JP3917170B2 - 分散補償素子 - Google Patents

分散補償素子 Download PDF

Info

Publication number
JP3917170B2
JP3917170B2 JP2006542262A JP2006542262A JP3917170B2 JP 3917170 B2 JP3917170 B2 JP 3917170B2 JP 2006542262 A JP2006542262 A JP 2006542262A JP 2006542262 A JP2006542262 A JP 2006542262A JP 3917170 B2 JP3917170 B2 JP 3917170B2
Authority
JP
Japan
Prior art keywords
photonic crystal
region
dispersion
dispersion compensation
compensation element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006542262A
Other languages
English (en)
Other versions
JPWO2006046347A1 (ja
Inventor
憲介 小川
永聡 陳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Application granted granted Critical
Publication of JP3917170B2 publication Critical patent/JP3917170B2/ja
Publication of JPWO2006046347A1 publication Critical patent/JPWO2006046347A1/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29392Controlling dispersion
    • G02B6/29394Compensating wavelength dispersion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1225Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)

Description

本発明は、フォトニック結晶を用いた分散補償素子の技術分野に関し、特にフォトニック結晶部と光を導くコア部とを個別に備えた低損失の分散補償素子に関する。
近年、長距離のデータ通信は光ファイバーを介して行なわれており、データの伝送速度も従来より飛躍的に高まっている。近い将来、このような光ファイバを介したデータ通信において、超短光パルスを用い、現時点での伝送速度より遥かに高速な160Gbit/sもしくはそれ以上の伝送速度で通信を行なうことが検討されている。
ところで、データ通信を行なう場合、常にクロストークや伝送エラーという問題がついて回るが、データの伝送速度が高まると、自ずと個々の光パルスの幅と、互いに前後する光パルスの間隔が狭まってくるため、この問題は非常に重要な問題となる。
光が物質中を進行する速度は、物質の屈折率で決まり、屈折率が大きいほど光速度は遅くなる。ガラス、半導体、光学結晶等の物質では、屈折率は光の周波数(空気中の波長)によって変化するため、光速度は波長に依存することになる。この、屈折率の波長依存性により、光パルスが物質中を進行する間に光パルスの波形を歪ませ、パルスの時間幅が広がる要因となることが知られている。このように、光の波長に応じて光速度が異なる、という特性を、以下、波長分散、あるいは単に分散と称する。
上記のようにして、光ファイバ中を進行する間に、光パルスの波形が歪んだり、光パルスの時間幅が広がるわけであるが、従来の伝送速度では光パルスの時間幅も大きいため、特に大きな問題とはならない。しかし、データの伝送速度が高まると、前後の光パルスどうしが干渉するなどして、クロストークや伝送エラーが生じてしまう。このため、現状の技術のままで単に伝送速度を高めようとしたのでは、より高速度でのデータ通信は実現できないのである。
このような問題に対し、例えばフォトニック結晶を用い、波長分散を補償するという試みが既に行われている。
フォトニック結晶は、屈折率が異なる二つの物質を周期的に配列した構造を有しており、この配列の一部を欠陥させて欠陥導波路(連続欠落部)を形成することで、特定の周波数の光のみが通過し、この光に対して特定の波長分散を与える導波モードが発生する。この導波モードを利用することで、光ファイバ伝送路の波長分散を補償するのである(例えば、非特許文献1参照。)。
また、フォトニック結晶中に欠損導波路を設けて、当該欠損導波路に沿って光を伝播させることにより、光パルスの位相の波長(もしくは周波数、以下、単に波長と称する)の複数次の項に対して、それぞれ所定の波長分散変動を光に付与することを可能にする分散補償素子についての技術が開示されている(例えば、特許文献1参照。)。
細見和彦、勝山俊夫、「フォトニック結晶結合欠陥導波路の光伝搬特性(2)」、"第63回応用物理学会学術講演会講演予稿集第3分冊"、社団法人応用物理学会、平成14年(2002年)9月24日、p.917 国際公開第2004/063797号パンフレット
しかしながら、上述した従来技術による分散補償素子の構造によれば、フォトニック結晶中に光パルスを伝播する導波路(欠陥導波路)を設けたため、導波路の大きさはフォトニック結晶層の厚さ等に依存してしまい、結果として断面積の小さい導波路となってしまう。
このような断面積の小さい導波路に光パルスを入射させようとすると、非常に大きなロス(損失)を生じさせてしまう。このようにロスの大きい分散補償素子は、広いスペクトル帯域を利用する超高速大容量光通信に適用することは非常に困難である。
そこで、本発明は上記課題に鑑みてなされたものであり、光パルスの伝送速度の高速化を実現することのできる低損失の分散補償素子を提供することを目的とする。
上記課題を解決するため、請求項1に記載の発明は、外部から入射される光パルスの波長分散を補償する分散補償素子において、入射端から出射端まで前記光パルスを導くためのコア部と、第1のクラッド層及び第2のクラッド層から成るクラッド部と、から成る導波路と、前記導波路によって導かれる前記光パルスに対して、前記波長分散の変動量の絶対値と、正負いずれかの符号と、を含む所定の分散特性を有する波長分散変動を付与するフォトニック結晶部と、を有し、前記フォトニック結晶部は、前記第1のクラッド層上に積層して形成され、前記コア部は、前記フォトニック結晶部上に積層して形成され、前記第2のクラッド層は、前記フォトニック結晶部上に部分的に積層し、かつ前記コア部の上部及び前記コア部の側部を覆うように形成されることを特徴とする。
これによれば、波長分散を付与するフォトニック結晶部と光を導く導波路とが個別に設けられるため、フォトニック結晶部の設計と導波路の設計とを個別に行なうことが可能になる。これは、コア部とクラッド部の材質を変更して、屈折率の差を設定するなど、導波路の断面積の自由な設計を可能とすることを意味している。したがって、本発明の分散補償素子と光ファイバーとを接続して、当該光ファイバーから光パルスを当該分散補償素子に入射させる際に、損失を最小限に抑えて光パルスを素子内部へ十分に取り込み、分散補償を確実に行なうことができる。また、コア部をフォトニック結晶部上に積層して形成したため、コア部によって導かれる光はフォトニック結晶部による波長分散変動をより確実に受けることが可能になる。
上記課題を解決するため、請求項2に記載の発明は、請求項1に記載の分散補償素子において、前記フォトニック結晶部は、誘電率の異なる第1の物質及び第2の物質とからなり、前記第1の物質が所定のサイズと所定の配置間隔で前記第2の物質中において面状に配されることを特徴とする。
これによれば、誘電率の異なる第1の物質を所定サイズと所定配置間隔で第2の物質中に面状に配列することで形成することができるため、特に複雑な構造となることもなく、比較的低コストで分散補償素子を実現することが可能である。
上記課題を解決するため、請求項3に記載の発明は、請求項2に記載の分散補償素子において、前記フォトニック結晶部は、前記導波路の光パルスの進行方向に沿って配される複数の領域から成り、各前記領域における前記第1の物質の前記サイズ及び前記配置間隔は、前記各領域における前記分散特性が異なるよう定められることを特徴とする。
これによれば、フォトニック結晶部に複数の領域で構成し、それぞれの領域毎に第2の物質中に配される第1の物質のサイズと間隔を異ならせることで、正負の分散補償や、複数次の分散補償を行なうことができる。
上記課題を解決するため、請求項4に記載の発明は、請求項1乃至請求項3のいずれか一項に記載の分散補償素子において、前記導波路の屈折率を変化させて前記波長分散の前記絶対値及び前記符号を制御すべく、前記フォトニック結晶部にエネルギーを付与するエネルギー付与部を有することを特徴とする。
これによれば、導波路の屈折率を変化させるため、電気、熱、圧力等のエネルギーを外部から独立して付与するためのエネルギー付与部を備えることで、光パルスに与える波長分散変動を自在に制御することができる。
上記課題を解決するため、請求項5に記載の発明は、請求項4に記載の分散補償素子において、前記エネルギー付与部は、前記フォトニック結晶部の前記各領域毎にエネルギーを付与すること特徴とする。
これによれば、フォトニック結晶部の各領域毎に、個別にエネルギーを付与することが可能になるので、それぞれの領域がターゲットとする正負の分散補償や、複数次の分散補償を独立して制御することが可能になる。
上記課題を解決するため、請求項6に記載の発明は、請求項4又は請求項5に記載の分散補償素子において、前記第2の物質は、定常状態で所定のキャリア密度を有する半導体から成り、前記エネルギー付与部は、前記半導体のキャリア密度を変化させるべく前記フォトニック結晶部にエネルギーを付与することを特徴とする。
これによれば、フォトニック結晶部の第2の物質を構成する半導体のキャリア密度を変化させることにより、導波路によって導かれる光パルスに波長分散変動を付与することができる。
上記課題を解決するため、請求項7に記載の発明は、請求項6に記載の分散補償素子において、前記エネルギー付与部は、前記半導体のキャリア密度を変化させるべく前記フォトニック結晶部に電圧を印加する電圧印加部を有することを特徴とする。
これによれば、フォトニック結晶部に電圧を印加して、フォトニック結晶部の第2の物質を構成する半導体のキャリア密度を変動させることによって、導波路によって導かれる光パルスに対して波長分散変動を付与することができる。
上記課題を解決するため、請求項8に記載の発明は、請求項7に記載の分散補償素子において、前記エネルギー付与部は、前記第2の物質の電位を所定の値に保持するための電位保持部を有することを特徴とする。
これによれば、フォトニック結晶部の第2の物質の電位を所定の値に保持することが可能になり、光パルスに対してより安定した分散補償を行なうことが可能になる。
上記課題を解決するため、請求項9に記載の発明は、請求項1乃至請求項8のいずれか一項に記載の分散補償素子において、前記フォトニック結晶部の光の進行方向に沿った両側に光の伝搬を抑制するバリア領域を有することを特徴とする。
これによれば、光の進行方向に対して水平方向への光の拡散を防いで、精度よく確実に光を伝播させることができる。
本発明によれば、波長分散を付与するフォトニック結晶部と光を導く導波路とが個別に設けられるため、導波路の断面積を自由に設計することができ、光パルスの減衰を最小限に抑えて素子内部へ十分に取り込むことができ、分散補償を確実に行なうことを実現する低損失の分散補償素子を提供することができる。
本実施形態にかかる分散補償素子の断面図である。 フォトニック結晶層4におけるフォトニック結晶領域R1の説明図である。 フォトニック結晶層4におけるフォトニック結晶領域R1を伝播する光の説明図である。 フォトニック結晶層4の各領域における導波モードの説明図である。 分散補償素子1の形成手順の説明図である。 分散補償素子1の形成手順の説明図である。 分散補償素子1の形成手順の説明図である。 バリア層を設けたフォトニック結晶層4を有する分散補償素子の概略説明図である。 バリア層を設けたフォトニック結晶層4の構成説明図である。 他の変形構成例によるバリア層を設けたフォトニック結晶層4の説明図である。 光の周波数に対する位相の変化を示すグラフである。 孔41の直径が242nmの光の周波数に対する位相の変化を示すグラフである。 多モード導波路を用いた波長分散補正素子である。 方向性結合を用いた波長分散補正デバイスを示す説明図である。
符号の説明
1 分散補償素子
2 基板
3 クラッド層
4 フォトニック結晶層
41 孔
42 端子部
5、5A、5B コア層
6 クラッド層
7 内部電極
7´ 電極
8a、8b 電極
9 基準電極
R1 フォトニック結晶領域
R2 拡張領域
a、d 間隔
r 半径
以下、本発明の好適な実施の形態を添付図面に基づいて説明する。
[分散補償素子の構成及び機能]
先ず、図1乃至図3を参照して、本実施形態にかかる分散補償素子の構成及び機能を説明する。
図1は、本実施形態にかかる分散補償素子の断面図である。
図1に示すように、本実施形態における分散補償素子1は、基板2、フォトニック結晶層(フォトニック結晶部)4、光パルスを導くためのコア層(コア部)5、当該コア層5と共に導波路として機能するクラッド層(第1のクラッド層)3及びクラッド層(第2のクラッド層)6、そしてこれら各部材に対して所定のエネルギーを付与するエネルギー付与部として機能する内部電極7、電極7´、電極8a、8b及び基準電極9を備えて構成される。
基板2は、例えばシリコン(Si)によって形成され、導電性を持たせるため不純物が添加されている。
クラッド層3は、コア層5及びクラッド層6と共に導波路として機能し、例えばシリコン酸化膜(SiO)又は窒化シリコン膜によって形成され、基板2上に積層される。
フォトニック結晶層4は、分散補償素子1内を伝播する光に対して、波長分散の変動量の絶対値と、正負いずれかの符号と、を含む分散特性を有する波長分散変動を付与するためのものである。このフォトニック結晶層4は、例えば第2の物質としてのシリコン(Si)を母材として形成され、クラッド層3上に積層される。
より具体的には、当該フォトニック結晶層4は、シリコン(Si)によって形成された母材に面状に複数の孔41を形成し、当該孔41に母材の誘電率と異なる誘電率を有する第1の物質としてのシリコン酸化膜(SiO)を充填して形成されたフォトニック結晶領域R1と、当該フォトニック結晶領域R1の両側に孔41が形成されていない拡張領域R2と、により構成されている。
なお、上記面状とは、フォトニック結晶層4内に二次元方向に配列されている平面状等の形状を意味し、光パルスに対して波長分散変動を付与する本発明におけるフォトニック結晶としての効果を発揮させる場合には、フォトニック結晶層4が製造工程において曲面や平面と曲面とが組み合わされた形状となった場合に、当該形状に沿った配列も含むものとする。しかし、当該分散補償素子1へ入射する光の直線性を考慮すると、フォトニック結晶層4は面状の一例として平面状に形成されることが望ましい。
すなわち、フォトニック結晶層4のフォトニック結晶領域R1にかかる母材(シリコン(Si))部分が本発明における第2の物質として機能し、孔41(シリコン酸化膜(SiO))部分が本発明における第1の物質として機能することになる。尚、フォトニック結晶層4の詳細な説明及び当該フォトニック結晶層4によって行なわれる波長分散変動については後に詳述する。
コア層5は、クラッド層3及びクラッド層6と共に導波路として機能し、光パルスを分散補償素子1の入射端から出射端まで導くためのものであり、例えば窒化ケイ素(Si)によって形成され、後述するフォトニック結晶層4のフォトニック結晶領域R1上に積層される。
そして、クラッド層6は、クラッド層3及びコア層5と共に導波路として機能し、クラッド層3と同様にシリコン酸化膜(SiO)又は窒化シリコン膜によって形成され、コア層5の上面及び側面を覆うようにコア層5及びフォトニック結晶層4上に積層されて形成される。
内部電極7は、例えばアルミニウム(Al)等によって形成され、コア層5の上部に配されるようクラッド層6上に積層される。そして、内部電極7は、エネルギー付与部及び電圧印加部として機能し、フォトニック結晶層4に所定のバイアス電圧を印加するためのものである。なお、当該内部電極7は、後述するフォトニック結晶層4のそれぞれの領域(I)乃至(IV)ごとに設けられ、それぞれの領域毎にバイアス電圧を印加することが可能に構成されている。これによりフォトニック結晶層4のキャリア密度が変化し、屈折率が変化することにより、光パルスに対して波長分散変動を付与することが可能になる。すなわち、それぞれの領域がターゲットとする正負の分散補償や、複数次の分散補償を独立して制御することができる。なお、内部電極7はそれぞれの領域毎に制御可能に設けることができればよい。従って各領域の数だけ備えてもよく、或いは個々に独立した複数の電極から成る1つの電極ユニットとして設けてもよい。
電極7´、電極8a及び8bは、例えばチタン/ニッケル合金(TiNi)及びアルミ/カッパー合金(AlCu)によって形成され、クラッド層6及びフォトニック結晶層4との接触面を比較的硬い合金であるチタン/ニッケル合金(TiNi)で形成し、図示しないリード線等との接触面を比較的柔らかいアルミ/カッパー合金(AlCu)で形成する。これにより、クラッド層6やフォトニック結晶層4とはチタン/ニッケル合金(TiNi)を介して確実に接着でき、さらに、リード線等とはアルミ/カッパー合金(AlCu)を介して確実に接着することが可能になる。従って、当該リード線等を介して図示しない外部電極と電気的に接続され、当該外部電極を介して電極7´、電極8a及び8bに対する電圧制御を行なうことが可能になる。
また、電極8a及び8bはエネルギー付与部として機能し、後述するフォトニック結晶層4の拡張領域R2上に備えられる。これにより、フォトニック結晶層4の母材であるシリコン(Si)部分(フォトニック結晶層4の孔41以外の部分)に端子部42を介して電気的に接続し、当該シリコン(Si)部分の電位を保持する電位保持部として機能するように構成されている。
また電極8aをFET(Field Effect Transistor)におけるドレイン、電極8bをソースとみたてて当該電極8bをGND接続し、フォトニック結晶層4の母材であるシリコン(Si)部分にバイアスを印加するよう構成することも可能である。このバイアスは、当該シリコン(Si)部分がn型の場合には正、p型の場合には負のバイアスを印加することになる。
これによれば、電極8aと電極8bの間に流れる電流量を測定して、フォトニック結晶層4のシリコン(Si)部分のキャリア密度変化を外部モニタリングすることにより、分散特性を把握することが可能になる。また、電極8aと電極8bの間にバイアスを印加することにより、フォトニック結晶層4のシリコン(Si)部分に印加する電圧を僅かな単位で変更することが可能であり、これにより、当該シリコン(Si)部分のキャリア密度のチューニングを高分解能化することが可能になる。
また、このフォトニック結晶層4のシリコン(Si)部分と、シリコン酸化膜(SiO)によって形成された孔41との間の界面準位にてキャリアがトラップされてしまい、電極7′に電圧を印加しても充分にフォトニック結晶層4のシリコン(Si)部分のキャリア密度が変化しない場合がある。この場合であっても、電極8aと電極8bの間に電圧をかけ、界面準位にトラップされたキャリアを放出することによって、界面準位による影響を除去し、フォトニック結晶層4のシリコン(Si)部分のキャリア密度の変化を円滑に促進することが可能となる。
基準電極9は、例えばアルミニウム(Al)によって形成され、フォトニック結晶層4に所定の基準電圧を与えるためのものである。
なお、分散補償素子1の形成手順については後に詳述する。
[フォトニック結晶層]
フォトニック結晶層4は、上述したようにシリコン(Si)によって形成された母材に二次元面方向に複数の孔41を形成し、当該孔41に母材の誘電率と異なる誘電率を有する第1の物質としてのシリコン酸化膜(SiO)を充填して形成されたフォトニック結晶領域R1と、当該フォトニック結晶領域R1の両側に孔41が形成されていない拡張領域R2と、により構成されている。
ここで、図2Aを用いてフォトニック結晶層4のフォトニック結晶領域R1について詳細に説明する。
図2Aはフォトニック結晶層4におけるフォトニック結晶領域R1の説明図である。
フォトニック結晶層4のフォトニック結晶領域R1に形成された孔41は、所定の半径(サイズ)rを有し、正三角形を単位胞とする三角格子状に配列され、各単位胞における孔41同士は所定の間隔(正三角形の一辺の長さ)aを隔てて配列されている。そして、フォトニック結晶領域R1は、当該孔41の半径r及び間隔aを夫々異ならせた領域(I)、(II)、(III)及び(IV)によって構成される。これにより、分散補償素子1内を伝播する光パルスの導波モードの複数次の光に対する分散補償を実現するようになっている。なお、それぞれの領域において光パルスに対して付与される波長分散変動については後に詳述する。
同図に示す如く、互いに隣接する領域間の境界部で、屈折率の違いから生じる反射による光減衰が最小となるように各領域を配置する。すなわち、互いに隣接する領域の屈折率差が大きいと、互いに隣接する領域間の境界部で光が反射しやすくなり、この反射により光の損失が大きくなるだけでなく、進行してくる波に干渉を与えて、分散補償値に影響を及ぼしてしまう。従って、隣り合う領域の屈折率の差ができるだけ小さくなるように配列することが望ましい。
本実施形態においては、同図に示す如く、光の進行方向に沿って順にそれぞれの領域を配置する際に、各領域における孔41の間隔aの小さいほうから順に配列すると共に、各領域の境界で隣接する孔41間の間隔は、それぞれの領域における孔41の間隔aの大きいほうの値より短くなるよう構成する。
つまり、領域(I)における孔41の間隔aを「a1」とし、領域(II)における孔41の間隔aを「a1」より大きい値である「a2」とし、領域(III)における孔41の間隔aを「a2」より大きい値である「a3」とし、領域(IV)における孔41の間隔aを「a3」より更に大きい値である「a4」とした場合には、孔41の間隔aの小さい領域から順に領域(I)、領域(II)、領域(III)、そして領域(IV)と配列すると共に、領域(I)と領域(II)との境界で隣接する孔41間の間隔d1は、「a2」より短くなるように、また、領域(II)と領域(III)との境界で隣接する孔41間の間隔d2は、「a3」より短くなるように、また、領域(III)と領域(IV)との境界で隣接する孔41間の間隔d3は、「a4」より短くなるように、構成する(図2(A)参照)。
そして、分散補償素子1の一端側の入射端から、フォトニック結晶層4の上部に備えた上記コア層5に入射した光は、フォトニック結晶層4の各領域(I)、(II)、(III)及び(IV)にて、夫々の領域における孔41の半径rと間隔aに応じた波長分散変動を受けつつ、図2Bにおいて矢印で示す如く同図中を左から右へと伝播しながら、分散補償素子1の他端側の出射端から出射するようになっている。
すなわち、フォトニック結晶層4のフォトニック結晶領域R1の上部に備えたコア層5内を伝播する光は、当該コア層5の基板側(図1において下方)に備えたクラッド層3と、コア層5の上面及び側面を覆うように備えられたクラッド層6と、によって反射されながらコア層5内を伝播する。なお、実際にはコア層5内を伝播する光は、クラッド層3及びクラッド層6の境界面が完全な反射面とはならないため、コア層5内に完全に閉じ込められて伝播することはない。従って、クラッド層3、コア層5及びクラッド層6が本発明における導波路として形成されている。
そして、光がコア層5内を伝播するとき、フォトニック結晶層4の領域(I)の上を伝播する際には、この領域(I)の孔41の半径r1と間隔a1に応じた波長分散変動を受け、続いて領域(II)を伝播する間に、この領域(II)の孔41の半径r2と間隔a2に応じた波長分散を受け、同様にして領域(III)及び領域(IV)を伝播する間に、それぞれの領域(III)及び領域(IV)の孔41の半径r3と間隔a3、及び半径r4及びr4に応じた波長分散変動を受ける。
つまり、このコア層5から出射した光は、フォトニック結晶層4の全ての領域(I)乃至(IV)における波長分散変動を受けて出射することとなる。
[波長分散変動]
続いて、フォトニック結晶層4による波長分散変動について具体的に説明する。
なお、本発明における分散補償素子に用いるフォトニック結晶は、伝搬する光の周波数が、いわゆる下肢分枝のフォトニックバンド領域、すなわち、最低周波数のフォトニックギャップの下側にあるフォトニックバンド領域に対応するフォトニック結晶と、伝搬する光の周波数が、上肢分枝のフォトニックバンド領域、すなわち、上記フォトニックギャップの上側にあるフォトニックバンド領域に対応するフォトニック結晶とがあり、どちらの場合も適用可能であるが、本実施の形態では、導波モードの分枝が波数ゼロで最近接するフォトニック結晶を用いて説明する。
ところで、光が物質中を伝搬する際の様子を調べる際に、周波数−波数の関係が重要となる。この関係より、光が物質中を伝搬する際の速度が求まる。この速度は光パルスの重心が移動するスピードを指し、群速度と呼ばれる。群速度は、周波数−波数特性曲線の傾き(微分係数)として与えられる。真空や空気中では、周波数−波数特性は直線となり、群速度は周波数によらず一定であるが、ガラス・半導体・金属などの物質中では周波数−波数特性は直線にならず、群速度は周波数に応じて変化する。したがって、空気中から入射した光が物質を透過する場合、空気中から入射する光の周波数(波長と言い換えてよい)に応じて群速度は変化する。光パルスは単一の波長だけでなく、さまざまな波長成分を含んでいるので、群速度が波長に依存すると物質中を伝搬するにつれて光パルスの幅が拡がり、波形が歪んでしまう。群速度が波長(または周波数)に依存するとき、その依存性を波長分散と呼ぶ。また、群速度が波長(または周波数)に応じて変化する割合を群速度分散と呼ぶ。群速度分散は、周波数−波数特性曲線の二階微分に等しい。さらに、このようにして生じる波形の歪みは、正、負、ゼロの波長分散だけではなく、2次、3次、…と複数次の波長分散も含むものである。
そこで、上述したように4つの領域(I)乃至(IV)を有するよう構成し、これら4個の領域(I)、(II)、(III)及び(IV)において、それぞれ独立して設けられた内部電極7によってそれぞれの領域毎に独立してバイアス電圧を印加することにより、当該各領域におけるフォトニック結晶層4のキャリア密度を変化させて屈折率を変化させることによって、3次までの分散補償を行なう。より具体的には、2次の項の正負、3次の項の正負、計4通りの波長分散(波長分散変動)を与えるよう、それぞれの領域において孔41の半径rと間隔aが上述の如く設定されている。
図3は、各領域における導波モードの説明図であり、同図に示す如く、領域(I)が2次の項の正、領域(IV)が2次の項の負、領域(II)が3次の項の正、領域(III)が3次の項の負の波長分散を与える場合、
領域(I)では、k=cν
領域(IV)では、k=−c’ν
領域(II)では、k=c’’ν +cν
領域(III)では、k=−c’’’ν−c’ν
の式で表される曲線となる。ただし、各式は中心周波数付近の周波数―波数特性曲線をνのべき乗で近似して表している。
ここで、k:波数、c:正の数、ν:中心周波数を原点として表した周波数である。
そして、領域(I)乃至(IV)を合成した、数式1において、2次の項の係数:(c−c’+c’’−c’ ’ ’) が分散補償素子1内を伝播する光に対して2次の分散補償値を与え、3次の項の係数:(c−c’) が分散補償素子1内を伝播する光に対して3次の分散補償値を付与する。
k=(c−c’+c’’−c’ ’ ’+(c−c’
したがって、内部電極7によって各領域に加えるバイアス電圧を調整することによって、曲線を変動させることにより、コア層5によって導かれる光パルスに対して波長分散変動を付与する。
本実施形態においては、分散補償素子1内を伝播する光パルスの導波モードについて3次までの波長分散変動を付与して分散補償を行なうために、フォトニック結晶層4を4つの領域(I)乃至(IV)を有するよう構成したが、当該領域を増減させることにより、変動させる次数を容易に増減することができる。つまり、n次までの波長について分散変動を発生させて分散補償を行なうよう構成するためには、フォトニック結晶層4は、2(n−1)個の領域を有するよう構成すればよい。
また、本実施形態では、互いに隣接する領域間の境界部で、屈折率の違いから生じる反射による光減衰が最小となるよう各領域における孔41の間隔aの小さいほうから順に配列させたが、これに限らず、屈折率の違いから生じる反射による光減衰が最小となるよう、隣り合う領域の屈折率の差ができるだけ小さくなるよう配置させればよく、各領域における孔41の間隔aの大きいほうから順に配列させても、大小ばらばらであってもよい。
[分散補償素子の形成手順]
続いて、分散補償素子1の形成手順について図4乃至図6を用いて説明する。
まず、シリコンから成る基板2上に、シリコン酸化膜(SiO)から成るクラッド層3を積層する(図4(a)参照)。基板2は、例えば500μm程度の厚さを有し、クラッド層3は例えば300nmの厚さを有する。
次に、フォトニック結晶層4を形成すべく、母材となるシリコン(Si)をクラッド層3の上部に積層する(図4(b))。
そしてこのシリコン(Si)に孔41を所定のサイズ及び間隔で形成する(フォトニック結晶層4のフォトニック結晶領域R1に該当する)と共に、両側部に端子部42を設ける(フォトニック結晶層4の拡張領域R2に該当する)(図4(c))。
このようなフォトニック結晶層4は、シリコン(Si)の上にレジストを塗布し、フォトリソグラフィ等の手法によりそれぞれの領域(I)乃至(IV)毎に定められたサイズと間隔で、孔41のパターンをレジスト上に形成する。そして、ドライエッチングによりシリコン(Si)上に孔41のパターンを形成する。
また端子部42は、不純物をイオン注入等によってドープしたものである。これにより、電極8が電気的に接続される端子部42では電気抵抗が小さくなり、電界が集中しやすくなる。
このような不純物としては、半導体でも用いられている、p型元素のB(ホウ素)、Al(アルミニウム)、Ga(ガリウム)、In(インジウム)、Tl(タリウム)、n型元素のN(窒素)、P(リン)、As(砒素)、Sb(アンチモン)、Bi(ビスマス)等がある。これらのうち、p型元素では、ドープを容易に行なえることから、B(ホウ素)が特に好適である。
続いて、シリコン(Si)の孔41内を、シリコン(Si)(フォトニック結晶層4の母材)の誘電率と異なる誘電率を有するシリコン酸化膜(SiO)で充填すべく、シリコン酸化膜(SiO)を塗布し(図4(d))、不要部分を研磨(例えばCMP(Chemical Mechanical Polish)等)によって除去する(図4(e))。こうして、誘電率の異なるシリコン酸化膜(SiO)とシリコン層(Si)とからなり、シリコン酸化膜(SiO)がそれぞれの領域(I)乃至(IV)毎に定められたサイズと配置間隔でシリコン層(Si)中に配されるフォトニック結晶層4がクラッド層3上に積層して形成される。
次に、コア層5を形成すべく、フォトニック結晶層4の上部に窒化ケイ素(Si)の層を積層する(図4(f))。
そして、所定の幅及び高さで窒化ケイ素(Si)の層をパターニングする(図5(g))。所定の幅は例えば1μm、所定の高さは例えば400nm等であり、当該分散補償素子1に入射させて分散補償を行なおうとする対象の光パルスの入射ビーム径に応じ、最適な大きさに設定することができる。
続いて、クラッド層6を形成すべく、フォトニック結晶層4及びコア層5の上部にシリコン酸化膜(SiO)を積層し(図5(h))、不要部分をCMP研磨等によって除去した後に、内部電極7を形成すべくアルミニウム(Al)を蒸着する(図5(i))。
そして、蒸着したアルミニウム(Al)を、コア層5の上部に配するよう所定の大きさに成形する(図5(j))。
次に、フォトニック結晶層4上に積層したシリコン酸化膜(SiO)、及び成形したアルミニウムの上部に更にシリコン酸化膜(SiO)を塗布し、不要部分をCMP研磨等によって除去して表面に安定化処理(Passivation)を施す(図5(k))。以上の処理により、内部電極7がシリコン酸化膜(SiO)(クラッド層6)内部に配されるようになっている。
続いて、シリコン酸化膜(SiO)をパターニングする(図5(l))。
そして、電極7´、電極8a及び8bの材料であるチタン/ニッケル合金(TiNi)及びアルミ/カッパー合金(AlCu)を上部全面に配し(図6(m))、クラッド層6上でパターニングして電極7′、電極8a及び8bを形成する(図6(n))。
次に、基板2の下面にアルミニウム(Al)を蒸着して、基準電極9を形成する(図6(o))。この際、基板2に基準電極9が接続される面は、電気抵抗を小さくするため、不純物をドープし、例えば端子部42と同等のキャリア密度とするのが好ましい。
以上説明した如く形成された分散補償素子1は、波長分散を付与するフォトニック結晶層4とは別に光を導くための導波路とを個別に設けたので、フォトニック結晶層4の設計と導波路の設計とを個別に行なうことが可能になる。従って、光パルスの径が比較的大きい場合であっても、コア層5の大きさを調整して光パルスを素子内部へ容易に取り込むことができる。
また、コア層5をフォトニック結晶層4上に積層させるよう配置したため、コア層5によって導かれる光パルスはフォトニック結晶層4による波長分散変動を確実に受けることができる。
従って、光ファイバ伝送路から取り出した光パルスをモニタリングし、その波長分散情報に基づき、波長分散を制御する分散補償システム等に分散補償素子1を用いることにより、光ファイバ伝送路において、温度、気象等による条件変動が生じても、常に最適な分散補償を行なうことができる。
その結果、広いスペクトル帯域を利用する超高速大容量光通信に対応する波長分散補償を実現することができ、伝送速度のさらなる高速化を十分に実現することが可能となる。
なお、上述した実施の形態において、フォトニック結晶層4のそれぞれの領域毎に設けられた内部電極7を用いてバイアス電圧を印加することで、フォトニック結晶層4のキャリア密度を変化させて屈折率を変化させる構成としたが、これ以外の手段をエネルギー付与部として用いることも可能である。
例えば、各領域(I)乃至(IV)にヒータを設け、ヒータに電流を流してフォトニック結晶層4の温度を上昇させるのである。屈折率の温度依存性により、フォトニック結晶層4の屈折率を変化させることができる。
さらに、圧電素子により所定のストレスをフォトニック結晶層4の両面から印加することでひずみを加え、屈折率を変化させることもできる。
なお、上述した説明において、本実施形態における分散補償素子1は、通信用波長帯域である1.55μm帯の周波数を有する光パルスに対する分散補償を行なうものとし、各部材の大きさ等を例示した。
[フォトニック結晶層の変形構成例]
上述した実施形態におけるフォトニック結晶層4について、他の変形構成例を図を用いて以下に説明する。
(1)変形構成例1
フォトニック結晶層4の変形構成例を図7を用いて説明する。
上述した実施形態におけるフォトニック結晶層4は、シリコン(Si)によって形成された母材に対し面状に複数の孔41を形成し、当該孔41に母材の誘電率と異なる誘電率を有するシリコン酸化膜(SiO)を充填して形成されたフォトニック結晶領域R1と、当該フォトニック結晶領域R1の両側に孔41が形成されていない拡張領域R2と、により構成したが、更に、フォトニック結晶領域R1の両側部に、シリコン(Si)より屈折率が小さい材料で形成された光の伝搬を禁止し、或いは抑制するためのバリア領域を設けることによって、コア層5により伝播する光を拡散させることなく、フォトニック結晶領域R1の上だけを伝播させることが可能になる。
図7Aはバリア層を設けたフォトニック結晶層4を有する分散補償素子の概略説明図、図7Bはバリア層を設けたフォトニック結晶層4のより具体的な構成説明図である。
図7A及び図7Bに示す如く、フォトニック結晶領域R1の両側に光の進行方向に沿って、フォトニック結晶層4を構成するシリコン(Si)よりも屈折率の小さい材料で形成されたバリア領域を設けることによって、光の進行方向(同図において右方向)に対して水平方向(同図において上下方向)への光の拡散を防いで、フォトニック結晶領域R1の上、すなわちコア層5にそって確実に光を伝播させることができる。
また、図7Bに記載の如く、端子部42をバリア領域に設けることによって、上述したエネルギー付与部としての電極8a及び8bと電気的に接続し、電位保持部として機能させることができる。
なお、上述した例では、クラッド層3(及びクラッド層6)と同じシリコン酸化膜(SiO)又は窒化シリコン膜で形成したが、これに限らず、フォトニック結晶層4の母材であるシリコン(Si)より小さい屈折率を有する材料であれば良い。
(2)変形構成例2
フォトニック結晶層4の他の変形構成例を図8を用いて説明する。この例では、フォトニック結晶領域R1に形成した孔41と異なる態様で孔41を形成することによって上述したバリア領域を実現することができるようになっている。
図8は、他の変形構成例によるバリア層を設けたフォトニック結晶層4の説明図であって、フォトニック結晶層4のフォトニック結晶領域R1のある領域を示すものである。
図8を用いて、各領域における孔41の間隔(ピッチ)について説明する。なお、光伝搬領域に下肢分枝のフォトニックバンド領域である領域(I)または(II)に対応するフォトニック結晶の場合について説明するものとする。
フォトニック結晶領域R1における孔41の間隔(ピッチ)をaR1、バリア領域における孔41の間隔(ピッチ)をaR2、バリア領域とフォトニック結晶領域R1との境界で隣接する孔41の中心間隔をdxとすると、当該バリア領域をフォトニックバンドギャップ領域とするためには、フォトニック結晶領域R1における孔41の間隔aR1とバリア領域における孔41の間隔aR2との関係が、aR1<aR2となるよう構成する。
このとき、バリア領域とフォトニック結晶領域R1との境界で隣接する孔41の中心間隔dxは、次式で示す条件を満たすよう構成する。なお、孔41の中心間隔dxの下限を設定するのは、バリア領域とフォトニック結晶領域R1との境界で隣接する孔41同士が重ならないようにするためであり、上限を設定するのは、境界に光が閉じ込められることを避けるためである。
Figure 0003917170
当該条件を満たすよう各領域の孔41を形成する。一例として、領域(I)において、フォトニック結晶領域R1における孔41の間隔(ピッチ)aR1を403nm、半径rR1を121nm、バリア領域における孔41の間隔(ピッチ)aR2を434nm、半径rR2を130nm、バリア領域とフォトニック結晶領域R1との境界で隣接する孔41の中心間隔dxを600nmとして構成すればよい。
また、各領域の孔41の間隔が等しくても(つまり、aR1 =aR2)、フォトニック結晶領域R1における孔41の半径がrR1、バリア領域における孔41の半径がrR2である場合に、これらの関係がrR1 >rR2となるよう構成することにより、バリア領域をフォトニックギャップとすることができる。この場合、各領域で孔41の間隔(ピッチ)は変化しない(均一)であるため、バリア領域とフォトニック結晶領域R1との境界で隣接する孔41の中心の距離(以下、中心間隔と言う。)dxの条件設定をする必要はない。この場合、例えば、各領域の孔41の間隔aR1及びaR2を403nmとし、フォトニック結晶領域R1における孔41の半径rR1 を121nmとして構成した場合、バリア領域における孔41の半径rR2を110nmとして構成すればよい。
他方、光伝搬領域に上肢分枝のフォトニックバンド領域である領域(III)または(IV)に対応するフォトニック結晶の場合に、バリア領域をフォトニックバンドギャップ領域とするためには、各領域の孔41の間隔(ピッチ)の相関関係がaR1>aR2となるように、又は、各領域の孔41の半径の相関関係が各rR1 <rR2となるよう構成する。このとき、バリア領域とフォトニック結晶領域R1との境界で隣接する孔41の中心間隔dxは、上述の場合と同様に式1で示す条件を満たすよう構成する。
また、各領域の孔41の間隔が等しくても(つまり、aR1 =aR2)、フォトニック結晶領域R1における孔41の半径がrR1とバリア領域における孔41の半径がrR2の相関関係がrR1 <rR2となるよう構成することにより、バリア領域をフォトニックギャップとすることができる。
なお、上記変形構成例1と同様に端子部42をバリア領域に設けることにより、電極8a及び8bと電気的に接続し、電位保持部として機能させることができる。
[フォトニック結晶層の他の応用例]
上述した実施形態におけるフォトニック結晶層4は、フォトニック結晶層の複数の領域に、それぞれのサイズや間隔が異なる複数の孔41を設けることによって、正負の分散補償や、複数次の分散補償を行うことができる点に着目し、上記実施形態では、これを用いた分散補償素子の構成について説明した。
ところで、フォトニック結晶層4は上記実施形態の[波長分散変動]において図3を用いて詳細に述べたように、バイアス電圧を印加することによってキャリア密度を変化させて屈折率を変化させることができるものであるが、屈折率が変わるということは、言い換えれば伝播する光の位相(radian)を変化させることができる。
図9は、フォトニック結晶層4の孔41の直径Dが282nm、270nm、260nmのときの光の周波数に対する位相の変化を示すグラフである。図9中、実線が、孔41の直径Dが282nmのときの光の周波数に対する位相の変化を示す曲線(D282)、点線が、孔41の直径が270nmのときの光の周波数に対する位相の変化を示す曲線(D270)、破線が、孔41の直径Dが260nmのときの光の周波数に対する位相の変化を示す曲線(D260)である。同図に示す如く、孔41の直径Dが小さいほど、光の位相変化が大きくなる。
更に、図10は、フォトニック結晶層4の孔41の直径が242nmである場合における、バイアス電圧が0V、+100V、‐100Vのときの、光の周波数に対する位相の変化を示すグラフであり、このように、光の位相はフォトニック結晶層4に印加するバイアス電圧の大きさによって種々変化する。
このように、通常であれば(言い換えればフォトニック結晶層4にバイアス電圧を印加していないとき)には、光の特性曲線が、波数と周波数は光速cを比例係数とする比例関係にあるが、フォトニック結晶層4にバイアス電圧を印加することにより、フォトニックギャップの影響をうけて、当該フォトニックギャップの付近で光の特性曲線が変化する。
上述したようなフォトニック結晶の特性を利用して、波長分散補正デバイスとして応用することもできる。
(1)多モードによる波長分散補正デバイスへの応用手法
図11は、多モード導波路を用いた波長分散補正素子である。同図は、フォトニック結晶層4の波長分散補正デバイスとしての機能を判りやすく説明するため、フォトニック結晶層4及び端子部42以外の構成を省略して図示したものである。
同図に示す如く、フォトニック結晶層4の光の入出射端にシングルモード領域を設け、フォトニック結晶層4の中央部に孔41が形成されたフォトニック結晶領域R1を設ける。
そして、光の入射端側のシングルモード領域から、フォトニック結晶層4の中央部へと、光の進行方向(同図において下方向)に対して垂直な面の断面積が、当該光の進行方向に連続的に増大し、一定の断面積を有するフォトニック結晶層4の中央部へと、フォトニック結晶層4の光の進行方向に対して垂直な面の断面積を変化させつつ形成し、その後、光の進行方向に対して垂直な面の断面積が、当該光の進行方向に連続的に減少するよう形成して、光の出射端側のシングルモード領域へと当該断面積を変化させる。
したがって、コア層によって導波されフォトニック結晶層4上を伝搬する光は、フォトニック結晶領域R1上を進行する多モードの光となって、図11に図示するように左右に配置した各端子部42に印加したバイアス電圧の制御に基づいて異なる経路を経て伝搬する。異なる経路では、形成された孔41の直径Dがそれぞれ異なるフォトニック結晶領域R1を通過することになる。孔41の直径Dが異なると、フォトニックギャップの周波数位置が変化し、フォトニックバンドが周波数シフトし、伝搬する光の周波数に対応した領域での波長分散値が変化する。よって、この多モード導波路を用いると、バイアス電圧により、光の伝搬経路を制御することを通じて、波長分散値を可変制御することができる。
例えば、上記導波路はフォトニック結晶層が下肢分枝のフォトニックバンド領域に対応するものとして構成し、入射する光の波長を1530〜1560nm、すなわちc‐bandと呼ばれる光通信波長帯の光とし、フォトニック結晶R1に形成される孔41のピッチ(間隔)は403nmとし、孔41の直径Dを230〜280nmの間で変化させるものとし、更に、多モード導波路の長さを10mmとすると、波長分散を正常分散値−500〜0ps/nmの範囲で可変でき、よりコンパクト且つ安価な波長分散補正デバイスを提供することが可能となる。また、他の部材を必要としないので、光の損失を防ぐことができる。
(2)方向性結合による波長分散補正デバイスへの応用手法
図12を用いてフォトニック結晶層4の他の応用手法を説明する。図12は、フォトニック結晶層4を用いた他の応用手法として、方向性結合を用いた波長分散補正デバイスを示す説明図である。フォトニック結晶層4の波長分散補正デバイスとしての機能を判りやすく説明するため、フォトニック結晶層4、コア層5及び端子部42以外の構成を省略して図示した。
同図に示す如く、フォトニック結晶層4の孔41の直径Dの大きさが異なる複数の領域を光の進行方向に垂直な方向に設ける。図に示す例では孔41の直径Dが大きい領域(図中右側)と、孔41の直径Dが小さい領域(図中左側)の2つの領域を設けた。
また、コア層5等で構成される導波路を、フォトニック結晶層4のそれぞれの領域上に配して構成する。同図においては、コア層5Aを含む導波路と、コア層5Bを含む導波路の2つの導波路が設けられており、各導波路によって導かれる光は、上記フォトニック結晶層4の孔41の直径Dが異なる領域上を夫々進行することとなる。
さらに、フォトニック結晶層4を電気的に接続してエネルギーを付与するための端子部42A、42B及び43Cを設ける。このうち、端子部42Aをフォトニック結晶層4の図中右側に配し、端子部42Bをフォトニック結晶層4の光の入射端側である図中左上部に配し、端子部42Cをフォトニック結晶層4の光の出射端側である図中左下部に配する。
このような構成により、端子部42A、42B及び43Cに印加した電圧と上述した基準電極9(図1を参照。)に印加したバイアス電圧によって、光の経路を連続的に変化させることができる。
図12を参照して具体的に説明すると、先ず初めに、コア層5Aに入射した光(図中一点鎖線で示す。)は、端子部42Aと上述した基準電極9との間にバイアス電圧が印加されていない場合、図中破線で示す経路Aを通って伝搬する。そして、バイアス電圧(例えば、10V)が印加されると、図中実線で示す経路Bを通って伝搬する。
このように、バイアス電圧をゼロから連続的に変化させることにより、光の伝搬経路を経路Aから経路Bへと連続的に変化させることができる。これは、バイアス電圧により、フォトニックバンドが周波数シフトし、結合導波路の対称・非対称モード間の位相差が変化するためである。
そして、光は伝播経路の変化に伴ってそれぞれ異なる直径のフォトニック結晶の領域を伝搬することになるため、多モード導波路の場合と同様に、発生する波長分散値は経路に応じて変化する。よって、本導波路を用いて、波長分散を連続的に可変制御できる。
以上説明したように、フォトニック結晶層4には、孔41の直径Dの大きさや間隔(ピッチ)等が異なる複数の領域を光の進行方向に垂直な方向に設け、さらに複数の端子部42を設けることにより、波長分散補正デバイスに入射された光に対して所望の変調を自在に与えることが可能になり、コンパクト且つ安価な波長分散補正デバイスを実現することができる。

Claims (9)

  1. 外部から入射される光パルスの波長分散を補償する分散補償素子において、
    入射端から出射端まで前記光パルスを導くためのコア部と、第1のクラッド層及び第2のクラッド層から成るクラッド部と、から成る導波路と、
    前記導波路によって導かれる前記光パルスに対して、前記波長分散の変動量の絶対値と、正負いずれかの符号と、を含む所定の分散特性を有する波長分散変動を付与するフォトニック結晶部と、
    を有し、
    前記フォトニック結晶部は、前記第1のクラッド層上に積層して形成され、
    前記コア部は、前記フォトニック結晶部上に積層して形成され、
    前記第2のクラッド層は、前記フォトニック結晶部上に部分的に積層し、かつ前記コア部の上部及び前記コア部の側部を覆うように形成されることを特徴とする分散補償素子。
  2. 請求項1に記載の分散補償素子において、
    前記フォトニック結晶部は、誘電率の異なる第1の物質及び第2の物質とからなり、前記第1の物質が所定のサイズと所定の配置間隔で前記第2の物質中において面状に配されることを特徴とする分散補償素子。
  3. 請求項2に記載の分散補償素子において、
    前記フォトニック結晶部は、前記導波路の光パルスの進行方向に沿って配される複数の領域から成り、
    各前記領域における前記第1の物質の前記サイズ及び前記配置間隔は、前記各領域における前記分散特性が異なるよう定められることを特徴とする分散補償素子。
  4. 請求項1乃至請求項3のいずれか一項に記載の分散補償素子において、
    前記フォトニック結晶部の屈折率を変化させて前記波長分散の前記絶対値及び前記符号を制御すべく、前記フォトニック結晶部にエネルギーを付与するエネルギー付与部を有することを特徴とする分散補償素子。
  5. 請求項4に記載の分散補償素子において、
    前記エネルギー付与部は、前記フォトニック結晶部の前記各領域毎にエネルギーを付与すること特徴とする分散補償素子。
  6. 請求項4又は請求項5に記載の分散補償素子において、
    前記第2の物質は、定常状態で所定のキャリア密度を有する半導体から成り、
    前記エネルギー付与部は、前記半導体のキャリア密度を変化させるべく前記フォトニック結晶部にエネルギーを付与することを特徴とする分散補償素子。
  7. 請求項6に記載の分散補償素子において、
    前記エネルギー付与部は、前記半導体のキャリア密度を変化させるべく前記フォトニック結晶部に電圧を印加する電圧印加部を有することを特徴とする分散補償素子。
  8. 請求項7に記載の分散補償素子において、
    前記エネルギー付与部は、前記第2の物質の電位を所定の値に保持するための電位保持部を有することを特徴とする分散補償素子。
  9. 請求項1乃至請求項8のいずれか一項に記載の分散補償素子において、
    前記フォトニック結晶部の光の進行方向に沿った両側に光の伝搬を抑制するバリア領域を有することを特徴とする分散補償素子。


JP2006542262A 2004-10-29 2005-08-26 分散補償素子 Expired - Fee Related JP3917170B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004315167 2004-10-29
JP2004315167 2004-10-29
PCT/JP2005/015570 WO2006046347A1 (ja) 2004-10-29 2005-08-26 分散補償素子

Publications (2)

Publication Number Publication Date
JP3917170B2 true JP3917170B2 (ja) 2007-05-23
JPWO2006046347A1 JPWO2006046347A1 (ja) 2008-05-22

Family

ID=36227599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006542262A Expired - Fee Related JP3917170B2 (ja) 2004-10-29 2005-08-26 分散補償素子

Country Status (4)

Country Link
US (1) US7065280B2 (ja)
EP (1) EP1832904B1 (ja)
JP (1) JP3917170B2 (ja)
WO (1) WO2006046347A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007047694A (ja) * 2005-08-12 2007-02-22 Bussan Nanotech Research Institute Inc 光伝送路及び光伝送路を有する光学素子
US8270789B2 (en) 2008-02-29 2012-09-18 Fujikura Ltd. Optical waveguide element, chromatic dispersion compensator, methods for designing chromatic dispersion compensator, optical filter, methods for designing optical filter, optical resonator and methods for designing optical resonator
US8270790B2 (en) 2008-02-29 2012-09-18 Fujikura Ltd. Planar optical waveguide element, chromatic dispersion compensator, methods for designing chromatic dispersion compensator, optical filter, methods for designing optical filter, optical resonator and methods for designing optical resonator
US8542970B2 (en) 2008-02-29 2013-09-24 Fujikura Ltd. Planar optical waveguide element, chromatic dispersion compensator, optical filter, optical resonator and methods for designing the element, chromatic dispersion compensator, optical filter and optical resonator
US8824044B2 (en) 2008-02-29 2014-09-02 Fujikura Ltd. Planar optical waveguide element, chromatic dispersion compensator, optical filter, optical resonator and methods for designing the element, chromatic dispersion compensator, optical filter and optical resonator
US11042049B2 (en) 2019-10-09 2021-06-22 Cisco Technology, Inc. Thermal isolation element

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070241326A1 (en) * 2006-04-18 2007-10-18 Samsung Electronics Co., Ltd. Organic light emitting diode display and manufacturing method thereof
KR101252003B1 (ko) * 2006-04-18 2013-04-08 한양대학교 산학협력단 유기 발광 표시 장치 및 그 제조 방법
US7421179B1 (en) * 2006-09-29 2008-09-02 Wei Jiang Apparatus and method for switching, modulation and dynamic control of light transmission using photonic crystals
US20090087137A1 (en) * 2007-10-02 2009-04-02 My The Doan Planar lightwave circuits with air filled trenches
JP5290737B2 (ja) * 2008-02-08 2013-09-18 古河電気工業株式会社 光−マイクロ波発振器及びパルス発生装置
ES2753273T3 (es) 2009-10-08 2020-04-07 Delos Living Llc Sistema de iluminación LED
EP2488912B1 (en) 2009-10-12 2019-07-24 The Trustees Of Columbia University In The City Of New York Waveguide comprising photonic crystal for outcoupling light of specific wavelengths
EP3702685A1 (en) 2012-08-28 2020-09-02 Delos Living LLC Environmental control system and method of operation such system
US10718901B2 (en) * 2013-06-26 2020-07-21 Micron Technology, Inc. Photonic device having a photonic crystal lower cladding layer provided on a semiconductor substrate
US10386581B2 (en) 2013-10-25 2019-08-20 Forelux Inc. Grating based optical transmitter
WO2015130786A1 (en) 2014-02-28 2015-09-03 Delos Living Llc Systems, methods and articles for enhancing wellness associated with habitable environments
WO2016115230A1 (en) 2015-01-13 2016-07-21 Delos Living Llc Systems, methods and articles for monitoring and enhancing human wellness
US10656013B2 (en) 2015-09-29 2020-05-19 Chromation Inc. Nanostructure based article, optical sensor and analytical instrument and method of forming same
CN109313075B (zh) 2016-05-10 2020-10-30 施罗玛蒂奥尼有限公司 光学部件在折叠光路内的集成
CN110301075B (zh) * 2016-07-05 2021-05-07 光引研创股份有限公司 基于光栅的光发射机
EP3504942A4 (en) 2016-08-24 2020-07-15 Delos Living LLC SYSTEMS, METHODS AND ARTICLES FOR IMPROVING WELL-BEING IN LIVABLE ENVIRONMENTS
US11668481B2 (en) 2017-08-30 2023-06-06 Delos Living Llc Systems, methods and articles for assessing and/or improving health and well-being
US11649977B2 (en) 2018-09-14 2023-05-16 Delos Living Llc Systems and methods for air remediation
WO2020176503A1 (en) 2019-02-26 2020-09-03 Delos Living Llc Method and apparatus for lighting in an office environment
US11898898B2 (en) 2019-03-25 2024-02-13 Delos Living Llc Systems and methods for acoustic monitoring
CN113050242B (zh) * 2019-12-28 2022-07-12 华为技术有限公司 传输线缆

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000121987A (ja) * 1998-10-20 2000-04-28 Nec Corp 波長分散補償器
JP4161498B2 (ja) * 1999-12-28 2008-10-08 コニカミノルタホールディングス株式会社 光モジュールの製造方法
JP2001281480A (ja) * 2000-03-29 2001-10-10 Nec Corp フォトニック結晶光導波路と方向性結合器
US6928221B2 (en) * 2000-07-14 2005-08-09 Pirelli Cavi E Sistemi S.P.A. Device for the compensation of chromatic dispersion
JP2002303836A (ja) * 2001-04-04 2002-10-18 Nec Corp フォトニック結晶構造を有する光スイッチ
JP3665273B2 (ja) * 2001-05-11 2005-06-29 株式会社日立製作所 波長分散補償器、及びそれを用いた光伝送システム
US6807783B2 (en) * 2002-12-27 2004-10-26 Han-Sen Lee Window frame molding system
US7116878B2 (en) * 2003-04-24 2006-10-03 Mesophotonics Ltd. Optical waveguide structure
US7016586B2 (en) * 2003-06-20 2006-03-21 Mesophotonics Limited Optical waveguide structure

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007047694A (ja) * 2005-08-12 2007-02-22 Bussan Nanotech Research Institute Inc 光伝送路及び光伝送路を有する光学素子
JP4549949B2 (ja) * 2005-08-12 2010-09-22 株式会社フジクラ 光学素子
US8270789B2 (en) 2008-02-29 2012-09-18 Fujikura Ltd. Optical waveguide element, chromatic dispersion compensator, methods for designing chromatic dispersion compensator, optical filter, methods for designing optical filter, optical resonator and methods for designing optical resonator
US8270790B2 (en) 2008-02-29 2012-09-18 Fujikura Ltd. Planar optical waveguide element, chromatic dispersion compensator, methods for designing chromatic dispersion compensator, optical filter, methods for designing optical filter, optical resonator and methods for designing optical resonator
US8542970B2 (en) 2008-02-29 2013-09-24 Fujikura Ltd. Planar optical waveguide element, chromatic dispersion compensator, optical filter, optical resonator and methods for designing the element, chromatic dispersion compensator, optical filter and optical resonator
US8824044B2 (en) 2008-02-29 2014-09-02 Fujikura Ltd. Planar optical waveguide element, chromatic dispersion compensator, optical filter, optical resonator and methods for designing the element, chromatic dispersion compensator, optical filter and optical resonator
US11042049B2 (en) 2019-10-09 2021-06-22 Cisco Technology, Inc. Thermal isolation element

Also Published As

Publication number Publication date
EP1832904B1 (en) 2013-11-06
US7065280B2 (en) 2006-06-20
EP1832904A4 (en) 2008-11-26
US20060093299A1 (en) 2006-05-04
WO2006046347A1 (ja) 2006-05-04
JPWO2006046347A1 (ja) 2008-05-22
EP1832904A1 (en) 2007-09-12

Similar Documents

Publication Publication Date Title
JP3917170B2 (ja) 分散補償素子
US6834152B2 (en) Strip loaded waveguide with low-index transition layer
US9618699B2 (en) Multilayer photonic adapter
KR100745274B1 (ko) 박형 실리콘-온-절연기(soi) 플랫폼에 집적된 다결정질게르마늄계 도파관 검출기
JP2010164989A (ja) 光学結晶
US20040202422A1 (en) Tuning the index of a waveguide structure
US20040213536A1 (en) Optical waveguide structure
JP5494216B2 (ja) 導波路型光デバイス
US9715072B2 (en) Optical coupler provided with an intermediate waveguide
US20220268995A1 (en) Thin film optical waveguide and preparation method therefor
JP5386254B2 (ja) スポットサイズ変換光導波路部を有する光学素子
US9217831B1 (en) Optical system having dynamic waveguide alignment
JP2023526109A (ja) マイクロリング変調器及びその製造方法
JP6855323B2 (ja) 半導体装置
Xu et al. Enhanced photo response at two-micron-wavelength using GeSn/Ge multiple-quantum-well waveguide
JP5135003B2 (ja) 光学素子、波長分散補正素子および位相変調素子
JP2021039221A (ja) 光モジュール及びその製造方法
JP5658895B2 (ja) 光学素子
CN117501159A (zh) 用于改进beol器件集成的具有光学互连结构的集成光电器件
JP2022082851A (ja) グレーティング素子及び光デバイス
Kwong Towards two dimensional optical beam steering with silicon nanomembrane-based optical phased arrays
JP2001311971A (ja) 光導波路デバイス

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070207

R151 Written notification of patent or utility model registration

Ref document number: 3917170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees