JP3905330B2 - 温度計測装置及びそれを使用する温度計測方法 - Google Patents

温度計測装置及びそれを使用する温度計測方法 Download PDF

Info

Publication number
JP3905330B2
JP3905330B2 JP2001162408A JP2001162408A JP3905330B2 JP 3905330 B2 JP3905330 B2 JP 3905330B2 JP 2001162408 A JP2001162408 A JP 2001162408A JP 2001162408 A JP2001162408 A JP 2001162408A JP 3905330 B2 JP3905330 B2 JP 3905330B2
Authority
JP
Japan
Prior art keywords
thin film
temperature
shape
base material
lid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001162408A
Other languages
English (en)
Other versions
JP2002350248A (ja
Inventor
吉人 福本
隆 木下
伸吾 住江
康秀 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001162408A priority Critical patent/JP3905330B2/ja
Publication of JP2002350248A publication Critical patent/JP2002350248A/ja
Application granted granted Critical
Publication of JP3905330B2 publication Critical patent/JP3905330B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、LSI等の半導体装置の製造プロセスにおいてシリコンウエハの温度を計測する温度計測装置及び温度計測方法に関し、特に、CVD、スパッタリング、エッチング及びアッシング等の真空又は減圧プラズマを使用する製造プロセスにおいてシリコンウエハの温度を計測する温度計測装置及び温度計測方法に関する。
【0002】
【従来の技術】
LSI(large scale integrated circuit:大規模集積回路)の製造プロセス、特に真空中は、プロセス中のウエハ温度を正確に管理することが重要である。例えば、CVDにおける堆積速度及び膜質並びにエッチングプロセスにおけるエッチングレート及びエッチング形状は、ウエハ温度に強く依存する。
【0003】
このため従来、真空中又は減圧プラズマ中で行うプロセスにおいて、処理中のウエハ温度を測定するために種々の方法が採用されている。最も簡便な方法として、ウエハを保持するサセプタの温度を熱電対等により測定し、これをウエハ温度とみなす方法がある。また、ウエハの表面に熱電対を直接接合することにより、ウエハ表面の温度を測定することも可能である。
【0004】
更に、ウエハ表面にサーモラベルを貼付し、その色彩の変化によりプロセス中のウエハ温度を記録する方法も知られている。
【0005】
更にまた、特開平10−111186号公報には、ウエハ温度をプロセスチャンバーの外部から非接触で計測することを目的として、ウエハから放射される放射赤外線を測定する放射温度計を使用してウエハ温度を計測する技術が開示されている。
【0006】
更にまた、例えば「ソリッド・ステート・テクノロジー(Solid State Technology)1999年10月 第99頁−第106頁」には、ウエハ温度をプロセスチャンバーの外部から非接触で測定することを目的として、蛍光体の蛍光緩和特性、即ち、特定の波長の光を受けて発光する蛍光物質の蛍光減衰に要する時間が周辺温度に依存して変化する性質を利用する計測方法が記載されている。
【0007】
【発明が解決しようとする課題】
しかしながら、上述の従来の技術には以下に示すような問題点がある。ウエハを保持するサセプタの温度を熱電対等により測定し、このサセプタ温度をウエハ温度とみなす方法については、真空又は減圧プラズマ中ではウエハとサセプタとの間の熱伝導性が低く、またサセプタの熱容量が大きいため、ウエハ温度とサセプタ又は減圧プラズマ中で行うCVD(chemical vapor deposition:化学気相成長)等による成膜、エッチング及びアッシング等のプロセスにおいて温度との間に差異が生じ、必ずしもサセプタ温度がウエハ温度を正しく反映しているとはいえない。このため、サセプタ温度をウエハ温度とみなすと、実際のウエハ温度との間に大きな誤差が発生するという問題点がある。
【0008】
ウエハの表面に熱電対を直接接合する方法については、減圧プラズマ中では熱電対の計測リードにプラズマによる高周波雑音が寄生することと、熱電対表面においてプラズマ活性反応による発熱が生じること等から、ウエハ温度を正確に測定することが困難であるという問題点がある。また、熱電対がウエハ表面に接触するために不要な微粒子(パーティクル)が生じ、更に、プラズマにより熱電対の構成物質がスパッタリングされプロセス装置内に金属汚染が発生するという問題点がある。パーティクル及び金属汚染の発生は、LSI量産工場においては重大な歩留まり低下を引き起こすため、前記方法は使用することができない。
【0009】
ウエハ表面にサーモラベルを貼付しその色彩の変化によりプロセス中のウエハ温度を測定する方法についても、前述のウエハ表面に熱電対を接合する方法と同様にパーティクル及び金属汚染が発生するという問題点がある。
【0010】
ウエハから放射される放射赤外線を測定してウエハ温度を計測する技術については、放射赤外線をプロセス装置の外部に導くために、プロセス装置に光ファイバ及びミラー等の特別な光学系を設けることが必要となり、プロセス装置のコストを増大させるという問題点がある。また、ウエハ全面を見通せる位置に計測器を設置することが困難なため、ウエハ温度の面内分布を計測することが困難である。
【0011】
蛍光体の蛍光緩和特性を利用する計測方法については、前述の放射赤外線を利用する方法と同様に、蛍光をプロセス装置の外部に導くための光ファイバ及びミラー等の特別な光学系が必要となる。また、ウエハ全面を見通せる位置に計測器を設置することが困難なため、ウエハ温度の面内分布を計測することが困難である。更に、蛍光体をウエハ又はサセプタに貼付することにより、熱電対を使用する方法と同様にパーティクル及び金属汚染が発生するという問題点がある。
【0012】
本発明はかかる問題点に鑑みてなされたものであって、真空又は減圧プラズマを使用する半導体装置の製造プロセスにおいて、ウエハの温度を直接計測することができ、且つ、プラズマによる高周波雑音及びプラズマ活性反応による発熱の影響を受けず、計測に際してパーティクル及び金属汚染を発生することなく、また、プロセス装置に特別な設備を設ける必要がなく、ウエハ温度の面内分布を計測することが容易な温度計測装置及びこれを使用する温度計測方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明に係る温度計測装置は、基材と、この基材上にポリマー材料により所定の形状に形成され前記形状が温度に依存して不可逆的に変化する薄膜と、を有し、前記薄膜の不可逆的な形状変化により前記基材が経験した温度が記録されることを特徴とする。
【0014】
本発明においては、薄膜の形状が温度に依存して不可逆的に変化するため、この形状の変化を測定することによりこの温度計測装置が経験した温度を計測することができる。このため、この温度計測装置を測定対象であるプロセス装置内に設置し、このプロセス装置を作動させた後温度計測装置を取り出し薄膜の形状変化を測定することにより、プロセス装置の作動中に温度計測装置が到達した温度を計測することができる。このとき、温度計測装置をプロセス装置内における半導体装置製造時にウエハが配置される位置に設置すれば、プロセス装置の作動中にウエハが保持される温度を直接計測することができる。また、計測に際して電気信号及び光信号を使用しないため、プラズマ中で使用しても高周波及び放射光による悪影響を受けずに精度よく計測することができる。更に、基材上の複数箇所に薄膜を設けることができるため、薄膜の形状変化を基材上の複数の位置で同時に計測することができ、基材温度の面内分布を測定することができる。更にまた、プロセス装置に特別な設備を追加する必要がないため、現有のプロセス装置にそのまま適用できる。
【0015】
また、上述の如く、本願発明においては、前記温度計測装置は、前記基材との間で熱伝導が可能なように前記基材上に搭載され、前記薄膜に接触せずに前記薄膜を覆うように設けられた蓋を有する。
【0016】
これにより、エッチング処理、アッシング処理及びスパッタリング処理等による前記薄膜の膜減り、CVDによる物質の堆積並びに紫外線、電子照射及びイオン衝撃等に起因する薄膜形状の変化等、薄膜がプラズマに接触することによる影響を防止することができる。なお、前記蓋は前記基材に固定されていてもよい。
【0017】
更に、前記基材はシリコンウエハ又はシリコンウエハを加工して形成されたものであることが好ましい。また、前記蓋はシリコン又は石英ガラスにより形成されていることが好ましく、前記薄膜は、ポジ型フォトレジスト、ネガ型フォトレジスト又はポリイミドのいずれか1種からなることが好ましい。
【0018】
これにより、測定対象であるプロセス装置内において、LSI製造に有害なパーティクル及び金属汚染が発生することを防止できる。また、単結晶のシリコンウエハは熱伝導性が良好であるため、これを基材及び蓋に使用することにより、温度計測装置の下部に配置されているサセプタ及び上部に配置されているプラズマから前記薄膜への伝熱を精度よく再現することができる。
【0019】
本発明に係る他の温度計測装置は、基材と、この基材上にポリマー材料により所定の形状に形成され前記形状が温度に依存して不可逆的に変化する薄膜と、前記基材との間で熱伝導が可能なように前記基材上に搭載され、前記薄膜に接触せずに前記薄膜を覆うように設けられた蓋とを有し、前記蓋は前記基材上にポリマー材料からなる緩衝膜を介して搭載されており、前記薄膜の不可逆的な形状変化により前記基材が経験した温度が記録されることを特徴とする。この緩衝膜は、ポジ型フォトレジスト、ネガ型フォトレジスト又はポリイミドのいずれか1種からなることが好ましい。
【0020】
これにより、基材と蓋とが直接接触することに起因するパーティクルの発生を防止することができる。また、この緩衝膜により基材と蓋との接触面積を大きくすることができるため、基材と蓋との間における熱の流通を良好に確保することができる。
【0021】
なお、前記薄膜を構成する材料は、計測する温度領域に応じて適宜最適な材料を選択することができる。また、前記薄膜は、夫々異なる温度範囲において変形する複数の材料により構成してもよい。これにより、前記温度計測装置をより広い温度範囲で使用することができる。
また、本発明に係る更に他の温度計測装置は、基材と、この基材上にポリマー材料により所定の形状に形成され前記形状が温度に依存して不可逆的に変化する薄膜と、を有し、前記薄膜の前記所定の形状は相互に平行に配置された複数個のラインとライン間のスペースとから構成されるパターン形状であり、前記ラインの幅と前記スペースの幅との比の変化を形状変化として、前記薄膜の不可逆的な形状変化により前記基材が経験した温度が記録されることを特徴とする。
【0022】
本発明に係る温度計測方法は、基材上に形状が温度に依存して不可逆的に変化するポリマー材料からなる複数個の薄膜が形成され、更に、前記基材との間で熱伝導が可能なように且つ前記薄膜に接触せずに前記薄膜を覆うように蓋が前記基材上に搭載され、前記各薄膜が、その周囲が少なくとも前記基材と前記蓋により囲まれた空間内に配置されている温度計測装置を所望の温度計測位置に設置する工程と、前記温度計測装置における雰囲気温度により前記薄膜の形状が変化したときにその形状を測定する工程と、を有することを特徴とする。
また、本発明に係る他の温度計測方法は、基材上に形状が温度に依存して不可逆的に変化するポリマー材料からなる薄膜が形成された温度計測装置を所望の温度計測位置に設置する工程と、前記温度計測装置における雰囲気温度により前記薄膜の形状が変化したときにその形状を測定する工程と、を有し、前記薄膜は相互に平行に配置された複数個のラインとライン間のスペースとから構成されるパターン形状を有し、前記薄膜の形状の変化は、前記ラインの幅と前記スペースの幅との比の変化により測定することを特徴とする。
【0023】
【発明の実施の形態】
以下、本発明の実施例について添付の図面を参照して具体的に説明する。先ず、本発明の第1の実施例について説明する。図1は、本実施例に係る温度計測装置の構成を示す模式的断面図である。
【0024】
先ず、図1を参照して、本実施例の温度計測装置の製造方法について説明する。p型シリコンウエハの裏面に、ウエットエッチング法により、縦が3mm、横が3mm、深さが50μmの直方体の凹部3aを複数個形成し、p型シリコン素材からなり裏面に複数の凹部3aが設けられた蓋3を形成する。また、別のp型シリコンウエハからなる基材1を用意し、スピンコート法により基材1上にポジ型フォトレジストを塗布し、厚さ約1000nmのポジ型フォトレジスト膜を形成する。次に、ステッパ装置を使用したフォトリソグラフィ法により、このポジ型フォトレジスト膜をパターニングし、基材1の表面上に、幅が200μm、長さが500μmの長方形の平面形状を有する複数の薄膜構造体2と、この薄膜構造体2を囲む緩衝膜4とを同時に形成する。このとき、基材1上に形成する薄膜構造体2の数と蓋3に形成する凹部3aの数を等しくし、薄膜構造体2及び凹部3aは、後の工程において蓋3を基材1上に搭載するときに相互に整合するような位置に形成する。また、緩衝膜4は、蓋3を基材1上に搭載するときに、基材1における蓋3の裏面の凹部3aを仕切る壁領域に整合する領域に形成する。次に、この蓋3の裏面における凹部3aを仕切る壁領域と緩衝膜4とが整合するように、蓋3を基材1上に搭載する。次に、蓋3の壁領域と緩衝膜4とを接触させて接合する。これにより、本実施例の温度計測装置である評価ウエハ5を形成する。このとき、蓋3は基材1に緩衝膜4を構成するポジ型フォトレジストにより弱く接合されている。なお、前記ポジ型フォトレジストには、例えば、東京応化製TSMR8900及びOFPR800等を使用する。
【0025】
図1に示すように、評価ウエハ5には、単結晶のp型シリコンからなる基材1が設けられ、基材1の表面上には、例えばポジ型フォトレジストからなり、幅が200μm、長さが500μm、厚さが1000nmの直方体の薄膜構造体2が複数設けられている。また、基材1の表面上には、ポジ型フォトレジストからなる緩衝膜4が設けられており、緩衝膜4には平面形状が例えば1辺が3mmの正方形である開口部4aが薄膜構造体2を囲むように設けられている。更に、緩衝膜4上には開口部4aに整合する位置に凹部3aを有する蓋3が設けられ、蓋3は緩衝膜4を介して基材1に搭載され基板1に対して弱く接合されている。蓋3は単結晶のp型シリコンにより構成されている。また、凹部3aは蓋3の裏面、即ち基材1に対向する面に設けられ、その形状は例えば縦が3mm、横が3mm、深さが50μmの直方体であり、凹部3aは蓋3を貫通していない。従って、薄膜構造体2は、凹部3a及び開口部4aからなる空間、即ち、周囲を基材1、緩衝材4及び蓋3により囲まれる空間内に配置されている。なお、基材1における薄膜構造体2が設けられている面に垂直な方向から見たとき、基材1は蓋3よりも大きくなっている。
【0026】
次に、本実施例の評価ウエハ5の動作について説明する。評価ウエハ5を加熱すると、先ず外部の環境に曝されている蓋3及び基材1の温度が上昇する。蓋3及び基材1を構成しているシリコンウエハはその厚さ方向の熱伝導性が良好であるため、薄膜構造体2の温度も蓋3及び基材1に追従して上昇し、蓋3及び基材1の温度とほぼ同じ温度になる。このとき、薄膜構造体2の形状は温度に依存して不可逆的に変化する。具体的には、薄膜構造体2を構成するフォトレジストは、加熱により架橋反応を起こして収縮し、その結果、薄膜構造体2の体積が減少する。薄膜構造体2は、幅及び長さに対して厚さが薄いため、薄膜構造体2の厚さの変化を近似的に体積の変化とみなすことができる。
【0027】
次に、本実施例の温度計測装置(評価ウエハ5)を使用する温度計測方法について説明する。先ず、評価ウエハ5の温度校正方法について説明する。評価ウエハ5における蓋3が設けられていない部分(図示せず)にサーモラベル(図示せず)を貼付する。次に、評価ウエハ5を例えばエッチング装置(図示せず)内に設置し、アルゴンプラズマ処理を行う。評価ウエハ5の温度は、プラズマを発生させる高周波の電力及びサセプタを冷却する温度(チラー温度)により調整し、サーモラベル表示で例えば80〜240℃の範囲の所定の温度に設定する。プラズマ処理時間は3分間とする。
【0028】
プラズマ処理後、評価ウエハ5をエッチング装置から取り出し、光干渉式膜厚測定器により薄膜構造体2の中央部における膜厚を測定する。この作業を評価ウエハ5の温度を変えて繰り返す。図2は横軸にサーモラベルの表示温度をとり、縦軸に薄膜構造体2の膜厚をとってサーモラベルの表示温度と薄膜構造体2の膜厚との関係を示すグラフ図である。図2には比較のために、プラズマ処理を行っていない評価ウエハ5における薄膜構造体2の膜厚も示している。プラズマ処理前に1030nmである薄膜構造体2の膜厚は、プラズマ処理温度が上昇するにつれて減少し、例えば140℃では約970nm、220℃では約870nmとなる。なお、240℃では薄膜構造体2を構成するポジ型フォトレジストが変質するため、膜厚を計測することができない。
【0029】
上述したサーモラベルを使用する温度校正は1回だけ行えばよい。以後、この温度校正により得られた図2に示す結果を使用することにより、サーモラベルを使用することなく、薄膜構造体2の膜厚を測定することによりプラズマ処理中の評価ウエハ5の温度を計測することができる。但し、評価ウエハ5の各構成部材、特に薄膜構造体2の形状又は寸法を変えた場合には、新たに温度校正を行う必要がある。
【0030】
次に、評価ウエハ5による温度計測方法について説明する。先ず、評価ウエハ5の薄膜構造体2の膜厚を光干渉式膜厚測定器により測定する。次に、この評価ウエハ5を測定対象とするプロセス装置(図示せず)におけるシリコンウエハ加工時にシリコンウエハを配置する位置に設置する。次に、このプロセス装置を作動させ、所定の処理を行う。例えば、このプロセス装置がエッチング装置であれば、通常の条件でエッチング処理を行う。前記処理後、プロセス装置を停止し、評価ウエハ5を取り出し、薄膜構造体2の膜厚を測定し、処理前の膜厚と比較する。この結果を図2に示すデータと比較し、前記処理中に評価ウエハ5が経験した温度を計測する。なお、薄膜構造体2の膜厚変化は加熱温度だけではなく加熱時間にも依存するため、前記温度校正のための処理時間は、温度を計測しようとする処理、例えばエッチング処理、の処理時間に等しくすることが好ましい。
【0031】
このように、本実施例によれば、プロセス装置内においてウエハが到達する温度を計測することができる。本実施例では、ウエハの温度を直接測定することができ、プラズマによる高周波及び放射光の影響を受けないため、精度よく計測することができる。また、本実施例の評価ウエハ5は蓋3を備えるため、薄膜構造体2のエッチングが起こらず、薄膜構造体2の膜厚を精度よく測定することができる。更に、プロセス装置に特別な設備を追加する必要がないため、いかなるプロセス装置にも適用可能である。更にまた、薄膜構造体2は基材1上の任意の位置に形成することができるため、ウエハ温度の面内分布を容易に計測することができる。
【0032】
また、基材1がシリコンウエハであり、蓋3がシリコンウエハを加工したものであり、薄膜構造体2及び緩衝膜4がポジ型フォトレジストから構成されているため、プロセス装置内における金属汚染を防止できる。また、緩衝膜4が軟質で伝熱性が高いポジ型フォトレジストから構成されているため、基材1と蓋3とが直接接触することによるパーティクルの発生を防止すると共に基材1と蓋3との間の接触面積が大きくなり、両者間における熱の流通を良好にすることができる。
【0033】
なお、本発明においては、薄膜構造体2及び緩衝膜4の代わりに、全くパターニングされていないフォトレジスト膜を使用し、このフォトレジスト膜の膜厚変化を測定することにより、評価ウエハ5が経験した温度を計測してもよい。この方法によれば、前述の第1の実施例と比較して、フォトレジスト膜をパターニングして薄膜構造体2及び緩衝膜4を形成する工程を省略することができる。
【0034】
次に、本発明の第2の実施例について説明する。図3は、本実施例に係る温度計測装置の構成を示す模式的断面図である。図4は、本実施例に係る温度計測装置における温度計測前の薄膜構造体9の構成を示す部分平面図である。図3及び図4に示すように、本実施例の温度計測装置である評価ウエハ6には、前記第1の実施例における薄膜構造体2の代わりに、例えば、幅が2μm、長さが300μmの短冊状にパターニングされた膜厚が1000nmの薄膜(以下、ライン7という)と、幅が2μmの隙間(以下、スペース8という)とが交互に配置されて構成された薄膜構造体9が設けられている。即ち、ライン7は基材1の表面上において周期的に1列に配置されている。ライン7の繰り返し数は例えば10乃至100である。評価ウエハ6の製造方法及び評価ウエハ6における薄膜構造体9以外の構成は、前記第1の実施例における評価ウエハ5と同一である。
【0035】
次に、評価ウエハ6の温度校正方法について説明する。前記第1の実施例と同様に、評価ウエハ6にサーモラベル(図示せず)を設置し、評価ウエハ6をエッチング装置(図示せず)内に設置し、アルゴンプラズマ処理を行う。評価ウエハ6の温度は、高周波電力及びチラー温度により調整し、サーモラベル表示で例えば80〜240℃の範囲における所定の温度に設定する。プラズマ処理時間は3分間とする。
【0036】
プラズマ処理後、評価ウエハ6をエッチング装置から取り出し、波長測定機能を備えた顕微鏡により、ライン7の幅Lとスペース8の幅Sとの比(L/S)を測定する。これを評価ウエハ6の温度を変えて繰り返す。図5は、横軸にサーモラベルの表示温度をとり、縦軸に(L/S)比をとってサーモラベルの表示温度と薄膜構造体9における(L/S)比との関係を示すグラフ図である。図5には比較のために、プラズマ処理を行っていない評価ウエハ6の(L/S)比も示している。プラズマ処理前には(L/S)比は1.0であるが、プラズマ処理温度が高くなると共に(L/S)比は増大する。即ち、ライン7の幅Lが大きくなり、スペース8の幅Sが小さくなる。例えば、温度が140℃では(L/S)比は1.4、220℃では(L/S)比は2.7となる。この理由は、加熱に伴ってフォトレジスト膜が軟化して、ライン7の形状がだれを生じるためである。このだれによるライン7の幅の増加分が、フォトレジスト膜の体積の減少によるライン7の幅の減少分を上回るため、加熱に伴って(L/S)比が増大する。
【0037】
次に、評価ウエハ6による温度計測方法について説明する。先ず、評価ウエハ6における薄膜構造体9の(L/S)比を、波長測定機能を備えた顕微鏡により測定する。次に、この評価ウエハ6を測定対象とするプロセス装置(図示せず)におけるシリコンウエハ加工時にシリコンウエハを配置する位置に設置する。次に、このプロセス装置を作動させ、所定の処理を行う。前記処理後、プロセス装置を停止し、評価ウエハ6を取り出し、薄膜構造体9の(L/S)比を測定し、処理前の値と比較する。この結果を図5に示すデータと比較し、前記処理中に評価ウエハ6が到達した温度を計測する。
【0038】
このように、本実施例によれば、プロセス装置内においてウエハが到達する温度を計測することができる。本実施例では、ウエハの温度を直接測定することができ、またプラズマによる高周波及び放射光の影響を受けないため、ウエハの温度を精度よく計測することができる。また、本実施例の評価ウエハ6は蓋3を備えるため、薄膜構造体9のエッチングが起こらず、薄膜構造体9の膜厚を精度よく測定することができる。更に、プロセス装置に特別な設備を追加する必要がないため、いかなるプロセス装置にも適用可能である。更にまた、薄膜構造体9は基材1上の任意の位置に形成することができるため、ウエハ温度の面内分布を容易に計測することができる。
【0039】
また、基材1がシリコンウエハであり、蓋3がシリコンウエハを加工したものであり、薄膜構造体2及び緩衝膜4がポジ型フォトレジストから構成されているため、プロセス装置内における金属汚染を防止できる。また、緩衝膜4が軟質で伝熱性が高いポジ型フォトレジストから構成されているため、基材1と蓋3とが直接接触することによるパーティクルの発生を防止すると共に基材1と蓋3との間の接触面積を増大させ、基材1と蓋3との間の熱の流通を良好にすることができる。
【0040】
更に、前述の第1の実施例においては、評価ウエハ5が経験した温度を計測するために、光学式膜厚計を使用して薄膜構造体2の膜厚を測定する必要がある。これに対して、本実施例においては、波長測定機能を備えた顕微鏡により、薄膜構造体9の(L/S)比を測定することにより、評価ウエハ6が経験した温度を計測することができる。このため、より簡便な設備により温度を計測することが可能となる。
【0041】
なお、本実施例においても、前述の第1の実施例と同様に、薄膜構造体9の膜厚変化を測定することにより、温度を計測することもできる。この場合は、評価ウエハ6におけるライン7の幅は評価ウエハ5における薄膜構造体2の幅よりも狭いため、光学式膜厚計ではなく3次元形状測定装置によってライン7の膜厚を測定することができる。このため、光学式膜厚計を使用する場合と比較して、より簡便な設備によりライン7の膜厚を測定することができる。また、本実施例においては、加熱前のライン7の幅を2μm、長さを300μm、スペース8の幅を2μm、ライン7及びスペース8の繰り返し数を10乃至100とする例を示したが、本発明はこれらの数値には限定されず、(L/S)比の測定が容易になるように任意の値を採用することができる。
【0042】
前記第1及び第2の実施例においては、薄膜構造体2及び9をポジ型フォトレジスト材料により形成するため計測温度範囲は約80乃至220℃であるが、薄膜構造体をより耐熱性が高い感光性ポリイミド材料により形成することにより、評価ウエハを200乃至400℃の温度範囲で使用することができる。このような感光性ポリイミド材料には、例えば、住友ベークライト製CRC−8000及び日立化成製HD−8000等がある。
【0043】
【発明の効果】
以上詳述したように、本発明によれば、真空又は減圧プラズマを使用する半導体装置の製造プロセスにおいて、ウエハの温度を直接、プラズマによる高周波雑音及びプラズマ活性反応による発熱の影響を受けずに計測することができる。また、本発明の温度計測装置及び温度計測方法においては、計測に際してパーティクル及び金属汚染を発生することなく、プロセス装置に特別な設備を設ける必要がない。
【図面の簡単な説明】
【図1】本発明の第1の実施例に係る温度計測装置の構成を示す模式的断面図である。
【図2】サーモラベルの表示温度と薄膜構造体2の膜厚との関係を示すグラフ図である。
【図3】本発明の第2の実施例に係る温度計測装置の構成を示す模式的断面図である。
【図4】本実施例に係る温度計測装置における温度計測前の薄膜構造体9の構成を示す部分平面図である。
【図5】サーモラベルの表示温度と薄膜構造体9の(L/S)比との関係を示すグラフ図である。
【符号の説明】
1;基材
2;薄膜構造体
3;蓋
3a;凹部
4;緩衝膜
4a;開口部
5;評価ウエハ
6;評価ウエハ
7;ライン
8;スペース
9;薄膜構造体

Claims (12)

  1. 基材と、この基材上にポリマー材料により所定の形状に形成され前記形状が温度に依存して不可逆的に変化する複数個の薄膜と、前記基材との間で熱伝導が可能なように前記基材上に搭載され、前記薄膜に接触せずに前記薄膜を覆うように設けられた蓋とを有し、前記各薄膜は、その周囲が少なくとも前記基材と前記蓋により囲まれた空間内に配置され、前記薄膜の不可逆的な形状変化により前記基材が経験した温度が記録されることを特徴とする温度計測装置。
  2. 前記薄膜は前記形状変化が起こる温度範囲が相互に異なる複数種類の材料から構成されていることを特徴とする請求項1に記載の温度計測装置。
  3. 前記基材はシリコンウエハ又はシリコンウエハを加工して形成されたものであることを特徴とする請求項1又は2に記載の温度計測装置。
  4. 前記蓋はシリコン又は石英ガラスにより形成されていることを特徴とする請求項1乃至3のいずれか1項に記載の温度計測装置。
  5. 基材と、この基材上にポリマー材料により所定の形状に形成され前記形状が温度に依存して不可逆的に変化する薄膜と、前記基材との間で熱伝導が可能なように前記基材上に搭載され、前記薄膜に接触せずに前記薄膜を覆うように設けられた蓋とを有し、前記蓋は前記基材上にポリマー材料からなる緩衝膜を介して搭載されており、前記薄膜の不可逆的な形状変化により前記基材が経験した温度が記録されることを特徴とする温度計測装置。
  6. 前記薄膜は、ポジ型フォトレジスト、ネガ型フォトレジスト又はポリイミドのいずれか1種からなることを特徴とする請求項1乃至のいずれか1項に記載の温度計測装置。
  7. 前記緩衝膜は、ポジ型フォトレジスト、ネガ型フォトレジスト又はポリイミドのいずれか1種からなることを特徴とする請求項に記載の温度計測装置。
  8. 基材と、この基材上にポリマー材料により所定の形状に形成され前記形状が温度に依存して不可逆的に変化する薄膜と、を有し、前記薄膜の前記所定の形状は相互に平行に配置された複数個のラインとライン間のスペースとから構成されるパターン形状であり、前記ラインの幅と前記スペースの幅との比の変化を形状変化として、前記薄膜の不可逆的な形状変化により前記基材が経験した温度が記録されることを特徴とする温度計測装置。
  9. 基材上に形状が温度に依存して不可逆的に変化するポリマー材料からなる複数個の薄膜が形成され、更に、前記基材との間で熱伝導が可能なように且つ前記薄膜に接触せずに前記薄膜を覆うように蓋が前記基材上に搭載され、前記各薄膜が、その周囲が少なくとも前記基材と前記蓋により囲まれた空間内に配置されている温度計測装置を所望の温度計測位置に設置する工程と、前記温度計測装置における雰囲気温度により前記薄膜の形状が変化したときにその形状を測定する工程と、を有することを特徴とする温度計測方法。
  10. 前記薄膜の形状の変化は、前記薄膜の断面形状の変化により測定することを特徴とする請求項に記載の温度計測方法。
  11. 前記薄膜の形状の変化は、前記薄膜の膜厚の変化により測定することを特徴とする請求項10に記載の温度計測方法。
  12. 基材上に形状が温度に依存して不可逆的に変化するポリマー材料からなる薄膜が形成された温度計測装置を所望の温度計測位置に設置する工程と、前記温度計測装置における雰囲気温度により前記薄膜の形状が変化したときにその形状を測定する工程と、を有し、前記薄膜は相互に平行に配置された複数個のラインとライン間のスペースとから構成されるパターン形状を有し、前記薄膜の形状の変化は、前記ラインの幅と前記スペースの幅との比の変化により測定することを特徴とする温度計測方法。
JP2001162408A 2001-05-30 2001-05-30 温度計測装置及びそれを使用する温度計測方法 Expired - Lifetime JP3905330B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001162408A JP3905330B2 (ja) 2001-05-30 2001-05-30 温度計測装置及びそれを使用する温度計測方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001162408A JP3905330B2 (ja) 2001-05-30 2001-05-30 温度計測装置及びそれを使用する温度計測方法

Publications (2)

Publication Number Publication Date
JP2002350248A JP2002350248A (ja) 2002-12-04
JP3905330B2 true JP3905330B2 (ja) 2007-04-18

Family

ID=19005536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001162408A Expired - Lifetime JP3905330B2 (ja) 2001-05-30 2001-05-30 温度計測装置及びそれを使用する温度計測方法

Country Status (1)

Country Link
JP (1) JP3905330B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5203801B2 (ja) * 2007-07-09 2013-06-05 株式会社神戸製鋼所 温度測定方法、温度測定具および温度測定装置
JP6057812B2 (ja) 2013-04-02 2017-01-11 株式会社神戸製鋼所 処理装置及びワークの温度計測方法
DE102014114104B4 (de) * 2014-09-29 2017-06-08 Infineon Technologies Ag Halbleitermodul und verfahren zum prüfen eines halbleitermoduls
US11315811B2 (en) 2018-09-06 2022-04-26 Kla Corporation Process temperature measurement device fabrication techniques and methods of calibration and data interpolation of the same

Also Published As

Publication number Publication date
JP2002350248A (ja) 2002-12-04

Similar Documents

Publication Publication Date Title
JP5010610B2 (ja) 基板温度決定装置およびその決定方法
JP6227711B2 (ja) センサ・ウェーハ、及びセンサ・ウェーハを製造する方法
JP5805808B2 (ja) プロセス条件測定デバイス
JPH05118928A (ja) 接触式の温度測定方法
KR20050040729A (ko) 반도체 제조장치, 반도체장치의 제조방법 및 웨이퍼스테이지
US20090085031A1 (en) Wafer-Shaped Measuring Apparatus and Method for Manufacturing the Same
JP2007139575A (ja) 測長校正用標準部材及びその作製方法及びこれを用いた校正方法及び装置
US5217834A (en) Methods of forming and inspecting semiconductor device patterns
US7893522B2 (en) Structural body and manufacturing method thereof
WO2021144464A1 (en) Metrology device, system and method
JP3905330B2 (ja) 温度計測装置及びそれを使用する温度計測方法
JP4166400B2 (ja) 放射温度測定方法
JP2560560B2 (ja) 熱型光検出器およびその支持台の製造方法
JP2010050419A (ja) コンタクトホール側壁の抵抗値測定方法
GB2613733A (en) Transmission electron microscope high-resolution in-situ fluid freezing chip and preparation method therefor
KR20210062128A (ko) 기판 처리 장치
JP3575822B2 (ja) プラズマ計測装置
JPH1180974A (ja) エッチング速度測定方法
JP2565302B2 (ja) 温度測定装置及びその製造方法
JP3612309B2 (ja) X線マスクの製造方法
JPH09134776A (ja) 加熱装置
JP2007073567A (ja) 半導体製造装置
JP2001289714A (ja) 基板の温度計測方法及び計測装置、並びに基板の処理装置
JP3586491B2 (ja) X線マスクおよびx線マスクの製造方法
JPH11222673A (ja) スパッタリング装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3905330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

EXPY Cancellation because of completion of term