JP3928530B2 - 透過型電子顕微鏡による薄膜の厚みの測定方法 - Google Patents

透過型電子顕微鏡による薄膜の厚みの測定方法 Download PDF

Info

Publication number
JP3928530B2
JP3928530B2 JP2002278482A JP2002278482A JP3928530B2 JP 3928530 B2 JP3928530 B2 JP 3928530B2 JP 2002278482 A JP2002278482 A JP 2002278482A JP 2002278482 A JP2002278482 A JP 2002278482A JP 3928530 B2 JP3928530 B2 JP 3928530B2
Authority
JP
Japan
Prior art keywords
thin film
thickness
measurement
measuring
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002278482A
Other languages
English (en)
Other versions
JP2004117080A (ja
Inventor
友彦 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2002278482A priority Critical patent/JP3928530B2/ja
Publication of JP2004117080A publication Critical patent/JP2004117080A/ja
Application granted granted Critical
Publication of JP3928530B2 publication Critical patent/JP3928530B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、結晶性材料製の基体表面に形成された非結晶性材料製の薄膜の厚みを測定する透過型電子顕微鏡による薄膜の厚みの測定方法に関するものである。
【0002】
【従来の技術】
樹脂のような非結晶性材料製の薄膜を金属のような結晶性材料製の基体表面に形成する例として、封孔処理膜と称されるものがある。これは、パソコンや携帯電話等の電子機器で使用されるコネクタのコンタクト部分の基体表面に形成した樹脂製の薄膜である。このコンタクト部分は、例えば、銅製であり、その表面には防錆用として、ニッケルメッキを中間層とする金メッキが施される。ここで、金メッキ層にピンホールが存在すると、ニッケルメッキ層や銅の部分が腐食する恐れがあり、これを防止するために、金メッキ層の表面にさらに樹脂製の薄膜である封孔処理膜が塗布により形成されるのである。
【0003】
このような封孔処理膜は、その厚みが約10nmと薄いため、その良否の検査や測定は極めて面倒である。すなわち、従来の封孔処理膜の検査は、コンタクト部分を腐食液に浸して腐食状態の程度を顕微鏡により観察するものである。この検査は、封孔処理膜の良否の判別は可能であるが、封孔処理膜の厚みを直接に知ることはできない。
【0004】
一方、半導体材料製の薄膜の厚みを、透過型電子顕微鏡(以下、TEMと記す)を用いて測定する方法として、特開2002−118159に開示されるものがある。この厚みの測定方法は、電子線のエネルギー損失スペクトル強度から薄膜の厚みを算出するものである。
【0005】
【特許文献1】
特開2002−118159号公報(第4〜5頁、図5)
【0006】
【発明が解決しようとする課題】
しかし、前記した厚みの測定方法は、半導体材料製の薄膜には有効ではあるが、封孔処理膜のような樹脂製の薄膜の厚みの測定に適用しようとすると、次のような問題がある。つまり、TEM観察用(厚み測定用)試料は、電子線が透過可能な厚みに薄化しなければならないから、切断や研磨等の加工が必要であり、このときに樹脂製の薄膜が損傷しないように、エポキシ系樹脂等の樹脂製の保護体に埋め込んで固定して薄化する。このように作製した観察用試料は、薄膜と保護体とがどちらも非結晶性材料製となっている。ここで、TEMは、試料を透過した電子線回折パターンを観察するのであるが、ともに非結晶性材料製である封孔処理膜と保護体とを区別することは困難となる。したがって、TEMを用いた厚みの測定方法では、結晶性材料製の基体表面に形成された非結晶性材料製の薄膜の厚みの測定は極めて困難なのである。
【0007】
本発明は、かかる事由に鑑みてなしたもので、その目的とするところは、結晶性材料製の基体表面に形成された樹脂のような非結晶性材料製の薄膜の厚みをTEMにより測定する方法を提供することにある。
【0008】
【課題を解決するための手段】
請求項1に係る発明は、結晶性材料製の基体表面に形成された非結晶性材料製の薄膜の厚みを測定するTEMによる薄膜の厚みの測定方法であって、前記非結晶性材料製の薄膜の表面に結晶性材料製の測定用薄膜を形成し、次に、前記測定用薄膜を形成した基体を樹脂製の保護体に埋め込み、次に、電子線が透過可能な厚みに薄化した薄膜の厚み測定用試料を作成し、次に、TEMの電子線により薄膜の厚み測定用試料の透過像を得、次に、この透過像を観察して非結晶性材料製の薄膜の厚みを測定することを特徴としている。
【0009】
請求項2に係る発明は、請求項1に記載の薄膜の厚みの測定方法において、前記測定用薄膜が金属製であることを特徴としている。
【0010】
請求項3に係る発明は、請求項1又は請求項2に記載の薄膜の厚みの測定方法において、前記測定用薄膜の厚みが100nm以上であることを特徴としている。
【0011】
【発明の実施の形態】
本実施形態の薄膜の厚みの測定方法を図に基づいて説明する。図1の厚みを測定する薄膜の試料断面図である。薄膜の観察用(厚み測定用)試料は、従来の技術において説明したコネクタの封孔処理したもの、すなわち、薄膜と防錆用の層を形成したコンタクト部分である。1は銅製のコンタクト部分で、結晶性材料製の基体である。コンタクト部分1は、その基体表面に、それぞれ約100nmの厚みの結晶性材料製であるニッケルメッキ層2と金メッキ層3が形成されている。そして、この金メッキ層3の表面に、株式会社テトラ製ポリαオレフィン(品番A−9050)を封孔処理樹脂として塗布し、厚み約10nmの非結晶性材料製の封孔処理膜(薄膜)4が形成されている。
【0012】
次に、封孔処理膜4の厚み測定方法について説明する。まず、封孔処理膜4の表面に白金を蒸着等により、測定用薄膜5を10μmの厚みで形成する。次に、ニッケル層2、金メッキ層3、封孔処理膜4そして測定用薄膜5が形成されたコンタクト部分1をエポキシ系樹脂(ストルアス社製エポフィックス)製の保護体6に埋め込んで固定する。次に、これを精密カッターで縦横を約2mmに切り出し、さらに機械研磨により厚み約30μmまで薄化して観察用(厚み測定用)試料の中間体を作製する。次に、ディンプリングにより、観察用試料の中間体の中央部に凹状の窪地を形成し、さらにイオンミリングにより、アルゴンイオンを窪地の中央部に照射させて、小孔をあける。ここで、小孔の周辺部分は、約0.1μmとなり、観察用試料が完成する。これにより、この小孔の周辺部分には電子線が透過するようになる。そして、TEMにより観察用試料の透過像を観察する。
【0013】
本実施形態では、このように作製したTEM観察用試料に加速電圧が約200kVの電子線を照射して観察した結果、コンタクト部分(基体)1、ニッケルメッキ層2及び金メッキ層3、測定用薄膜5の電子線透過像はいずれも面心立方格子の回折パターンとなった。これに対して、封孔処理膜4及び保護体6は、非結晶性材料製のために、TEMの透過像は、ぼやけたものしか見られなかった。
【0014】
この結果、TEMの透過像において、封孔処理膜4の部分は、金属材料製である金メッキ層3と測定用薄膜5に両側を挟まれているので、境界面が明確に観察できる。したがって、両側の境界面の幅を画像上で測定することにより、封孔処理膜4の厚みが判明する。以上の測定方法により、本実施形態の封孔処理膜5は、その厚みが5〜12nmであることがわかった。したがって、本実施形態の厚み測定方法を用いることで、結晶性材料製の表面に形成した樹脂のような非結晶性材料製の薄膜の厚みを測定することが可能となった。
【0015】
比較として、封孔処理膜4の表面に白金の蒸着膜(測定用薄膜5)を形成しない場合について、TEM観察を実施した。図2はこの試料断面図である。すなわち、コンタクト部分1を直接に同様のエポキシ系樹脂製の保護体6に埋め込んで固定し、本実施形態と同様にして、TEM観察用試料を作成する。これにTEMの電子線を照射することで、透過像を観察する。このとき、封孔処理膜4と保護体6は、ともに非結晶性材料製のために、透過像はぼやけたものしか観察されなかった。この結果、封孔処理膜4と金メッキ層3の境界面は観察できたが、封孔処理膜4と保護体6との境界面は観察することができなかった。したがって、このように封孔処理膜4の表面に白金製の測定用薄膜5を形成しない場合は、封孔処理膜(薄膜)4の厚みを測定することはできなかった。
【0016】
上述したように、従来、測定が困難であった封孔処理膜(薄膜)4の厚みが、本実施形態の薄膜の厚みの測定方法により直接測定できるようになった。さらに、原子間力顕微鏡(以下、AFMと記す)のように試料の表面状態を2次元的に観察できるものと組合すことで、封孔処理膜の2次元分布を測定することができる。以下にこの方法について説明する。
【0017】
図3はAFMの試料表面測定の模式図である。AFM観察用試料12は、導電材料製である銀ペーストにより試料台13の上に固定され、カンチレバー11を試料表面に接触させる。本実施形態の試料12は、前記コネクタのコンタクト部分から、縦横1mmの試料12を切り出したものである。ここで、試料台13に電圧Vを印加し、カンチレバー11を接地すると、カンチレバー11→試料12→試料台13という順で接触電流Iが流れる。印加電圧Vを一定(本実施形態では1mV)にして、試料台13の下部に設けられている圧電素子14により試料12を上下させながら、カンチレバー11を面内に走査させることで、接触電流の2次元分布を測定する。図4は、この接触電流分布の測定例である。本実施形態では、接触電流は大半の部分では5nA以下であり、その最大値は約100nAであった。なお、図4は画像処理の関係上、分布状態がモザイク状となっているが、元のデータでは、分布状態は滑らかに変化している。
【0018】
一方、本実施形態の試料12のように、導体材料製であるコンタクト部分およびメッキ層の表面に絶縁材料製である封孔処理膜を形成したときの接触電流Iは封孔処理膜の厚みtに依存し、両者には以下の関係式がある。
【0019】
t=(V/I―δ)・s/ρ
ここで、Vは印加電圧、δは絶縁材料製以外の電気抵抗値の合計、sはカンチレバー先端の表面積、ρは絶縁材料製の低効率である。VとIは既知であるから、他のデータの数値がわかれば、上式から封孔処理膜の厚みtがわかる。しかし、通常はsやδ等の数値を知ることは困難である。そこで、まず、AFMにより試料の特定部分について1次元の接触電流分布を測定する。次に、前記のTEMによる薄膜の厚みの測定方法を用いて、同じ場所について封孔処理膜の厚みを測定する。ここで、両者の測定結果を組合すことにより、接触電流Iと厚みtとの具体的な関係式が得られる。図5は、両者の関係の測定例である。さらに、AFMにより、接触電流の2次元分布を測定し、前記関係を用いて、接触電流Iを封孔処理膜の厚みtに換算することで、厚みの2次元分布がわかる。図6は、この方法で測定した封孔処理膜でスポット的に薄くなっている場所の厚みの2次元分布の測定例である。したがって、前記のTEMによる封孔処理膜の厚み測定方法とAFMによる接触電流分布の測定とを組合すことで、封孔処理膜の厚みの2次元分布を知ることができる。
【0020】
なお、本実施形態の被測定材料は樹脂製のものに限定されることはなく、ガラスのような無機物の非結晶性材料製のものに対しても適用可能である。
【0021】
【発明の効果】
請求項1に係るTEMによる薄膜の厚みの測定方法は、結晶性材料製の基体表面に形成された非結晶性材料製の薄膜の厚みを測定するTEMによる薄膜の厚みの測定方法であって、前記非結晶性材料製の薄膜の表面に結晶性材料製の測定用薄膜を形成し、次に、前記測定用薄膜を形成した基体を樹脂製の保護体に埋め込み、次に、電子線が透過可能な厚みに薄化した薄膜の厚み測定用試料を作成し、次に、TEMの電子線により薄膜の厚み測定用試料の透過像を得、次に、この透過像を観察して非結晶性材料製の薄膜の厚みを測定するので、非結晶性材料製である薄膜の境界面が結晶性材料製である基体表面と測定用薄膜にて明瞭に観察できるようになり、非結晶性材料製の薄膜の厚みを測定することができる。
【0022】
請求項2に係るTEMによる薄膜の厚みの測定方法は、請求項1に記載の測定方法において、前記測定用薄膜が金属製であるので、請求項1の効果に加え、蒸着等によって容易に薄膜を形成することができ、樹脂に埋め込んで固定したときに、非結晶性材料製を保護することができる。
【0023】
請求項3に係る薄膜の厚みの測定方法は、請求項1に記載の薄膜の厚みの測定方法において、前記測定用薄膜の厚みが100nm以上であるので、請求項1の効果に加え、前記非結晶性材料製と測定用薄膜との境界面をTEMで明瞭に観察することができる。
【図面の簡単な説明】
【図1】実施例の薄膜の厚み測定用試料の断面図である。
【図2】従来例の薄膜の厚み測定用試料の断面図である。
【図3】AFMによる試料表面の測定の原理図である。
【図4】AFMの接触電流の2次元分布の測定例である。
【図5】AFMの接触電流Iと薄膜の厚みtの関係の測定例である。
【図6】封孔処理膜の厚みの2次元分布の測定例である。
【符号の説明】
1 銅塊(コネクタ本体)
2 ニッケルメッキ層
3 金メッキ層
4 封孔処理膜
5 白金薄膜
6 埋め込み用樹脂
11 カンチレバー
12 AFM用試料
13 試料台
14 圧電素子

Claims (3)

  1. 結晶性材料製の基体表面に形成された非結晶性材料製の薄膜の厚みを測定する透過型電子顕微鏡による薄膜の厚みの測定方法であって、前記非結晶性材料製の薄膜の表面に結晶性材料製の測定用薄膜を形成し、次に、前記測定用薄膜を形成した基体を樹脂製の保護体に埋め込み、次に、電子線が透過可能な厚みに薄化した薄膜の厚み測定用試料を作成し、次に、透過型電子顕微鏡の電子線により薄膜の厚み測定用試料の透過像を得、次に、この透過像を観察して非結晶性材料製の薄膜の厚みを測定することを特徴とする透過型電子顕微鏡による薄膜の厚みの測定方法。
  2. 前記測定用薄膜が金属製であることを特徴とする請求項1に記載の透過型電子顕微鏡による薄膜の厚みの測定方法。
  3. 前記測定用薄膜の厚みが100nm以上であることを特徴とする請求項1又は請求項2に記載の透過型電子顕微鏡による薄膜の厚みの測定方法。
JP2002278482A 2002-09-25 2002-09-25 透過型電子顕微鏡による薄膜の厚みの測定方法 Expired - Lifetime JP3928530B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002278482A JP3928530B2 (ja) 2002-09-25 2002-09-25 透過型電子顕微鏡による薄膜の厚みの測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002278482A JP3928530B2 (ja) 2002-09-25 2002-09-25 透過型電子顕微鏡による薄膜の厚みの測定方法

Publications (2)

Publication Number Publication Date
JP2004117080A JP2004117080A (ja) 2004-04-15
JP3928530B2 true JP3928530B2 (ja) 2007-06-13

Family

ID=32273748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002278482A Expired - Lifetime JP3928530B2 (ja) 2002-09-25 2002-09-25 透過型電子顕微鏡による薄膜の厚みの測定方法

Country Status (1)

Country Link
JP (1) JP3928530B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5322025B2 (ja) * 2009-01-27 2013-10-23 住友電気工業株式会社 透過型電子顕微鏡用試料のアモルファス層の厚さ評価方法および透過型電子顕微鏡用試料の作製方法
CN114577151B (zh) * 2022-03-16 2023-09-12 长江存储科技有限责任公司 厚度测量方法及装置

Also Published As

Publication number Publication date
JP2004117080A (ja) 2004-04-15

Similar Documents

Publication Publication Date Title
CN109314043B (zh) 在石墨烯薄片上沉积钝化层
EP1290431B1 (de) Verfahren zur herstellung einer vorrichtung für die gleichzeitige durchführung einer elektrochemischen und einer topographischen nahfeldmikroskopie
Kang et al. A method for in situ measurement of the residual stress in thin films by using the focused ion beam
CN103808540B (zh) 透射电子显微镜样品的制作方法
US20050285275A1 (en) Fabrication of nano-gap electrode arrays by the construction and selective chemical etching of nano-crosswire stacks
DE102007052610A1 (de) Nanosondenspitze für fortschrittliche Rastersondenmikroskopie mit einem Schichtsondenmaterial, das durch Lithographie und/oder durch lonenstrahltechniken strukturiert ist
CN106908290B (zh) 全息观测透射电镜试样的制备方法
JP3928530B2 (ja) 透過型電子顕微鏡による薄膜の厚みの測定方法
JP2015502521A (ja) ナノ電極及びその製造方法
DE102004026145A1 (de) Halbleiterstruktur mit einem spannungsempfindlichen Element und Verfahren zum Messen einer elastischen Spannung in einer Halbleiterstruktur
CN110050187A (zh) 用于测量试样的小电位的、基于纳米线交叉的设备、用于制造该设备的方法和该设备的应用
Cornelius et al. Oscillations of electrical conductivity in single bismuth nanowires
JP5044003B2 (ja) プローブの作製方法およびプローブ、ならびに走査プローブ顕微鏡
CN107014539B (zh) 一种多相复合涂层残余应力检测方法
CN108109895B (zh) 针状试片、其制备方法以及其分析方法
JP3753239B2 (ja) 半導体ウェーハ表層結晶欠陥観察用試料とその作製方法
JP2002333412A (ja) 電子プローブマイクロアナライザー用の標準試料、および該標準試料の製造方法
LEE et al. Post‐thinning using Ar ion‐milling system for transmission electron microscopy specimens prepared by focused ion beam system
Yoo et al. Cross-sectional transmission electron microscopy specimen preparation technique by backside Ar ion milling
US20060226363A1 (en) Ultra-thin sample preparation for transmission electron microscopy
GB2480104A (en) Device analysis
JP2011038887A (ja) 試料、試料作製方法及び試料作製装置
CN101150058B (zh) 形成半导体金属键合垫的淀积方法
KR100928508B1 (ko) 반도체 시편 고정용 그리드 및 그 제조 방법
JP4627168B2 (ja) 機能デバイスの作製方法および機能デバイス

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6