JP2003137687A - Method of growing silicon single crystal - Google Patents

Method of growing silicon single crystal

Info

Publication number
JP2003137687A
JP2003137687A JP2001339189A JP2001339189A JP2003137687A JP 2003137687 A JP2003137687 A JP 2003137687A JP 2001339189 A JP2001339189 A JP 2001339189A JP 2001339189 A JP2001339189 A JP 2001339189A JP 2003137687 A JP2003137687 A JP 2003137687A
Authority
JP
Japan
Prior art keywords
boron
single crystal
phosphorus
specific resistance
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001339189A
Other languages
Japanese (ja)
Other versions
JP3931956B2 (en
Inventor
Koji Kato
浩二 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumitomo Mitsubishi Silicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Mitsubishi Silicon Corp filed Critical Sumitomo Mitsubishi Silicon Corp
Priority to JP2001339189A priority Critical patent/JP3931956B2/en
Publication of JP2003137687A publication Critical patent/JP2003137687A/en
Application granted granted Critical
Publication of JP3931956B2 publication Critical patent/JP3931956B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To make apparent segregation coefficient large with a simple means, to make the specific resistance of a silicon single crystal uniform and to improve the yield so as to obtain a silicon wafer having a desired specific resistance in the longitudinal direction of a p-type rod-shaped silicon single crystal obtained by doping boron as a main dopant. SOLUTION: The silicon single crystal is pulled from a silicon melt prepared by adding an amount of 25 to 35%, based on the absolute concentration (atom/ cc) of boron contained, of phosphorous in an initial melt by a Czochralski method.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】この発明は、半導体材料とし
て使用されるシリコンウェーハ用のp型シリコン単結晶
の育成方法に関し、棒状単結晶の長さ方向に所要の比抵
抗値を有するシリコンウェーハがより多く得られ歩留り
にすぐれたシリコン単結晶の育成方法に関する。 【0002】 【従来の技術】所望の比抵抗をもつシリコン単結晶をチ
ョクラルスキー法で育成する場合、シリコンと添加剤の
種類により決まる物質固有の偏析係数を考慮する必要が
あり、一般的に引き上げられた単結晶インゴットの後部
になるほど比抵抗は低下するため、所望の比抵抗範囲が
比較的狭い場合には、その所望の範囲を逸脱することに
なり、逸脱した部分は製品として使用できなくなる。 【0003】そこで、ボロン等のp型不純物の効果を相
殺し、見かけの偏析係数を大きくする方法として、n型
不純物を添加する方法が種々提案(特開平10−298
94号、特許第2804456号及び特許第28044
55号、特許第2756476号など)されている。こ
れにより1本のインゴットからより多くの所望の比抵抗
値をもつウェーハがより多く得られ、歩留りの向上を図
ることができる。 【0004】 【発明が解決しようとする課題】特開平10−2989
4号に記載の単結晶シリコンの比抵抗調整方法では、石
英ルツボの底部に比抵抗の低下を打ち消す添加剤を含有
させる必要があるが、初期融解時にはその添加物を融解
させてはならず、実際に行おうとした場合、煩雑な方法
を取らざるを得ない、または育成途中で融液中に添加剤
を添加しなければならないため、何らかの治具が必要で
あり、簡便な方法ではない。 【0005】特許第2804456号及び特許第280
4455号に記載の方法は、BまたはPを添加したSi
融液に融点近傍の熱膨張係数を小さくする元素(Ga,
SbまたはIn)を追加添加、あるいはGaまたはSb
を添加したSi融液に融点近傍の熱膨張係数を大きくす
る元素(BまたはP)を追加添加して引き上げることに
より、成長方向に不純物濃度が均一な単結晶を育成する
ことができるとされている。 【0006】特許第2756476号に記載の方法は、
CZ又はFZ方法にて育成して得たウェーハ面内の比抵
抗値の均一性を改善するために、特定の計算式で添加す
る不純物量を求めてこれを添加する。しかし、この方法
でn型不純物を添加して引き上げ率が大きい場合には、
インゴットのボトム部付近において比抵抗値が減少から
増加に移る逆転する部分が現れる場合がある。従って、
インゴットの比抵抗値保証が困難となり、ウェーハ化工
程において全数の比抵抗値を測定する必要が生じて煩雑
な工程フローとなる場合がある。 【0007】この発明は、ボロンを主添加剤とするp型
の棒状シリコン単結晶の長さ方向に所要の比抵抗値を有
するシリコンウェーハを得ることを目的とし、またでき
るだけ簡便な手段で見かけの偏析係数を大きくして、シ
リコン単結晶の比抵抗値を均一にして歩留りを向上させ
ることが可能なシリコン単結晶の育成方法を提供するこ
とを目的とする。 【0008】 【課題を解決するための手段】発明者は、n型不純物を
添加する手段でp型シリコン単結晶の見かけの偏析係数
を大きくする方法において、シリコン単結晶の長さ方向
に比抵抗値が均一となるようにするn型不純物の添加手
段を目的に種々検討した結果、初期融液中にリンを単に
所定量添加するという簡単な方法で目的が達成できるこ
とを知見し、この発明を完成した。 【0009】すなわち、この発明は、チョクラルスキー
法で、原料シリコンを溶融してボロンを主添加剤として
含有するp型シリコン単結晶を育成する方法において、
初期融液が含む絶対ボロン濃度(atoms/cc)の
25〜35%となるように、初期融液中にリンを添加す
ること、換言すれば、主添加剤として含有されるボロン
の見かけのボロン偏析係数が0.83〜0.88となる
ようにリンを初期融液に添加することを特徴とするシリ
コン単結晶の育成方法である。 【0010】 【発明の実施の形態】この発明は、初期融液に絶対ボロ
ン濃度(atoms/cc)の25〜35%のリンを添
加すると、ボロンの見かけの偏析係数は0.83〜0.
88になり、通常製造する単結晶のほぼ全域にわたり所
望の比抵抗値を得ることができ、かつインゴットのボト
ム付近で比抵抗が逆転する部分が現れない効果が得られ
ることを特徴とする。 【0011】すなわち、この発明において、シリコン単
結晶の比抵抗値は引上げ方向に均一であることを特徴と
するが、引上げた単結晶のトップからボトム方向に、例
えば、単結晶の長さの90%以下において目標比抵抗値
から−30%以内の値を示すなどの所要範囲内で減少か
ら増加する等の現象がなく、減少傾向のみを示すことが
望ましい。 【0012】なお、ボロンの見かけの偏析係数とは、比
抵抗値とその測定位置から、ボロンのみが存在すると仮
定して求めた場合の偏析係数である。シリコン中にある
ボロン・リンはそれぞれ独立した偏析を行う。フォトル
ミネッセンス等でボロンおよびリンの絶対量を測定しそ
れぞれの偏析係数を求めると、Cボロン≫Cリンの場合
も、Cボロン>Cリンの場合も0.75、0.35に近
い値となる。ところが比抵抗値とその測定位置から偏析
係数を求めるとボロンにより発生した空孔とリンにより
発生した電子が打ち消し合うため、上記とは異なる偏析
係数となる。この場合、ボロンのみが存在すると仮定し
ている。具体的には、Cボロン≫Cリンの場合には、圧
倒的に空孔の数が多いため0.75に近い値となるがC
ボロン>Cリンの場合には、空孔の数と電子の数が近似
(特に結晶後半)してくるため電子による空孔の打ち治
し量が無視できなくなり、比抵抗値とその測定位置から
偏析係数を求めると0.75より大きな値となる。 【0013】この発明において、初期融液に、それが含
む絶対ボロン濃度(atoms/cc)の25〜35%
のリンを添加するが、25%未満では、ボロンの見かけ
の偏析係数は0.83以下となり、所望の比抵抗値を得
られる範囲が限られ、リンを添加する効果が得難く、3
5%を越えると、ボロンの見かけの偏析係数は0.88
以上となり、ほぼ全範囲にわたり所望の比抵抗値を得ら
れるが、インゴットのボトム付近で比抵抗が逆転する部
分が現れるか、あるいはそれに準ずる部分が現れるため
好ましくない。 【0014】詳述すると、ボロンの偏析係数は0.75
程度、リンの偏析係数は0.35程度、偏析係数が小さ
いほど、単結晶中に取り込まれる不純物濃度は小さくな
るが、これは偏析係数が小さいほど、融液中の不純物濃
度の濃縮が進むことを意味する。ボロン濃度とリン濃度
が近似している場合、特にインゴットのボトム付近でリ
ンの濃縮が無視できなくなる。 【0015】ボロン濃度とリン濃度が近似していない
(Cボロン≫Cリン)通常の場合は、ボトムに向かうに
従いボロン・リンともに増加し、またボロン濃度とリン
濃度の差が大きいため見かけの偏析係数も変わらない。
ところがボロン濃度とリン濃度が近似している場合、特
にCボロン>Cリンで近似している場合には見かけの偏
析係数も変わってくる。この時ボトムに向かうに従いボ
ロン・リンともに増加するが、リンの増加量がボロンの
増加量を超えるとボロンの見かけの偏析係数が局所的に
負になり比抵抗の逆転現象が起こる。よって、不純物の
組合せの種類により特定の最適な値が存在することにな
る。 【0016】この発明において、チョクラルスキー法に
おける引上げ条件としては、特に限定されないが、初期
融液の絶対ボロン濃度は2.7×1016atoms/c
c以下であることが好ましい。 【0017】 【実施例】比較例1 140kgのシリコンを溶融してp型15〜20Ωcm
の8インチ単結晶を育成する目的で、ボロン添加量は、
5.77×1019atoms/cc相当のボロンを含む
ドーパントを添加する条件で育成した。 【0018】各引上率部におけるシリコン中のボロンお
よびリン濃度を図1Aに、ボロンとリンの濃度差を図1
Bに、各引上率部における比抵抗値を図1Cに示す。そ
の結果、全体の70%しか所望の比抵抗値を得られなか
った。また、シリコンに対するボロンの偏析係数は、
0.75であった。 【0019】比較例2 比較例1と同様に140kgのシリコンを溶融してp型
15〜20Ωcmの8インチ単結晶を育成するとき、初
期融液が含む絶対ボロン濃度(atoms/cc)の4
0%のリンを添加したところ、図3にボロンおよびリン
濃度、ボロンとリンの濃度差、比抵抗値を示すように全
体の100%において所望の比抵抗値を得ることはでき
たが、インゴットのボトム部付近で比抵抗値が逆転する
部分が現れた。 【0020】実施例1 比較例1と同様に140kgのシリコンを溶融してp型
15〜20Ωcmの8インチ単結晶を育成するとき、初
期融液が含む絶対ボロン濃度(atoms/cc)の3
1%のリンを添加して引上げを行った。 【0021】その結果、図2にボロンおよびリン濃度、
ボロンとリンの濃度差、比抵抗値を示すように、全体の
90%において所望の比抵抗値を得ることができた。ま
た、リンを添加しないときのシリコンに対するボロンの
偏析係数は、0.75であったが、31%のリンを添加
した場合は0.85であった。 【0022】 【発明の効果】この発明は、ボロンを主添加剤とするp
型シリコン単結晶の育成に際し、特定量のリンを添加す
るという簡便な手段で見かけの偏析係数を大きくでき、
シリコン単結晶の比抵抗値を長さ方向に均一に所要値と
することが可能で、歩留りを向上させることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for growing a p-type silicon single crystal for a silicon wafer used as a semiconductor material, and relates to a method for growing a bar-shaped single crystal in the longitudinal direction. More specifically, the present invention relates to a method for growing a silicon single crystal having a higher yield and a higher yield. [0002] When a silicon single crystal having a desired specific resistance is grown by the Czochralski method, it is necessary to consider a segregation coefficient inherent to a substance determined by the type of silicon and an additive. Since the specific resistance decreases toward the rear of the pulled single crystal ingot, if the desired specific resistance range is relatively narrow, the specific resistance will deviate from the desired range, and the deviated portion cannot be used as a product. . Therefore, as a method of canceling the effect of a p-type impurity such as boron and increasing an apparent segregation coefficient, various methods of adding an n-type impurity have been proposed (JP-A-10-298).
No. 94, Japanese Patent No. 2804456 and Japanese Patent No. 28044
No. 55, Japanese Patent No. 2756476, etc.). As a result, more wafers having more desired specific resistance values can be obtained from one ingot, and the yield can be improved. [0004] Japanese Patent Laid-Open No. Hei 10-2989
In the method for adjusting the specific resistance of single-crystal silicon described in No. 4, it is necessary to include an additive for canceling the decrease in specific resistance at the bottom of the quartz crucible, but the additive must not be melted at the time of initial melting. When actually trying to do so, a complicated method must be used, or an additive must be added to the melt during the growth, so some jig is required, and this is not a simple method. [0005] Japanese Patent No. 2804456 and Japanese Patent No. 280
No. 4455 describes a method of adding Si to which B or P is added.
Elements that reduce the coefficient of thermal expansion near the melting point (Ga,
Sb or In) or Ga or Sb
It is said that a single crystal having a uniform impurity concentration in the growth direction can be grown by additionally adding an element (B or P) that increases the coefficient of thermal expansion near the melting point to the Si melt to which is added. I have. [0006] The method described in Japanese Patent No. 2756476 is
In order to improve the uniformity of the in-plane specific resistance value obtained by growing by the CZ or FZ method, the amount of impurities to be added is obtained by a specific calculation formula and is added. However, when an n-type impurity is added by this method and the pulling rate is large,
In the vicinity of the bottom of the ingot, there may be a reversal part where the specific resistance value changes from decreasing to increasing. Therefore,
It is difficult to guarantee the specific resistance value of the ingot, and it is necessary to measure all the specific resistance values in the wafer forming process, which may result in a complicated process flow. An object of the present invention is to obtain a silicon wafer having a required specific resistance value in the longitudinal direction of a p-type rod-shaped silicon single crystal containing boron as a main additive, and to provide an apparently simple means. It is an object of the present invention to provide a method for growing a silicon single crystal capable of increasing the segregation coefficient, making the specific resistance of the silicon single crystal uniform, and improving the yield. SUMMARY OF THE INVENTION The present inventors have proposed a method of increasing the apparent segregation coefficient of a p-type silicon single crystal by means of adding an n-type impurity. As a result of various studies for the purpose of adding n-type impurities to make the value uniform, it was found that the object can be achieved by a simple method of simply adding a predetermined amount of phosphorus to the initial melt, and the present invention completed. That is, the present invention relates to a method of growing a p-type silicon single crystal containing boron as a main additive by melting raw silicon by a Czochralski method.
Adding phosphorus to the initial melt so as to be 25 to 35% of the absolute boron concentration (atoms / cc) contained in the initial melt, in other words, the apparent boron of boron contained as the main additive This is a method for growing a silicon single crystal, wherein phosphorus is added to an initial melt so that a segregation coefficient becomes 0.83 to 0.88. DETAILED DESCRIPTION OF THE INVENTION According to the present invention, when 25 to 35% of an absolute boron concentration (atoms / cc) of phosphorus is added to an initial melt, the apparent segregation coefficient of boron is 0.83 to 0.1.
It is characterized in that a desired specific resistance value can be obtained over almost the entire region of a normally produced single crystal, and an effect that a portion where the specific resistance is reversed does not appear near the bottom of the ingot is obtained. That is, in the present invention, the specific resistance value of the silicon single crystal is uniform in the pulling direction, but the specific resistance of the single crystal is, for example, 90% of the length of the single crystal. %, It is desirable that there is no phenomenon such as an increase from a decrease within a required range such as a value within −30% of a target specific resistance value, and only a decreasing tendency. The apparent segregation coefficient of boron is a segregation coefficient obtained by assuming that only boron exists from the specific resistance value and the measurement position. Boron and phosphorus in silicon perform independent segregation. When the absolute amounts of boron and phosphorus are measured by photoluminescence and the like and the respective segregation coefficients are obtained, the values close to 0.75 and 0.35 are obtained for both C boronCC phosphorus and C boron> C phosphorus. . However, when the segregation coefficient is obtained from the specific resistance value and its measurement position, the vacancy generated by boron and the electron generated by phosphorus cancel each other out, so that the segregation coefficient differs from the above. In this case, it is assumed that only boron is present. Specifically, in the case of C boron≫C phosphorus, the value is close to 0.75 due to the overwhelmingly large number of holes, but C
In the case of boron> C phosphorus, the number of holes and the number of electrons are approximated (particularly in the latter half of the crystal), so that the amount of holes removed by electrons cannot be ignored, and segregation from the specific resistance value and its measurement position. When the coefficient is obtained, it becomes a value larger than 0.75. In the present invention, the initial melt contains 25 to 35% of the absolute boron concentration (atoms / cc) contained therein.
However, if less than 25%, the apparent segregation coefficient of boron is 0.83 or less, the range in which a desired specific resistance value can be obtained is limited, and the effect of adding phosphorus is difficult to obtain.
Above 5%, the apparent segregation coefficient of boron is 0.88
As described above, a desired specific resistance value can be obtained over almost the entire range, but it is not preferable because a portion where the specific resistance reverses appears near the bottom of the ingot or a portion similar thereto appears. Specifically, the segregation coefficient of boron is 0.75
The segregation coefficient of phosphorus is about 0.35, and the smaller the segregation coefficient, the lower the impurity concentration taken into the single crystal. This is because the lower the segregation coefficient, the more the impurity concentration in the melt increases. Means When the boron concentration and the phosphorus concentration are close to each other, the concentration of phosphorus cannot be ignored particularly near the bottom of the ingot. In the normal case where the boron concentration and the phosphorus concentration are not approximated (C boron≫C phosphorus), both boron and phosphorus increase toward the bottom, and apparent segregation due to a large difference between the boron concentration and the phosphorus concentration. The coefficient does not change.
However, when the boron concentration and the phosphorus concentration are approximated, and particularly when C boron> C phosphorus is approximated, the apparent segregation coefficient also changes. At this time, both boron and phosphorus increase toward the bottom, but if the increase in phosphorus exceeds the increase in boron, the apparent segregation coefficient of boron becomes locally negative and the phenomenon of reversal of the specific resistance occurs. Therefore, a specific optimum value exists depending on the type of the combination of impurities. In the present invention, the pulling conditions in the Czochralski method are not particularly limited, but the absolute boron concentration of the initial melt is 2.7 × 10 16 atoms / c.
It is preferably not more than c. EXAMPLES Comparative Example 1 140 kg of silicon was melted and p-type 15-20 Ωcm
In order to grow an 8 inch single crystal of
It was grown under the condition of adding a dopant containing boron equivalent to 5.77 × 10 19 atoms / cc. FIG. 1A shows the concentration of boron and phosphorus in silicon at each pulling ratio portion, and FIG. 1 shows the concentration difference between boron and phosphorus.
FIG. 1B shows the specific resistance value at each pulling rate portion in FIG. 1C. As a result, a desired specific resistance value was obtained only in 70% of the whole. The segregation coefficient of boron with respect to silicon is
0.75. Comparative Example 2 As in Comparative Example 1, when 140 kg of silicon was melted to grow a p-type 8-inch single crystal of 15 to 20 Ωcm, the absolute boron concentration (atoms / cc) contained in the initial melt was 4%.
When 0% phosphorus was added, the desired specific resistance value could be obtained at 100% of the total as shown in FIG. 3 showing the boron and phosphorus concentrations, the boron and phosphorus concentration difference, and the specific resistance value. In the vicinity of the bottom part, a portion where the specific resistance value was reversed appeared. Example 1 As in Comparative Example 1, when 140 kg of silicon was melted to grow an 8-inch single crystal having a p-type of 15 to 20 Ωcm, the absolute boron concentration (atoms / cc) contained in the initial melt was 3%.
Pulling was performed by adding 1% of phosphorus. As a result, FIG. 2 shows boron and phosphorus concentrations,
As shown by the difference in concentration between boron and phosphorus and the specific resistance, a desired specific resistance could be obtained in 90% of the whole. The segregation coefficient of boron with respect to silicon when phosphorus was not added was 0.75, but was 0.85 when 31% phosphorus was added. According to the present invention, a p-type additive containing boron as a main additive
In growing a silicon single crystal, the apparent segregation coefficient can be increased by simple means of adding a specific amount of phosphorus,
The specific resistance value of the silicon single crystal can be uniformly set to a required value in the length direction, and the yield can be improved.

【図面の簡単な説明】 【図1】Aはリン添加量0%の場合の各引上率部におけ
るシリコン中のボロンおよびリン濃度を示すグラフ、B
は同各引上率部におけるボロンとリンの濃度差を示すグ
ラフ、Cは同各引上率部における比抵抗値を示すグラフ
である。 【図2】Aはリン添加量31%の場合の各引上率部にお
けるシリコン中のボロンおよびリン濃度を示すグラフ、
Bは同各引上率部におけるボロンとリンの濃度差を示す
グラフ、Cは同各引上率部における比抵抗値を示すグラ
フである。 【図3】Aはリン添加量40%の場合の各引上率部にお
けるシリコン中のボロンおよびリン濃度を示すグラフ、
Bは同各引上率部におけるボロンとリンの濃度差を示す
グラフ、Cは同各引上率部における比抵抗値を示すグラ
フである。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A is a graph showing the concentrations of boron and phosphorus in silicon at each pulling ratio when the amount of phosphorus added is 0%, and FIG.
Is a graph showing the concentration difference between boron and phosphorus in each of the lifting parts, and C is a graph showing the specific resistance value in each of the lifting parts. FIG. 2A is a graph showing the concentrations of boron and phosphorus in silicon in each pulling ratio part when the amount of phosphorus added is 31%,
B is a graph showing the concentration difference between boron and phosphorus in each of the lifting parts, and C is a graph showing the specific resistance value in each of the lifting parts. FIG. 3A is a graph showing the concentrations of boron and phosphorus in silicon in each pulling ratio part when the amount of phosphorus added is 40%,
B is a graph showing the concentration difference between boron and phosphorus in each of the lifting parts, and C is a graph showing the specific resistance value in each of the lifting parts.

Claims (1)

【特許請求の範囲】 【請求項1】 主添加剤として含有されるボロンの絶対
濃度(atoms/cc)の25〜35%に相当するリ
ンを初期融液に添加した溶融シリコンより、チョクラル
スキー法で引上げ方向に比抵抗値が均一なp型シリコン
単結晶を育成するシリコン単結晶の育成方法。
Claims: 1. Czochralski from molten silicon obtained by adding phosphorus corresponding to 25 to 35% of the absolute concentration (atoms / cc) of boron contained as a main additive to an initial melt. A method for growing a silicon single crystal, which grows a p-type silicon single crystal having a uniform resistivity in a pulling direction by a pulling method.
JP2001339189A 2001-11-05 2001-11-05 Method for growing silicon single crystal Expired - Lifetime JP3931956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001339189A JP3931956B2 (en) 2001-11-05 2001-11-05 Method for growing silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001339189A JP3931956B2 (en) 2001-11-05 2001-11-05 Method for growing silicon single crystal

Publications (2)

Publication Number Publication Date
JP2003137687A true JP2003137687A (en) 2003-05-14
JP3931956B2 JP3931956B2 (en) 2007-06-20

Family

ID=19153577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001339189A Expired - Lifetime JP3931956B2 (en) 2001-11-05 2001-11-05 Method for growing silicon single crystal

Country Status (1)

Country Link
JP (1) JP3931956B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7214267B2 (en) 2004-05-12 2007-05-08 Sumitomo Mitsubishi Silicon Silicon single crystal and method for growing silicon single crystal
US7820007B2 (en) 2004-04-01 2010-10-26 Sumco Corporation Silicon electrode plate for plasma etching with superior durability
EP2607526A1 (en) 2011-12-21 2013-06-26 Siltronic AG Silicon single crystal substrate and method of manufacturing the same
CN103282555A (en) * 2010-12-28 2013-09-04 硅电子股份公司 Method of manufacturing silicon single crystal, silicon single crystal, and wafer
KR101674819B1 (en) * 2015-08-12 2016-11-09 주식회사 엘지실트론 Method for Growing Single Crystal

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7820007B2 (en) 2004-04-01 2010-10-26 Sumco Corporation Silicon electrode plate for plasma etching with superior durability
US7214267B2 (en) 2004-05-12 2007-05-08 Sumitomo Mitsubishi Silicon Silicon single crystal and method for growing silicon single crystal
CN103282555A (en) * 2010-12-28 2013-09-04 硅电子股份公司 Method of manufacturing silicon single crystal, silicon single crystal, and wafer
EP2607526A1 (en) 2011-12-21 2013-06-26 Siltronic AG Silicon single crystal substrate and method of manufacturing the same
US9303332B2 (en) 2011-12-21 2016-04-05 Siltronic Ag Silicon single crystal substrate and method of manufacturing the same
KR101674819B1 (en) * 2015-08-12 2016-11-09 주식회사 엘지실트론 Method for Growing Single Crystal
WO2017026648A1 (en) * 2015-08-12 2017-02-16 주식회사 엘지실트론 Method for growing single crystal
JP2018525308A (en) * 2015-08-12 2018-09-06 エスケー シルトロン カンパニー リミテッド Single crystal growth method
US10378122B2 (en) 2015-08-12 2019-08-13 Sk Siltron Co., Ltd. Method for growing single crystal

Also Published As

Publication number Publication date
JP3931956B2 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
JP2022180551A (en) Methods for forming single crystal silicon ingots with improved resistivity control
WO2006117939A1 (en) Method for producing silicon wafer
US20180108538A1 (en) Silicon epitaxial wafer and method of producing same
JP4380204B2 (en) Silicon single crystal and single crystal growth method
CN115341264A (en) Method for growing nitrogen-doped single crystal silicon ingot using Czochralski method and single crystal silicon ingot grown by the method
JPH0812493A (en) Production of silicon single crystal
JP5372105B2 (en) N-type silicon single crystal and manufacturing method thereof
JP4908730B2 (en) Manufacturing method of high resistance silicon single crystal
JP3931956B2 (en) Method for growing silicon single crystal
US7214267B2 (en) Silicon single crystal and method for growing silicon single crystal
JP3446032B2 (en) Method for producing dislocation-free silicon single crystal
KR101029141B1 (en) Process for Producing P Doped Silicon Single Crystal and P Doped N Type Silicon Single Crystal Wafer
JP3536087B2 (en) Method for producing dislocation-free silicon single crystal
WO2004092455A1 (en) Process for producing single crystal
JP2002134518A (en) Resistibility-adjusted silicon wafer and its manufacturing method
JP3141975B2 (en) Method for growing doped silicon single crystal
JP2562579B2 (en) Single crystal manufacturing method
KR102346307B1 (en) Silicon single crystal manufacturing method and silicon single crystal wafer
JP7503053B2 (en) Controlling dopant concentration in silicon melt to improve ingot quality.
JP6741179B1 (en) Method for producing silicon single crystal
JP4755740B2 (en) Method for growing silicon single crystal
WO2004065667A1 (en) Process for producing single crystal
JP4200690B2 (en) GaAs wafer manufacturing method
JPS6126591A (en) Crystal growing method
JP2021172576A (en) Method for manufacturing silicon single crystal

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20020415

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20020830

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040402

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20040721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070306

R150 Certificate of patent or registration of utility model

Ref document number: 3931956

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140323

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term