JPH11268991A - Production of silicon single crystal, and silicon single crystal - Google Patents

Production of silicon single crystal, and silicon single crystal

Info

Publication number
JPH11268991A
JPH11268991A JP9548198A JP9548198A JPH11268991A JP H11268991 A JPH11268991 A JP H11268991A JP 9548198 A JP9548198 A JP 9548198A JP 9548198 A JP9548198 A JP 9548198A JP H11268991 A JPH11268991 A JP H11268991A
Authority
JP
Japan
Prior art keywords
single crystal
tail
silicon single
pulling
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9548198A
Other languages
Japanese (ja)
Inventor
Toshiharu Uesugi
敏治 上杉
Tetsuya Igarashi
哲也 五十嵐
Tetsuhiro Oda
哲宏 小田
Tomohiko Ota
友彦 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP9548198A priority Critical patent/JPH11268991A/en
Priority to EP99301820A priority patent/EP0947611A3/en
Priority to KR1019990008739A priority patent/KR19990077913A/en
Priority to US09/270,277 priority patent/US6153009A/en
Publication of JPH11268991A publication Critical patent/JPH11268991A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing silicon single crystal, capable of preventing a steep lowering of temperature, when a single crystal is separated from a melted liquid, and thereby capable of improving the productivity and yield of the silicon single crystal by gradually increasing the rate for pulling up the single crystal on the production of the tail portion of the single crystal after the production of the constant diameter portion of the single crystal on the growth of the silicon single crystal. SOLUTION: This method for producing silicon single crystal comprises growing a silicon single crystal by Czochralski method. Therein, on the production of the tail portion of the single crystal after the production of its constant diameter portion, a rate for pulling up the single crystal is gradually increased so that a pulling rate at the finish of the tail portion production is 1.1-5, when the pulling rate at the start of the tail portion production is 1. A method for accelerating the pulling rate may be either one of a method for accelerating the pulling rate in a quadric curve, a method for stepwisely accelerating the pulling rate and a method for linearly accelerating the pulling rate. It is further preferable that while the rate for pulling up the single crystal is gradually increased, a crucible receiving the melted liquid of a raw material is upward moved to moderate the steep lowering of a melted liquid level and thereby avoid the abrupt change of temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、チョクラルスキー
法(Czochralski Method、CZ法)によるシリコン単結
晶の成長におけるテール部位の製造方法ならびにその製
造方法により製造されたシリコン単結晶に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a tail portion in the growth of a silicon single crystal by the Czochralski method (CZ method), and a silicon single crystal produced by the method.

【0002】[0002]

【従来の技術】従来、CZ法によるシリコン単結晶の製
造においては、シリコン単結晶を種結晶として用い、こ
れをシリコン融液に接触させた後、回転させながらゆっ
くりと引上げることで単結晶棒を成長させている。この
際、融液を保有する石英ルツボ・グラファイトルツボの
外周にヒータが設けられ、ヒータからルツボに熱を供給
しながら、単結晶を引上げている。この場合、種結晶を
シリコン融液に接触させた後に、熱衝撃により種結晶に
高密度で発生するスリップ転位から伝播する転位を消滅
させるために、直径を3mm程度に一旦細くして絞り部
を形成するいわゆる種絞り(ネッキング)を行い、次い
で、所望の直径になるまで結晶を太らせて、コーン部を
作り、所定の直径の単結晶直胴部(以下、定径部ともい
う)を所定の引上げ速度で成長させ、シリコン単結晶棒
を引上げている。
2. Description of the Related Art Conventionally, in the production of a silicon single crystal by the CZ method, a silicon single crystal is used as a seed crystal, which is brought into contact with a silicon melt and then slowly pulled up while rotating to obtain a single crystal rod. Growing. At this time, a heater is provided on the outer periphery of the quartz crucible / graphite crucible holding the melt, and the single crystal is pulled while supplying heat to the crucible from the heater. In this case, after the seed crystal is brought into contact with the silicon melt, in order to eliminate dislocations propagating from slip dislocations generated at high density in the seed crystal due to thermal shock, the diameter is once reduced to about 3 mm and the constricted portion is formed. A so-called seed drawing (necking) is performed, and then the crystal is thickened to a desired diameter to form a cone portion, and a single crystal straight body portion having a predetermined diameter (hereinafter also referred to as a constant diameter portion) is formed. The silicon single crystal rod is grown at a pulling speed of.

【0003】そして、成長単結晶の長さが所定の長さに
到達した時点で単結晶の末端(尾部)を融液から切り離
すことになるが、その際、単に成長単結晶を融液から切
り離したのでは、単結晶の切り離し部位に急激な温度低
下が起こり単結晶内にスリップ転位が発生し、単結晶化
率(単結晶の品質に問題のない定径部の收率)を大きく
低下させてしまう。そこでこの対策として、通常、単結
晶定径部を製造した後、徐々に直径を細く絞って行き、
単結晶と融液との接触面積を充分に小さくした後に融液
から単結晶を切り離すことでスリップ転位の発生を防止
している。通常、この徐々に直径を細く絞る部位をテー
ルあるいは丸めと呼んでいる。
When the length of the grown single crystal reaches a predetermined length, the end (tail) of the single crystal is cut off from the melt. At this time, the grown single crystal is simply cut off from the melt. In this case, a sudden drop in temperature occurs at the cut-off portion of the single crystal, and slip dislocations occur in the single crystal, which greatly lowers the single crystallinity (the yield of the fixed diameter portion where there is no problem with the quality of the single crystal). Would. Therefore, as a countermeasure, usually, after manufacturing a single crystal constant diameter part, gradually narrow the diameter gradually,
After the contact area between the single crystal and the melt is made sufficiently small, the single crystal is separated from the melt to prevent occurrence of slip dislocation. Usually, the part where the diameter is gradually narrowed is called a tail or rounding.

【0004】従来、このテール部位は、ヒータからルツ
ボ内の融液に供給する熱量を増加して、融液温度を徐々
に高めながら、徐々に直径を細く絞って形成してきた。
しかし、この方法では、テール工程終了時の融液温度が
高くなってしまうために、OSF(酸化誘起積層欠陥、
Oxidation Induced Stackin
g Fault)と呼ばれるリング状の欠陥(以下、O
SFリングともいう)が発生し易く、さらに単結晶が融
液から切り離される際の温度変化が大きいので、単結晶
が急冷されて単結晶定径部に異常に酸素析出量が多い部
分(以下、異常酸素析出部ともいう)が生じてしまうと
いう問題点があった。
Conventionally, the tail portion has been formed by gradually increasing the diameter of the melt while gradually increasing the temperature of the melt by increasing the amount of heat supplied from the heater to the melt in the crucible.
However, in this method, since the melt temperature at the end of the tail step becomes high, the OSF (oxidation-induced stacking fault,
Oxidation Induced Stackin
g Fault) (hereinafter referred to as O fault).
Since the single crystal is easily cooled and the temperature change when the single crystal is separated from the melt is large, the single crystal is rapidly cooled, and a portion having an abnormally large amount of oxygen precipitated in the single crystal constant diameter portion (hereinafter, referred to as “the SF ring”). Abnormal oxygen precipitation portion).

【0005】また、この丸め工程を行うに当たって、単
結晶引上げ速度を高速化することもあったが、丸め切れ
が発生したり、単結晶定径部を終了した後に、急速に増
速して丸め工程に入るため急激な温度変化が起こり、単
結晶が急冷されてスリップ転位が生じ易く、さらには単
結晶定径部にまで異常酸素析出部が現れるという欠点が
あった。
In performing the rounding step, the pulling speed of the single crystal was sometimes increased. However, after the rounding was cut off or the single crystal constant diameter portion was completed, the speed was rapidly increased and the rounding was started. A sudden change in temperature occurs during the process, so that the single crystal is rapidly cooled to easily cause slip dislocation, and furthermore, there is a defect that an abnormal oxygen precipitation portion appears even in the single crystal constant diameter portion.

【0006】[0006]

【発明が解決しようとする課題】本発明はかかる課題を
解決するためになされたもので、単結晶引上げの際、最
終のテール工程における単結晶を融液から切り離す場合
の急激な温度低下を防止し、テール部位直近の定径部に
おける異常に酸素析出量が多い部分やOSFリングの発
生を抑えて、単結晶化率を上げ、シリコン単結晶の生産
性と歩留りを向上させるシリコン単結晶の製造方法、お
よびその製造方法により製造されたシリコン単結晶を提
供することを主目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and prevents a sharp drop in temperature when a single crystal is separated from a melt in a final tail step in pulling a single crystal. Production of a silicon single crystal that suppresses the occurrence of an abnormally large amount of oxygen precipitation and an OSF ring in the constant diameter portion immediately adjacent to the tail portion, increases the single crystallization rate, and improves the productivity and yield of the silicon single crystal. It is a main object to provide a method and a silicon single crystal manufactured by the manufacturing method.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
本発明の請求項1に記載した発明は、チョクラルスキー
法によるシリコン単結晶の育成において、該単結晶の定
径部製造後テール部位の製造に際し、単結晶引上げ速度
を徐々に高速化することを特徴とするシリコン単結晶の
製造方法である。
According to a first aspect of the present invention, there is provided a method for growing a silicon single crystal by the Czochralski method, comprising the steps of: Is a method for manufacturing a silicon single crystal, characterized in that the speed of pulling a single crystal is gradually increased in manufacturing the silicon single crystal.

【0008】このように、シリコン単結晶の引上げに際
し、単結晶の定径部製造後、単結晶を融液から切り離す
までの間に直径を徐々に絞って細くし、単結晶と融液と
の接触面積を充分に小さくして切り離す際の熱衝撃を緩
和するテール部位の製造方法において、単結晶引上げ速
度を、定径部製造時の引上げ速度を基準にして徐々に高
速化することによってテール部位を形成すれば、テール
部位の高温化は緩和され、OSFリングの発生を抑える
ことができる。さらに融液温度を従来技術のように徐々
に昇温しなくてもよく、最終的に点接点で切り離しても
熱衝撃は小さく、テール部位直近の定径部における異常
に酸素析出量の多い部分を抑えることができる。しか
も、引上げ速度を徐々に高速化するので、丸め部作製中
に融液から切断されることもなく、単結晶化率を低下さ
せずに、シリコン単結晶の生産性と歩留りを向上させる
ことができる。
As described above, when pulling a silicon single crystal, the diameter of the single crystal is gradually reduced and narrowed until the single crystal is separated from the melt after the production of the fixed diameter portion of the single crystal. In the manufacturing method of the tail portion, which reduces the thermal shock at the time of separating by making the contact area sufficiently small, the pulling speed of the single crystal is gradually increased with reference to the pulling speed at the time of manufacturing the constant diameter portion, so that the tail portion is manufactured. With the formation of, the temperature rise of the tail portion is alleviated, and the occurrence of the OSF ring can be suppressed. Furthermore, the temperature of the melt does not need to be gradually increased as in the conventional technology. Even if the melt is finally cut off at a point contact point, the thermal shock is small, and the portion with an abnormally large amount of oxygen precipitation in the constant diameter portion near the tail part. Can be suppressed. Moreover, since the pulling speed is gradually increased, it is possible to improve the productivity and yield of silicon single crystal without being cut from the melt during the production of the rounded portion and without lowering the single crystallization ratio. it can.

【0009】そしてこの場合、請求項2に記載したよう
に、前記テール部位の製造に際し、テール部位製造開始
時の引上げ速度を1とした場合に、テール部位製造終了
時の引上げ速度を1.1〜5となるよう徐々に高速化す
るのが好ましい。
In this case, as described in claim 2, when manufacturing the tail portion, if the pulling speed at the start of the tail portion production is set to 1, the pulling speed at the end of the tail portion production is 1.1. It is preferable to gradually increase the speed so as to reach 55.

【0010】このように、テール部位製造時の引上げ速
度を徐々に速くし、テール部位終了時点の引上げ速度
を、テール部位製造開始時の引上げ速度の1.1〜5倍
の範囲内に納めれば、テール部位の高温化が緩和され、
OSFリングの発生を抑えることができる。さらには、
最終的にテール部位を融液から切り離しても急激な温度
降下が回避されるため、異常に酸素析出量の多い部分を
抑えることができる。また、引上げ速度を急激に高速化
すると、テール部位製造途中でテール先端と融液とが切
り離されてしまうことがあるが、上記範囲内に収まるよ
うに調整しながら徐々に高速化すれば、テール部位の形
成が容易であり、融液と切り離されることなく安定した
単結晶の製造を行うことができる。
As described above, the pulling speed at the time of manufacturing the tail portion is gradually increased, and the pulling speed at the end of the tail portion is set within a range of 1.1 to 5 times the pulling speed at the start of manufacturing the tail portion. If the temperature of the tail part is reduced,
The occurrence of the OSF ring can be suppressed. Furthermore,
Even if the tail part is finally separated from the melt, a sharp temperature drop is avoided, so that a part with an abnormally large amount of precipitated oxygen can be suppressed. Also, if the pulling speed is rapidly increased, the tail tip and the melt may be separated during the manufacturing of the tail portion, but if the speed is gradually increased while being adjusted to fall within the above range, the tail can be increased. The formation of the site is easy, and a stable single crystal can be manufactured without being separated from the melt.

【0011】そして、本発明の請求項3に記載した発明
は、前記テール部位の製造に際し、単結晶の引上げ速度
を徐々に高速化するのと同時に原料融液を収容するルツ
ボを上方に移動させることを特徴とするシリコン単結晶
の製造方法である。
According to the third aspect of the present invention, in manufacturing the tail portion, the speed of pulling the single crystal is gradually increased, and at the same time, the crucible containing the raw material melt is moved upward. A method for producing a silicon single crystal, characterized in that:

【0012】このように、テール部位の製造に際し、単
結晶の引上げ速度を徐々に高速化するのと同時に原料融
液を収容するルツボを上方に移動させれば、融液レベル
の急激な低下を緩和することができ、テール部位を形成
中に切り離される危険が一層低くなると共に、急激な温
度変化も回避され、一層異常酸素析出が防止される結
果、シリコン単結晶の生産性と歩留り向上に寄与するこ
とができる。
As described above, when the tail portion is manufactured, if the single crystal pulling speed is gradually increased and the crucible containing the raw material melt is moved upward at the same time, a sharp decrease in the melt level can be prevented. As a result, the risk of separation during the formation of the tail portion is further reduced, rapid temperature changes are avoided, and abnormal oxygen precipitation is further prevented, contributing to improved productivity and yield of silicon single crystals. can do.

【0013】そして本発明の請求項4に記載した発明
は、請求項1ないし請求項3に記載の製造方法により製
造されたシリコン単結晶である。このようなテール部位
の製造方法により製造された単結晶棒は、特にテール部
位直近の定径部における異常酸素析出部の発生やOSF
リングの発生は殆どない極低欠陥密度のものとなるの
で、全長に亙って高品質のシリコン単結晶とすることが
できる。
According to a fourth aspect of the present invention, there is provided a silicon single crystal manufactured by the manufacturing method according to the first to third aspects. A single crystal rod manufactured by such a method for manufacturing a tail portion has an abnormal oxygen precipitation portion particularly in a constant diameter portion immediately adjacent to the tail portion, and has an OSF.
Since the defect density is extremely low with almost no occurrence of rings, a high-quality silicon single crystal can be obtained over the entire length.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態を説明
するが、本発明はこれらに限定されるものではない。本
発明者等は、シリコン単結晶引上げの際、最終のテール
部位製造工程においてテール先端を融液から切り離す場
合に、急激な温度低下を伴う熱衝撃により発生する、テ
ール部位直近の定径部における異常に酸素析出量が多い
部分や急激なヒータ加熱での高温化によるOSFリング
等の発生を抑えるテール部位の製造方法を調査、検討し
た結果、テール部位の製造に際し、単結晶引上げ速度を
徐々に高速化すればよいことに想到し、諸条件を精査し
て本発明を完成させた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below, but the present invention is not limited to these embodiments. The present inventors, when pulling the silicon single crystal, when the tail tip is separated from the melt in the final tail part manufacturing process, generated by thermal shock accompanied by a sharp temperature drop, in the constant diameter part immediately near the tail part After investigating and examining a method of manufacturing a tail part that suppresses the occurrence of OSF rings and the like due to abnormally high amounts of oxygen precipitation and sudden heating to a high temperature due to heating, the pulling rate of the single crystal was gradually increased when manufacturing the tail part. The inventors conceived that the speed should be increased, and scrutinized various conditions to complete the present invention.

【0015】先ず本発明は、チョクラルスキー法による
シリコン単結晶の育成において、該単結晶の定径部製造
後テール部位の製造に際し、単結晶引上げ速度を徐々に
高速化することを特徴とするものである。
First, the present invention is characterized in that in growing a silicon single crystal by the Czochralski method, the speed of pulling the single crystal is gradually increased when manufacturing the tail portion after manufacturing the constant diameter portion of the single crystal. Things.

【0016】このように、シリコン単結晶の引上げに際
し、単結晶の定径部製造後、単結晶を融液から切り離す
までの間に直径を徐々に絞って細くし、単結晶と融液と
の接触面積を充分に小さくして、切り離す際の熱衝撃を
緩和するテール部位の製造方法において、単結晶引上げ
速度を、定径部製造時の引上げ速度を基準にして徐々に
高速化すれば、融液温度を従来技術のように徐々に昇温
しなくてもよいので、テール部位の高温化が緩和され、
OSFリングの発生を抑えることができる。そして、最
終的に点接点で切り離しても熱衝撃は小さくなり、テー
ル部位直近の定径部における、異常酸素析出部の発現を
抑えることが可能となる。従って、定径部の品質を低下
させることなく、シリコン単結晶の生産性と歩留りを向
上させることができる。
As described above, when pulling a silicon single crystal, the diameter of the single crystal is gradually reduced until the single crystal is separated from the melt after the production of the fixed diameter portion of the single crystal. In the manufacturing method of the tail part, which has a sufficiently small contact area and reduces the thermal shock at the time of cutting, if the pulling speed of the single crystal is gradually increased based on the pulling speed at the time of manufacturing the constant diameter part, the melting Since it is not necessary to gradually raise the liquid temperature as in the prior art, the rise in the temperature of the tail portion is reduced,
The occurrence of the OSF ring can be suppressed. Then, even if the thermal shock is finally separated at a point contact, the thermal shock becomes small, and it becomes possible to suppress the appearance of the abnormal oxygen precipitation portion in the constant diameter portion immediately near the tail portion. Therefore, the productivity and yield of the silicon single crystal can be improved without deteriorating the quality of the constant diameter portion.

【0017】そしてこの場合、高速化とは、テール部位
製造開始時の引上げ速度を基準に1とした場合に、テー
ル部位製造終了時の引上げ速度が1.1〜5倍となるよ
う設定して徐々に加速するのが好ましい。このように、
テール部位製造時の引上げ速度を徐々に速くし、所定の
テール長さに到達した時点の引上げ速度を、テール部位
製造開始時の引上げ速度の1.1〜5倍の範囲内に納め
れば、テール部位の高温化が緩和され、OSFリングの
発生を抑えることが可能であり、そして最終的に点接触
部で切り離しても急激な温度降下は回避され、異常酸素
析出部の発現を抑えることができる。
In this case, the speeding-up means that the pulling speed at the end of the tail portion production is set to 1.1 to 5 times when the pulling speed at the start of the tail portion production is set to 1 based on the pulling speed. It is preferable to accelerate gradually. in this way,
If the pulling speed at the time of tail part manufacturing is gradually increased, and the pulling speed at the time when the tail length reaches a predetermined tail length falls within a range of 1.1 to 5 times the pulling speed at the start of tail part manufacturing, It is possible to alleviate the rise in temperature of the tail part, suppress the occurrence of OSF rings, and avoid a sudden drop in temperature even when finally cut at the point contact part, and suppress the occurrence of abnormal oxygen precipitation. it can.

【0018】この引上げ速度の加速指数が1.1未満で
は、引上げ速度のみでは充分に結晶を細くしてテール部
位を形成することができないので、融液温度をある程度
上げる必要がある。従って、結晶の温度も高温化し、テ
ール切り離し時にテール部位に急激な温度低下が起こり
異常酸素析出の防止が不十分となることがある。一方引
上げ速度の加速指数が5を超える程高速化すると、テー
ル製造途中で単結晶が融液表面から切り離され易くなる
ので、上記範囲内に収まるように調整しながら徐々に高
速化するのがよい。
When the acceleration index of the pulling speed is less than 1.1, it is necessary to raise the temperature of the melt to some extent because the crystal cannot be sufficiently thinned to form a tail portion by the pulling speed alone. Therefore, the temperature of the crystal is also increased, and the temperature of the tail portion is rapidly lowered when the tail is separated, so that the prevention of abnormal oxygen precipitation may be insufficient. On the other hand, if the acceleration index of the pulling speed is higher than 5 when the speed is increased, the single crystal is easily separated from the surface of the melt during the production of the tail. Therefore, it is preferable to gradually increase the speed while adjusting to fall within the above range. .

【0019】図1(a)に、テール製造時の引上げ速度
の高速化の一例を示した。ここでは190mmのテール
長さに引上げるのに、二次曲線的に4.7倍まで加速し
た結果、単結晶定径部の酸素析出濃度(図1(b))
は、ほぼ均一であり、異常に高い領域は存在しない。な
お、図1乃至図3に示した単結晶の図面では、縦軸と横
軸のスケールは変えて図示している。
FIG. 1 (a) shows an example of increasing the pulling speed during tail manufacturing. Here, to pull up to a tail length of 190 mm, the oxygen was accelerated to 4.7 times in a quadratic curve, and as a result, the oxygen precipitation concentration in the single crystal constant diameter portion (FIG. 1B)
Are almost uniform and there are no abnormally high areas. In the drawings of the single crystal shown in FIGS. 1 to 3, the scales of the vertical axis and the horizontal axis are shown differently.

【0020】また、引上げ速度の加速方法としては、上
記のように二次曲線的に加速する方法の他、階段状に加
速しても、直線的に加速してもほぼ同等の効果が得られ
る。図2(a)には、190mmのテール長さに引上げ
るのに引上げ速度を4段階に変化させて5倍にまで高め
た例を示しており、単結晶定径部の酸素析出濃度(図2
(b))は、二次曲線的に加速する方法とほぼ同等の値
が得られている。
As a method of accelerating the pulling speed, in addition to the method of accelerating in a quadratic curve as described above, substantially the same effect can be obtained by accelerating stepwise or linearly. . FIG. 2 (a) shows an example in which the pulling speed is changed to four steps to increase the tail length to 190 mm, and the pulling speed is increased to five times. 2
In (b)), a value almost equivalent to the method of accelerating in a quadratic curve is obtained.

【0021】次に本発明は、前記テール部位の製造に際
し、単結晶の引上げ速度を徐々に高速化するのと同時に
原料融液を収容するルツボを上方に移動させるのが好ま
しい。このように、テール部位の製造に際し、単結晶の
引上げ速度を徐々に高速化するのと同時に原料融液を収
容するルツボを上方に移動させれば、融液レベルの急激
な低下を緩和することができ、テール部位を形成中に切
り離される危険が一層低くなると共に、急激な温度変化
も回避され、一層異常酸素析出が防止される結果、シリ
コン単結晶の生産性と歩留り向上に寄与することができ
る。
Next, in the present invention, it is preferable that, when the tail portion is manufactured, the crucible containing the raw material melt is moved upward at the same time as the pulling speed of the single crystal is gradually increased. As described above, when manufacturing the tail portion, if the crucible containing the raw material melt is moved upward at the same time as the pulling speed of the single crystal is gradually increased, a sharp drop in the melt level can be mitigated. The risk of separation during the formation of the tail portion is further reduced, abrupt temperature changes are also avoided, and abnormal oxygen precipitation is further prevented, thereby contributing to improved productivity and yield of silicon single crystals. it can.

【0022】本発明のテール部位の製造方法において
は、テール製造時のルツボに収容する原料融液を加熱す
るヒータの電力を、定径部製造時とほぼ同等とするか、
あるいはテール製造時の後半において5%程度増加する
程度で充分テール部位を形成することが可能である。従
って、テール部位が高温化することなく、テール先端切
り離し時の熱衝撃を緩和することができる。テール製造
時に引上げ速度を徐々に高速化すると同時に温度を上げ
る場合のその上げ幅は、引上げ速度の上げ幅を勘案して
適宜選択すればよい。
In the method of manufacturing a tail portion according to the present invention, the electric power of a heater for heating the raw material melt accommodated in the crucible at the time of manufacturing the tail is substantially equal to that at the time of manufacturing the constant diameter portion.
Alternatively, it is possible to sufficiently form the tail portion by increasing the amount by about 5% in the latter half of the tail production. Therefore, the thermal shock at the time of separating the tail tip can be reduced without increasing the temperature of the tail portion. When increasing the temperature at the same time as gradually increasing the pulling speed at the time of tail manufacturing, the raising width may be appropriately selected in consideration of the raising width of the pulling speed.

【0023】以上に述べたテール部位の製造方法により
製造されたシリコン単結晶棒は、特にテール部位直近の
定径部におけるスリップ転位の発生、異常に酸素析出量
の多い部分の発生やOSFリングの発生等は殆どない極
低欠陥密度のものとなるので、全長に亙って高品質のシ
リコン単結晶とすることができる。
The silicon single crystal rod manufactured by the above-described method of manufacturing the tail portion has a slip dislocation, particularly at a constant diameter portion immediately adjacent to the tail portion, a portion having an abnormally large amount of precipitated oxygen, and an OSF ring. Since the defect density is very low with almost no occurrence, a high-quality silicon single crystal can be obtained over the entire length.

【0024】[0024]

【実施例】以下、本発明の実施例および比較例を挙げて
具体的に説明するが、本発明はこれらに限定されるもの
ではない。酸素析出量は、定径部の各位置から採取した
ウエーハを、窒素ガス雰囲気下650℃×2時間および
酸素ガス雰囲気下1000℃×16時間の熱処理を施し
て求め、ASTM’79値で表した。
EXAMPLES The present invention will now be described specifically with reference to examples and comparative examples, but the present invention is not limited to these examples. The oxygen precipitation amount was determined by subjecting a wafer collected from each position of the constant diameter portion to a heat treatment at 650 ° C. × 2 hours in a nitrogen gas atmosphere and at 1000 ° C. × 16 hours in an oxygen gas atmosphere, and expressed as an ASTM '79 value. .

【0025】(実施例1)定径部直径150mm、テー
ル部位長さ190mmのCZ法単結晶を製造した。先ず
引上げ速度をFmm/minとして直径150mmの定
径部を作製し、続いて図1(a)に示したようにテール
部位の製造に移行した。テール部位製造時の引上げ速度
は、テール開始時の引上げ速度をFmm/minとした
場合、テール終了時には4.7Fとなるように徐々に高
速化した。一方ヒータ電力は、テール開始時をHkWと
した場合、テール終了時には1.05Hとなり、従来の
方法と比較してテール部位作製終了時の電力を約13%
低くすることができた。この時の酸素析出濃度は図1
(b)に示したように、定径部についてテール部位開始
前8cmの位置から測定したところ、テール開始前1c
mで極く僅か析出が多くなった程度であとはほぼ均一で
あった。
Example 1 A CZ single crystal having a diameter of a constant diameter portion of 150 mm and a length of a tail portion of 190 mm was produced. First, a constant-diameter portion having a diameter of 150 mm was prepared at a pulling rate of F mm / min, and then the process was shifted to the production of a tail portion as shown in FIG. When the pulling speed at the tail start was set to Fmm / min, the pulling speed at the tail portion manufacturing was gradually increased to 4.7 F at the end of the tail. On the other hand, when the tail start time is HkW, the heater power is 1.05H at the tail end, and the electric power at the end of the tail portion production is reduced by about 13% compared with the conventional method.
Could be lower. The oxygen precipitation concentration at this time is shown in FIG.
As shown in (b), when the constant diameter portion was measured from a position 8 cm before the start of the tail portion, it was 1c before the start of the tail.
It was almost uniform that the amount of precipitation increased very slightly at m.

【0026】(実施例2)定径部直径150mm、テー
ル部位長さ190mmのCZ法単結晶を製造した。先ず
引上げ速度をFmm/minとして直径150mmの定
径部を作製し、続いて図2(a)に示したようにテール
部位の製造に移行した。テール部位製造時の引上げ速度
は、テール開始時の引上げ速度をFmm/minとした
場合、テール終了時には5.0Fとなるように徐々に段
階的に高速化した。一方ヒータ電力は、テール開始時を
HkWとした場合、テール終了時には1.05Hとな
り、従来の方法と比較してテール部位作製終了時の電力
を約13%低くすることができた。この時の酸素析出濃
度は図2(b)に示したように、定径部についてテール
部位開始前8cmの位置から測定したところ、テール開
始前1cmで極く僅か析出が多くなった程度であとはほ
ぼ均一であった。
Example 2 A CZ single crystal having a diameter of a constant diameter portion of 150 mm and a length of a tail portion of 190 mm was produced. First, a constant-diameter portion having a diameter of 150 mm was prepared at a pulling speed of F mm / min, and then the process was shifted to the production of a tail portion as shown in FIG. When the pulling speed at the start of the tail was set to Fmm / min, the pulling speed at the tail portion manufacturing was gradually increased stepwise so as to be 5.0 F at the end of the tail. On the other hand, when the tail start time was set to HkW, the heater power was 1.05 H at the tail end, and the power at the end of the tail portion fabrication could be reduced by about 13% compared to the conventional method. As shown in FIG. 2 (b), the oxygen precipitation concentration at this time was measured from a position 8 cm before the start of the tail portion with respect to the constant diameter portion. Was almost uniform.

【0027】(比較例)定径部直径150mm、テール
部位長さ190mmのCZ法単結晶を製造した。先ず引
上げ速度をFmm/minとして直径150mmの定径
部を作製し、続いて図3(a)に示したようにテール部
位の製造に移行した。テール部位製造時の引上げ速度
は、テール開始時の引上げ速度をFmm/minとしテ
ール終了まで一定とした。一方ヒータ電力は、この場
合、テール開始後4cm位から増加し続けテール最終1
9cmでは、定径部引上げ時の1.2倍となった。この
時の酸素析出濃度は図3(b)に示したように、定径部
についてテール部位開始前3cmの位置から急速に増大
し、テール部位開始時では7.2×1017atoms/
cm3 と異常に増加していた。
Comparative Example A CZ single crystal having a diameter of a constant diameter portion of 150 mm and a length of a tail portion of 190 mm was produced. First, a constant-diameter portion having a diameter of 150 mm was formed at a pulling rate of F mm / min, and then the process was shifted to the production of a tail portion as shown in FIG. The pulling speed at the time of manufacturing the tail portion was set to Fmm / min at the start of the tail, and was kept constant until the end of the tail. On the other hand, in this case, the heater power continues to increase from about 4 cm after the tail starts, and the tail end 1
At 9 cm, it was 1.2 times that at the time of raising the constant diameter portion. As shown in FIG. 3B, the oxygen precipitation concentration at this time rapidly increased from the position 3 cm before the start of the tail portion for the constant diameter portion, and was 7.2 × 10 17 atoms / s at the start of the tail portion.
cm 3 and increased abnormally.

【0028】なお、本発明は、上記実施形態に限定され
るものではない。上記実施形態は、例示であり、本発明
の特許請求の範囲に記載された技術的思想と実質的に同
一な構成を有し、同様な作用効果を奏するものは、いか
なるものであっても本発明の技術的範囲に包含される。
The present invention is not limited to the above embodiment. The above embodiment is an exemplification, and has substantially the same configuration as the technical idea described in the scope of the claims of the present invention. It is included in the technical scope of the invention.

【0029】例えば、本発明の実施形態では、直径15
0mm(6インチ)のシリコン単結晶棒を成長させてい
るが、近年の200mm(8インチ)〜400mm(1
6インチ)、あるいはそれ以上の大直径化にも十分対応
することができる。
For example, in the embodiment of the present invention, the diameter 15
Although a 0 mm (6 inch) silicon single crystal rod is grown, recent 200 mm (8 inch) to 400 mm (1 inch)
6 inches) or more.

【0030】また、本発明は、通常のチョクラルスキー
法のみならず、シリコン単結晶引上げ時に磁場を印加す
るMCZ法(Magnetic Field Applied Czochralski Cry
stalGrowth Method)にも同様に適用できることは言う
までもなく、本明細書中で使用したチョクラルスキー法
という用語には、通常のチョクラルスキー法だけでな
く、MCZ法も含まれる。
The present invention is not limited to the ordinary Czochralski method, but also to the MCZ method (Magnetic Field Applied Czochralski Cry method) for applying a magnetic field when pulling a silicon single crystal.
It goes without saying that the term Czochralski method as used herein includes the MCZ method as well as the usual Czochralski method.

【0031】[0031]

【発明の効果】以上説明したように、本発明によれば、
シリコン単結晶テール部位切り離し時の熱衝撃に起因す
る異常酸素析出部やテール部位作製のための急激な高温
化によるOSFリングの発生が抑制されるので、シリコ
ン単結晶の生産性、歩留りならびに製造コストを著しく
改善することができる。
As described above, according to the present invention,
Since the occurrence of OSF rings due to abnormal oxygen precipitation caused by thermal shock when the silicon single crystal tail part is separated and the sudden rise in temperature for producing the tail part is suppressed, the productivity, yield, and manufacturing cost of the silicon single crystal Can be significantly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のシリコン単結晶テール部位の製造条件
と単結晶定径部の酸素析出量を示すグラフである。 (a)テール部位製造時の引上げ速度とヒータ電力、 (b)単結晶定径部の酸素析出量。
FIG. 1 is a graph showing manufacturing conditions of a silicon single crystal tail portion of the present invention and the amount of oxygen precipitated in a single crystal constant diameter portion. (A) Pulling speed and heater power at the time of tail portion production, (b) Oxygen precipitation amount at single crystal constant diameter portion.

【図2】本発明のシリコン単結晶テール部位の製造条件
と単結晶定径部の酸素析出量を示すグラフである。 (a)テール部位製造時の階段状に変化させた引上げ速
度、 (b)単結晶定径部の酸素析出量。
FIG. 2 is a graph showing manufacturing conditions of a silicon single crystal tail portion of the present invention and the amount of oxygen precipitated in a single crystal constant diameter portion. (A) The pulling speed changed in a stepwise manner at the time of manufacturing the tail portion, (b) The amount of precipitated oxygen in the single crystal constant diameter portion.

【図3】従来のシリコン単結晶テール部位の製造条件と
単結晶定径部の酸素析出量を示すグラフである。 (a)テール部位製造時の引上げ速度とヒータ電力、 (b)単結晶定径部の酸素析出量。
FIG. 3 is a graph showing a conventional silicon single crystal tail portion manufacturing condition and a single crystal constant diameter portion with oxygen precipitation. (A) Pulling speed and heater power at the time of tail portion production, (b) Oxygen precipitation amount at single crystal constant diameter portion.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 太田 友彦 福島県西白河郡西郷村大字小田倉字大平 150番地 信越半導体株式会社白河工場内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tomohiko Ota 150 Odakura Odaikura, Nishigo-mura, Nishishirakawa-gun, Fukushima Prefecture Shin-Etsu Semiconductor Shirakawa Plant

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 チョクラルスキー法によるシリコン単結
晶の育成において、該単結晶の定径部製造後テール部位
の製造に際し、単結晶引上げ速度を徐々に高速化するこ
とを特徴とするシリコン単結晶の製造方法。
1. A method of growing a silicon single crystal by the Czochralski method, wherein a single crystal pulling speed is gradually increased in manufacturing a tail portion after manufacturing a constant diameter portion of the single crystal. Manufacturing method.
【請求項2】 前記テール部位の製造に際し、テール部
位製造開始時の引上げ速度を1とした場合に、テール部
位製造終了時の引上げ速度を1.1〜5となるよう徐々
に高速化することを特徴とする請求項1に記載したシリ
コン単結晶の製造方法。
2. The method of manufacturing a tail part according to claim 1, wherein when the pulling speed at the start of the tail part manufacturing is set to 1, the pulling speed at the end of the tail part manufacturing is gradually increased to 1.1 to 5. The method for producing a silicon single crystal according to claim 1, wherein:
【請求項3】 前記テール部位の製造に際し、単結晶の
引上げ速度を徐々に高速化するのと同時に原料融液を収
容するルツボを上方に移動させることを特徴とする請求
項1または請求項2に記載したシリコン単結晶の製造方
法。
3. A crucible for accommodating a raw material melt is moved upward at the same time as the pulling speed of the single crystal is gradually increased when the tail portion is manufactured. 3. The method for producing a silicon single crystal described in 1. above.
【請求項4】 請求項1ないし請求項3に記載の製造方
法により製造されたシリコン単結晶。
4. A silicon single crystal manufactured by the manufacturing method according to claim 1.
JP9548198A 1998-03-17 1998-03-24 Production of silicon single crystal, and silicon single crystal Pending JPH11268991A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9548198A JPH11268991A (en) 1998-03-24 1998-03-24 Production of silicon single crystal, and silicon single crystal
EP99301820A EP0947611A3 (en) 1998-03-17 1999-03-10 A method for producing a silicon single crystal and the silicon single crystal produced thereby
KR1019990008739A KR19990077913A (en) 1998-03-17 1999-03-16 A method for producing a silicon single crystal and the silicon single crystal produced thereby
US09/270,277 US6153009A (en) 1998-03-17 1999-03-16 Method for producing a silicon single crystal and the silicon single crystal produced thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9548198A JPH11268991A (en) 1998-03-24 1998-03-24 Production of silicon single crystal, and silicon single crystal

Publications (1)

Publication Number Publication Date
JPH11268991A true JPH11268991A (en) 1999-10-05

Family

ID=14138816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9548198A Pending JPH11268991A (en) 1998-03-17 1998-03-24 Production of silicon single crystal, and silicon single crystal

Country Status (1)

Country Link
JP (1) JPH11268991A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015173998A1 (en) * 2014-05-12 2015-11-19 信越半導体株式会社 Method for growing silicon single crystal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015173998A1 (en) * 2014-05-12 2015-11-19 信越半導体株式会社 Method for growing silicon single crystal
JP2015214460A (en) * 2014-05-12 2015-12-03 信越半導体株式会社 Raising method of silicon single crystal
US9988736B2 (en) 2014-05-12 2018-06-05 Shin-Etsu Handotai Co., Ltd. Method for growing a silicon single crystal while suppressing a generation of slip dislocations in a tail portion

Similar Documents

Publication Publication Date Title
JP2001181090A (en) Method for producing single crystal
US6869477B2 (en) Controlled neck growth process for single crystal silicon
JP4142332B2 (en) Single crystal silicon manufacturing method, single crystal silicon wafer manufacturing method, single crystal silicon manufacturing seed crystal, single crystal silicon ingot, and single crystal silicon wafer
JPH11322491A (en) Production of silicon single crystal wafer and silicon single crystal wafer
US6153009A (en) Method for producing a silicon single crystal and the silicon single crystal produced thereby
KR100368331B1 (en) Thermal treatment of semiconductor wafer and semiconductor wafer fabricated by the thermal treatment
JP4013324B2 (en) Single crystal growth method
JP3353681B2 (en) Silicon wafer and crystal growing method
JPH11180793A (en) Method for controlling single crystal pulling-up rate
JP4407188B2 (en) Silicon wafer manufacturing method and silicon wafer
JPH0543379A (en) Production of silicon single crystal
JPH11268991A (en) Production of silicon single crystal, and silicon single crystal
US7083677B2 (en) Silicon seed crystal and method for manufacturing silicon single crystal
US5968260A (en) Method for fabricating a single-crystal semiconductor
JP4273793B2 (en) Single crystal manufacturing method
JP4080657B2 (en) Method for producing silicon single crystal ingot
JPH06271388A (en) Production of semiconductor single crystal rod
JP2003246695A (en) Method for producing highly doped silicon single crystal
JP2000239096A (en) Production of silicon single crystal
JPH11199380A (en) Silicon wafer and crystal growth
JP3473477B2 (en) Method for producing silicon single crystal
KR102514915B1 (en) Dopant Concentration Control in Silicon Melts to Improve Ingot Quality
JP7503053B2 (en) Controlling dopant concentration in silicon melt to improve ingot quality.
JPH11263699A (en) Production of silicon single crystal, and silicon single crystal
CN102373504B (en) Silicon single crystal production method