JP3921612B2 - 廃水中のcod成分の鉄共存電解処理法 - Google Patents

廃水中のcod成分の鉄共存電解処理法 Download PDF

Info

Publication number
JP3921612B2
JP3921612B2 JP2002382750A JP2002382750A JP3921612B2 JP 3921612 B2 JP3921612 B2 JP 3921612B2 JP 2002382750 A JP2002382750 A JP 2002382750A JP 2002382750 A JP2002382750 A JP 2002382750A JP 3921612 B2 JP3921612 B2 JP 3921612B2
Authority
JP
Japan
Prior art keywords
electrolysis
iron
electrode
ions
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002382750A
Other languages
English (en)
Other versions
JP2004181436A (ja
Inventor
敏夫 小澤
Original Assignee
敏夫 小澤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 敏夫 小澤 filed Critical 敏夫 小澤
Priority to JP2002382750A priority Critical patent/JP3921612B2/ja
Publication of JP2004181436A publication Critical patent/JP2004181436A/ja
Application granted granted Critical
Publication of JP3921612B2 publication Critical patent/JP3921612B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、廃水中のCOD(化学的酸素要求量)成分の電解による分解処理方法において、不溶性陽極の電極面での電極反応によるCOD成分の酸化分解と、同時に廃水中に添加させた鉄イオンの電解によって生成する酸化剤である鉄酸の酸化力との複合的作用によって、廃水中のCOD成分を分解処理する方法に関するものである。
【0002】
【従来の技術】
廃水中に含有する高濃度COD成分を分解処理するには、酸化により分解することが一般的な処理方法として知られている。酸化分解処理に用いる酸化方法としては、塩素やオゾンなどの酸化剤を用いる薬剤酸化方式、電気を用い電解による酸化方式ならびに電解と薬剤添加の併用方式、また、光を用いる光酸化方式、さらにはオゾンと光の併用酸化方式などがある。さらには、硫酸第一鉄と過酸化水素との反応で生成するヒドロキシラジカル(OH)を酸化剤として酸化分解するフェントン法などがある。
【0003】
このうち、電気を用いる電解方式には、不溶性の陽極を用いて電解し、陽極面においてCOD成分を直接酸化分解させる電解酸化方式、また廃水中に食塩等の物質を加えて電解を行い、COD成分の電解酸化と添加した塩素イオンの酸化により生成した次亜塩素酸(HOCl)の酸化力を用いてCOD成分を分解する併用型電解酸化方式がある。また、可溶性陽極(アルミニウムまたは鉄など)を用いて電解し、陽極から溶出した金属の水酸化物と電極から発生する気泡によってCOD成分の物質を吸着、凝集、浮上等の作用により除去する方法などがある。このうち、塩素イオンを添加して電解により次亜塩素酸を作る代わりに薬剤として次亜塩素酸を直接添加する方法や、可溶性陽極の代わりにアルミニウム塩や鉄塩を加えて浮上分離させる方法等がある。
【0004】
【発明が解決しようとする課題】
上記方式において、薬剤による酸化処理に用いられる薬剤の塩素やオゾンは酸化力が強く、比較的安価であるので一般的に酸化剤として多く用いられている。しかし、塩素の場合、廃水中の有機物と化合して有毒なトリハロメタンなどの有機塩素系化合物を生じるおそれもあり、また、塩素ガス自体刺激性かつ有毒であり、腐食性の強い物質である。また、塩素イオンを加えて電解酸化で生じる酸化剤の次亜塩素酸も刺激臭が強い物質である。オゾンの場合は塩素よりも極めて強い酸化剤ではあるが、反応に寄与しないオゾンは有害物である。したがって、これらは臭気対策や排ガス処理対策が必要となり、それだけ設備費がかかるなどの問題点があった。
【0005】
電解酸化法は電解槽中に不溶性の陽極と陰極を入れて直流の電流を流し、電気分解を行い、陽極での電極面における酸化反応を用いてCOD成分を酸化分解する方法である。この方法は、薬剤を必要としないし、前処理がほとんど不要であり、装置が簡単で操作しやすく、ランニングコストとしては電気代だけなので安価であるなどの利点がある。しかし、低濃度のCODになってくると、電極面でのCOD成分の接触が減少してくるため、分解効率が著しく低下する。そのため逆にランニングコストが非常に高くなる。また、電解酸化に用いられる不溶性陽極としては、最も酸化力の強い過酸化鉛が通常用いられるが、この過酸化鉛は電解中にわずかであるが鉛イオンが溶出してくる。近年の排水基準の強化により鉛の規制値は1.0mg/1から0.1mg/1に10倍厳しくなった。このため電解酸化の不溶性電極としての過酸化鉛の使用が困難となり、これに代わる酸化力の強い不溶性陽極の出現が望まれているが、現状では見当たらないなどの問題点がある。
【0006】
上記のように塩素やオゾンなどは有害であり、作業上の安全対策をとる必要があり、それだけ設備がかさむ。また、塩素では二次汚染物質が生じる可能性も含んでいる。電解酸化法は高濃度のCOD成分の処理には適しているが、低濃度、特に300mg/1以下の濃度に処理するには適していない。また、電極に用いる過酸化鉛からの鉛の溶出に対する対策が必要となるなどの問題点がある。そこでこれらより取り扱いが容易で安全性が高く、なおかつ高濃度から低濃度までを効率よく処理できる方法の出現が望まれる。
【0007】
【課題を解決するための手段】
上記課題を解決するべく鋭意研究を重ねた結果、従来の電解酸化の方式で陽極に不溶性の電極を、陰極には鉄の電極を用いて電解を行い、電解の途中で電極の極性を逆になるように電極切り替え装置により切り換えると、陰極だった鉄は陽極に替わり、陽極になると鉄イオンが溶出してくる。次に再び極性を元の状態に戻して電解を続行する。この電解操作を繰り返して行うことによって、鉄イオンが酸化され黒色の鉄酸化物のマグネタイト(Fe(FeO)が生じ、さらに電解により酸化が進み、より高次の酸化物である鉄酸(FeO)が生じてくる。この鉄酸は酸化剤であり、その酸化作用でCOD成分が著しく低下することを見出だした。別な方法として陰極にチタン電極、または陽極と同じ不溶性電極を用い、あらかじめ廃水中に鉄イオンを添加しておき、電解により鉄を陰極上に析出させておき、極性の切り換えにより鉄イオンを溶出させても同様な効果が得られる。
【0008】
液中に含まれる酸化還元物質の酸化力、もしくは還元力の強さを示すものとして酸化還元電位が用いられる。標準酸化還元電位を比較することによって、反応が進行しやすいかの推測ができる。この鉄酸の酸化電位はpH0ではE=2.2Vであり、オゾンのE=2.07Vおよび塩素のE=1.36Vより大きい。すなはち、鉄酸はオゾンよりも更に強い酸化剤であることがわかる。そこで課題を解決するために、COD成分を含む廃水中に鉄イオンを共存させ電解酸化することによって鉄酸を生成させ、その鉄酸の酸化力による接触酸化と同時に、電極面でのCOD成分の電解酸化による酸化分解との複合的作用によってCOD成分を分解処理する方法を提供するものである。
【0009】
【発明の実施の形態】
本発明方法に用いる酸化剤としての鉄酸は、酸化性が強いために生成してもすぐに分解してしまうため、鉄酸の存在を直接確認することは分析化学的にも不可能であり、自然界に取り出すことはできない。そこで鉄酸の生成を確認する方法として有機物を用い、電解処理した後の残留有機物量をCODの測定に用いる過マンガン酸カリウムによる測定法によって求めた。
【0010】
この方法によってCOD成分の処理条件を求めた。すなはち、有機物の一定濃度の水溶液に電解質として硫酸ナトリウムを加えて電気電導度を10〜25ms/cmにし2価鉄塩もしくは3価鉄塩を鉄として0.5g/1の濃度に添加し、水酸化ナトリウムと硫酸を用いて液のpHを6〜10に調節する。この液を電解槽に入れ、陽極に白金被覆チタン、陰極にはチタンの電極を用いて、陽極電流密度8〜12A/dmで、一定時間電解をする(この電解を予備電解と呼ぶ)。電極の極性を逆転させ、6Vの電圧で一定時間電解をする(この電解を逆電解と呼ぶ)。再び電極の極性を元に戻し、予備電解時の電圧に設定して一定時間電解を再開する(この電解を一次電解と呼ぶ)。分解が不完全の場合には、更に逆電解以降を二次、さらに三次電解と任意の時間で電解操作を繰り返し行う。
【0011】
この電解方式で予備電解は、処理水中に鉄塩を添加した場合は鉄イオンを陰極上に析出させることと、液中の酸素濃度を増加させるのが目的である。次の逆電解では陰極が陽極に変わることで析出した鉄が2価のイオンとして溶出される。析出しない過剰の鉄イオンは3価イオンとして存在している。これらがそれぞれ水酸化物を生成し、更に液中の酸素によって酸化され黒色のマグネタイトが生成してくる。次の一次電解ではこのマグネタイトが更に陽極で酸化されて鉄酸が生成されてくるものと思われる。また、陰極に鉄を用いた場合には、予備電解では液中に酸素濃度を増加させるのが目的となり、逆電解以降は同様な反応が行われる。この反応が二次および三次電解と繰り返し行うことによって、その都度鉄酸が生成されてCOD成分を分解していくものと考えられる。
【0012】
電解処理に適するpHは弱酸性からアルカリ性の広い範囲にわたるが最適な範囲はpH6〜10である。電気電導度は陽極電流密度とも関係してくるが、最適な範囲は10〜25mS/cmである。陽極電流密度は8〜12A/dmが適しており、高いと液温度の上昇が早くなり、また低いと陰極への鉄の析出量が少なくなって鉄酸の生成量が減少する。また、液の電解開始時の温度は30〜40℃が最適で、低いと温度上昇が激しく、また高いと電解による温度上昇が低くなるので分解効率が悪くなる。従って電解中の最高到達温度が80〜90℃程度になるような陽極電流密度、電気電導度および電解開始温度等の条件を総合的に決める必要がある。
【0013】
陽極に用いる素材には通常の電解酸化処理に用いられる不溶性電極が使える。本研究では、チタンに白金を被覆した白金被覆チタン電極の網状のものを使用した。鉄塩を加える場合の陰極にはチタンの網状電極もしくは陽極と同じ白金被覆チタン電極を用いた。また、鉄塩を添加しない場合の陰極に鉄の電極を用いた。また、陰極にチタン電極を用いたとき、逆電解の電圧が9Vを越えるとチタンの溶出がおきるので、電解中の変動もみて逆電解は6Vの電圧でおこなった。
【0014】
【実施例1】
以下実施例を示し、本発明の特徴とするところを一層明らかにする。先ずCOD源として一定濃度の酒石酸を用い、液量900mlにし一定量の硫酸第一鉄もしくは硫酸第二鉄を加える。次いで硫酸ナトリウムで電気電導度を約21mS/cmにし、水酸化ナトリウムでpH10とする。これを電解槽に入れ陽極に市販の網目状白金被覆チタン電極2枚で陰極の網目状チタン電極1枚を挟むようにし極間距離2cmに設置する。
【0015】
電解は液温度を40℃にし、陽極電流密度10A/dmで予備電解を60分行い、次いで電極の陽極と陰極の極性を逆転して、電圧6Vで5分間電解する。次いで電極の極性を元に戻し予備電解開始時の電圧にして、一次電解を60分行うという電解工程で電解した。液の攪拌にはスターラーを用いた。【表1】に鉄の濃度を変化させたときの残留CODとの関係を示した。この方法で硫酸第一鉄の場合は、鉄イオンとして0.5gで95%、また、硫酸第二鉄では鉄イオンとして0.5gで97%以上のCOD分解率が得られる。すなはち、鉄が存在しない場合は12.7%しか分解できない。これは電解酸化だけの効果しかないためてある。しかし鉄を存在させると同じ電解条件でも著しく分解効率が向上する。これは電解酸化の作用と鉄の酸化によって生成した鉄酸の酸化剤とが複合的に作用して分解が促進されたことを示している。
【0016】
次に、陰極の素材として鉄の網目状の電極を用いた場合、pHを6.4、陽極電流密度12A/dmで、逆電解を6Vの電圧で0〜90秒間に変化させて前記の方法と同様に電解を行った。このときの逆電解時間と残留CODとの関係を【表2】に示した。すなはち、逆電解によって陰極の鉄が陽極となり、鉄が溶出してくるため鉄塩を添加した場合と同じ効果が得られる。すなはち、逆電解を行わない時の分解率は12.3%で、これは電解酸化のみの効果であるが、逆電解を90秒間行った時は98.1%の分解効率が得られる。逆電解時間がそれよりも短くなると分解効率は低くなる。これは鉄の溶出量が少なくなり、鉄酸の生成量がそれだけ減少したからである。
【0017】
【実施例2】
廃水処理工場において収集した廃酸および廃アルカリ液を混合しアルカリ性にして、重金属類の水酸化物を濾過した一次処理水を試料に用いた。試料の900mlを取り、硫酸ナトリウムを加えて電気電導度を22.6mS/cmにし、硫酸第一鉄を鉄として0.5gを加え、硫酸および水酸化ナトリウムでpHを6.9にして電解槽にいれた。電極には陽極に白金被覆チタン2枚と陰極には同じ白金被覆チタン1枚を陽極で挟むようにし電極の極間距離2cmに設置した。液温度を40℃にして、陽極電流密度12A/dmで、電解を行った。電解工程と
Figure 0003921612
の代わりに硫酸第二鉄を用いた場合の結果をもあわせて【表3】に示した。すなはち、鉄の2価あるいは3価のいずれを用いても三次電解で、完全に100%分解した。
【0018】
【実施例3】
実施例2で示した処理方法において、陰極の電極に鉄の網目状を用いて同様な電解工程と時間で行った場合と、電解工程と時間を予備電解30分→逆電解2分
【表 1】
Figure 0003921612
【表 2】
Figure 0003921612
Figure 0003921612
【表 3】
Figure 0003921612
【表 4】
Figure 0003921612
→一次電解30分→逆電解2分→二次電解30分→逆電解2分→三次電解30分→逆電解2分→四次電解30分に変えて電解を行った場合との結果について【表4】に示した。すなはち、電解時間を60分で行った時は三次電解までで100%分解するが、30分で行った時は四次電解で99%分解した。全電解時間を比較すると、前者が240分に対し、後者では150分で終了できる。
【0019】
【発明の効果】
本発明は、以上説明したような処理方法であるので、以下に記載されるような効果がある。
【0020】
本発明の電解処理法は、処理水中に鉄イオンを共存させ、不溶性電極として市販の白金被覆チタン電極を用い、陰極にはあらかじめ鉄塩を添加しておく場合にはチタン電極もしくは陽極と同じ白金被覆チタン電極を使用し、また鉄イオンをあらかじめ添加しておかないときは鉄の電極を用いて、予備電解→逆電解→一次電解し不完全なときは、さらに逆電解と二次電解以降も電解をするという電解工程を任意の時間で繰り返し継続することによって、鉄イオンが酸化されて鉄酸が生成され、その鉄酸の持つ酸化力と電極面での電解酸化との複合的作用により廃水中のCODの分解が著しく促進される。
【0021】
鉄イオンの共存方法として2通りの方法がある。その一つは、廃水中に鉄塩を添加して直接鉄イオンを共存させる方法がある。この場合、陰極には比較的安価なチタン電極が使用できる。鉄塩としては、第一鉄または第二鉄塩のどちらでも使用可能である。また、鉄イオン共存の第二の方法として、陰極に鉄電極を用いて、逆電解に陽極になるため、鉄イオンが溶出してくることを利用する方法である。ただし、この場合は電極は消耗していく。しかし、起泡性物質を含むような廃水では、鉄塩を添加すると、予備電解中に著しく起泡が発生して鉄イオンが浮上し、陰極上への鉄の析出が減少するため、起泡が消失してから鉄塩を添加することになり、予備電解時間がそれだけ長くかかる。このような場合には、鉄の陰極を用いれば予備電解中に起泡性物質が電解酸化で分解されてしまうので前記のような問題点は解消できる。このように廃水の性質に応じた方法を選べる利点がある。
【0022】
従来の酸化剤として用いられている塩素やオゾンは、有害物であるが、それに対し、本発明で生成する酸化剤の鉄酸は全く毒性はない。また、過酸化鉛の電極も使用しないので、鉛の溶出がなく、従って有害物を除去するなどの付帯設備が不要である。しかも、鉄酸は塩素やオゾンよりも強力な酸化剤である。
【0024】
処理装置は一般に行われる平板電極方式で、電解処理槽一槽で電解酸化と鉄酸による酸化処理が行えるので経済的である。また、鉄は処理中に水酸化物、あるいは酸化物となって沈殿するので電解処理終了後に濾過すれば容易に処理水から除去できる利点がある。

Claims (2)

  1. 廃水中のCOD成分の電解処理法において、被処理水中に鉄の2価イオン(第一鉄塩)もしくは3価イオン(第二鉄塩)を添加し、陽極には不溶性電極を、陰極には同じく不溶性電極もしくはチタン電極を用いて電解し、一定時間電解した後、電極切り替え装置により電極の極性を逆転して一定時間電解する。再び電極切り替え装置により元の電極の極性に戻し、一定時間電解を続行し、必要に応じてこの電解操作を繰り返し行う。この電解法によって鉄が酸化され、鉄酸(FeO)が生成される。当該鉄酸のもつ酸化力によるCOD成分の分解と同時に、電解酸化による電極面でのCOD成分の酸化分解との複合作用により、COD成分の分解を促進処理させることを特徴とする鉄共存電解処理法。
  2. 請求項1記載の鉄イオン添加の方法として、陰極に鉄の電極を用い、電解操作で電極の極性を切り換えたとき、当該陰極が陽極になり鉄イオンが溶出してくることによって鉄イオンを共存させることを特徴とする鉄共存電解処理法。
JP2002382750A 2002-11-29 2002-11-29 廃水中のcod成分の鉄共存電解処理法 Expired - Fee Related JP3921612B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002382750A JP3921612B2 (ja) 2002-11-29 2002-11-29 廃水中のcod成分の鉄共存電解処理法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002382750A JP3921612B2 (ja) 2002-11-29 2002-11-29 廃水中のcod成分の鉄共存電解処理法

Publications (2)

Publication Number Publication Date
JP2004181436A JP2004181436A (ja) 2004-07-02
JP3921612B2 true JP3921612B2 (ja) 2007-05-30

Family

ID=32766686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002382750A Expired - Fee Related JP3921612B2 (ja) 2002-11-29 2002-11-29 廃水中のcod成分の鉄共存電解処理法

Country Status (1)

Country Link
JP (1) JP3921612B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006142263A (ja) * 2004-11-24 2006-06-08 Proud:Kk 有機排水処理方法および有機排水処理用電極反応槽
ITMI20120158A1 (it) * 2012-02-07 2013-08-08 Industrie De Nora Spa Elettrodo per l¿abbattimento elettrochimico della domanda chimica di ossigeno in reflui industriali

Also Published As

Publication number Publication date
JP2004181436A (ja) 2004-07-02

Similar Documents

Publication Publication Date Title
Brillas et al. Peroxi‐coagulation of aniline in acidic medium using an oxygen diffusion cathode
Huang et al. Removal of citrate and hypophosphite binary components using Fenton, photo-Fenton and electro-Fenton processes
CN102101733B (zh) 铁屑电解与电化学工艺处理电镀综合废水的方法
Mohajeri et al. Landfill leachate treatment through electro-Fenton oxidation
Donoso et al. Electrochemical and sonochemical advanced oxidation processes applied to tartrazine removal. Influence of operational conditions and aqueous matrix
BAZRAFSHAN et al. Removal of cadmium from industrial effluents by electrocoagulation process using iron electrodes
Mahvi et al. Removal of cadmium from industrial effluents by electrocoagulation process using aluminum electrodes
WO2002068339A1 (fr) Procede et systeme de traitement d'un compose a base d'azote
JP2004181329A (ja) 排水処理方法および排水処理装置
JP4920255B2 (ja) 水処理方法及びシステム
RU2615023C2 (ru) Способ комплексной очистки сточных вод от цианидов, тиоцианатов, мышьяка, сурьмы и тяжелых металлов
CN106830204B (zh) 一种电化学阴极激发高锰酸盐降解水中污染物的方法及装置
KR20170099616A (ko) 이온교환막 여과공정-전기화학적 질소제거 공정의 복합 처리에 의한 오염 지하수의 정화처리방법 및 정화처리장치
KR100372849B1 (ko) 응집 및 전해원리를 이용한 고도 폐수처리장치
JP3921612B2 (ja) 廃水中のcod成分の鉄共存電解処理法
Yan et al. Reduction of chemical oxygen demand from refinery wastewater by three-dimensional electrode-electro-Fenton process
de Moura Gomes et al. Development of a system for treatment of coconut industry wastewater using electrochemical processes followed by Fenton reaction
How et al. Degradation of Acid Orange 7 through radical activation by electro-generated cuprous ions
JP3400627B2 (ja) Cod含有水のcodの除去方法
JP3593759B2 (ja) 有機物を含有する廃液の処理方法
JPWO2003091166A1 (ja) 有機化合物含有排水の処理方法および装置
KR101941943B1 (ko) 암모니아 폐수 처리 방법 및 장치
KR100545306B1 (ko) 질산성 폐수의 전기 화학적 처리 방법
JPH06182344A (ja) 塩分、無機窒素化合物含有溶液の分解・利用方法と装置
JP3738186B2 (ja) 窒素処理方法及び窒素処理システム

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees