数を低減できる点で本発明は有効である。
【0028】
【実施例】
次に、本発明の有効性を実施例により説明する。
【0029】
140kgのシリコンを溶融して直径が8インチで抵抗率の規格範囲が54〜66ΩcmのPドープn型シリコン単結晶を育成しようとする場合に、前記シリコン融液に副ドーパントとしてGaを初期添加した。副ドーパントの添加量は、結晶直胴部のトップ部分における副ドーパントと主ドーパントの濃度比(Cs2 /Cs1 )が32%、61%となるように調整した。
【0030】
副ドーパントが無添加の場合の、結晶軸方向におけるドーパントの濃度分布、濃度差(Cs1 −Cs2 )の分布及び抵抗率分布を図2に示す。副ドーパントを濃度比(Cs2 /Cs1 )で32%添加した場合の、結晶軸方向におけるドーパントの濃度分布、濃度差(Cs1 −Cs2 )の分布及び抵抗率分布を図3に示す。副ドーパントを濃度比(Cs2 /Cs1 )で61%添加した場合の、結晶軸方向におけるドーパントの濃度分布、濃度差(Cs1 −Cs2 )の分布及び抵抗率分布を図4に示す。
【0031】
副ドーパント無添加の場合は、結晶直胴部のトップ部分からボトム部分にかけて抵抗率が単調に減少する。結晶直胴部のトップ部分における狙い抵抗率は規格範囲の上限値(66Ωcm)であり、これを確保するために同トップ部分におけるP濃度は約7.6×1013atoms/ccとした。引上げ率が約0.32の段階で抵抗率は規格範囲を外れた。規格範囲を満足する製品部分は直胴部全長の28%に過ぎない。
【0032】
結晶直胴部のトップ部分における濃度比(Cs2 /Cs1 )が32%となるように副ドーパントの初期添加を行った場合は、結晶直胴部のトップ部分からボトム部分にかけて抵抗率が減少するものの、その程度は無添加の場合よりも軽度である。結晶直胴部のトップ部分における狙い抵抗率は規格範囲の上限値(66Ωcm)に設定し、これを確保するために同トップ部分における濃度差(Cs1 −Cs2 )は約7.6×1013atoms/ccとした。副ドーパントを初期添加した上で濃度差(Cs1 −Cs2 )を確保するために、主ドーパント量は増加している。副ドーパントを追加添加していないにもかかわらず、抵抗率が規格範囲を外れる引上げ率は0.1程度増大し、規格範囲を満足する製品部分は直胴部全長の36%になった。
【0033】
結晶直胴部のトップ部分における濃度比(Cs2 /Cs1 )が61%となるように副ドーパントの初期添加を行った場合は、結晶直胴部のトップ部分からボトム部分にかけて抵抗率が増大する傾向になった。結晶直胴部のトップ部分における狙い抵抗率は規格範囲の下限値(54Ωcm)に設定し、これを確保するために同トップ部分における濃度差(Cs1 −Cs2 )は約9.2×1013atoms/ccとした。副ドーパントの初期添加量を多くした上で濃度差(Cs1 −Cs2 )を確保するために、主ドーパント量は更に増加している。副ドーパントを追加添加していないにもかかわらず、抵抗率が規格範囲を外れる引上げ率は更に大きくなり、規格範囲を満足する製品部分は直胴部全長の55%に達した。無添加の場合に比べると歩留りはぼぼ2倍である。
【0034】
副ドーパントをGaからInに変更して同じ比較試験を行った。結果を図5〜図7に示す。Gaの場合と同様に、副ドーパントを追加添加していないにもかかわらず、結晶軸方向における抵抗率分布が均一化され、規格範囲を満足する製品部分は32%添加の場合で37%、61%添加の場合で53%に増大した。
【0035】
副ドーパントをAlに変更して同じ比較試験を行った。結果を図8〜図10に示す。Ga、Inの場合と同様に、副ドーパントを追加添加していないにもかかわらず、結晶軸方向における抵抗率分布が均一化され、規格範囲を満足する製品部分は32%添加の場合で37%、61%添加の場合で54%に増大した。
【0036】
【発明の効果】
以上に説明したとおり、本発明のシリコン単結晶は、CZ法により育成されたPドープのn型シリコン単結晶であり、且つ副ドーパントとしてGa、In又はAlの少なくとも1種を、結晶直胴部のトップ部分における副ドーパントと主ドーパントの濃度比が30〜70%となるように含有することにより、結晶育成中に副ドーパントを追加添加せずとも結晶軸方向における抵抗率分布を均一化でき、抵抗率の規格範囲に納まる製品を高歩留りで採取できるので、非常に経済的である。
【0037】
そして、本発明のシリコン単結晶から製作されるシリコンウエーハは、バルクウエーハのみならず、アニール用或いはエピタキシャル用のウエーハとして、またSOIウエーハ用の支持基板として使用することができる。
【0038】
また、本発明の単結晶育成方法は、CZ法によりPドープのn型シリコン単結晶を育成する際に、主ドーパントであるPに対する副ドーパントとしてGa、In又はAlの少なくとも1種を、結晶直胴部のトップ部分における副ドーパントと主ドーパントの濃度比が30〜70%となるよう、結晶育成前に初期添加した原料融液を使用することにより、結晶育成中に副ドーパントを追加添加せずとも結晶軸方向における抵抗率分布を均一化でき、製品採取の際の歩留りを大きく改善できる効果がある。
【図面の簡単な説明】
【図1】副ドーパントの添加率が結晶軸方向の抵抗率分布に及ぼす影響をGa、In及びAlについて示すグラフである。
【図2】Gaが無添加の場合の、結晶軸方向におけるドーパントの濃度分布、濃度差分布及び抵抗率分布を示すグラフである。
【図3】Gaを32%添加した場合の、結晶軸方向におけるドーパントの濃度分布、濃度差分布及び抵抗率分布を示すグラフである。
【図4】Gaを61%添加した場合の、結晶軸方向におけるドーパントの濃度分布、濃度差分布及び抵抗率分布を示すグラフである。
【図5】Inが無添加の場合の、結晶軸方向におけるドーパントの濃度分布、濃度差分布及び抵抗率分布を示すグラフである。
【図6】Inを32%添加した場合の、結晶軸方向におけるドーパントの濃度分布、濃度差分布及び抵抗率分布を示すグラフである。
【図7】Inを61%添加した場合の、結晶軸方向におけるドーパントの濃度分布、濃度差分布及び抵抗率分布を示すグラフである。
【図8】Alが無添加の場合の、結晶軸方向におけるドーパントの濃度分布、濃度差分布及び抵抗率分布を示すグラフである。
【図9】Alを32%添加した場合の、結晶軸方向におけるドーパントの濃度分布、濃度差分布及び抵抗率分布を示すグラフである。
【図10】Alを61%添加した場合の、結晶軸方向におけるドーパントの濃度分布、濃度差分布及び抵抗率分布を示すグラフである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a P (phosphorus) -doped n-type silicon single crystal grown by the CZ method and a method for growing the single crystal.
[0002]
[Prior art]
A silicon single crystal used as a semiconductor material is manufactured exclusively by the CZ method. In the production of a silicon single crystal by the CZ method, a seed crystal is immersed in a raw material melt contained in a quartz crucible, and the seed crystal is pulled up while rotating the seed crystal and the crucible from this state, thereby lowering the seed crystal. A silicon single crystal is grown. Here, the resistivity of the single crystal is adjusted by the dopant added to the raw material melt. The dopant is roughly classified into n-type and p-type. P (phosphorus) is used as the n-type dopant, and B (boron) is used as the p-type dopant. It is often used because it is easy to be taken in.
[0003]
One of the problems in crystal growth by such a CZ method is a variation in resistivity in the crystal axis direction. This is a problem caused by the segregation of the dopant. Because of the segregation, the dopant is gradually concentrated in the silicon residual liquid in the crucible, and the dopant concentration in the residual liquid gradually increases, so that the resistivity of the crystal is increased. Is a phenomenon that changes continuously in the axial direction. In the case of a p-doped n-type silicon single crystal, the resistivity decreases as the P concentration increases from the top to the bottom of the crystal. Due to the change in resistivity in the crystal axis direction, the product portion where the resistivity falls within the standard range is as small as about half of the case of p-type silicon single crystal by B doping, which is why the yield does not increase sufficiently. It has become one of
[0004]
In order to solve this problem, a sub-dopant whose conductivity type is opposite to that of the main dopant that defines the conductivity type is added to the raw material melt in the crucible to cancel the resistivity change due to dopant segregation in the crystal axis direction. This is presented in Patent Document 1 and Patent Document 2.
[0005]
[Patent Document 1]
Japanese Patent No. 2550739 [0006]
[Patent Document 2]
Japanese Patent Laid-Open No. 2002-128591
As a specific example, in Patent Document 1, when a p-doped n-type single crystal is grown, B, which is a p-type dopant, is grown with the progress of crystal growth so that the resistivity is constant in the crystal axis direction. It is explained that it is continuously added to the raw material melt while increasing the amount. In Patent Document 2, when growing a p-type single crystal doped with Ga (gallium), Bi (bismuth), which is an n-type dopant, is initially added to the raw material melt, and then added several times during crystal growth. And a method of performing only several additional additions during crystal growth without performing initial addition before crystal growth. .
[0008]
[Problems to be solved by the invention]
By using a subdopant having a conductivity type different from that of the main dopant, it is possible to suppress a change in resistivity due to the segregation of the dopant in the crystal axis direction. However, in Patent Document 1, the addition of the sub-dopant is performed in a form that involves additional addition during crystal growth. The operation of adding additional sub-dopant continuously and intermittently during crystal growth is not easy in actual operation.
[0009]
On the other hand, Patent Document 2 does not disclose a method for making the resistivity distribution in the crystal axis direction uniform for a P-doped n-type single crystal. The segregation coefficient of P for silicon is about 0.35, which is less than half the segregation coefficient of B for silicon (about 0.8). For this reason, the yield of the P-doped n-type single crystal is considerably lower than that of the B-doped p-type single crystal.
[0010]
The object of the present invention relates to a p-doped n-type silicon single crystal, silicon that can make the resistivity distribution in the crystal axis direction uniform even without initial addition of a sub-dopant during crystal growth and only with initial addition before crystal growth. The object is to provide a single crystal and a method for growing the single crystal.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the present inventors, as a sub-dopant for P, which is the main dopant, are p-types having different conductivity types and sufficiently small segregation coefficients, such as Ga (gallium), In (indium) and Al ( We focused on (aluminum). The segregation coefficients for these silicon are about 0.005 for P, about 0.008 for Ga, about 0.0004 for In, and about 0.002 for Al, with a difference of two to three digits.
[0012]
When a raw material melt in which a sub-dopant having a sufficiently small segregation coefficient relative to the main dopant is initially added before crystal growth is used, the amount taken into the single crystal is small because the segregation coefficient is small at the initial stage of growth. . For this reason, there is almost no influence by a subdopant. However, as the growth progresses, the concentration of the sub-dopant remarkably advances as compared with the main dopant, and the influence of the sub-dopant begins to appear. This effect becomes more noticeable at an accelerated rate as the breeding progresses. Thus, even if the additional addition is not performed during the crystal growth, the effect as if the additional addition was performed is obtained.
[0013]
Based on such an idea, the present inventors conducted various investigation experiments. As a result, when a subdopant having a sufficiently small segregation coefficient with respect to the main dopant is initially added before crystal growth, the uniformity of the resistivity distribution in the crystal axis direction is the addition rate of the subdopant at the beginning of crystal growth, that is, It was determined by the initial addition rate that the setting of the initial addition rate is important to improve the uniformity. In addition, it has been found that the degree of influence of sub-dopant types on the uniformity of resistivity distribution is not significantly different among Ga, In and Al.
[0014]
FIGS. 1A to 1C are graphs showing the influence of the addition rate of the sub-dopant on the resistivity distribution in the crystal axis direction for Ga, In, and Al. The addition rate is represented by the concentration ratio of the sub-dopant and the main dopant in the top portion of the crystal body and is adjusted so that the resistivity in the top portion is the same (50 Ω · cm).
[0015]
When the initial addition rate is 0, that is, when a sub-dopant is not used, the resistivity decreases as the pulling progresses. When the secondary dopant is added, the decrease in resistivity is eased, and the influence of the secondary dopant becomes more effective in the latter half of the pulling, so that an inflection point at which the change in resistivity turns from a decrease to an increase appears. This tendency of homogenization becomes more prominent as the addition rate increases, and becomes clear from the addition rate of 30%, and the time when the decrease in resistivity starts to increase becomes earlier. Thereby, the product part in which the resistivity falls within the standard range becomes long. If the addition rate further increases, the influence of the sub-dopant becomes excessive, and the resistivity rapidly increases from the initial pulling up, and the product portion where the resistivity falls within the standard range is conversely shortened. This tendency is almost the same among Ga, In and Al.
[0016]
The present invention has been completed based on such knowledge, and the silicon single crystal is a P-doped n-type silicon single crystal grown by the CZ method, and Ga, In as a sub-dopant together with P as a main dopant. Or at least one of Al, and the concentration difference between the main dopant and the sub-dopant in the top portion of the crystal straight body portion corresponds to the target resistivity in the portion, and the concentration of the sub-dopant and the main dopant in the top portion The ratio is controlled to 30 to 70%.
[0017]
In addition, the single crystal growth method of the present invention, when growing a P-doped n-type silicon single crystal by the CZ method, uses at least one of Ga, In or Al as a sub-dopant for P which is a main dopant. Before crystal growth so that the concentration difference between the main dopant and the sub-dopant in the top portion of the trunk corresponds to the target resistivity in the portion and the concentration ratio of the sub-dopant and the main dopant in the top portion is 30 to 70%. The raw material melt initially added to is used.
[0018]
In the following description, the concentration of the main dopant taken into the top portion of the single crystal straight body portion is represented by Cs 1 , and the concentration of the sub-dopant is represented by Cs 2 . Accordingly, the concentration difference between the main dopant and the sub-dopant in the top portion of the crystal body portion is expressed as Cs 1 -Cs 2 , and the concentration ratio between the sub-dopant and the main dopant in the top portion is expressed as Cs 2 / Cs 1 . Further, the relationship of Formula 1 is established between the dopant concentration Co in the silicon melt before the start of pulling and the dopant concentration Cs in the crystal.
[0019]
[Expression 1]
Cs = Co × k × (1−g) k−1
g: Pull rate k: Segregation coefficient for silicon
When the concentration ratio (Cs 2 / Cs 1 ) between the sub-dopant and the main dopant in the top portion of the crystal body is less than 30%, the effect of uniforming the resistivity distribution in the crystal axis direction is small. If this concentration ratio (Cs 2 / Cs 1 ) exceeds 70%, the degree of influence on the resistivity distribution in the crystal axis direction becomes excessive, so the effect of making the resistivity distribution in the crystal axis direction uniform is obtained. Disappear. In addition, it is necessary to secure a concentration difference (Cs 1 −Cs 2 ) corresponding to the target resistivity at the top portion of the crystal body, and the amount of dopant added is excessive. A particularly desirable concentration ratio (Cs 2 / Cs 1 ) is 40% or more for the lower limit and 60% or less for the upper limit.
[0021]
In a specific configuration, the single crystal growth method of the present invention adds P as a main dopant when growing a P-doped n-type silicon single crystal by the CZ method, and Ga, In or A method of growing a single crystal using a raw material melt to which at least one kind of Al is added, wherein the concentration ratio in the top portion of the crystal straight body portion is varied in a range of 32 to 61%, and the concentration ratio is 32. % Or the resistivity decreases from the top part to the bottom part of the crystal body, the target resistivity at the top part of the crystal body is set to the upper limit in the standard range, and the concentration difference is adjusted accordingly. controls, whereas, when the concentration ratio of 61% or crystal straight body resistivity toward the bottom portion from the top portion of the increases, the aim in the top part of the crystal straight body portion Set anti rate to the lower limit of the standard range, by controlling the density difference so as to correspond thereto, characterized in that during growing the single crystal not add addition of secondary dopant.
The single crystal growth method of the present invention is a growth method suitable for growing a P-doped n-type silicon single crystal having a resistivity standard range of 54 to 66 Ωcm.
In addition, the top part of the crystal straight body part is a constant-diameter part start position immediately after the shoulder part forming step for increasing the silicon single crystal diameter to a predetermined crystal diameter, which is performed by the CZ method, is completed. Say.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0023]
When growing a P-doped n-type silicon single crystal by the CZ method, a silicon melt initially added with Ga, In or Al as a sub-dopant together with P as a main dopant is formed in a crucible by a conventional method. . Here, the sub-dopant Ga, In or Al may be added singly or in combination of two or more. Thereafter, a silicon single crystal is grown from the silicon melt by a conventional method. During the growth of single crystals, no additional sub-dopants are added in principle.
[0024]
The initial addition amount of the sub-dopant is such that the main dopant concentration in the silicon single crystal grown from the silicon melt is Cs 1 and the sub-dopant concentration is Cs 2. the corresponding density difference (Cs 1 -Cs 2), 30~70 % of the concentration ratio (Cs 2 / Cs 1), preferably such that the concentration ratio of 40~60 (Cs 2 / Cs 1) is secured, This is determined based on Equation 1 described above.
[0025]
Here, the target resistivity at the top part of the single crystal straight body part will be described.When the resistivity of the single crystal decreases from the top part to the bottom part, the target resistivity is set to the vicinity of the upper limit value in the standard range of the resistivity. It is good to do. When the resistivity of the single crystal increases from the top portion to the bottom portion, the resistivity should be set near the lower limit in the resistivity specification range. When the resistivity of the single crystal decreases from the top part to the bottom part and then starts to increase, the difference between the upper limit value and the lower limit value is set so that the minimum value of the resistivity matches the lower limit value in the resistivity specification range. The target resistivity should be set.
[0026]
This is the target resistivity setting method when the first half of the growth from the top part of the single crystal straight body part to the middle part is commercialized, but it is also possible to commercialize the middle part of the single crystal straight body part In this case, the target resistivity at the top portion is shifted from the above-described target resistivity, and it goes without saying that the target resistivity is out of the specified range. As described above, the target resistivity in the top portion may be out of the standard range of the resistivity, and does not necessarily mean the standard range.
[0027]
As a general rule, this operation is not performed for the additional addition of the sub-dopant during single crystal growth, but this operation is not completely excluded. Even if an additional addition of a subdopant is performed during single crystal growth, the present invention is effective in that the addition amount and the number of times can be reduced.
[0028]
【Example】
Next, the effectiveness of the present invention will be described with reference to examples.
[0029]
When 140 kg of silicon was melted to grow a P-doped n-type silicon single crystal having a diameter of 8 inches and a resistivity standard range of 54 to 66 Ωcm, Ga was initially added as a sub-dopant to the silicon melt. . The addition amount of the subdopant was adjusted so that the concentration ratio (Cs 2 / Cs 1 ) between the subdopant and the main dopant in the top portion of the crystal body was 32% and 61%.
[0030]
FIG. 2 shows a dopant concentration distribution, a concentration difference (Cs 1 -Cs 2 ) distribution, and a resistivity distribution in the crystal axis direction when no subdopant is added. FIG. 3 shows the dopant concentration distribution, the concentration difference (Cs 1 -Cs 2 ) distribution, and the resistivity distribution in the crystal axis direction when the sub-dopant is added at a concentration ratio (Cs 2 / Cs 1 ) of 32%. FIG. 4 shows the dopant concentration distribution, the concentration difference (Cs 1 -Cs 2 ) distribution, and the resistivity distribution in the crystal axis direction when 61% of the sub-dopant is added at a concentration ratio (Cs 2 / Cs 1 ).
[0031]
In the case where no subdopant is added, the resistivity decreases monotonously from the top portion to the bottom portion of the crystal body. The target resistivity at the top portion of the crystal body is the upper limit (66 Ωcm) of the standard range, and in order to ensure this, the P concentration at the top portion was about 7.6 × 10 13 atoms / cc. When the pulling rate was about 0.32, the resistivity was out of the standard range. The product part that satisfies the standard range is only 28% of the total length of the straight body part.
[0032]
When the initial addition of the sub-dopant is performed so that the concentration ratio (Cs 2 / Cs 1 ) in the top part of the crystal body is 32%, the resistivity decreases from the top part to the bottom part of the crystal body However, the degree is milder than when no additive is added. The target resistivity at the top portion of the crystal body is set to the upper limit value (66 Ωcm) of the standard range, and in order to ensure this, the concentration difference (Cs 1 −Cs 2 ) at the top portion is about 7.6 × 10. 13 atoms / cc. In order to secure a concentration difference (Cs 1 -Cs 2 ) after initially adding the sub-dopant, the amount of the main dopant is increased. Despite the addition of no additional dopant, the pulling rate at which the resistivity deviated from the standard range increased by about 0.1, and the product portion satisfying the standard range was 36% of the total length of the straight body.
[0033]
When the initial addition of the sub-dopant is performed so that the concentration ratio (Cs 2 / Cs 1 ) in the top part of the crystal body is 61%, the resistivity increases from the top part to the bottom part of the crystal body I tend to. The target resistivity at the top portion of the crystal body is set to the lower limit (54 Ωcm) of the standard range, and in order to ensure this, the concentration difference (Cs 1 −Cs 2 ) at the top portion is about 9.2 × 10. 13 atoms / cc. In order to secure the concentration difference (Cs 1 -Cs 2 ) after increasing the initial amount of sub-dopant, the amount of main dopant is further increased. Despite the addition of no additional dopant, the pulling rate at which the resistivity deviated from the standard range was further increased, and the product portion that satisfied the standard range reached 55% of the total length of the straight body. The yield is almost double compared to the case of no addition.
[0034]
The same comparative test was performed by changing the sub-dopant from Ga to In. The results are shown in FIGS. As in the case of Ga, the resistivity distribution in the direction of the crystal axis is made uniform even though no sub-dopant is added, and the product portion that satisfies the standard range is 37%, 61% when 32% is added. In the case of% addition, it increased to 53%.
[0035]
The same comparative test was performed with the subdopant changed to Al. The results are shown in FIGS. As in the case of Ga and In, the resistivity distribution in the crystal axis direction is uniformed even though no additional dopant is added, and the product portion satisfying the standard range is 37% when 32% is added. In the case of 61% addition, it increased to 54%.
[0036]
【The invention's effect】
As described above, the silicon single crystal of the present invention is a P-doped n-type silicon single crystal grown by the CZ method, and at least one of Ga, In, or Al as a sub-dopant, By containing so that the concentration ratio of the sub-dopant and the main dopant in the top portion of 30 to 70%, the resistivity distribution in the crystal axis direction can be made uniform without adding an additional sub-dopant during crystal growth, Since products that fall within the resistivity range can be collected with a high yield, it is very economical.
[0037]
The silicon wafer manufactured from the silicon single crystal of the present invention can be used not only as a bulk wafer but also as an annealing or epitaxial wafer and a support substrate for an SOI wafer.
[0038]
In addition, the single crystal growth method of the present invention, when growing a P-doped n-type silicon single crystal by the CZ method, uses at least one of Ga, In or Al as a sub-dopant for P which is a main dopant. By using the raw material melt initially added before crystal growth so that the concentration ratio of the sub-dopant to the main dopant in the top part of the trunk is 30 to 70%, no additional sub-dopant is added during crystal growth. In both cases, the resistivity distribution in the crystal axis direction can be made uniform, and the yield at the time of product collection can be greatly improved.
[Brief description of the drawings]
FIG. 1 is a graph showing the influence of the addition rate of a sub-dopant on resistivity distribution in the crystal axis direction for Ga, In, and Al.
FIG. 2 is a graph showing dopant concentration distribution, concentration difference distribution, and resistivity distribution in the crystal axis direction when Ga is not added.
FIG. 3 is a graph showing dopant concentration distribution, concentration difference distribution, and resistivity distribution in the crystal axis direction when Ga is added at 32%.
FIG. 4 is a graph showing dopant concentration distribution, concentration difference distribution, and resistivity distribution in the crystal axis direction when 61% Ga is added.
FIG. 5 is a graph showing dopant concentration distribution, concentration difference distribution, and resistivity distribution in the crystal axis direction when In is not added.
FIG. 6 is a graph showing a dopant concentration distribution, a concentration difference distribution, and a resistivity distribution in the crystal axis direction when 32% of In is added.
7 is a graph showing a dopant concentration distribution, a concentration difference distribution, and a resistivity distribution in the crystal axis direction when 61% of In is added. FIG.
FIG. 8 is a graph showing dopant concentration distribution, concentration difference distribution, and resistivity distribution in the crystal axis direction when Al is not added.
FIG. 9 is a graph showing dopant concentration distribution, concentration difference distribution, and resistivity distribution in the crystal axis direction when 32% Al is added.
FIG. 10 is a graph showing dopant concentration distribution, concentration difference distribution, and resistivity distribution in the crystal axis direction when 61% Al is added.

Claims (2)

CZ法によりPドープのn型シリコン単結晶を育成する際に、主ドーパントであるPを添加し、これに対する副ドーパントとしてGa、In又はAlの少なくとも1種を添加した原料融液を用いて単結晶を育成する方法であって、
主ドーパント濃度をCs1とし副ドーパント濃度をCs2として、結晶直胴部のトップ部分における濃度比(Cs2/Cs1)を32〜61%の範囲で変動させ、
前記濃度比(Cs2/Cs1)を32%または結晶直胴部のトップ部分からボトム部分にかけて抵抗率が減少する場合には、前記結晶直胴部のトップ部分における狙い抵抗率を規格範囲における上限値に設定し、それに対応するように濃度差(Cs1−Cs2)を制御し、
一方、前記濃度比(Cs2/Cs1)を61%または結晶直胴部のトップ部分からボトム部分にかけて抵抗率が増大する場合には、前記結晶直胴部のトップ部分における狙い抵抗率を規格範囲における下限値に設定し、それに対応するように濃度差(Cs1−Cs2)を制御し、
単結晶育成中に副ドーパントの追加添加を行わないことを特徴とする単結晶育成方法。
When growing a P-doped n-type silicon single crystal by the CZ method, P as a main dopant is added, and a raw material melt to which at least one of Ga, In, or Al is added as a sub-dopant is added. A method for growing crystals,
The main dopant concentration is Cs1, the subdopant concentration is Cs2, and the concentration ratio (Cs2 / Cs1) in the top portion of the crystal straight body portion is varied in the range of 32 to 61%.
When the concentration ratio (Cs2 / Cs1) is 32% or the resistivity decreases from the top portion to the bottom portion of the crystal straight body portion, the target resistivity at the top portion of the crystal straight body portion is the upper limit value in the standard range. And the density difference (Cs1-Cs2) is controlled to correspond to it,
On the other hand, when the concentration ratio (Cs2 / Cs1) is 61% or the resistivity increases from the top portion to the bottom portion of the crystal body portion, the target resistivity at the top portion of the crystal body portion is within the standard range. Set the lower limit value and control the density difference (Cs1-Cs2) to correspond to it,
A method for growing a single crystal, wherein no additional addition of a sub-dopant is performed during the growth of the single crystal.
抵抗率の規格範囲が54〜66ΩcmのPドープn型シリコン単結晶を育成することを特徴とする請求項1に記載の単結晶育成方法 The method for growing a single crystal according to claim 1, wherein a P-doped n-type silicon single crystal having a resistivity range of 54 to 66 Ωcm is grown .
JP2003106468A 2003-04-10 2003-04-10 Silicon single crystal and single crystal growth method Expired - Fee Related JP4380204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003106468A JP4380204B2 (en) 2003-04-10 2003-04-10 Silicon single crystal and single crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003106468A JP4380204B2 (en) 2003-04-10 2003-04-10 Silicon single crystal and single crystal growth method

Publications (2)

Publication Number Publication Date
JP2004307305A JP2004307305A (en) 2004-11-04
JP4380204B2 true JP4380204B2 (en) 2009-12-09

Family

ID=33468646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003106468A Expired - Fee Related JP4380204B2 (en) 2003-04-10 2003-04-10 Silicon single crystal and single crystal growth method

Country Status (1)

Country Link
JP (1) JP4380204B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101680111A (en) * 2007-03-19 2010-03-24 Mnk-Sog硅公司 Method and apparatus for manufacturing silicon ingot
JP4359320B2 (en) 2007-05-31 2009-11-04 Sumco Techxiv株式会社 Doping apparatus and silicon single crystal manufacturing method
JP4516096B2 (en) 2007-05-31 2010-08-04 Sumco Techxiv株式会社 Method for producing silicon single crystal
FR2929960B1 (en) * 2008-04-11 2011-05-13 Apollon Solar PROCESS FOR PRODUCING CRYSTALLINE SILICON OF PHOTOVOLTAIC QUALITY BY ADDING DOPING IMPURITIES
JP5372105B2 (en) * 2011-10-17 2013-12-18 ジルトロニック アクチエンゲゼルシャフト N-type silicon single crystal and manufacturing method thereof
JP5470349B2 (en) * 2011-10-17 2014-04-16 ジルトロニック アクチエンゲゼルシャフト P-type silicon single crystal and manufacturing method thereof
CN102560646B (en) * 2012-03-20 2015-05-20 浙江大学 N-type casting monocrystalline silicon with uniform doping resistivity and preparation method thereof
DE102014107590B3 (en) * 2014-05-28 2015-10-01 Infineon Technologies Ag Semiconductor device, silicon wafer and method for producing a silicon wafer
JP6222013B2 (en) 2014-08-29 2017-11-01 信越半導体株式会社 Resistivity control method
DE102015114177A1 (en) 2015-08-26 2017-03-02 Infineon Technologies Ag Semiconductor device, silicon wafer and method for producing a silicon wafer
CN105951173A (en) * 2016-05-30 2016-09-21 上海超硅半导体有限公司 N type monocrystalline silicon crystal ingot and manufacturing method thereof
CN112195515B (en) * 2020-09-29 2022-03-01 晶科能源股份有限公司 Silicon crystal and preparation method thereof
CN112853475A (en) * 2020-12-30 2021-05-28 四川永祥硅材料有限公司 Ternary doped semiconductor and preparation process thereof
JP2023020503A (en) 2021-07-30 2023-02-09 グローバルウェーハズ・ジャパン株式会社 Method for manufacturing silicon single crystal, and crystal pulling apparatus

Also Published As

Publication number Publication date
JP2004307305A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
CN106795647B (en) Resistivity control method and n-type monocrystalline silicon
JP4380204B2 (en) Silicon single crystal and single crystal growth method
JP5470349B2 (en) P-type silicon single crystal and manufacturing method thereof
JP5420548B2 (en) Silicon ingot, silicon wafer and epitaxial wafer manufacturing method, and silicon ingot
TWI745520B (en) Methods for forming single crystal silicon ingots with improved resistivity control
JP6299543B2 (en) Resistivity control method and additional dopant injection device
JP5170061B2 (en) Resistivity calculation program and single crystal manufacturing method
JP5372105B2 (en) N-type silicon single crystal and manufacturing method thereof
JPH085740B2 (en) Semiconductor crystal pulling method
JP5034247B2 (en) Method for producing silicon single crystal
US20180030615A1 (en) Methods for producing single crystal silicon ingots with reduced seed end oxygen
JP5201730B2 (en) Manufacturing method of FZ method silicon single crystal
US7214267B2 (en) Silicon single crystal and method for growing silicon single crystal
JP3931956B2 (en) Method for growing silicon single crystal
US5840115A (en) Single crystal growth method
JP4755740B2 (en) Method for growing silicon single crystal
KR102514915B1 (en) Dopant Concentration Control in Silicon Melts to Improve Ingot Quality
KR101252915B1 (en) Method for Manufacturing Single Crystal Ingot
JP2736343B2 (en) Method for producing semi-insulating InP single crystal
JPH03183685A (en) Silicon single crystal rod and production thereof
JPS63260891A (en) Production of silicon single crystal
JPH10279382A (en) Production of signal crystal
JPH11268991A (en) Production of silicon single crystal, and silicon single crystal
JPH1036196A (en) Production of single crystal
JPH0912392A (en) Method for growing silicon single crystal and silicon single crystal pulled up by the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4380204

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees