JP3904483B2 - イオン散乱分析装置 - Google Patents

イオン散乱分析装置 Download PDF

Info

Publication number
JP3904483B2
JP3904483B2 JP2002178000A JP2002178000A JP3904483B2 JP 3904483 B2 JP3904483 B2 JP 3904483B2 JP 2002178000 A JP2002178000 A JP 2002178000A JP 2002178000 A JP2002178000 A JP 2002178000A JP 3904483 B2 JP3904483 B2 JP 3904483B2
Authority
JP
Japan
Prior art keywords
ion
magnetic field
scattered
ions
scattering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002178000A
Other languages
English (en)
Other versions
JP2004020459A (ja
Inventor
憲一 井上
明 小林
主税 一原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002178000A priority Critical patent/JP3904483B2/ja
Publication of JP2004020459A publication Critical patent/JP2004020459A/ja
Application granted granted Critical
Publication of JP3904483B2 publication Critical patent/JP3904483B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,加速された水素或いはヘリウム等の単一エネルギーのイオンを試料表面に照射して,その試料表面で散乱された散乱イオンのエネルギースペクトルを測定することにより,試料成分元素の同定或いは深さ方向の組成分析を行うイオン散乱分析装置に関する。
【0002】
【従来の技術】
近年の半導体開発の分野においては,高集積化或いは小型薄型化に伴い,半導体素子のゲート絶縁膜は,その実厚みの極薄化(1nm以下)が要求されており,従来のSiO2膜に代わってより耐電圧の高い酸窒化膜等の軽元素を含む誘電体膜や,実膜厚は従来と同じでも等価膜厚を下げるべく希土類酸化物である高誘電率の膜が採用されつつある。このような中で,膜厚測定,膜を構成する窒素や酸素の組成や分布の測定,基板からの硼素元素の突き抜け減少の測定等,基板の軽元素分析における深さ方向の分解能向上が要求されている。また,基板等の試料の表面層,例えば1原子層〜数原子層における空孔,不純物吸着,異常成長等の欠陥が試料の特性に大きな影響を及ぼすため,試料表面層の欠陥を高精度に測定することは極めて重要である。
このような極薄膜の試料の表面層における欠陥に関する情報を分析する方法として,試料表面を非破壊に分析可能な「ラザフォード後方散乱法:RBS法」が知られている。このRBS法は,加速したイオンビームの照射により試料から散乱する散乱イオンのエネルギースペクトルをイオン検出器で検出し,検出されたイオンのエネルギースペクトルに基づいて試料表面下の元素組成分布を分析するものである。このRBS法の基本原理は以下の通りである。
【0003】
今,イオンビームにより試料に照射される入射イオンのエネルギーがE0,該入射イオンの質量がM1であり,前記入射イオンが前記試料の表面(深さτ=0)の質量M2の成分原子に衝突して角度θ(前記入射イオンの入射(進行)方向に対する角度,以下,散乱角度という)の方向に散乱したとき,衝突直後のそのイオン(即ち,散乱イオンという)のエネルギーE1は,次の(1)式で表される。
【数1】
Figure 0003904483
この(1)式より,M1,M2,及びθが既知ならば,E1/E0(=k)は一定であることがわかる。従って,散乱イオンのエネルギーを検出すれば,イオンビームによる入射イオンが衝突した原子の質量を特定できる。また,前記入射イオン(イオンビーム)が試料表面の法線に対して入射角θ1で入射し,前記試料の表面近傍の深さτの位置にある成分原子に衝突する場合,前記入射イオンが試料中をτ/cos(θ1)だけ移動して成分原子に衝突するまでに,試料中の成分原子の軌道電子との非弾性散乱により所定のエネルギーを失う。このため,前記入射イオンの試料中成分元素に衝突する直前のエネルギーは,元々の前記入射イオンのエネルギーE0から深さτに応じて連続的に減少する。同様に,衝突後の散乱イオンが試料表面の法線に対して出射角θ2で出射(散乱)した場合,該散乱イオンが試料中をτ/cos(θ2)だけ移動して試料表面から外部へ出るまでにエネルギーを失う。これらのエネルギー損失により,試料表面から散乱する前記散乱イオンのエネルギーは,衝突した原子の深さτが深いほどE1よりも低い値を示す。従って,ある特定の方向へ散乱した散乱イオンのみを弁別してそのエネルギースペクトルを測定すれば,そのうち最も高いエネルギー(最高エネルギー)が試料表面(深さτ=0)からの散乱イオンによるものを表し,該最高エネルギーからのエネルギー差が試料表面からの深さ情報を表すことになる。さらに,各エネルギーを有する散乱イオン数をカウントすることにより,試料深さ方向の成分原子の分布を測定できることになる。
【0004】
また,前記RBS法による測定装置と同じ測定装置を用い,試料を傾けたイオンビームを試料に浅い角度で入射させると,試料中の原子のうちヘリウム等の前記入射イオンより軽い原子(主として水素原子)が試料表面から外に弾き出される現象が生じ,該現象は前記RBS法と同様に弾性散乱であるので,試料中の軽原子が試料表面から弾き出される角度φ(前記入射イオンの入射(進行)方向に対する角度,以下,反跳角度という)を定めると,弾き出される軽原子(以下,反跳原子という)のエネルギーE2は一意に決まり,次の(2)式で表される。
【数2】
Figure 0003904483
また,前記RBS法の場合と同様に,試料中の軌道電子との非弾性散乱により,前記反跳原子にも試料中での移動距離に応じたエネルギー損失が生じる。この反跳原子のエネルギースペクトルを前記RBS法と同様に測定することによって,該反跳原子が存在した深さ情報(深さ分布)を得ることができる。この手法はERDA(Elastic Recoil Detection Analysis)と呼ばれ,他の分析手法では定量分析が困難な水素元素の組成分布分析に利用されている。
【0005】
前記RBS法では,試料の深さ方向の分解能は,散乱イオンのエネルギー分解能に依存するが,散乱イオンをそのまま表面障壁型の半導体検出器(イオン検出器)で検出する古典的なRBS法では,エネルギー分解能は10〜20keVであり,昨今の〜1nmの極薄膜を多数重ねた極薄多層膜構造を有する試料の分析には分解能が十分でなかった。そこで,古典的なRBS法を改良することにより,試料表面の原子層毎の分析が可能な深さ分解能を実現する「高分解能ラザフォード後方散乱法:HRBS法」が木村(京都大学)等により考案され,「Development of a Compact High−Resolution RBS System for monolayer Analysis」(Appl. Phys.Lett.64(1994)2232)に示されている(従来技術)。
従来技術である前記HRBS法を適用したイオン散乱分析装置Bは,図に示す如く,イオンビーム発生装置X,ウィーンフィルタY,スリット7,四重極レンズ11,分析対象である試料2を配置する真空容器3,前記試料2の表面から散乱する散乱イオンのエネルギースペクトルを測定する電磁石スペクトロメータZとを具備している。
前記イオンビーム発生装置Xは,高圧ターミナル16内において,ボンベ15より供給されるガス(例えば,ヘリウムガス)を導入し,これをプラズマ放電によりイオン化するイオン源12によって生成されたイオンを,コッククロフト型高電圧回路14から供給される高電圧により加速管13内で一定エネルギーに加速した後に照射する。
前記ウィーンフィルタY及び前記スリット7は,前記イオンビーム発生装置Xにより加速され出射されるイオンビーム1から特定のイオン種のみ(例えばヘリウム一価イオン)を抽出(弁別)する。ここで,該ウィーンフィルタYは,通過するイオンに対して,磁極17,コイル18,及びリターンヨーク19で発生させた磁場と,平行電極20で発生させた電場とが直交するよう構成されたフィルタであり,前記イオンビーム1のうち特定のイオン種(例えばヘリウム一価イオン)のみを直進させるとともに,それ以外のイオン種(例えばヘリウム二価イオン,水素原子イオン等)の軌道を曲げる特性を有するものである。このウィーンフィルタYの特性により,分析に利用される特定のイオン種以外のイオンは,該ウィーンフィルタYのイオンビーム入射方向下流に設けられた前記スリット7を通過できずに除去される。
このようにして特定のイオン種のみが抽出(弁別)された前記イオンビーム1が,前記スリット7のイオンビーム入射方向下流に設けられた前記四重極レンズ11により集束され,前記試料2表面の所定のビーム照射点に照射される。
前記試料2表面の前記ビーム照射点に照射された前記イオンビーム1は前記試料2表面で散乱し,その散乱イオンのうち,特定方向に散乱した一部の散乱イオンが前記真空容器3の所定の位置に設けられたポート3aを通って前記電磁石スペクトロメータZに入射する。さらに,前記電磁石スペクトロメータZは,入射した散乱イオンを,コイル4,リターンヨーク5,及び磁極6で発生させた磁場により,その散乱イオンのエネルギーに応じて偏向した後にイオン検出器8に導き,該イオン検出器8で検出される散乱イオンの1次元方向の位置(磁場による偏向量)に基づいて,前記試料2表面から散乱する散乱イオンのエネルギースペクトルを測定する。
これにより,散乱イオンのエネルギー差がわずかであっても,前記電磁石スペクトロメータZの磁場によって前記イオン検出器8に到達する位置のずれが大きく拡大されるので,散乱イオンのエネルギー分解能が高まり,従来のRBS法を適用したイオン散乱分析装置では測定し得なかった試料深さ方向の原子層レベルでの分析が可能なる。
【0006】
一方,前記RBS法においては,イオン・チャネリング現象を利用した結晶性評価,軽元素の高精度定量化,及びイオン注入元素の格子間位置同定等の分析手法が重要となる。試料2が結晶基板である場合,結晶軸以外の方向から前記イオンビーム1を照射すると,試料2表面からその深さ方向に一様に分布した格子原子全てが標的(イオンビーム1の衝突対象)となり,図7のグラフ線G1に示すように,比較的高いレベルの(最高エネルギーEmaxとの差が小さい)エネルギースペクトルが得られる。このようなエネルギースペクトルでは,格子原子に衝突した散乱イオンが多すぎて(即ち,ノイズレベルが高い),測定対象となる格子間空間に存在する不純物である軽元素に衝突した散乱イオンを精度よく検出できない(即ち,SN比が小さい)。これに対し,イオンビーム1が試料2の結晶軸に平行に入射するよう試料2を傾けると,イオンビーム1の照射方向から見て試料2表面の各格子原子が,より深層側のの格子原子を隠すので,得られる散乱イオンのエネルギースペクトルは,図7のグラフ線G2に示すように,ノイズとなる格子原子に衝突した散乱イオンのレベルを低く抑えられるので,SN比が上がり,格子間空間に存在する軽元素に衝突した散乱イオンを高感度で検出できる。このような現象を生じさせるためには,イオンビーム1の照射方向と試料2の結晶軸とを1°以内に合わせるという精度の高い角度条件(以下,イオン・チャネリング条件という)を満足する必要がある。さらに該イオン・チャネリング条件を満たしながら,散乱イオンの検出方向(前記散乱角度θ)も試料2の結晶格子の軸に沿った方向に設定するいわゆる「ダブルチャネリング条件」とすると,よりノイズレベルが下がって高感度で不純物軽元素の位置(深さ)を特定できる。このような測定を,一般にダブルチャネリング測定という。
【0007】
【発明が解決しようとする課題】
しかしながら,前記イオン散乱分析装置Bでは,前記真空容器3の所定の位置に設けられた前記ポート3aを通過する散乱イオンしか測定できず,測定対象とする散乱イオンの前記散乱角度θを自由に設定できないため,前記ダブルチャネリング測定が行えないという問題点があった。また,前記ポート3aの位置を複数設けて切り替える場合には,ポート切り替えごとに真空容器3の真空を破る必要があり再度真空状態を作るのに多大な時間を要するだけでなく,極薄膜が大気にさらされて吸着汚染を招くので現実的でない。また,前記RBS法による測定に加えて前記ERDAによる試料の深さ方向の含有水素の分布も同じ装置を使って分析したいというニーズもあるが,試料が大気に触れると大気中の水分が試料表面に吸着して該水分中の水素が前記含有水素の定量化を阻害する。このため,試料を加熱して乾燥させる必要が生じ,測定の長時間化や試料の変質といった問題から,試料の含有水素測定が困難であるという問題点があった。
また,仮に,前記電磁石スペクトロメータZの磁場へ入射させる散乱イオンの方向(前記散乱角度θ)を自由に設定できたとしても,前記磁場を通過後の散乱イオンが前記イオン検出器8上で適正に焦点を結ぶようにするためには,前記散乱角度θに応じて前記電磁石スペクトロメータZの前記磁極6等の角度を精度良く微調整する必要があるが,重く大きな前記磁極6等を高精度で位置決めするには大掛かりで高精度な前記磁極6等の位置決め装置を設ける必要がありこれも現実的でない。
従って,本発明は上記事情に鑑みてなされたものであり,その目的とするところは,簡単な装置構成により,検出する散乱イオンの散乱角度を任意に設定することによりイオン・チャネリング条件やダブルチャネリング条件の設定を可能とし,その結果,試料中の軽元素や含有水素について,感度が高く試料深さ方向の分解能が高い分析を可能とするイオン散乱分析装置を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するために本発明は,真空容器内の試料の表面上のビーム照射点に,所定のイオン抽出手段により特定イオン種のみが抽出されたイオンビームを入射させ,前記ビーム照射点から散乱した散乱イオンを一様な磁場領域に通過させた後にイオン検出器で検出することにより,前記散乱イオンのエネルギースペクトルを測定するイオン散乱分析装置において,前記磁場領域をその磁場方向から見て略扇形状に発生させる扇状磁場発生手段と,前記ビーム照射点と前記磁場領域との間に配置され,前記磁場領域における前記略扇形状をなす前記散乱イオンの入射側の側線に対し略垂直に入射する散乱イオンのみを前記磁場領域側へ通過させる散乱イオン弁別手段と,前記ビーム照射点と前記略扇形状の要の位置とを通る第1の直線と平行な1次元の分解検出機能を有する前記イオン検出器の位置を前記要の位置に対して前記ビーム照射点と対称な位置の近傍で移動可能とするイオン検出器移動手段と,を具備し,前記扇状磁場発生手段が,前記略扇形状の要の位置が前記試料よりも前記イオンビームの入射方向下流側となり,かつ前記略扇形状をなす2つの側線が前記第1の直線に前記要の位置で直交する第2の直線に対し,前記第1及び第2の直線に垂直な方向から見て線対称となるよう配置され,前記散乱イオン弁別手段が,いずれの方向に散乱した前記散乱イオンのみを前記磁場領域側へ通過させるかを変更可能に構成されてなることを特徴とするイオン散乱分析装置として構成されるものである。
このような構成により,後述するBarbar則の原理に従い前記略扇形状の一様な磁場領域に入射した前記散乱イオンを偏向させ,前記要の位置に対して前記ビーム照射点と対称な位置又はその近傍,即ち,前記イオン検出器上に集束させることができるので,以下のような応用が図れる。
なお,Barbar則の条件をより厳密に満たすものとして,前記扇状磁場発生手段による磁場強度が,前記磁場領域内を通過する前記散乱イオンが描く略円弧状の軌跡が前記磁場領域への前記散乱イオンの入射側と出射側とで略対称となるよう設定されたものが考えられる。
【0009】
また,本発明に係るイオン散乱分析装置では,前記イオン検出器が,前記第1の直線と平行な1次元の分解検出機能を有するので,Barbar則の原理により,前記散乱イオンを,前記第1の直線と平行な線上において,前記散乱イオンの微小なエネルギー差に応じた位置に集束させることができる。このため,前記1次元の分解検出機能を有する検出器により,イオンの検出位置ごとの分布を測定すれば,精度の高いエネルギースペクトル分布を測定できる結果,前記試料の深さ方向の分解能の高いイオン分析が可能となる。
【0010】
さらに,本発明に係るイオン散乱分析装置において,前記磁場領域へ通過させる前記散乱イオンの散乱方向(前記散乱角度)を前記散乱イオン弁別手段により任意に変更すると,後述するように,前記散乱イオンは,前記要の位置に対して前記ビーム照射点と対称な位置の近傍において,前記散乱角度に応じた位置に集束する。このため,前記イオン検出器移動手段により,その集束位置に前記イオン検出器を移動させれば,前記散乱角度を任意に選んでイオン分析を行うことが可能となり,その結果,イオン・チャネリング条件或いはダブルチャネリング条件の設定が可能となる。
【0011】
また,より具体的な構成の例としては,前記磁場領域のなす前記略扇形状の要の位置が,前記ビーム照射点に入射する前記イオンビームの延長線上に配置されたもの,さらには,前記第1及び第2の直線に垂直な方向から見て,前記散乱イオンの散乱角度が45°の方向に対し,前記磁場領域の前記略扇形状をなす前記散乱イオンの入射側の側線が略直角となるよう構成されたもの等が考えられる。
【0012】
また,前記イオン抽出手段が,前記特定イオン種が抽出される前の抽出前イオンビームを偏向する磁場を発生させるイオンビーム偏向用磁場発生手段と,前記イオンビーム偏向用磁場発生手段により前記ビーム照射点に向かう方向に偏向された前記特定イオン種のみを通過させるイオンビーム弁別手段と,を具備し,前記イオンビーム偏向用磁場発生手段が,前記試料から前記イオンビームを遡る方向に散乱され,前記イオンビーム弁別手段を通過した後方散乱イオンも偏向するよう構成され,前記イオンビーム偏向用磁場発生手段により偏向された後の前記後方散乱イオンを所定の後方散乱イオン検出器で検出することにより,前記後方散乱イオンのエネルギースペクトルも測定可能に構成されたものも考えられる。これにより,前方側(前記散乱角度が0°〜90°)へ散乱した前記散乱イオンは,前記略扇形状の磁場領域通過後のイオンを検出する前記イオン検出器にて,後方側(前記散乱角度が約180°)へ散乱した前記後方散乱イオンは,前記後方散乱イオン検出器にてそれぞれ測定できるので,測定対象となる前記試料中の元素の種類に応じて,好適な方向の散乱イオンを選んで分析することが可能となる。
【0013】
【発明の実施の形態】
以下添付図面を参照しながら,本発明の実施の形態及び実施例について説明し,本発明の理解に供する。尚,以下の実施の形態及び実施例は,本発明を具体化した一例であって,本発明の技術的範囲を限定する性格のものではない。
ここに,図1は本発明の実施の形態に係るイオン散乱分析装置Aの構成図,図2は本発明の実施の形態に係るイオン散乱分析装置Aにおける磁場領域内及びその前後の散乱イオンの軌道の解析結果を表す図,図3はラザフォード後方散乱法における散乱イオンの散乱角度と試料の標的原子の質量感受性との関係を表すグラフ,図4はラザフォード後方散乱法における散乱イオンの散乱角度と散乱角度の1°のずれに対する角度感受性との関係を表すグラフ,図5はラザフォード後方散乱法における散乱イオンの散乱角度と散乱断面積との関係を表すグラフ,図6は従来の高分解能ラザフォード後方散乱法を適用したイオン散乱分析装置Bの構成図,図7はラザフォード後方散乱法におけるイオンチャネリング現象を説明するための散乱イオンのエネルギースペクトルの一例を表すグラフ,図8は本発明の実施例に係るイオン散乱分析装置A1の構成図である。
【0014】
まず,図1を用いて,本発明の実施の形態に係るイオン散乱分析装置Aの構成について説明する。
本イオン散乱分析装置Aは,図6に示した従来の前記イオン散乱分析装置Bの前記真空容器3から前記電磁石スペクトロメータZまでの部分を他に置き換えたものであり,その他の部分は従来の前記イオン散乱分析装置Bと同じである。以下,従来の前記イオン散乱分析装置Bと異なる部分の構成について説明する。
本イオン散乱分析装置Aは,コイル24,リターンヨーク25,略扇形状の磁極26等により構成され,一様な(均一な)磁場領域26aをその磁場方向(図1の紙面に垂直な方向)から見て略扇形状に発生させる扇状偏向電磁石27(前記扇状磁場発生手段の一例)を具備している。前記扇状偏向電磁石27は,発生させる前記磁場領域26aの前記略扇形状の要の位置P0が,試料2よりも前記イオンビーム1の入射方向下流側(図1において試料2より下側)となり,かつ前記磁場領域26aの前記略扇形状をなす2つの側線L3,L4が前記ビーム照射点2aと前記要の位置P0とを通る直線L1(前記第1の直線の一例)に前記要の位置P0で直交する直線L2(前記第2の直線の一例)に対し,前記直線L1及びL2に垂直な方向(図1の紙面に垂直な方向)から見て線対称となるよう配置されている。図1に示す例では,前記要の位置P0は,前記ビーム照射点2aに入射する前記イオンビーム1の延長線上に配置されている。
また,前記ビーム照射点2aと前記磁場領域26aとの間には,所定の角度設定に応じて該角度設定された方向に前記ビーム照射点2aから散乱した散乱イオンのみを前記磁場領域26a側へ通過させる可動スリット又はアパーチャ等で構成される散乱イオン弁別手段10が配置されている。さらに,1次元の分解検出機能を有する(1次元アレイ型の)前記イオン検出器8が,その検出面の略中心が前記要の位置P0に対して前記ビーム照射点2aと対称な位置P1に位置するとともに,その1次元の検出方向が前記直線L1に沿う(平行となる)よう配置されている。さらに,前記イオン検出器8には,その位置を前記位置P1の近傍で,前記磁場領域26aに対して離接する方向に移動可能とするアクチュエータであるイオン検出器移動装置29(前記イオン検出器移動手段の一例)が設けられている。
【0015】
本イオン散乱分析装置Aは,「均一扇形磁界型プリズム垂直入出射分光系」におけるBarbar則の原理を応用したものである。このBarbar則とは,所定の原点から出射して,扇形状の均一磁場にその扇形状の一方の側線に対して垂直入射したイオン又は電子が,その均一磁場の扇形状の他方の側線に対して垂直出射されるように磁場強度が設定された場合,前記イオン又は電子が出射された前記原点と,前記均一磁場の扇形状の要の位置と,前記均一磁場を出射した前記イオン又は電子がそのエネルギーが同一であるものごとに同一の位置に集束する焦点とが一直線上に並ぶという法則である。これについては,刊行物「電子工学」(裏克巳著,共立全書,p147〜156)等に詳しい。
以下,図2に示す具体例を用いて,本イオン散乱分析装置Aにおける前記Barbar則に基づく作用について説明する。
図2(a)は,前記散乱イオン弁別手段10により,試料2表面の前記ビーム照射点2aから,前記直線L1(前記ビーム照射点2aと前記要の位置P0とを通る直線)に対して45°±2.25°(θc=45°±2.25°)の方向に散乱した散乱イオンのみが前記磁場領域26a側に通過するように設定したとき,所定の中心エネルギーE及びE±10%のエネルギーを有する散乱イオンが前記磁場領域25a内及びその前後で描く軌跡を表したものである。前述したように,本イオン散乱分析装置Aでは,前記イオンビーム1の試料2への入射方向の延長線上に前記要の位置P0を位置させているので,θc=θ(前記散乱角度)となる。ここで,前記磁場領域26aの前記扇形状の両側線L3,L4は,前記直線L2(前記直線L1と前記要の位置P0で直交する直線)に対してそれぞれ45°(従って,前記直線L2に対して線対象)となるよう構成されている。従って,前記直線L1及びL2に垂直な方向(図2の紙面に垂直な方向)から見て,θc=45°の方向(即ち,前記散乱角度θ=45°の方向)に対し,前記磁場領域26aの前記略扇形状をなす前記散乱イオンの入射側の側線L3が直角となる。また,該入射側の側線L3に垂直入射した前記中心エネルギーEを有する散乱イオンが,前記磁場領域26a内を通過する際に描く円弧状の軌跡が前記磁場領域26aへの散乱イオンの入射側(図2(a)におけるL2の右側)と出射側(同左側)とで対称となるよう,前記磁場領域26aの磁場強度が設定されている。例えば,散乱イオンがHe+,その前記中心エネルギーE=250keVである場合であって,前記磁場領域26aが図2(a)に示す形状及び寸法(単位はmm)をなす場合,前記磁場強度は1.4テスラ程度である。
図2(a)に示すように,θc=45°±2.25°の方向に散乱した散乱イオンのうち,前記所定のエネルギーEを有する散乱イオンは,前記Barbar則に従って,前記要の位置P0に対して前記ビーム照射点2aと対称な点P1に集束する。さらに,それだけでなく,前記中心エネルギーE+10%のエネルギーを有する散乱イオンの焦点(集束点)P2,及び同E−10%のエネルギーを有する散乱イオンの焦点P3も,前記点P1の近傍において,前記直線L1上に並ぶことがわかる。従って,前述したように前記点P1に,1次元の検出方向が前記直線L1に沿う(平行な)方向となるように前記イオン検出機器8を配置すれば,わずかなエネルギー差の散乱イオンのエネルギースペクトルを高分解能で検出することが可能となる。
【0016】
図2(b)は,図2(a)と同じ条件下で,前記散乱イオン弁別手段10の移動により,散乱イオンの散乱方向のみを変化させ,θc=30°の場合とθc=50°の場合のそれぞれにおける散乱イオンの描く軌跡を表したものである。この場合,前記磁場領域26aを出射した散乱イオンが焦点を結ぶ位置が前記直線L1からずれて,それぞれ前記磁場領域26aから若干離れた位置P30(θc=30°),及び前記磁場領域26aに若干近い位置P50(θc=50°)となるが,散乱イオンのエネルギーのばらつき(±10%)に対する焦点の位置の変化は,いずれの場合も前記直線L1に略平行は方向に変化する。従って,前記散乱イオン弁別手段10により任意に設定された散乱イオンの方向(例えば,θc=30°〜50°)に応じて,前記イオン検出器移動装置29により,前記イオン検出器8を,その1次元の検出方向を前記直線L1に平行な(或いは略平行な)方向に維持しながら,散乱イオンが焦点を結ぶ位置(P1〜P3,P30,P50等)に移動させれば,任意の前記散乱角度θの散乱イオンについてエネルギースペクトルの測定が可能となる。その結果,前記散乱イオン弁別手段10及び前記イオン検出器移動装置29により,試料2の結晶軸の方向に応じて,前記イオン検出器8で検出する散乱イオンの前記散乱角度θを微調整できるので,比較的容易に前記ダブルチャネリング測定を行うことが可能となる。
【0017】
次に,前記散乱角度θ=45°(=θc)の散乱イオンが,前記磁場領域26aに垂直入射するよう構成されていることの意義について説明する。
図3のグラフは,それぞれ質量の異なる代表的な標的元素(試料2中における前記イオンビーム1の衝突対象となる元素)につて,横軸を前記散乱角度θとし,縦軸を前記標的元素の質量差に対する前記(1)式における因子kの感受性(以下,標的質量感受性という),即ち,(Δk/k)/(ΔM2/M2)の値(但し,ΔM2=1amu)としてグラフ化したものである。図3に示すように,前記散乱角度θが後方側(θ=180°)に近いほど,前記標的質量感受性が高いことがわかる。また,前記標的元素が前記イオンビーム1による入射イオンに質量が近い軽元素(B等)であるほどその傾向が顕著である。このことから,前記標的元素の識別能力(即ち,標的質量識別能力)を上げるためには,前記散乱角度θをより後方側(θ=180°側)とすることが望ましいことがわかる。
【0018】
一方,図3のグラフは,それぞれ質量の異なる代表的な前記標的元素について,横軸を前記散乱角度θとし,縦軸を測定対象とする散乱イオンの前記散乱角度の立体角(前記散乱イオン弁別手段10で通過させる散乱イオンの立体角)Δθ=1°あたりの前記(1)式における因子kの感受性(以下,角度感受性という),即ち,(Δk/k)/Δθの値としてグラフ化したものである。散乱イオンのエネルギースペクトル分析の感度を上げるためには,検出する散乱イオンの数を増やす,即ち,前記散乱イオン弁別手段10により前記散乱角度の立体角Δθを大きくすることが望ましいが,これが散乱イオンのエネルギースペクトル測定精度に与える影響を抑えるためには前記角度感受性が低いことが望ましい。図4に示すように,前記角度感受性は,前記散乱角度θ=90°付近で最大となり,前記散乱角度が前方(θ=0°)又は後方(θ=180°)となるに従って小さくなることがわかる。また,前記標的元素が前記イオンビーム1による入射イオンに質量が近い軽元素(B等)であるほどその傾向が顕著である。
【0019】
また,図5は,それぞれ質量の異なる代表的な前記標的元素について,横軸を前記散乱角度θとし,縦軸を散乱断面積[mb/Str],即ち,散乱頻度としてグラフ化したものである。前記散乱頻度が高い方向(前記散乱角度)の散乱イオンを測定するほど,検出できる散乱イオンの数が増えるので,散乱イオンのエネルギースペクトル測定感度を高くできる。図5に示すように,前記散乱角度が前方側(θ=0°)に近いほど,前記散乱頻度が指数関数的に高くなることがわかる。また,前記標的元素が前記イオンビーム1による入射イオンに質量が近い軽元素(B等)であるほど前記散乱頻度は低い。
前記図4及び図5から,散乱イオン分析の感度を上げるためには,前記散乱角度θを0°に近づけることが望ましいことがわかる。従って,前記散乱角度θについて,元素識別能力と分析感度とはトレードオフの関係にあることがわかる。
ここで,前記標的元素が軽元素である場合,前記散乱角度θ=30〜50°とすれば,元素識別能力は前記標的元素が重元素である場合と同等程度に止まるが(図3の破線間),前記角度感受性が比較的小さく(図4の破線間),前記散乱頻度の高い(図5の破線間)散乱イオンを検出することになるので,感度の高いエネルギースペクトル分析が可能となる。従って,前記標的元素が軽元素である場合,前記散乱角度θ=30°〜50°の範囲で測定することが,元素識別能力と分析感度とのバランス上適していることがわかる。
【0020】
【実施例】
前記イオン散乱分析装置Aは,前述したように,前記散乱角度が前方側寄り(例えば,θ=30°〜50°)の散乱イオンを検出することにより,特に,試料2中の軽元素の測定に適したものである。しかし,試料2中の重元素(前記標的元素が重元素,Au等)を測定する場合,図3より,前記散乱角度θが前方側では元素識別能力が著しく悪化するため,後方側(θ=180°側)で測定する必要がある。また,重元素では,図5より,前記散乱角度θを後方側としても,軽元素を前方側で測定する場合と同等の前記散乱頻度(即ち,前記散乱断面積)を確保できる。従って,前記標的元素の質量(種類)に応じて,前記散乱角度θが前方側,後方側のいずれでも測定できることが望ましい。そこで,これを実現するものとして,図8に前記イオン散乱分析装置Aの応用例であるイオン散乱分析装置A1を示す。
本イオン散乱分析装置A1は,前記イオン散乱分析装置Aから,前記ウィーンフィルタY及びスリット7を除去し,その代わりに,前記四重極磁気レンズ11と前記真空容器3との間に,偏向電磁石W(イオンビーム偏向用磁場発生手段の一例)と,1次元の分解検出機能を有する(1次元アレイ型の)新たなイオン検出器である後方散乱イオン検出器8'と,新たなスリット7'(前記イオンビーム弁別手段の一例)とを設けたものである。これは,先に特許出願済みの「特願2002−147972号」に示されるイオン散乱分析装置に本発明を適用した例である。
前記偏向電磁石Wは,前記イオンビーム発生装置Xから出射された所定のイオンビーム1'(前記抽出前イオンビームの一例)を,対向する磁極6'により挟まれた間隙6c'(図8の断面図参照)に導入する。ここで,該偏向電磁石Wは,磁極6',コイル4',及びリターンヨーク5'により発生する磁場によって,特定のイオン種(例えば,ヘリウム一価イオン)が約90°偏向された後に,該約90°の方向に配置された前記真空容器3内の前記試料2の前記ビーム照射点2aに向けて出射されるように設定されている。従って,分析に利用される前記特定のイオン種以外のイオンは,前記真空容器3のイオンビーム入射方向上流側に設けられた前記スリット7'を通過できずに除去される。このようにして特定イオン種のみが抽出された前記イオンビーム1が,前述したイオン・チャネリングの条件を満たすべく好適に傾斜されて前記真空容器3内に配置された前記試料2表面の前記ビーム照射点2aに照射される。
さらに,前記ビーム照射点2aから前方側(例えば,θ=30〜50°)へ散乱する散乱イオンは,前記イオン散乱分析装置Aと同様に,前記散乱イオン弁別手段10及び前記磁場領域26aを通過して前記イオン検出器8により検出される。
【0021】
一方,前記ビーム照射点2aからの散乱イオンのうち,前記試料2へ入射する前記イオンビーム1を遡る方向,即ち,前記散乱角度θ≒180°の方向に散乱した散乱イオン(以下,後方散乱イオンという)は,前記スリット7'を通過した後,前記偏向電磁石Wの前記磁極6'の間隙6c'に再び入射する。そして,前記偏向電磁石W内に入射した前記後方散乱イオンは,前記イオンビーム1'(前記抽出前イオンビーム)と同様に,前記磁極6',前記コイル4',及び前記リターンヨーク5'により発生する磁場によって,そのエネルギーに応じて偏向された後に,該偏向電磁石Wの磁場外に設けられた前記後方散乱イオン検出器8'に向けて出射される。ここで,前記後方散乱イオンが該偏向電磁石Wに入射する際の入射角と,同出射する際の出射角とは,後述する二重集束条件に従って好適に設定されることにより,前記後方散乱イオンの軌道焦点を前記後方散乱イオン検出器8'上で結ばせることができ,その結果,前記後方散乱イオンのエネルギースペクトルを正確に分析することが可能となる。
【0022】
次に,前記偏向電磁石Wに前記後方散乱イオンが入射する際の入射角と,同出射する際の出射角の設定について説明する。
ここで,前記後方散乱イオンの前記入射角と前記出射角とは,前記後方散乱イオンが,前記後方散乱イオン検出器8'上で一点に集束する(焦点を結ぶ)ような条件(二重集束条件)に従って設定する必要がある。この条件とは,従来の前記イオン散乱分析装置Bに用いられる前記電磁石スペクトロメータZの場合と同様に,磁場中の荷電粒子軌道に対する数値解析により容易に算出可能である。
例えば,試料2から前記偏向電磁石Wまでの距離,及び前記偏向電磁石Wから前記後方散乱イオン検出器8'までの距離がともに174mmであって,該偏向電磁石W内の磁場により,前記後方散乱イオンが150Rの軌道半径で120°偏向される場合には,前記後方散乱イオンの前記入射角及び前記出射角は,それぞれ前記後方散乱イオンの中心軌道の法線に対して41°の角度で傾けることにより,前記二重集束条件が満たされ,前記後方散乱イオンを前記後方散乱イオン検出器8'上の一点に集束させることができる。
しかし,分析される前記試料2が異なる場合には前記後方散乱イオンのエネルギーも異なるため,前記二重集束条件も異なることが考えられる。例えば,前記後方散乱イオンのエネルギーが小さい場合には,図8中に矢印1aで示す如く,前記偏向電磁石Wによって大きく偏向されるが,前記後方散乱イオンのエネルギーが大きい場合には,図8中に矢印1bで示す如く,前記偏向電磁石Wによる偏向が小さくなる。
このように,分析される前記試料2によって異なる前記二重集束条件に適応するために,本イオン散乱分析装置A1では,前記後方散乱イオンが入射される位置近傍の可動磁極6a'と,前記後方散乱イオンが出射される位置近傍の可動磁極6b'とを,機械的に摺動可能な半円筒形状に形成し,不図示である回転機構により必要に応じて回動させる機構を有している。
このような構成を有することにより,試料2の種類毎に算出される前記二重集束条件に応じて,前記各可動磁極6a',6b'を摺動させることにより,前記偏向電磁石Wの磁極境界面の角度(形状)を任意に設定することが可能となり,前記二重集束条件が異なる場合であっても,常に前記散乱イオンを前記後方散乱イオン検出器8'上に一点で集束させるような磁場を発生させることが可能となる。
ここで,前記可動磁極6a'は,前記後方散乱イオンの入射点であると同時に,前記イオンビーム発生装置Xから出射されたイオンビーム1'の出射点でもあるため,前記可動磁極6a'を前記二重集束条件に応じて回動させた場合には,前記イオンビーム1'が前記偏向電磁石Wから出射する際の出射角が変更されてしまう。即ち,前記イオンビーム1'の出射角の変化によって前記イオンビーム1'の集束発散状態が変化し,前記試料2表面に形成される前記イオンビーム1によるビームスポット(例えば0.1mmφ以下)が変化するおそれがある。
そこで,本イオン散乱分析装置A1では,前記偏向電磁石Wより前記イオンビーム1'の上流側に設けられた2つの前記四重極電磁レンズ10により,前記可動磁極6a'の回動によって生じたイオンビームの集束発散状態のズレを,前記四重極電磁レンズ10によって電気的に補正する。これにより,前記二重集束条件の変化に応じて前記イオンビーム1'の出射角が変化した場合であっても,その集束発散状態が調節されて所定のビームスポットを形成する前記イオンビーム1を前記ビーム照射点2aに照射させることが可能となる。
【0023】
以上示したように,本イオン散乱分析装置A1は,前記扇状偏向電磁石27を用いて前方側の任意の方向(例えば,θ=30°〜50°)に散乱した散乱イオンを自在に検出できることに加え,従来の前記イオン散乱分析装置Bにおける前記ウィーンフィルタY及び前記電磁石スペクトロメータZが,その機能を実現するため偏向電磁石による偏向作用をともに利用していることに着目し,その偏向電磁石を共用化したことを特徴点とする。その結果,前記標的元素が軽元素である場合には,前記イオン検出器8により前方側への散乱イオンのエネルギースペクトルを測定でき,前記標的元素が重元素である場合には,前記後方散乱イオン検出器8'により後方側への散乱イオンのエネルギースペクトルを測定できるので,測定対象に好適な方法を任意に選択してイオン分析できる。
【0024】
【発明の効果】
以上説明したように,本発明によれば,磁場領域の適切な形状と配置,及び散乱イオンの散乱角度とイオン検出器の任意設定機構の具備といった簡単な装置構成により,検出する散乱イオンの散乱角度を任意に設定できるので,イオン・チャネリング条件やダブルチャネリング条件の設定を可能とし,その結果,試料中の軽元素や含有水素について,感度が高く試料深さ方向の分解能が高い分析が可能となる。
さらに,1つの磁場発生手段を,試料に照射するイオンビームのイオン種を抽出する手段と,試料後方へ散乱する後方散乱イオンの偏向手段とで共用化する構成を付加することにより,試料前方への散乱イオンの測定と試料後方への散乱イオンの測定とを任意に切り替えることができるので,測定対象(軽元素が重元素か)に応じた柔軟性の高いイオン散乱分析が可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係るイオン散乱分析装置Aの構成図。
【図2】本発明の実施の形態に係るイオン散乱分析装置Aにおける磁場領域内及びその前後の散乱イオンの軌道の解析結果を表す図。
【図3】ラザフォード後方散乱法における散乱イオンの散乱角度と試料の標的原子の質量感受性との関係を表すグラフ。
【図4】ラザフォード後方散乱法における散乱イオンの散乱角度と散乱角度の1°のずれに対する角度感受性との関係を表すグラフ。
【図5】ラザフォード後方散乱法における散乱イオンの散乱角度と散乱断面積との関係を表すグラフ。
【図6】従来の高分解能ラザフォード後方散乱法を適用したイオン散乱分析装置Bの構成図。
【図7】ラザフォード後方散乱法におけるイオンチャネリング現象を説明するための散乱イオンのエネルギースペクトルの一例を表すグラフ。
【図8】本発明の実施例に係るイオン散乱分析装置A1の構成図。
【符号の説明】
1…特定イオン種のみ抽出されたイオンビーム
1'…特定イオン種抽出前のイオンビーム
1a,1b…後方散乱イオンの軌跡
2…試料
3,23…真空容器
4,4',18…コイル
5,5',19,25…リターンヨーク
6,6',17,26…磁極
6a',6b'…可動磁極
6c'…磁極で挟まれた間隙
7,7'…スリット
8,8'…イオン検出器
29…イオン検出器移動装置
10…散乱イオン弁別手段
11…四重極磁気レンズ
12…高圧ターミナル
13…加速管
14…コッククロフト型高電圧回路
15…ボンベ
16…イオン源
20…平行電極
26a…磁場領域
27…扇状偏向電磁石
29…イオン検出器移動装置

Claims (5)

  1. 真空容器内の試料の表面上のビーム照射点に,所定のイオン抽出手段により特定イオン種のみが抽出されたイオンビームを入射させ,前記ビーム照射点から散乱した散乱イオンを一様な磁場領域に通過させた後にイオン検出器で検出することにより,前記散乱イオンのエネルギースペクトルを測定するイオン散乱分析装置において,
    前記磁場領域をその磁場方向から見て略扇形状に発生させる扇状磁場発生手段と,
    前記ビーム照射点と前記磁場領域との間に配置され,前記磁場領域における前記略扇形状をなす前記散乱イオンの入射側の側線に対し略垂直に入射する散乱イオンのみを前記磁場領域側へ通過させる散乱イオン弁別手段と,
    前記ビーム照射点と前記略扇形状の要の位置とを通る第1の直線と平行な1次元の分解検出機能を有する前記イオン検出器の位置を前記要の位置に対して前記ビーム照射点と対称な位置の近傍で移動可能とするイオン検出器移動手段と,を具備し,
    前記扇状磁場発生手段が,前記略扇形状の要の位置が前記試料よりも前記イオンビームの入射方向下流側となり,かつ前記略扇形状をなす2つの側線が前記第1の直線に前記要の位置で直交する第2の直線に対し,前記第1及び第2の直線に垂直な方向から見て線対称となるよう配置され,
    前記散乱イオン弁別手段が,いずれの方向に散乱した前記散乱イオンのみを前記磁場領域側へ通過させるかを変更可能に構成されてなることを特徴とするイオン散乱分析装置。
  2. 前記扇状磁場発生手段による磁場強度が,前記磁場領域内を通過する前記散乱イオンが描く略円弧状の軌跡が前記磁場領域への前記散乱イオンの入射側と出射側とで略対称となるよう設定されてなる請求項1に記載のイオン散乱分析装置。
  3. 前記磁場領域のなす前記略扇形状の要の位置が,前記ビーム照射点に入射する前記イオンビームの延長線上に配置されてなる請求項1又は2のいずれかに記載のイオン散乱分析装置。
  4. 前記第1及び第2の直線に垂直な方向から見て,前記散乱イオンの散乱角度が45°の方向に対し,前記磁場領域の前記略扇形状をなす前記散乱イオンの入射側の側線が略直角となるよう構成されてなる請求項1〜のいずれかに記載のイオン散乱分析装置。
  5. 前記イオン抽出手段が,
    前記特定イオン種が抽出される前の抽出前イオンビームを偏向する磁場を発生させるイオンビーム偏向用磁場発生手段と,
    前記イオンビーム偏向用磁場発生手段により前記ビーム照射点に向かう方向に偏向された前記特定イオン種のみを通過させるイオンビーム弁別手段と,を具備し,
    前記イオンビーム偏向用磁場発生手段が,前記試料から前記イオンビームを遡る方向に散乱され,前記イオンビーム弁別手段を通過した後方散乱イオンも偏向するよう構成され,
    前記イオンビーム偏向用磁場発生手段により偏向された後の前記後方散乱イオンを所定の後方散乱イオン検出器で検出することにより,前記後方散乱イオンのエネルギースペクトルも測定可能に構成されてなる請求項1〜のいずれかに記載のイオン散乱分析装置。
JP2002178000A 2002-06-19 2002-06-19 イオン散乱分析装置 Expired - Fee Related JP3904483B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002178000A JP3904483B2 (ja) 2002-06-19 2002-06-19 イオン散乱分析装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002178000A JP3904483B2 (ja) 2002-06-19 2002-06-19 イオン散乱分析装置

Publications (2)

Publication Number Publication Date
JP2004020459A JP2004020459A (ja) 2004-01-22
JP3904483B2 true JP3904483B2 (ja) 2007-04-11

Family

ID=31175849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002178000A Expired - Fee Related JP3904483B2 (ja) 2002-06-19 2002-06-19 イオン散乱分析装置

Country Status (1)

Country Link
JP (1) JP3904483B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4148864B2 (ja) * 2003-09-26 2008-09-10 株式会社神戸製鋼所 試料分析装置
US8110814B2 (en) 2003-10-16 2012-02-07 Alis Corporation Ion sources, systems and methods
US9159527B2 (en) 2003-10-16 2015-10-13 Carl Zeiss Microscopy, Llc Systems and methods for a gas field ionization source
JP4233510B2 (ja) 2004-09-30 2009-03-04 株式会社神戸製鋼所 スペクトル解析方法,スペクトル解析装置
WO2007067296A2 (en) * 2005-12-02 2007-06-14 Alis Corporation Ion sources, systems and methods

Also Published As

Publication number Publication date
JP2004020459A (ja) 2004-01-22

Similar Documents

Publication Publication Date Title
US8513597B2 (en) Atom probe
Kreller et al. Guiding of argon ions through a tapered glass capillary
Zalm Secondary ion mass spectrometry
JP3333533B2 (ja) 荷電粒子抽出装置
Schwestka et al. A versatile ion beam spectrometer for studies of ion interaction with 2D materials
JP3904483B2 (ja) イオン散乱分析装置
JP4606270B2 (ja) 試料イオンの飛行時間測定用装置,飛行時間型質量分析装置,飛行時間型質量分析方法
Hanstorp An ion beam apparatus for collinear photodetachment experiments
JP6914438B2 (ja) スピン分析装置
AU2017220662A1 (en) Extraction system for charged secondary particles for use in a mass spectrometer or other charged particle device
US20100044564A1 (en) Spin polarized ion beam generation apparatus and scattering spectroscopy apparatus using the spin polarized ion beam and specimen processing apparatus
JP4341910B2 (ja) レーザープロファイルの測定方法および装置、粒子採取方法および装置
Ender et al. Accelerator SIMS at PSI/ETH Zurich
Kimmel et al. A time‐of‐flight spectrometer for low‐energy neutral and ionized alkalis
Gersch et al. Postionization of sputtered neutrals by a focused electron beam
JP4011403B2 (ja) イオン散乱分析装置
Taborelli Secondary electron yield of surfaces: what we know and what we still need to know
Miltenberger Secondary ion emission in MeV-SIMS
JPH07190963A (ja) 散乱イオンによる分析装置
WO2022145263A1 (ja) イオンビーム分析装置
JP4009013B2 (ja) イオン電流検出装置、及びイオン注入装置
WO2006134380A2 (en) Atom probe
JP5924882B2 (ja) 原子プローブを用いた二次イオンによる分析装置および分析方法
AU2017220663B2 (en) Extraction system for charged secondary particles for use in a mass spectrometer or other charged particle device
Moore B1. 6 Electron-impact spectroscopy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070109

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees