JP3927489B2 - パワートレインの制御装置 - Google Patents

パワートレインの制御装置 Download PDF

Info

Publication number
JP3927489B2
JP3927489B2 JP2002375174A JP2002375174A JP3927489B2 JP 3927489 B2 JP3927489 B2 JP 3927489B2 JP 2002375174 A JP2002375174 A JP 2002375174A JP 2002375174 A JP2002375174 A JP 2002375174A JP 3927489 B2 JP3927489 B2 JP 3927489B2
Authority
JP
Japan
Prior art keywords
fuel injection
diesel engine
injection amount
motor
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002375174A
Other languages
English (en)
Other versions
JP2004204778A (ja
Inventor
佳宜 橋本
静夫 佐々木
宏樹 村田
修 米田
雄一郎 北村
良英 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Motor Corp
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Toyota Motor Corp, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2002375174A priority Critical patent/JP3927489B2/ja
Publication of JP2004204778A publication Critical patent/JP2004204778A/ja
Application granted granted Critical
Publication of JP3927489B2 publication Critical patent/JP3927489B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ディーゼルエンジンとモータとを備えたハイブリッド車におけるパワートレインの制御装置に関するものである。
【0002】
【従来の技術】
下記特許文献1には、ディーゼルエンジンとモータとを備えたハイブリッド車において、排気ガス中に含まれるスモークやNOxなどの成分が所定値以下となるようにディーゼルエンジンを運転し、要求出力の過不足分を該ディーゼルエンジンの出力軸に接続されたモータからの出力で調整することにより、排気ガスをクリーンにすることのできる技術が記載されている。
【0003】
【特許文献1】
特開2002−115576号公報(第5―7頁、第1図)
【0004】
【発明が解決しようとする課題】
しかしながら、特許文献1に記載のハイブリッド車ではEGR装置付きのディーゼルエンジンは想定されていないため、EGR装置付きのディーゼルエンジンを用いると、加速運転移行時に吸入空気量の不足によりスモークが発生する可能性がある。
【0005】
本発明は、上記問題点を解消する為になされたものであり、EGR装置を有するディーゼルエンジンの加速運転移行時において、スモークの発生を抑制することのできるパワートレインの制御装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明に係るパワートレインの制御装置は、車両の駆動軸に動力を出力するディーゼルエンジンと、このディーゼルエンジンと並列に駆動軸に動力を出力することが可能なモータとを備えたハイブリッド車におけるパワートレインの制御装置であって、ディーゼルエンジンの排気ガスの一部を吸気系へ再循環する排気ガス再循環手段と、ディーゼルエンジンに噴射する燃料噴射量が運転状態に応じて設定される目標燃料噴射量となるように制御する燃料噴射量制御手段と、モータの出力を制御するモータ出力制御手段とを備え、燃料噴射量制御手段、ディーゼルエンジンが加速運転状態と判定されて排気ガス再循環手段による排気ガスの再循環が停止される状態となったときには、燃料噴射量を目標燃料噴射量まで徐々に増加させ、モータ出力制御手段、燃料噴射量目標燃料噴射量まで徐々に増加さときにディーゼルエンジンのエンジン回転数及び目標燃料噴射量に応じて求められるディーゼルエンジンの目標駆動力と、ディーゼルエンジンのエンジン回転数及び燃料噴射量に応じて求められるディーゼルエンジンの駆動力との差を補うようにモータ出力を制御して、モータの出力を徐々に減少させることを特徴とする。
【0007】
本発明に係るパワートレインの制御装置によれば、ディーゼルエンジンが加速状態と判定されて排気ガスの再循環が停止される状態となったときに、燃料噴射量が運転状態に応じて設定される目標燃料噴射量まで徐々に増加されるとともに、ディーゼルエンジンの目標駆動力と実駆動力との差を補うようにモータが制御され、モータ出力が徐々に減少される。そのため、燃料噴射量の増加量をスモークの発生しない量に制限すると共に、ディーゼルエンジンの出力不足分をモータ出力で補うことができる。よって、加速性能の悪化を防止しながらスモークの発生を抑制することが可能となる。
【0011】
【発明の実施の形態】
以下、添付図面を参照して本発明の実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
【0012】
まず、図1を用いて、本実施形態に係るパワートレインの制御装置を搭載したハイブリッド車1の主要構成について説明する。ハイブリッド車1は、駆動輪3に駆動力を出力するパワートレイン2及びこのパワートレイン2の運転を総合的に制御する制御装置7を備えている。
【0013】
パワートレイン2は、主動力として機能するディーゼルエンジン10と、補助動力として機能するモータ40とを有している。また、このパワートレイン2は、自動変速されるトランスミッション20と、ハイブリッド車1の旋回時に左右の駆動輪3の回転速度を変えるとともに両輪に均等な駆動力を伝達するディファレンシャル30と、ディーゼルエンジン10及びモータ40からの動力をディファレンシャル30に伝達するトランスファ32と、モータ40からの動力をトランスファ32に伝達するプロペラシャフト34と、ディファレンシャル30から出力された動力を駆動輪3に伝達するドライブシャフト36とを有している。
【0014】
ディーゼルエンジン10では、図示しないエアクリーナから吸入された吸入空気が、インテークマニホールド110を介してディーゼルエンジン10に形成された各気筒11に吸入される。各気筒11には、燃料を噴射する燃料噴射ノズル12が設けられており、各燃料噴射ノズル12には図示しない蓄圧室に蓄えられた高圧燃料が導かれる。そして、各気筒11では、吸入空気と燃料との混合ガスが燃焼し、その燃焼後の排気ガスはエキゾーストマニホールド120へ排気される。
【0015】
エキゾーストマニホールド120にはシリンダ内の燃焼ガス温度を低下させることによりNOxの生成を抑制するEGR装置(排気ガス再循環手段)13が設けられている。このEGR装置13は、ディーゼルエンジン10のエキゾーストマニホールド120から排気ガスの一部を取り出してインテークマニホールド110に再循環させる。EGR装置13には、ディーゼルエンジン10のエキゾーストマニホールド120とインテークマニホールド110とを連結するEGR配管130にEGRバルブ140が設けられており、ディーゼルエンジン10の運転状態に応じてEGRバルブ140の開閉量が制御されることにより排気ガスの再循環量が調節される。
【0016】
モータ40は、交流同期モータであり、インバータ50から出力される交流電力によって駆動される。また、モータ40は、駆動輪3の回転を利用して発電(回生発電)することもできる。
【0017】
インバータ50は、バッテリ60に蓄えられた電力を直流から交流に変換して、モータ40に供給すると共に、モータ40により回生発電された電力を、交流から直流に変換してバッテリ60に蓄える。
【0018】
ここで、ディーゼルエンジン10からの動力は、自動変速されるトランスミッション20を介してトランスファ32に伝達される。一方、モータ40からの動力は、プロペラシャフト34を介してトランスファ32に伝達される。このように、ディーゼルエンジン10及びモータ40は、トランスファ32により接続されており、トランスファ32に入力されたディーゼルエンジン10及びモータ40からの動力それぞれは、並列にディファレンシャル30に伝達され、さらにドライブシャフト36を介して駆動輪3に動力が伝達されて駆動輪3が駆動される。
【0019】
パワートレイン2を制御する制御装置7は、ディーゼルエンジン10の運転を制御するエンジン用電子制御ユニット(燃料噴射量制御手段、以下、エンジンECUという)72及びモータ40を駆動制御するモータ用電子制御ユニット(モータ出力制御手段、以下、モータECUという)74を備えている。
【0020】
エンジンECU72には、アクセル開度を検出するアクセルポジションセンサ80、エンジン回転数を検出するクランクポジションセンサ14及び冷却水温度を検出する図示しない水温センサなどが接続されている。エンジンECU72は、燃料噴射ノズル12を駆動するドライバなどを備えている。
【0021】
エンジンECU72は、その内部に演算を行うマイクロプロセッサ、このマイクロプロセッサに各処理を実行させるためのプログラムを記憶するROM、演算結果などの各種データを記憶するRAM及び図示しない12Vバッテリによってその記憶内容が保持されるバックアップRAM等を有している。そして、これらによって、エンジンECU72の内部には、燃料噴射ノズル12によって噴射される燃料噴射量を算出する燃料噴射量算出部72a及びモータ40に出力させる目標モータ出力を算出するモータ出力算出部72bが構築されている。
【0022】
モータECU74は、設定された目標モータ出力がモータ40から出力されるようインバータ50にスイッチング制御信号を出力するものであり、マイクロプロセッサなどにより構成されている。
【0023】
また、モータECU74には、モータ40のインナーロータ及びアウターロータそれぞれの回転数を検出するレゾルバ40a及び三相線45に流れる相電流を検出する電流センサ50aなどが接続されている。そして、これらのセンサからの入力信号と設定されたモータ40の目標出力とに基づいてインバータ50のスイッチング素子のスイッチング制御、即ちモータ40の駆動制御を行うことができるように構成されている。
【0024】
なお、エンジンECU72とモータECU74とは通信回線76で接続されており、相互にデータの交換が可能となるように構成されている。
【0025】
次に、図2及び図3を用いて、本実施形態に係る制御装置7の動作について説明するとともに、パワートレイン2の制御方法についても説明する。図2は、制御装置7における加速運転移行時の処理を示す図であり、図3(a)、(b)、(c)、(d)、(e)は、加速運転移行時のアクセル開度、EGRバルブ140の開度、残留ガス量、燃料噴射量及びモータ出力それぞれの時間的変化を示す図である。
【0026】
本実施形態に係る制御装置7による図2に示す加速運転移行時の処理は、例えば、クランクポジションセンサ14からのパルス信号に基づいて決定されるディーゼルエンジン10のクランク角度が所定のクランク角度となるタイミングで起動される。
【0027】
ステップS100では、アクセルポジションセンサ80の出力がA/D変換されてエンジンECU72に読み込まれ、このアクセルポジションセンサ80の値からアクセル開度が算出される。そして、アクセル開度が所定の閾値TH(例えば40度、図3(a)参照)以上であるか否かが判断される。ここで、アクセル開度が所定の閾値THよりも小さいときには、加速運転移行時の処理を行わずに終了する。一方、アクセル開度が所定の閾値TH以上のときには、ステップS110に処理が移る。
【0028】
ステップS110では、クランクポジションセンサ14からのパルス信号に基づいて算出されたエンジン回転数、水温センサからの入力値に基づいて算出された冷却水温度及びステップS100で算出されたアクセル開度に基づいてEGRバルブ140の目標開度が演算される。
【0029】
次に、この目標開度と実開度(処理実行時における実際のEGRバルブの開度)とに基づいてEGRバルブ140が開弁状態から閉弁状態へ移行しないと判断されたときには、加速運転移行時の処理を行わずに終了する。一方、EGRバルブ140が開弁状態から閉弁状態へ移行すると判断されたときには、ステップS120に処理が移る。
【0030】
ステップS120では、EGRバルブ140がエンジンECU72により閉じられる。ここで、EGRバルブ140の開閉制御は次のように行われる。すなわち、エンジンECU72は、EGRバルブ140の目標開度に応じたデューティ比を演算し、この演算結果に基づいたデューティ信号をEGRバルブ140に出力する。そして、このデューティ信号によってEGRバルブ140を構成するデューティソレノイドが駆動されてEGRバルブ140の開度が目標開度と一致するように開閉される。従って、EGRバルブ140を閉じる場合には、デューティ比0%(ローレベル固定)のデューティ信号がエンジンECU72から出力され、EGRバルブ140が閉じられる(図3(b)参照)。
【0031】
次に、ステップS130では、ディーゼルエンジン10に噴射する燃料噴射量が算出される。ここで、図3(c)に示されるように、EGRの残留ガスは遅れを持って徐々に減少する。従って、図3(d)において点線で示されるように、アクセル開度に応じて急激に燃料噴射量を増量すると、空気量が不足した状態となり、スモークが発生してしまう。
【0032】
ここで、このスモーク発生のメカニズムについて簡単に説明する。
【0033】
排気ガス中のNOxの生成を抑制するために、エキゾーストマニホールドから排気ガスの一部を取り出してインテークマニホールドへ再循環させるEGR(排気ガス再循環)装置によれば、ディーゼルエンジンの加速運転時には吸入空気量の不足によるスモークの発生が予想されるため、これを防止すべく、EGRバルブ(流量制御弁)が閉じられ、排気ガスの再循環が停止されるようになっている。
【0034】
しかし、加速運転移行時にEGRバルブが閉じられたとしても、EGR配管内には再循環された排気ガスが残留しており、また、EGRバルブが閉じられるまでには機械的な応答遅れも存在する。このため、シリンダ内へ吸入される排気ガスは遅れをもって減少し、この遅れに応じて、シリンダ内へ吸入される空気量は遅れをもって増加する。これに対し、燃料噴射量は、加速運転への移行にともない追従性良く増加されるので、加速運転移行直後のディーゼルエンジンでは空気量が不足した状態になるためにスモークの発生を完全に抑制することが難しかった。
【0035】
そこで、エンジンECU72は、燃料噴射量をスモークの発生しない量に制限するため、例えば、予め設定されてエンジンECU72のROMに記憶されている燃料噴射量の増加パターンに基づいて、所定の設定量だけ燃料噴射量を増加させる。ここで、燃料噴射量の増加パターンは、例えば、実験室などにおいてEGRバルブ140を閉じた後の残留ガスの経時変化及び吸入空気量の経時変化等を計測し、この計測結果に基づいて決定することができる。
【0036】
ステップS140では、まず最初に、エンジンECU72によりディーゼルエンジン10のエンジン回転数及びアクセル開度に基づいて目標燃料噴射量が決定される。ここで、エンジンECU72のROMには、エンジン回転数とアクセル開度と燃料噴射量との関係を定めた3次元マップが予め記憶されており、このマップに基づいて目標燃料噴射量が求められる。
【0037】
例えば、エンジン回転数が4000(rpm)でディーゼルエンジン10が運転されているときに、アクセルが踏み増しされ、アクセル開度が1/5開度から1/2開度に変化した場合、アクセル開度が1/2開度のときの目標燃料噴射量は、上記の3次元の燃料噴射量マップに基づいて、例えば、25(mm3/st)とされる。
【0038】
次に、ディーゼルエンジン10のエンジン回転数及び目標燃料噴射量に応じて求められるディーゼルエンジン10の目標駆動力と、ディーゼルエンジン10のエンジン回転数及び実際に噴射されている燃料噴射量(以下、実燃料噴射量という)に応じて求められるディーゼルエンジン10の実駆動力との差を補うように目標モータ出力が算出される。
【0039】
ここで、エンジンECU72のROMには、図4に示されるエンジン回転数とアクセル開度と駆動力との関係を定めた3次元マップが予め記憶されており、このマップに基づいて目標駆動力及び実駆動力それぞれが求められる。
【0040】
図4を用いて、上記の例で説明すると、アクセル開度が1/5開度の時の実燃料噴射量が、エンジンECU72により算出された燃料噴射量データから、例えば、10(mm3/st)とされた場合、図4に示される燃料噴射量とエンジン回転数とエンジントルクとの関係を定めた3次元マップに基づいて、実燃料噴射量である10(mm3/st)が噴射されたときのエンジントルク(実駆動力)は40(Nm)と求められ、また、目標燃料噴射量である25(mm3/st)が噴射されたときのエンジントルク(目標駆動力)は100(Nm)と求められる。そして、目標駆動力と実駆動力との差である60(Nm)をモータ40で出力するように、目標モータ出力が決定される。このように、ディーゼルエンジン10の出力不足分をモータ40の出力で補うことにより加速性能の悪化が防止される。
【0041】
さらに、この目標モータ出力は、通信回線76を介してエンジンECU72からモータECU74に送信される。そして、受信された目標モータ出力に基づいてモータECU74からインバータ50にスイッチング制御信号が出力され、このスイッチング制御信号に基づいてインバータ50によりモータ40が駆動される。
【0042】
ステップS150では、実燃料噴射量が目標燃料噴射量と一致しているか否かが判断される。ここで、実燃料噴射量と目標燃料噴射量とが一致した場合には処理が終了され、一致していない場合には、ステップS120に処理が戻される。そして、実燃料噴射量と目標燃料噴射量とが一致するまで、この処理が起動される毎に、上記ステップS120〜S140の処理が繰り返して実行される。
【0043】
以上のように、実燃料噴射量と目標燃料噴射量とが一致するまでステップS120〜S140が繰り返し実行されることにより、燃料噴射量は、図3(d)の実線で示すように徐々に増加されることになる。また、この間、モータ40の出力は、目標駆動力と実駆動力との差を補うように制御される結果、図3(e)に示されるように、加速運転移行時に目標駆動力と実駆動力との差に基づいて立ち上がり、その後、燃料噴射量が増加されるに従って徐々に減少して行くことになる。
【0044】
以上、本発明の実施の形態について説明したが、本発明は、上記実施形態に限定されるものではなく種々の変形が可能である。例えば、燃料噴射量の増加量は、予め設定されている増加パターンに基づくのではなく、リアルタイムでディーゼルエンジン10に吸入される空気量等を検出し、この検出値に基づいて決定することも可能である。
【0045】
【発明の効果】
以上、詳細に説明したとおり、本発明によれば、ディーゼルエンジンに噴射される燃料噴射量が徐々に増加されるとともに、目標燃料噴射量及び実燃料噴射量に応じてモータ出力が制御されるという構成を備えているので、EGR装置を有するディーゼルエンジンの加速運転移行時において、加速性能の悪化を防止しながらスモークの発生を抑制することができるパワートレインの制御装置を提供することができる。
【図面の簡単な説明】
【図1】本実施形態に係るパワートレインの制御装置を搭載したハイブリッド車の主要部分の構成を示す図である。
【図2】本実施形態に係る制御装置における加速運転移行時の処理を示す図である。
【図3】(a)は、アクセル開度の変化を示すタイミングチャートである。
(b)は、EGRバルブの変位量の変化を示すタイミングチャートである。
(c)は、残留ガス量の変化を示すタイミングチャートである。
(d)は、燃料噴射量の変化を示すタイミングチャートである。
(e)は、モータ出力の変化を示すタイミングチャートである。
【図4】本実施形態に係るディーゼルエンジンのエンジントルクマップである。
【符号の説明】
1…ハイブリッド車、2…パワートレイン、3…駆動輪、7…制御装置、10…ディーゼルエンジン、13…EGR装置、20…トランスミッション、30…ディファレンシャル、32…トランスファ、34…プロペラシャフト、36…ドライブシャフト、40…モータ、50…インバータ、60…バッテリ、72…エンジンECU、74…モータECU、80…アクセルポジションセンサ、110…インテークマニホールド、120…エキゾーストマニホールド、130…EGR配管、140…EGRバルブ。

Claims (1)

  1. 車両の駆動軸に動力を出力するディーゼルエンジンと、前記ディーゼルエンジンと並列に前記駆動軸に動力を出力することが可能なモータとを備えたハイブリッド車におけるパワートレインの制御装置であって、
    前記ディーゼルエンジンの排気ガスの一部を吸気系へ再循環する排気ガス再循環手段と、
    前記ディーゼルエンジンに噴射する燃料噴射量が運転状態に応じて設定される目標燃料噴射量となるように制御する燃料噴射量制御手段と、
    前記モータの出力を制御するモータ出力制御手段と、を備え、
    前記燃料噴射量制御手段は、前記ディーゼルエンジンが加速運転状態と判定されて前記排気ガス再循環手段による排気ガスの再循環が停止される状態となったときには、前記燃料噴射量を前記目標燃料噴射量まで徐々に増加させ、
    前記モータ出力制御手段は、前記燃料噴射量前記目標燃料噴射量まで徐々に増加さときに前記ディーゼルエンジンのエンジン回転数及び前記目標燃料噴射量に応じて求められる前記ディーゼルエンジンの目標駆動力と、前記ディーゼルエンジンのエンジン回転数及び前記燃料噴射量に応じて求められる前記ディーゼルエンジンの駆動力との差を補うようにモータ出力を制御して、前記モータの出力を徐々に減少させることを特徴とするパワートレインの制御装置。
JP2002375174A 2002-12-25 2002-12-25 パワートレインの制御装置 Expired - Fee Related JP3927489B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002375174A JP3927489B2 (ja) 2002-12-25 2002-12-25 パワートレインの制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002375174A JP3927489B2 (ja) 2002-12-25 2002-12-25 パワートレインの制御装置

Publications (2)

Publication Number Publication Date
JP2004204778A JP2004204778A (ja) 2004-07-22
JP3927489B2 true JP3927489B2 (ja) 2007-06-06

Family

ID=32812990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002375174A Expired - Fee Related JP3927489B2 (ja) 2002-12-25 2002-12-25 パワートレインの制御装置

Country Status (1)

Country Link
JP (1) JP3927489B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4229088B2 (ja) 2005-05-27 2009-02-25 トヨタ自動車株式会社 車両用駆動装置の制御装置
US8798835B2 (en) * 2012-06-05 2014-08-05 GM Global Technology Operations LLC Hybrid diesel-electric powertrain smoke limit avoidance
KR101755802B1 (ko) 2015-07-07 2017-07-07 현대자동차주식회사 마일드 하이브리드 시스템의 배기가스 저감 제어 방법
JP6315004B2 (ja) * 2016-02-12 2018-04-25 マツダ株式会社 エンジンの制御装置

Also Published As

Publication number Publication date
JP2004204778A (ja) 2004-07-22

Similar Documents

Publication Publication Date Title
JP4857821B2 (ja) 車両の制御方法及び制御装置
JP3633357B2 (ja) 車両のモータ駆動制御装置
JP4867687B2 (ja) 内燃機関装置およびその制御方法並びに車両
JP2006299991A (ja) 車両の制御装置
JP4277933B1 (ja) 内燃機関装置およびその制御方法並びに車両
JP2008151064A (ja) 内燃機関の制御装置
JP2005273530A (ja) 内燃機関の制御装置およびこれを備える自動車
JP2008180180A (ja) 内燃機関装置およびその制御方法並びに車両
JP6260569B2 (ja) ハイブリッド自動車
JP2010168913A (ja) エンジンの制御装置
JP3927489B2 (ja) パワートレインの制御装置
JP2007077924A (ja) 排気ガス循環装置の故障診断装置
JP4099160B2 (ja) ハイブリッド車両のモータトルク制御方法
JP2016113977A (ja) エンジンの制御装置
CN112061108B (zh) 混合动力车辆的控制装置
JP2010264817A (ja) ハイブリッド車両の制御装置
JP2005341644A (ja) ハイブリッド車両の制御装置
JP2010221752A (ja) ハイブリッド自動車
JP5569374B2 (ja) 内燃機関装置および自動車
JP2009174501A (ja) 内燃機関装置およびその制御方法並びに動力出力装置
JP4306685B2 (ja) 内燃機関装置,動力出力装置,内燃機関の運転停止方法および内燃機関装置の制御方法
JP3920767B2 (ja) パワートレインの制御装置
JP2010184649A (ja) ハイブリッド自動車
JP2013046531A (ja) 自動車
JP4962404B2 (ja) 内燃機関装置および車両並びに内燃機関装置の制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070302

R151 Written notification of patent or utility model registration

Ref document number: 3927489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees