JP3921411B2 - リタイミング回路 - Google Patents

リタイミング回路 Download PDF

Info

Publication number
JP3921411B2
JP3921411B2 JP2002117711A JP2002117711A JP3921411B2 JP 3921411 B2 JP3921411 B2 JP 3921411B2 JP 2002117711 A JP2002117711 A JP 2002117711A JP 2002117711 A JP2002117711 A JP 2002117711A JP 3921411 B2 JP3921411 B2 JP 3921411B2
Authority
JP
Japan
Prior art keywords
phase
clock
data
circuit
retiming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002117711A
Other languages
English (en)
Other versions
JP2003318872A (ja
Inventor
典生 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Engineering Ltd
Original Assignee
NEC Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Engineering Ltd filed Critical NEC Engineering Ltd
Priority to JP2002117711A priority Critical patent/JP3921411B2/ja
Publication of JP2003318872A publication Critical patent/JP2003318872A/ja
Application granted granted Critical
Publication of JP3921411B2 publication Critical patent/JP3921411B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、入力データ信号から抽出したクロック信号によって入力データ信号を再生するリタイミング回路に関する。
【0002】
【従来の技術】
この種のリタイミング回路においては、入力データ信号のビットレートがあまり高くない場合、位相同期ループでの位相同期比較器における入力データ信号と電圧制御発信回路の出力との位相関係は、データリタイミング回路での識別位相関係と略同程度の関係にあり、またデータリタイミング回路でのアイパターンはリタイミングクロックのサンプリング幅に比して十分広く、電圧制御発振回路の出力をそのまま識別クロックとしても符号誤りを起こす危険は少なかった。
【0003】
しかし、光通信網のシステムに代表される高速通信技術が急速に進展する近年、位相同期装置に用いられるタイミング抽出・データリタイミング回路(識別再生回路)には、位相同期ループの高速化、環境条件変動等に対する耐久力、同符号連続に対する安定等が求められてきている。すなわち、数百メガからギガビットの高速光通信に代表される高速通信技術のように、入力データ信号のビットレートがさらに高速化されることに伴い、データリタイミング回路でのアイパターンはリタイミングクロックのサンプリング幅に比して狭くなってきており、クロック抽出に対する高速化のみならず識別位相点の調整が必要となってきている。
【0004】
このような問題点を解決する従来技術の一つとして、例えば、特開2000−216763に記載されている「位相同期装置及び位相同期方法」(従来技術1)を挙げることができる。この位相同期装置は、クロックを再生するPLL回路と位相シフト制御回路と位相シフト回路とデータリタイミング回路とを有し、位相シフト制御回路では入力データ信号をクロックの立下りでラッチした信号(論理値)を平滑化して位相シフタ回路にフィードバック制御が行われ、その結果、クロックの立下りでデータラッチ点が入力データ信号の変化点になるように制御されるため、データリタイミング回路では入力データ信号の略中央でクロックが立ち上がることになり、入力データ信号の略中央をリタイミングすることを可能とする構成である。
【0005】
また、特公平07−95685に記載されている「プログラム式高速ディジタル・フェーズ・ロック・ループ」(従来技術2)も知られている。この方法は、半導体の製造パラメータ等で、素子の遅延時間が変化しても、予め外部から設定した一定の遅延時間でリタイミングクロックを求めて、入力データ信号をリタイミングするものである。
【0006】
【発明が解決しようとする課題】
しかしながら、上述した従来技術1では、入力データ信号の略中央(1クロック周期の中央)をリタイミングする構成であるが、入力データ信号が高速になると入力データ信号の立上りと立下りとでは時定数が異なるため、例えば、なだらかに立ち上がり、急速に立ち下がるとなる等、アイパターンの開口が一番大きくなるところは、必ずしも入力データ信号クロック周期の中央とは限らず、従って、必ずしも最適な点でリタイミングができるとは限られないという問題点がある。特に、伝送距離が伸びて入力データ信号の雑音が相対的に大きくなると、反射信号等の影響も現れるので、リタイミングの最適点に位相調整した場合に比べて伝送特性が劣ってくることが多い。
【0007】
また、従来技術2では、最適の位相点がどこであるかをあらかじめ決めて(最適設定位相)、リタイミングクロックの位相がその所望位相になるように遅延時間を外部から設定するため、リタイミングの最適位相点が変化した場合は、例えば反射や環境変化等でアイパターンが変化した時は、その変化に追従することができず伝送特性が劣るという問題点がある。
【0008】
本発明は斯かる問題点を鑑みてなされたものであり、その目的とするところは、環境条件等で入力データ信号のアイパターンが変化したときでも、データリタイミング回路(識別再生回路)での打ち抜き位相を自動的に最適化できるリタイミング回路を提供することにある。
【0009】
【課題を解決するための手段】
[第1のハードウェア構成]
本発明の第1のリタイミング回路は、入力データ信号(図1の1)に位相同期した再生クロック(図1の2)を発生するPLL回路(図1の101)と、再生クロックの位相をずらした第1クロック(図1の3)を出力する第1位相シフタ(図1の103)と、再生クロックの少なくとも1周期の多点の位相で順次に異なった位相の第2クロック(図1の4)を出力する第2位相シフタ(図1の104)と、第1クロックで入力データ信号をリタイミングして第1再生データ(図1の5)を出力する第1データリタイミング回路(図1の102)と、第2クロックで入力データ信号をリタイミングして第2再生データ(図1の6)を出力する第2データリタイミング回路(図1の105)と、上記多点の位相のための第2位相制御信号(図1の8)を第2位相シフタに出力し、また第1再生データの値と上記多点の各位相における第2再生データの値とが一致する頻度を測定し、測定した頻度から判定を行って第1クロックの位相を最適な位相にシフトするための第1位相制御信号(図1の7)を第1位相シフタに出力する判定制御回路(図1の106)とから構成される。
【0010】
本発明の特徴は、第2位相シフタ104,第2データリタイミング回105路および判定制御回路106にある。これらは入力データ信号1をリタイミングする第1クロック3のための最適位相を検索するために設けられた回路であり、同じデータ列である入力データ信号1について、位相を遷移させてリタイミングして得た第1再生データ5と第2再生データ6との一致の様子を測定する。
【0011】
すなわち、第1リタイミング回路102が出力する第1再生データ5の値と、検索用回路である第2データリタイミング回路105が出力する第2再生データ6の値との一致の頻度を第2クロック4の位相を遷移させて測定し、一致頻度分布の様子を基に第1クロック3の最適位相の判定を行うのである。このような処理を一定周期で繰り返す。そして、最終的に得られた最適位相の第1クロック3で入力データ信号1をリタイミングした第1再生データ5を本リタイミング回路の出力とする。
【0012】
判定制御回路は、測定の結果により、一致の頻度が一番高い位相を最善位相と判定し、第1クロックの位相が最善位相に近づくように第1位相制御信号を出力し、これらの処理を逐次に行って最終的には第1クロックの位相が最適位相に到達するように制御する。
【0013】
また、判定制御回路は、一致頻度の測定結果から、一致頻度のピーク値と左右対称性およびピーク値近傍の値の平坦性を基に最善位相を判定し、最善位相に近づくように位相制御信号を出力し、これらの処理を逐次に行って最終的には最適位相に到達するように制御する。
【0014】
また、判定制御回路は、一致確率のピーク値が略1になる第2クロックの位相が第1クロックの位相と一致する位相と判定して、第1クロックの位相を該位相へずらせす制御を行うことにより最終的な最適位相を求める。
【0015】
本発明によれば、リタイミング再生されたデータを用いて最適位相の判定制御を行うので、初めに特別に位相の調整や設定をしなくても、そのままで自動的にいつでも最適設定の位相で入力データ信号のリタイミングが行うことができる。
【0016】
なお、本発明では、一致確率を基に最適位相点の判定を行うので、入力データに0連があった場合、一致確率は最適位相点を含めてどの位相でも略1となるので、一致確率が略1の場合は最適位相点にあると判定されて、位相は最適位相点にそのまま保持されるため、0連があっても最適位相の自動設定は問題なく行うことができる。
【0017】
[全位相範囲からの最適位相の検索方法]
次に、最適位相の検索の動作について以下に詳細に説明する。最適位相の検索方法としては、全位相範囲の探索を行う全探索と、限られた位相範囲の探索から逐次に探索を進めていく逐次探索とが考えられる。
【0018】
先ず、全位相範囲の探索を行う全探索の方法について説明する。
【0019】
位相シフタの位相点の数は、一致頻度分布を基に判定する精度に関わるが、一致頻度が最善値を示すところが少なくとも3点程度あり、その中心が最適位相と判定することから、判定精度と回路規模とを考慮して決める。データ信号のアイパターンにも依存するが、通常なら、1周期を8〜10点くらいの位相でリタイミングすれば、その中の連続する3点の位相ではデータの誤りが無くデータを再生できる位相点がありそうである。アイパターンが狭い場合は1周期の位相の点数を多くする。ここでは、位相の点数を8として説明する。
【0020】
判定処理毎のデータ一致の測定回数は多い程精度が高くなるが、測定回数が多いと一致頻度を測定するためのビット数は多くなる。位相点が10点程度ならば、頻度分布の精度は0.1〜1%程度以上あれば、位相を遷移させた時の一致の頻度分布の差異が識別可能である。ここでは、各位相で512回測定することとする。
【0021】
測定方法として、ある位相で512回測定してから順次に位相をずらして測定する方法や、1回毎に位相をずらして、均等に各512回測定する方法等が考えられるが、測定点がランダム化できることから、1回毎に位相をずらせる場合で説明する。
【0022】
先ず、一致頻度分布を測定する。判定制御回路106からの第2位相制御信号8により、第2位相シフタ104は、再生クロック2の1クロック毎に位相が遷移する第2クロック4を出力する。第2クロック4の位相は、再生クロック2を8等分した各位相点を取るように1クロック毎に位相をクロック周期の1/8ずつ遷移させる。図4(A)にアイパターンとクロック位相の関係を示す。クロック位相は0/8〜8/8(1+0/8)周期まで遷移し、1周期の両端を含む全範囲の9つの位相について検索が行われる。
【0023】
判定制御回路106は、第1クロック3が一定の位相、例えば4/8にあるとき、第2クロック4の位相を0/8から8/8まで順次に遷移させる。判定制御回路106は、各位相に対応したカウンタを備え、第1クロック3が4/8の位相(「位相4/8」と記す)に固定された時の第1再生データ5が、第2クロック4の各クロック位相に対する第2再生データ6と一致した場合には、一致した位相に対応するカウンタのカウント値を1増加する。第2クロック4の0/8から8/8までの各位相について一定周期(例えば512×9のクロック)の測定を行い、データ一致の頻度を測定する。第2クロック4の各位相で512回ずつ計測が行われる。ある位相で、比較した値がすべて一致すれば、その位相での一致の頻度(カウント値)は512となる。
【0024】
次に、測定した頻度分布を基に最適位相の判定を行う。もし、第1クロック3の位相が4/8で最適位相とすれば、後述する自己相関性により、第2クロック4の位相も4/8の前後で位相をずらせても正しい値で再生される可能性が高い。すなわち、第1再生データ5と第2再生データ6が4/8の位相で一致する頻度が最高(512に近い値)になり、3/8,5/8の位相でも一致する頻度、言い換えると測定回数で正規化した値の確率は非常に高いと予想される。
【0025】
その他の位相では、4/8の位相から離れるに従い一致する頻度は少なくなり、0/8,8/8の位相が一番小さい値になると予想される。また、アイパターンが左右で略対称であれば、頻度分布も略対称の値をとることになる。図4(B)にその頻度分布の様子を示す。図4(B)では、第1クロック3の位相が4/8の場合において、第2クロック4に対する一致確率を示している。一致確率とは、一致頻度を測定回数で正規化したものであり、最高値は1ということになる。
【0026】
第1再生データ5と第2再生データ6との一致確率が1の値に非常に近いときは、第1クロック5の位相と、第2クロック6の位相が合っており、かつ略最適位相にある可能性が高い。しかし、一致確率が1に近いだけでは、後述する理由から、必ずしも最適位相点ではない。図4(C)は、第1クロック3の位相が2/8の場合において、第2クロック4に対する一致確率を示している。図4(B)と図4(C)の比較から分かるように、一致確率(頻度分布)の値が一定の値、略1となる位相が複数ある(ピークが広い)場合で、略左右が対称形であるときは、最適位相にある可能性が高いと判定する。そして最適な位相は複数の位相の中央、この例では4/8が最適位相点であると判定する。
【0027】
最適位相点が判定されると、判定に基き第1位相制御信号7が判定制御回路106から出力され、第1クロック3の位相は、検索によって最適位相と判定された第2クロック4の位相と同じ位相に合わせられる。この場合、第1クロック3の位相は最適位相4/8にするための第1位相制御信号7が出力されるが、当初、第1クロック3の位相を4/8としたので同じ位相4/8を維持することになる。
【0028】
次に、第1クロック3の位相が3/8の場合を考えると、この場合、位相3/8は位相4/8と同等に誤りなくリタイミング再生できる略最適位相点であるので、第1再生データ5の値は第1クロック位相3が3/8でも4/8でも略同じとなり、従って第2クロック4の位相を0/8〜8/8で遷移させたときの一致の頻度分布の様子も図4(B)と略一致することになる。この頻度分布から、最適位相点は、やはり位相4/8と判定される。この場合は第1クロック3の位相は最適位相4/8にするための第1位相制御信号7が出力され、当初の位相3/8から位相4/8に切り替わる。
【0029】
第1クロック3の位相が最適位相点からずれている場合、例えば、位相が2/8である場合には、最適位相の場合に比べて、位相2/8に対する第1再生データ5と各位相に対する第2再生データ6との一致確率は異なってくると予想される。
【0030】
第1データリタイミング回路102と第2データリタイミング回路105は同じ特性を有していると考えられる。一般的な信号の自己相関は、位相が同じ(位相差0)ところで高く、その値は略1(狭いピーク)であり、位相のずれが大きくなるに従って、相関の大きさはラプラス分布(指数分布)に比例して小さくなっていくことが知られている。
【0031】
しかし、再生データはリタイミングされているので、その相関は必ずしも指数分布となるとは限らないが、位相の差が大きくなれば相関の値は減少することは予想される。また、第2クロック4の位相が略最適点(誤り無く再生される位相範囲)であれば、第2再生データ6は一定となり、第1再生データ5の誤り率は固定するので、第1再生データ5と第2再生データ6の一致確率は略最適点の位相の範囲では同じになると考えられる。
【0032】
これらのことから、第1再生データ5と第2再生データ6の相関は、データリタイミングする位相が最適位相からずれていても、第1クロック3と第2クロック4の位相が一致する位相2/8で頻度分布は一番大きな値となり、確率が1に近い値(狭いピークの形)をとると予想される。また、第2クロック4の最適位相点の近傍の位相3/8,4/8,5/8では、位相が変わってもアイパターンが大きく開いているので第2再生データ6の値は正しい再生データ値で一定となる。従って、第1再生データ5と第2再生データ6の一致する確率も最適位相の近傍の位相3/8,4/8,5/8では、頻度分布が一定値となる。
【0033】
これ以外の位相では、第1クロック3の位相からのずれが大きくなるに従って頻度分布は小さくなる。これらのことから、第1クロック3の位相が2/8で、第2クロック4の位相を0/8〜8/8の間で変えた場合の頻度分布は図4(C)に示すように、位相2/8で一番大きく、3/8〜5/8の間で略一定の値、位相が離れるに従って頻度分布も小さくなる形となる。
【0034】
判定制御回路106は、図4(C)に示す測定結果から、第1クロック3の位相は頻度確率が1になる第2クロック4の位相2/8に対応するところにあること、頻度分布の左右が対称形でなく、ピークが狭い(尖っている)ことを考慮して、頻度確率が1でもそこは最適位相でないこと、第2クロック4の最適位相点は頻度分布が一定値となる略中央の位相4/8であることを判定し、位相4/8が第1クロック3の最適位相と判定する。そして、判定結果を基に、第1位相シフタ103の位相が4/8になるように第1位相制御信号7を出力する。
【0035】
1回の測定と判定が終われば、これを適当な間隔で順次繰り返す。このような方法で最適位相の制御が行われ、自動的に最適位相で入力データ信号1のリタイミングが行われる。
【0036】
位相を順次に変える方法は、本発明では絶対的な遅延を問題としていないので、具体的にはゲート素子を重ねて遅延段数を選択することにより位相を遷移させることができる。
【0037】
また、位相は正確に1周期を8等分する必要はなく、最適な位相を判定する位相誤差の範囲であれば、位相のシフト幅もその程度の誤差は許容できる。
【0038】
更に、最適位相を探索する位相間隔は、アイパターンの形を確認または予想して、そのパターンがあいた所(再生データが正しく再生される範囲)で少なくとも3点程度の位相で頻度分布が測定できるようにすると、一致確率からの判定が行い易い。
【0039】
[逐次による最適位相の検索方法]
次に、逐次に最適位相を探索する方法について説明する。
【0040】
位相をクロック周期の全域にわって全探索すると、回路規模大きくなるので、検索範囲を制限して、例えば第2クロック4の3点で逐次検索を行うものである。第2クロック4の位相の検索範囲は、第1クロック3に設定されている位相と、その位相の前後との計3つの位相について再生データの一致頻度をカウントする。
【0041】
第1クロック3の位相が2/8に設定されている場合には、第2クロック4の位相を1/8,2/8,3/8の3つにずらして、これら3つの位相での一致頻度を測定する。位相2/8で両者の位相が合うため、自己相関による一致確率が一番高くて、1に近い値(狭いピーク形)となる。両端の位相1/8,3/8での頻度分布を比較し、頻度分布が高い方の側に最適位相点があると判定して、最適位相に近い側の位相を次の判定の最善位相とする。いま、位相3/8が高い場合には3/8を最善位相として、第1クロック3の位相を2/8から1つ後ろにずらして3/8になるように第1位相制御信号7を出す。
【0042】
第1クロック3の位相が決められたら、決められた最善位相に対して、逐次に検索の処理を行う。第2クロック4の位相を変えても、一致確率が略一定で、かつ略1の値をとるとき(広いピーク形)、その中央に相当する位相が最適位相と判定する。これにより、自動的に最適位相でデータのリタイミングが行われる。
【0043】
逐次検索の場合、位相をずらしたときの傾きの様子を知ることができればよいので、検索の位相点は3点に限ることはなく、5点でも可能である。また、初めは粗く、ある程度最適位相に近づいたら、細かく探索する方法により、引込みを速くすることができる。更に、最適位相の両側の位相を微調整して動かし、一致確率が中央の最適位相点の値(略1)に比べてほんの少し下がる位相点を求めて、この両側の位相の間が略誤り無く再生できる位相点でその中央を最適位相点であると判定して、第1クロック3の最適位相を決める方法も可能である。
【0044】
本発明では、予め第2データリタイミング回路105で最適になる第2クロック4の位相の検索を行っておき、次に、その最適な位相に近づけるように第1データリタイミング回路102に対する第1クロック3の位相を移動する構成をとっているため、第1データリタイミング回路102と第2データリタイミング回路105の両回路の特性は、同じような特性の方が最適位相に設定できる効果が高く期待できる。できるだけ同じ特性にするためには、選別して同じ特性の素子を選ぶことや、LSIのチップに2つの回路を設ける構成にすること等が考えられる。
【0045】
[第2のハードウェア構成]
さらに改善できる構成として、第1シフタおよび第1データリタイミング回路の役割と、第2シフタおよび第2データリタイミング回路の役割を固定するのでなく、両者の機能を交代で受け持つようにする構成について説明する。
【0046】
先ず、一定の期間は第1データリタイミング回路が“主信号”の処理をするようにして、第2クロックの位相を1周期分の位相点でずらして、一致の頻度分布を求め、略最適と見られる位相点を求める。この位相点が第2データリタイミング回路の最適位相点として第2クロックの位相がこの位相となるように判定制御回路で制御する。
【0047】
次に、“主信号”のルートを第2データリタイミング回路に切り替える。そして、第1クロックの位相を1周期分n範囲でずらして、一致の頻度分布を求め、その形から最適とみなす位相を判定する。この位相点が第1データリタイミング回路の最適位相点となる。これを交互に行い、最適点に追い込んででいく。切り替えをクロックに合わせて適当な周期で行えば、オンラインで最適位相になるように逐次処理が行えることになる。
【0048】
この構成では、第1データリタイミング回路と第2データリタイミング回路は、各々それ自身の最適位相点を測定することができるので、両者の回路特性が少しくらい異なっても、何ら問題なく各々のデータリタイミング回路について最適位相点を動的に測定判定して選択できることになる。
【0049】
なお、本構成の場合、第1データリタイミング回路と第2データリタイミング回路それぞれに対して、独立して逐次検索で最善位相の判定を行うことにしてもよい。この方法によってもアイパターンが滑らかな場合は、最終的に最適位相点に到達できる。
【0050】
【発明の実施の形態】
次に、本発明の実施例について図面を参照しながら説明する。
【0051】
[第1実施例]
図1は本発明の第1のハードウェア構成を図1にブロック図で示し、第1実施例について説明する。本リタイミング装置は、位相検出回路107,フィルタ108および電圧制御発信器(VCO)回路109から成る位相同期ループ(PLL)回路101と、第1データリタイミング回路102と、第1位相シフタ103と、第2位相シフタ104と、第2データリタイミング回路105と、判定制御回路106とから構成される。
【0052】
本リタイミング装置は、入力データ信号1をリタイミングして第1再生データ5を出力するものである。入力データ信号1はPLL回路101,第1データリタイミング回路102および第2データリタイミング回路105へ供給される。
【0053】
PLL回路101は入力データ信号1からデータの変化点を求めて、変化点に同期した周波数のクロックを再生し再生クロック2として出力する。位相同期検出107回路は、フィードバックされた再生クロック2とデータ変化点の位相とを比較して比較誤差をフィルタ回路108に出力する。フィルタ回路108は比較誤差信号を平滑化して制御電圧として出力し、再生クロック2とデータの変化点の位相誤差が0となるようにVCO回路109を制御し、VCO回路109はデータの変化点に位相同期した周波数の再生クロック2を出力する。
【0054】
第1位相シフタ103は、判定制御回路106からの第1位相制御信号7により指定された位相だけ、再生クロック2からずれた第1クロック3を出力して第1データリタイミング回路102へ供給する。第1データリタイミング回路102は、入力データ信号1を第1クロックでリタイミングして第1再生データ5を出力する。
【0055】
また、第2位相シフタ104は、判定制御回路106からの第2位相制御信号8により指定された位相だけ、再生クロック2からずれた第2クロック4を出力して第2データリタイミング回路105へ供給する。第2データリタイミング回路105は、入力データ信号1を第2クロックでリタイミングして第2再生データ6を出力する。
【0056】
第2シフタ104から出力される第2クロック4の位相は、第2位相制御信号8に従って順次にシフトされ、再生クロック2の1周期について分割された各位相が選択される。第2クロック4は、再生クロック2の1クロック毎に位相が例えば1/8ずつ、0/8〜8/8の間を遷移する。第2データタイミング回路105は、第2クロック4で入力データ信号1をリタイミングして第2再生データ6を出力し、判定制御回路106へ供給する。
【0057】
判定制御回路106の構成例を図2に示す。図2を参照すると、判定制御回路106は、測定タイミング制御回路201,データ一致比較回路202,カウント回路203,判定回路404および位相制御回路405から構成される。
【0058】
測定タイミング制御回路201は、入力された再生クロック2を基に各種のタイミング信号および制御信号を発生し、データ一致比較回路202,カウント回路203,判定回路204および位相制御回路205へ送り、カウントのクリア,一致頻度分布の測定,判定等一連の動作の制御を行う。
【0059】
データ一致比較回路202は、第1再生データ5と第2再生データ6を比較する。比較の結果により、一致すれば1、不一致なら0を出力する。カウント回路203は、クロックの位相毎に比較の結果をカウントする機能を備え、一致した時(1の時)、その第2クロック4の位相に対応するカウント値を1増加する。
【0060】
上述の測定が予め指定されている回数だけクロックの各位相で行われると判定動作に入る。判定回路204は、クロックの各位相のカウント値から求まる頻度分布を基に、頻度分布のピーク値,ピーク値の平坦性,左右対称性,平坦部の有無とその連続性を調べ、最善と思われる最適位相を判定する。
【0061】
位相制御回路205は、測定の動作時に、第2クロック4の位相を逐次にシフトするための第2位相制御信号8を第2位相シフト104に出力する。また、第1クロック3を判定毎に求められた最適位相に設定するための第1位相制御信号7を第1位相シフタ103に出力する。
【0062】
図3は、判定制御回路106における位相最適化の判定処理動作の一連の流れを示す。
【0063】
当初の電源立上げ時には、第1クロック3の位相は、以前の最適化処理で得られた位相、例えば位相4/8に設定されている(図3のステップS1)。その後は図3に示すような位相最適化の判定処理動作を繰り返す(ステップS2)。
【0064】
先ず、カウント回路203のクリアが行われ(ステップS3)、頻度分布の測定が行われる(ステップS5)。この場合、第2クロック4の位相を0/8から8/8まで1/8単位で順次に変化させる。第1クロック3の4/8の位相に対する第1再生データ5が、第2クロック4の各クロック位相に対する第2再生データ6とが一致したか否かをデータ一致比較回路202で比較し、一致した場合にはカウント回路203のカウント値が1増加される。位相0/8から8/8までの各位相について、各位相であらかじめ指定された測定回数、例えば512回ずつ計測が行われる(ステップS4)。
【0065】
測定が終わると、次に判定処理を行う(ステップS6)。判定処理では、頻度分布のピーク値,ピーク値の平坦性,左右対称性,平坦部の有無から最善と思われる位相を判定する。
【0066】
もし、第1クロック3の位相が略最適なリタイミングの位相であれば、その前後で第2クロック4の位相をずらしても正しい値で再生される可能性が高い。すなわち、第1クロックの位相4/8の第1再生データ5の値と、第2クロック4の位相3/8,4/8,5/8の第2再生データ6の値とが一致する確率は非常に高い。従って、第2再生データ6の一致をカウントした値で、連続する3つの位相3/8,4/8および5/8に対するカウント値は、図4(B)に示したように、各々512(一致する確率の値が略1の値)になる可能性が高いと判断する。逆に、データの一致確率が略1であれば、その位相近傍がリタイミングの最適位相点であると判定する。
【0067】
最適点の位相を判定したら、第1位相シフタ103にその位相4/8を設定するための第1位相制御信号7を送る(ステップS7)。もっとも、この例では第1位相シフタ103は当初から位相4/8に設定されているので、これを維持することになる。
【0068】
いま、第1クロック3の位相が最適位相点(4/8)からずれている場合、例えば位相2/8であるとする。この場合、第1再生データ5の値と第2クロック4の各位相に対する第2再生データ6の値との一致する割合を測定すると、頻度分布値は、図4(C)に示したように、位相の一致する2/8の位相で最高で略1の値であり、その前後の位相では、急に小さくなり、また左右が対称の形となっておらず、頻度分布値がある幅で一定値をとる所は別の所にあることが分かる。この場合は、頻度分布が一定値をとる位相の中央の位相4/8を最適位相として判定する。
【0069】
判定をより正確にするためには、一致する確率の精度を高くする必要があり、例えば、測定周期を4096クロックより十分大きくする。また、測定位相も8位相ではなく、より多数の点にするとより位相調整の精度を良くすることができる。
【0070】
[第2実施例]
次に、判定制御回路106が逐次処理方法を採用した本発明の第2実施例について説明する。上述のように全検索で測定点を多くすると回路規模が増大する。逐次処理方法はこれを避けるものである。
【0071】
判定制御回路106は次の制御をする機能を備える。第1位相シフタ103が出力している第1クロック3の位相に対して、第2位相シフタ104は同じ位相とその前後の計3つの位相を出力するように第2位相制御信号8を出す。そして、この3つの位相で頻度分布を測定し、その結果で最適位相の判定を行う。位相の中央では第1再生データ5と第2再生データ6のと位相が一致しているため、データ一致確率は略1になるので、その両側の一致確率を見る。
【0072】
両側の位相の一致確率を比べて、右側(位相が遅れる側)の方が高い場合は、最適位相は遅れた方向にあると判定して、第1位相シフタ103が出力する第1クロック3の位相を一段遅らせるための第1位相制御信号7を出力する。このような位相最適化の測定判定を繰り返して行う。判定で、順次位相が遅れる方向がデータの一致確率が高くなる間は、順次に第1クロック3の位相をずらしていく。両側の位相の一致確率が略同じ値で略1に近い値になった時、その中央の位相が最適な位相と判定し、0の位相シフトを行うための第1位相制御信号7を出力する。位相のシフト量が粗いと、両側の一致確率が略同じにならない場合があるが、これを改善する方法としては、シフト位相の大きさを細かくする等が考えられる。
【0073】
一方、左側(位相が進む側)の方が高くなった場合は、最適位相は進む方向にあると判定して、第1位相シフタ103の位相が1段早い位相のクロックを出力するように第1位相制御信号7を出力する。同様にして、両側の位相の一致確率が略等しい値になった時は、その中央の位相が最適な位相と判定し、0の位相シフトを行うための第1位相制御信号7を出力する。
【0074】
この構成では、一致の確率をカウントするカウンタは3つの位相分だけあればよいため、回路規模を小さくすることができる。
【0075】
[第3実施例]
更に、判定制御回路106が別な処理方法を採用した本発明の第3実施例について説明する。この方法は、判定を適応的に行うことにより、逐次処理における最適位相への引込み時間を短縮することができるものである。
【0076】
引込みを早く、かつ安定度を高くするには、引込みの過渡状態では測定周期をある程度短くし、引込みがされた状態になったら測定周期が長くなるように適応制御を行う。すなわち、両側の位相のデータ一致確率が1の値に比べて小さい場合は最適位相と離れており、最適位相に引込みを行う過渡状態であるとみなす。一方、両側の一致確率の値が略1に近い値の場合は、最適位相に略近い状態で引込み安定状態とみなす。このように状態によって、測定回数や位相のシフト量を変える。すなわち、過渡状態では測定回数は小さく、シフト量は大きくする。一方、安定状態だは、その逆に測定回数を大きく、シフト量は小さくするのである。
【0077】
[第4実施例]
次に、本発明の第2のハードウェア構成を図5にブロック図で示し、第4の実施例について説明する。
【0078】
このリタイミング装置は、第1データリタイミング回路102でリタイミングされた第1再生データ5のみがリタイミング装置の出力データとされるのではなく、第2データリタイミング回路105でリタイミングされた第2再生データ6もスイッチ回路111で切り替えられ、リタイミング装置の出力データとされる。すなわち、本実施例では、第1データリタイミング回路102および第2データリタイミング回路105は、それぞれ位相最適点の検出と、検出された最適位相での入力データ信号1のリタイミング処理との役割を交互に担う。一方が最適点の検出処理を行っている時は、他方は入力データ信号1をリタイミングして再生データを出力する処理を行うのである。
【0079】
本リタイミング装置は、位相検出回路107,フィルタ108および電圧制御発信器(VCO)回路109から成る位相同期ループ(PLL)回路101と、第1データリタイミング回路102と、第1位相シフタ103と、第2位相シフタ104と、第2データリタイミング回路105と、判定制御回路110と、スイッチ回路111とから構成される。図1における参照番号と参照番号が付された各ブロックは、同じ機能を有し同様の動作をする。
【0080】
ただし、判定制御回路110は、判定制御回路106の機能の他に、第1データリタイミング回路102および第2データリタイミング回路105の何れがリタイミング処理を行い、他方が最適位相点検出の処理を行うかの制御および判定、並びに何れの再生データを出力するかの制御の処理をも行う機能を有する。また、スイッチ回路111は、判定制御回路110による制御の下、第1再生データ5と第2再生データ6を切り替えて、何れかを外部へ出力する。
【0081】
先ず、第1データリタイミング回路102がデータリタイミング処理を行う場合、第1データリタイミング回路102は第1位相シフタ103から供給される一定位相の第1クロック3で入力データ信号1のリタイミングを行い、得られた第1再生データ5をスイッチ回路111に供給する。スイッチ回路111は、判定制御回路110からの選択信号9により第1再生データ5を選択して外部へ出力する。
【0082】
このとき、第2データリタイミング回路105では、最適位相点の検出処理が行われる。判定制御回路110からの第2位相制御信号8で第2位相シフタ104から出力される第2クロック4の位相が順次にシフトされる。第2データリタイミング回路105は、順次に位相が遷移する第2クロック4で入力データ信号1のリタイミングを行って第2再生データ6を出力し判定制御回路110に供給する。判定制御回路110は、各位相における第2再生データ6の値と第1再生データ5の値との一致の回数を予め定めた期間だけカウントする。
【0083】
カウントが終わると、カウント値が最大の位相を求め、このカウント最大となるクロック位相が、第2データリタイミング回路105に対する第2クロック4の最適位相と判定し、第2シフタ104へその位相を設定するための第2位相制御信号8を出力する。
【0084】
第1データリタイミング回路105に対する第2クロック4が最適位相に設定されたので、今度は第2データリタイミング回路105がデータリタイミング処理を行い、第1データリタイミング回路102が最適位相点の検出処理を行うこととなる。
【0085】
第2データリタイミング回路105は、先に求めた最適位相の第2クロックで入力データ信号1のリタイミングを行い、得られた第2再生データ6をスイッチ回路111に供給し、スイッチ回路111は判定制御回路110からの選択信号9により第2再生データ6選択して外部へ出力する。
【0086】
このとき、第1データリタイミング回路102では、最適位相点の検出処理が行われる。判定制御回路110からの第1位相制御信号7で第1位相シフタ102から出力される第1クロック3の位相が順次にシフトされる。第1データリタイミング回路102は、順次に位相が遷移する第1クロック3で入力データ信号1のリタイミングを行って第1再生データ5を出力し判定制御回路110に供給する。判定制御回路110は、各位相における第1再生データ5の値と第2再生データ6の値との一致の回数を予め定めた期間だけカウントする。
【0087】
カウントが終わると、カウント値が最大の位相を求め、このカウント最大となるクロック位相が、第1データリタイミング回路102に対する第1クロック3の最適位相と判定し、第1シフタ102へその位相を設定するための第1位相制御信号7を出力する。
【0088】
以下、順次に上述の処理が繰り返されて、いつでも最適位相点でリタイミングが行われるように位相の調整が自動的に行われる。
【0089】
この構成では、第1データリタイミング回路102と第2データリタイミング回路105は、各々それ自身の最適位相点を測定することができるので、両者の回路特性が少しくらい異なっても、何ら問題なく各々のデータリタイミング回路102,105について最適位相点を動的に測定判定して選択できることになる。
【0090】
[その他の実施例]
以上の各実施例では、クロックの位相に着目したが、クロックの位相だけでなく、データリタイミング回路のスライスレベルの閾値や入力データ信号の利得等も、判定制御回路からの制御信号によって、閾値や利得を変えてリタイミングし、第1再生データ5と第2再生データ6の一致確率を測定し、各々一致確率が最高となる場合の値を最適閾値や最適利得として自動判定して、リタイミングの最適化を行うようにした実施例も考えられる。
【0091】
また、位相をずらして測定する点の数は多くすればより細かい位相制御が可能となりよりよい最適点を選ぶことが可能となる。しかし、あまり細かくしても位相をずらして一致する確率に差が生じなければ意味が無く、有意な差が分かる程度の粗くで十分であり、許容できる範囲まで粗くできる。
【0092】
逐次検索の場合、3つの位相点の間隔と、1回の判定結果でろ最善位相の方向にずらすシフト位相の大きさは、クロック周期とアイパターンの形等から適宜決めることができる。位相点の間隔に比べて、シフト位相の大きさは、小さくした方が、滑らかな逐次比較が行える。
【0093】
また、逐次検索の方法において、アイパターンが滑らかでなく、逐次検査の動作が特異点にトラップされて、中央の位相の一致確率が略1にならない時は、中央の位相と180度異なる位相を初期位相に設定して、再び逐次の探索を行うようにすれば、最適位相点に到達する確度を高くできる。
【0094】
【発明の効果】
以上に説明したように、本発明によれば、環境条件等の変化で入力データ信号のアイパターンが変化したときでも、データリタイミング回路での打ち抜き位相を自動的に最適化できる。
【0095】
また、本発明は、実際のリタイミング出力結果をフィードバック制御して最適位相点を決めるため、左右対称でないアイパターン等でも最適位相点でリタイミングが行われるように位相の調整が自動的に行われ、特に初期位相点を最適位相に調整しておく必要もない。
【0096】
更に、2つのリタイミング回路を設けているため、測定用の信号を通さなくても、入力データ信号から自動的に最適な位相点に調整することができる。
【図面の簡単な説明】
【図1】本発明のリタイミング回路の第1ハードウェア構成を示すブロック図
【図2】本発明のリタイミング回路における判定制御回路の構成例を示すブロック図
【図3】本発明の最適位相の判定方法を説明するための図
【図4】クロック位相とアイパターンの関係(A)および第2クロックの位相に対する一致確率の関係(B,C)を示す図
【図5】本発明のリタイミング回路の第2ハードウェア構成を示すブロック図
【符号の説明】
101 PLL回路
102 第1データリタイミング回路
103 第1位相シフタ
104 第2位相シフタ
105 第2データリタイミング回路
106 判定制御回路
107 位相検出回路
108 フィルタ
109 VCO回路
110 判定制御回路
111 スイッチ回路
201 測定タイミング制御回路
202 データ一致比較回路
203 カウント回路
204 判定回路
205 位相制御回路

Claims (8)

  1. 入力データ信号に位相同期した再生クロックを発生するPLL回路と、
    前記再生クロックの位相をずらした第1クロックを出力する第1位相シフタと、
    前記再生クロックの少なくとも1周期内複数位相の第2クロックを出力する第2位相シフタと、
    前記第1クロックで前記入力データ信号をリタイミングして第1再生データを外部へ出力する第1データリタイミング回路と、
    前記第2クロックで前記入力データ信号をリタイミングして第2再生データを出力する第2データリタイミング回路と、
    前記複数位相設定のための第2位相制御信号を前記第2位相シフタに出力し、また前記第1再生データの値と上記複数位相における第2再生データの値とが一致する頻度を測定し、測定した頻度から判定を行って前記第1クロックの位相を最適な位相にシフトするための第1位相制御信号を前記第1位相シフタに出力する判定制御回路とから構成されることを特徴とするリタイミング回路。
  2. 前記判定制御回路は、前記測定の結果により、前記一致の頻度が一番高い位相を最善位相と判定し、前記第1クロックの位相が前記最善位相に近づくように前記第1位相制御信号を出力し、これらの処理を逐次に行って最終的には前記第1クロックの位相が最適位相に到達するように制御することを特徴とする請求項1に記載のリタイミング回路。
  3. 前記判定制御回路は、前記一致頻度の測定結果から、一致頻度のピーク値と左右対称性およびピーク値近傍の値の平坦性を基に前記最善位相を判定し、最善位相に近づくように前記位相制御信号を出力し、これらの処理を逐次に行って最終的には最適位相に到達するように制御することを特徴とする請求項1または請求項2に記載のリタイミング回路。
  4. 前記判定制御回路は、前記一致確率のピーク値が略1になる前記第2クロックの位相が前記第1クロックの位相と一致する位相と判定して、前記第1クロックの位相を該位相へずらせす制御を行うことにより最終的な最適位相を求めることを特徴とする請求項1ないし請求項3の何れかに記載のデータリタイミング回路。
  5. 前記第1データリタイミン回路および前記第2データリタイミン回路は前記各再生データを得るための2値判定を行うレベルの閾値を複数備え、複数の閾値に対する前記第2再生データを求めて、前記第1再生データと該第2再生データとの一致確率を各閾値について求めることにより最適な閾値を判選択し、これに基づいて前記入力データ信号をリタイミングして外部へ出力することを特徴とする請求項1ないし請求項4の何れかに記載のリタイミング回路。
  6. 前記第1データリタイミン回路および前記第2データリタイミン回路は、前記入力データ信号を最適な利得に増幅するために利得を複数種類備え、複数の利得に対する前記第2再生データを求めて、前記第1再生データと該第2再生データとの一致確率を各利得について求めることにより最適な利得を選択し、これに基づいて前記入力データ信号をリタイミングして外部へ出力することを特徴とする請求項1ないし請求項4の何れかに記載のリタイミング回路。
  7. 前記判定制御回路は、前記第1シフタおよび前記第1データリタイミング回路の機能と前記第2シフタおよび前記第2データリタイミング回路の機能とを排他的に交互に切り替え、かつ前記判定制御回路の制御により前記第1再生データと前記第2再生データの何れかを前記切り替えに対応して選択して外部へ出力することを特徴とする請求項1ないし請求項6の何れかに記載のリタイミング回路。
  8. 前記判定制御回路は、前記一致頻度の測定結果から、一致頻度のピーク値と左右対称性およびピーク値近傍の値の平坦性を基に前記最善位相を判定し、最善位相に近づくように前記位相制御信号を出力し、これらの処理を逐次に行って最終的には最適位相に到達するように制御することを、前記第1データリタイミング回路と前記第2データリタイミング回路それぞれに対して独立して行うことを特徴とする請求項7に記載のリタイミング回路。
JP2002117711A 2002-04-19 2002-04-19 リタイミング回路 Expired - Fee Related JP3921411B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002117711A JP3921411B2 (ja) 2002-04-19 2002-04-19 リタイミング回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002117711A JP3921411B2 (ja) 2002-04-19 2002-04-19 リタイミング回路

Publications (2)

Publication Number Publication Date
JP2003318872A JP2003318872A (ja) 2003-11-07
JP3921411B2 true JP3921411B2 (ja) 2007-05-30

Family

ID=29534826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002117711A Expired - Fee Related JP3921411B2 (ja) 2002-04-19 2002-04-19 リタイミング回路

Country Status (1)

Country Link
JP (1) JP3921411B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4706885B2 (ja) * 2007-03-30 2011-06-22 日本電気株式会社 クロック・データ再生回路およびその制御方法
KR100980499B1 (ko) * 2008-03-03 2010-09-07 (주)에프씨아이 프로그램 분주기의 지터 제거용 리타이밍부가 구비된위상고정루프
JP2009302852A (ja) * 2008-06-12 2009-12-24 Sumitomo Electric Ind Ltd 光受信回路、光受信回路のタイミング設定方法および光受信装置
JP2015216439A (ja) 2014-05-08 2015-12-03 富士通株式会社 受信回路
JP6536347B2 (ja) * 2015-10-20 2019-07-03 富士通株式会社 周波数検出方法

Also Published As

Publication number Publication date
JP2003318872A (ja) 2003-11-07

Similar Documents

Publication Publication Date Title
US7844021B2 (en) Method and apparatus for clock skew calibration in a clock and data recovery system using multiphase sampling
US7190201B2 (en) Method and apparatus for initializing a delay locked loop
US7474720B2 (en) Clock and data recovery method and digital circuit for the same
US7623609B2 (en) Dynamic phase alignment methods and apparatus
JP6032082B2 (ja) 受信回路及び半導体集積回路
US20070025483A1 (en) Methods and apparatus for clock synchronization and data recovery in a receiver
US10347283B2 (en) Clock data recovery in multilane data receiver
JP2010509817A (ja) 装置、位相ロック・ループ・システム及び位相ロック・ループを動作させるための方法
KR20090074412A (ko) 분주회로 및 이를 이용한 위상 동기 루프
US8023605B2 (en) Oversampling circuit and oversampling method
JP4679273B2 (ja) クロックデータリカバリ回路
CN101764608B (zh) 逐位逼近延迟锁相环电路及调整输入时钟信号的方法
JP3502618B2 (ja) 位相同期ループ回路、及びデータ再生装置
JPH04264838A (ja) リタイミング信号の選択方法、リタイミング信号の抽出方法及びリタイミング信号生成装置
JP2003018140A (ja) 伝送装置
JPWO2008126429A1 (ja) クロック・データ再生回路およびその制御方法
JP5166924B2 (ja) 信号再生回路
JP3921411B2 (ja) リタイミング回路
CN107787557A (zh) 用于时钟和数据恢复的多模式相位频率检测器
US7406142B2 (en) Data recovery circuits using oversampling for best data sample selection
US7375591B2 (en) Robust false locking prevention in referenceless frequency acquisition
US20190165793A1 (en) Signal recovery circuit, optical module, and signal recovery method
US7183820B2 (en) Phase synchronous circuit
US7095259B2 (en) Reducing metastable-induced errors from a frequency detector that is used in a phase-locked loop
US7312667B2 (en) Statically controlled clock source generator for VCDL clock phase trimming

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070219

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees