JP3901549B2 - 半導体集積回路装置 - Google Patents

半導体集積回路装置 Download PDF

Info

Publication number
JP3901549B2
JP3901549B2 JP2002062400A JP2002062400A JP3901549B2 JP 3901549 B2 JP3901549 B2 JP 3901549B2 JP 2002062400 A JP2002062400 A JP 2002062400A JP 2002062400 A JP2002062400 A JP 2002062400A JP 3901549 B2 JP3901549 B2 JP 3901549B2
Authority
JP
Japan
Prior art keywords
semiconductor integrated
gate
integrated circuit
circuit
circuit device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002062400A
Other languages
English (en)
Other versions
JP2003264233A (ja
Inventor
志郎 宇佐美
歳浩 甲上
勝也 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002062400A priority Critical patent/JP3901549B2/ja
Publication of JP2003264233A publication Critical patent/JP2003264233A/ja
Application granted granted Critical
Publication of JP3901549B2 publication Critical patent/JP3901549B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Tests Of Electronic Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Logic Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、静電放電(Electro-Static Discharge;ESD)保護回路を備えた半導体集積回路装置に関する。
【0002】
【従来の技術】
近年、プロセス分野の技術進歩によって半導体集積回路装置の高集積化が進んでおり、それに伴い半導体集積回路装置は、静電放電(以下の明細書中では「サージ」と称す)によってダメージを受けやすくなってきている。すなわち、外部接続用パッドから侵入するサージによって入力回路,出力回路,入出力回路や内部回路などを構成する素子が破壊されたり、素子の性能が低下したりする可能性が大きくなっている。そのため、外部接続用パッドに付随して、入力回路,出力回路及び入出力回路や内部回路をサージから保護するための保護回路が備えられていることが多くなってきている。
【0003】
図7は、入力信号が電源電圧より高い場合の、静電放電保護回路を有する従来の半導体集積回路装置の回路構成を示す電気回路図である。なお、ここでは、静電放電保護回路を入力回路に適用した場合を例に示している。
【0004】
図7に示すように、従来の半導体集積回路装置は、外部接続用パッド101と、静電放電保護回路102と、外部接続用パッド101と入力回路103との間に設けられたノード111と、入力回路103と、内部回路104とを備えている。静電放電保護回路102は、外部接続用パッド101と入力回路103との間に介設されており、外部接続用パッド101から侵入するサージによって入力回路103が損傷しないように保護している。
【0005】
静電放電保護回路102は、ノード111にドレインが接続された第1のNチャネル型MISトランジスタ107と、ソースが第1のNチャネル型MISトランジスタ107のドレインに接続された第2のNチャネル型MISトランジスタ108と、第1のNチャネル型MISトランジスタ107と第2のNチャネル型MISトランジスタ108との間に介設されたフローティングノード109とを有している。また、第1のNチャネル型MISトランジスタ107は、ゲートに電源電圧VDDを供給する電源が接続され、基板領域(p型ウェル)に接地が接続されている。そして、第2のNチャネル型MISトランジスタ108は、ゲート,ソース及び基板領域にそれぞれ接地が接続されている。
【0006】
以上のように構成された従来の半導体集積回路装置では、次のような動作により、入力回路103及び内部回路104がサージから保護されている。
【0007】
まず、電源電圧VDDを3.3V、動作時の入力回路103に入力される電圧を5.0Vとする。このとき、第1のNチャネル型MISトランジスタ107はオンになり、第2のNチャネル型MISトランジスタ108はオフになっている。そのため、入力された電流は接地に流れることなく入力回路103に入力される。
【0008】
次に、外部接続用パッド101から高電圧のサージが入力された場合には、第1のNチャネル型MISトランジスタ107のドレイン、基板、第2のNチャネル型MISトランジスタ108のソースはそれぞれN型,P型,N型の不純物を含んでいるので、一定以上の電圧がドレインに印加された時には、NPN型バイポーラトランジスタとして機能しサージは接地へと逃がされる。この結果、入力回路103は、サージの影響から免れる。なお、サージの電圧が負の場合は、基板(P型)、第1のNチャネル型MISトランジスタ107のドレイン(N型)の順方向ダイオードを介してサージの影響から免れる。
【0009】
以上のようにして、従来の静電放電保護回路102により、正常動作時には入力回路103に駆動電圧が供給され、サージが入力された時には高電圧電流の入力回路103への侵入が防止されていた。ここで、「従来の静電放電保護回路102」とは、従来の半導体集積回路装置に含まれる静電放電保護回路102のことを指す。
【0010】
また、従来の静電放電保護回路102においては、第1のNチャネル型MISトランジスタ107のゲートに電源電圧VDDが印加されているため、ゲート−ドレイン間のゲート絶縁膜にかかる電圧が1.7Vに低減されている。すなわち、第1のNチャネル型MISトランジスタ107のゲートに電源電圧VDDが印加されることで、ゲート酸化膜が絶縁破壊等の損傷を受けることが防止されている。また、フローティングノード109の電位もVDD−Vth1(Vth1は第1のNチャネル型MISトランジスタ107のしきい値電圧)となるので、第2のNチャネル型MISトランジスタ108のゲート絶縁膜が損傷を受けることもない。つまり、従来の静電放電保護回路102が2つのNチャネル型MISトランジスタから構成されていることで、電源電圧よりも高い入力電圧を許容している。
【0011】
なお、電源電圧VDDが入力回路に入力される電圧以下の場合には、ノード111と接地との間に介設されるNチャネル型MISトランジスタが1つだけであってもよい。
【0012】
ところで、半導体集積回路装置は、サージ破壊耐圧が保証されている必要があるため、ESD試験規格を満足する必要がある。近年、ESD試験規格として、MIL規格に代表される人体帯電モデル(HBM)のESD試験が世界標準になりつつあり、半導体集積回路装置は、このHBM試験規格をクリアする必要がある。
【0013】
図8(a),(b)は、それぞれ順に、HBM試験規格によるESD試験を行うための評価回路を示す電気回路図、及びMIL規格によるHBM放電波形規定を示す波形図である。
【0014】
図8(a)に示すように、ESD試験用の評価回路は、電圧可変型の充電用電源150と、充電用電源150に対して互いに直列に接続された被試験デバイス154,電流計156及び抵抗値R=1.5kΩを示す放電用抵抗体153と、被試験デバイス154と並列に設けられた容量C=100pFを有する充放電用キャパシタ151と、充放電用キャパシタ151の一方の電極に接続された切り換えスイッチ152とを有している。そして、切り換えスイッチ152によって、充放電用キャパシタ151が充電用電源150に接続されるか、放電用抵抗体153に接続されるかが切り換えられるようになっている。
【0015】
また、充放電用キャパシタ151の他方の電極は、充電用電源150の低電圧部及び被試験デバイス154に接続されている。そして、被試験デバイス154は、図7に示す外部接続用パッド101が放電用抵抗体153側に接続され、静電放電保護回路102の接地が充電用電源150のマイナス極に接続されるように設置される。
【0016】
この評価回路を用いたESD試験では、まず切り換えスイッチ152により、充放電用キャパシタ151の一方を充電用電源150のプラス側に接続すると、充電用電源150と充放電用キャパシタ151とを含む回路が閉回路になり、充電用電源150によって充放電用キャパシタ151の充電電圧が例えば4000Vになるように電荷が蓄積される。その後、切り換えスイッチ152により、充放電用キャパシタ151の一方の電極を放電用抵抗体153に接続すると、充放電用キャパシタ151,放電用抵抗体153及び被試験デバイス154を含む回路が閉回路になり、充放電用キャパシタ151に蓄積されている電荷が放電用抵抗体153を経て被試験デバイス154である半導体集積回路装置に印加される。なお、ESD試験においては、静電放電保護回路102への電源供給は行われない。
【0017】
この際の放電波形は、図8(b)に示すように、充放電用キャパシタ151を被試験デバイスに接続すると、サージ電流Idscは直線的に増加した後、下向きの弧を描いて減衰する。ここでは、立ち上がり時間Trが10nsで、減衰時間Tdが150nsの例を示している。ESD試験では、このような放電波形を有する電流を印加して被試験デバイスの良否を判断する。
【0018】
【発明が解決しようとする課題】
しかしながら、図7に示す従来の半導体集積回路装置に対して、HBM試験規格によるESD試験をした場合、ESD耐圧の低下が生じるという不具合があった。
【0019】
このESD耐圧の低下は以下のように説明できる。
【0020】
サージ印加時には、第1のNチャネル型MISトランジスタ107のゲート電位がカップリング容量により上昇して、第1のNチャネル型MISトランジスタ107がオンし、フローティングノード109の電位が上昇することで、第1のNチャネル型MISトランジスタ107のドレイン近傍の電位勾配が緩くなり、バイポーラトランジスタがオンするために必要な外部接続用パッド101の電位は上昇する。その結果、静電放電保護回路102や入力回路103や内部回路104が破壊され、ESD耐圧の低下を招いていた。
【0021】
本発明の目的は、HBM試験規格によるESD試験を満足し、ESD耐圧が向上した半導体集積回路装置を提供することにある。
【0022】
【課題を解決するための手段】
本発明の第1の半導体集積回路装置は、外部接続用パッドと、上記外部接続用パッドに接続された被保護回路と、上記外部接続用パッドと上記被保護回路との間に介設された第1のノードと、上記第1のノードに接続された静電放電保護回路とを備え、上記静電放電保護回路は、上記第1のノードと接地との間に順に直列に配置され、各々第1及び第2のゲートを有する第1のトランジスタ及び第2のトランジスタと、上記第1のゲートに接続され、ESD発生時には実使用時よりも上記第1のトランジスタのブレークダウン電圧が低くなるようにゲートバイアスを制御する第1のゲート制御回路と、上記第2のゲートに接続された第2のゲート制御回路とを有している。
【0023】
これにより、ESD試験時を含むESD発生時には実使用時よりも第1のトランジスタのブレークダウン電圧が低くなっており、高電圧電流を速やかに接地に逃がすことができるので、第1のトランジスタを含む静電放電保護回路が損傷を受けにくくなっている。また、ESD発生時に従来の装置のように、外部接続用パッドの電位が上がりすぎることがないので、被保護回路の損傷も防止されている。
【0024】
上記被保護回路は、入力回路、出力回路及び入出力回路のうちのいずれか1つの回路であることにより、ESD発生時には入力回路、出力回路及び入出力回路等の回路を保護することができる。
【0025】
上記第1のゲート制御回路は、ESD発生時には実使用時よりもゲートバイアスを下げるように制御することにより、特に第1及び第2のトランジスタが共にNチャネル型MISFETであるときに、高電圧電流から入力または出力回路や入出力回路を含む被保護回路を効果的に保護することができる。加えて、静電放電保護回路の損傷を抑えてサージ耐圧を向上させることができる。
【0026】
上記第1のトランジスタ及び上記第2のトランジスタが共にNチャネル型MISFETであることにより、上述のように、高電圧電流から入力または出力回路や入出力回路を含む被保護回路を効果的に保護することができる。
【0027】
上記第1のゲート制御回路は、キャパシタと、上記キャパシタと上記第1のゲートとの間に介設された第2のノードとを有し、上記第1のゲートは、上記キャパシタを挟んで接地に接続していることにより、高電圧電流が第1のトランジスタに印加される際に、キャパシタがゲートに誘起される電荷を吸収するので、ゲート電位が持ち上がるのを防ぐことができる。この結果、第1のトランジスタのブレークダウン電圧が下がり、静電放電保護回路及び被保護回路の損傷を防ぐことができる。
【0028】
上記第1のゲート制御回路は、上記第2のノードを介して上記第1のトランジスタのゲートに接続された電源電圧供給配線と、上記電源電圧供給配線と上記第2のノードとの間に介設された抵抗素子とをさらに有することにより、半導体集積回路装置の実使用時には第1のトランジスタをオンになるように制御するので、第2のトランジスタを別途オフにしておけば駆動電流が静電放電保護回路を流れることなく被保護回路にのみ電流が流れる。また、第1のトランジスタの第1のゲートに電圧が印加されているため、実使用時にゲート絶縁膜に過大な電圧がかかって損傷を受けることを防いでいる。
【0029】
本発明の第2の半導体集積回路装置は、外部接続用パッドと、上記外部接続用パッドに接続された被保護回路と、上記外部接続用パッドと上記被保護回路との間に介設された第1のノードと、上記第1のノードに接続された静電放電保護回路とを備え、上記静電放電保護回路は、上記第1のノード−接地間に順に直列に配置され、各々第1及び第2のゲートを有する第1のトランジスタ及び第2のトランジスタと、上記第1のゲートに接続された第1のゲート制御回路と、上記第2のゲートに接続され、ESD発生時には実使用時よりも上記第2のトランジスタのブレークダウン電圧が低くなるようにゲートバイアスを制御する第2のゲート制御回路とを有している。
【0030】
これにより、ESD発生時に第2のトランジスタのブレークダウン電圧が低くなっており、高電圧電流を速やかに接地に逃がすことができるので、第2のトランジスタを含む静電放電保護回路が損傷を受けにくくなっている。また、ESD発生時に従来の装置のように、外部接続用パッドの電位が上がりすぎることがないので、被保護回路の損傷も防止されている。
【0031】
上記被保護回路は、入力回路、出力回路及び入出力回路のうちのいずれか1つの回路であることにより、ESD発生時には入力回路、出力回路及び入出力回路等の回路を保護することができる。
【0032】
上記第2のゲート制御回路は、ESD発生時には実使用時よりもゲートバイアスを上げるように制御することにより、特に第1及び第2のトランジスタが共にNチャネル型MISFETであるときに、高電圧電流から被保護回路を効果的に保護することができる。加えて、静電放電保護回路の損傷を抑えてサージ耐圧を向上させることができる。
【0033】
上記第2のゲート制御回路は、上記第2のゲートに接続され、実使用時にESD発生時よりも上記第2のゲートに印加するゲートバイアスを下げるための低電圧供給手段と、ESD発生時に実使用時よりも上記第2のゲートに印加するゲートバイアスを上げるための昇圧手段とを有していることにより、実使用時には入力または出力回路に駆動電圧を印加し、ESDが発生して高電圧電流が流入したときには電流を速やかに接地に逃がすことができる。
【0034】
上記第1のトランジスタ及び上記第2のトランジスタが共にNチャネル型MISFETであることにより、上述のような高電圧電流からの保護効果を発揮することができる。
【0035】
上記昇圧手段は、接地と上記第2のゲートとの間に介設された第3のトランジスタであることにより、実使用時には第3のトランジスタが導通して第2のゲート電位が接地電位となり、ESD発生時には第3のトランジスタがオフとなって第2のゲート電位が持ち上がる。その結果、静電放電保護回路,入力または出力回路及び入出力回路を含む被保護回路の損傷を効果的に防ぐことができる。
【0036】
上記外部接続用パッドと上記被保護回路との間に介設された第2のノードをさらに備え、上記第2のゲート制御回路は、上記第2のゲートに接続された第3のノードと、接地と上記第3のノードとの間に介設された抵抗素子とをさらに有し、上記昇圧手段は、上記第2のノードと上記第3のノードとの間に配置されていることによってもESD発生時に静電放電保護回路,入力または出力回路及び入出力回路を含む被保護回路の損傷を効果的に防ぐことができる。
【0037】
上記昇圧手段はキャパシタであることにより、ESDが発生して高電圧が第2のトランジスタに印加される際に第2のゲートの電位を効果的に持ち上げることができる。このため、第2のトランジスタのブレークダウン電圧は下がり、入力または出力回路及び入出力回路を含む被保護回路の損傷を効果的に防ぐことができる。
【0038】
上記昇圧手段は、上記第2のノードから上記第3のノードに向かう方向を順方向としたときの、順方向に配置された少なくとも1つのダイオードであることによってもESD試験において高電圧が第2のトランジスタに印加される際に第2のゲートの電位を効果的に持ち上げることができる。このため、第2のトランジスタのブレークダウン電圧は下がり、入力または出力回路及び入出力回路を含む被保護回路の損傷を効果的に防ぐことができる。
【0039】
上記昇圧手段は、上記第2のノードから上記第3のノードに向かう方向を順方向としたときの、逆方向に配置された少なくとも1つのツェナーダイオードであることによっても上述のダイオードを用いるときと同様の効果が期待できる。
【0040】
上記第1のゲート制御回路は、ESD発生時には実使用時よりも上記第1のゲートに印加するゲートバイアスを下げるように制御することにより、ESD発生時に第1のゲートの電位が低く、第2のゲートの電位が高くなるので、上述した効果の相乗効果が期待でき、静電放電保護回路の損傷を抑えてサージ耐圧をさらに向上させることができる。加えて、高電圧電流から入力または出力回路や入出力回路を含む被保護回路をさらに効果的に保護することができる。
【0041】
【発明の実施の形態】
−改善すべき点についての検討−
まず、本願発明者らは、改善すべき点の検討を行った。
【0042】
先に説明したように、ESD試験後に半導体集積回路装置のESD耐圧が低下するのは、高電圧の印加時に外部接続用パッド101の電位が上がりすぎるためである。このため、静電放電保護回路や内部回路の破壊を防ぐためには、なるべく低い電圧で第1のNチャネル型MISトランジスタ107及び第2のNチャネル型MISトランジスタ108がブレークダウンして高電圧電流を接地へと逃がすことが好ましい。
【0043】
そこで、本願発明者らは、第1のNチャネル型MISトランジスタ107及び第2のNチャネル型MISトランジスタ108の制御に改善の余地があるかどうかを検討した。
【0044】
図5(a),(b)は、それぞれ一段構成の静電放電保護回路を示す回路図、及び二段構成の従来の静電放電保護回路を示す回路図である。同図(a),(b)に示す静電放電保護回路について、第1のNチャネル型MISトランジスタ107のゲートに印加する電圧VgがVg=0Vの場合とVg>0Vの場合とで回路を流れる電流と第1のNチャネル型MISトランジスタ107のドレイン−ソース間電圧との関係を調べた。その結果を図6(a),(b)に示す。ここで、「二段構成」とは、2つの互いに直列に接続されたMISトランジスタのソース及びドレインを介して外部接続用パッドと接地とが接続されている構成のことをいう。
【0045】
図6(a),(b)は、それぞれ図5(a)に示す一段構成の静電放電保護回路の電流電圧特性を示す図、及び図5(b)に示す二段構成の静電放電保護回路の電流電圧特性を示す図である。ここで、一段構成の静電放電保護回路を示すのは、従来の二段構成の静電放電保護回路と比較するためである。
【0046】
図6(a)に示すように、一段構成の静電放電保護回路においては、ブレークダウン電圧(バイポーラトランジスタがオンする電圧)Vt1は、Vg>0Vの場合よりもVg=0Vの場合で大きくなっている。
【0047】
一方、二段構成の静電放電保護回路の場合には、図6(b)に示すように、ブレークダウン電圧Vt1は、Vg=0Vの場合よりもVg>0Vの場合で大きくなっている。これは、一段構成の静電保護回路での結果と全く逆の結果である。回路を高電圧から保護するためには、上述のようにブレークダウン電圧が低い方が好ましいので、この結果から、静電保護回路が二段構成である場合には、第1のNチャネル型MISトランジスタ107のゲートに電圧を印加しない方が望ましいことが分かった。
【0048】
次に、同様にして、第2のNチャネル型MISトランジスタ108のゲートに印加する電圧VgをVg=0Vの場合とVg>0Vの場合とで静電放電保護回路の電流電圧特性を調べた結果、二段構成の場合、Vg>0の方がVg=0のときよりもブレークダウン電圧を下げられることが分かった。つまり、第2のNチャネル型MISトランジスタ108に関しては、ESD試験の際には、ゲートにある程度の電圧を印加する方が望ましいことが分かった。
【0049】
(第1の実施形態)
図1は、本発明の第1の実施形態に係る半導体集積回路装置の構成を示す電気回路図である。なお、ここでは、静電放電保護回路2を、入力回路に適用した場合を示している。
【0050】
図1に示すように、本実施形態の半導体集積回路装置は、外部接続用パッド1と、入力回路3と、外部接続用パッド1と入力回路3との間に設けられた静電放電保護回路2と、内部回路4と、外部接続用パッド1と入力回路3との間に介設されたノード21とを備えており、静電放電保護回路2によって外部接続用パッド1から侵入するサージから入力回路3及び内部回路4を保護するように構成されている。ここで、入力回路3は、内部回路4に入力される信号を制御するための回路である。
【0051】
静電放電保護回路2は、ドレインがノード21に接続された第1のNチャネル型MISトランジスタ7と、ドレインが第1のNチャネル型MISトランジスタ7のソースに接続され、ソースが接地に接続された第2のNチャネル型MISトランジスタ8と、第1のNチャネル型MISトランジスタ7と第2のNチャネル型MISトランジスタ8との間に介設されたフローティングノード9と、第1のNチャネル型MISトランジスタ7のゲートに接続された第1ゲート制御回路5と、第2のNチャネル型MISトランジスタ8のゲートに接続された第2ゲート制御回路6とを有している。そして、第1のNチャネル型MISトランジスタ7の基板領域(pウェル)は接地に接続され、第2のNチャネル型MISトランジスタ8の基板領域及びソースは、共に接地に接続されている。なお、ここでMISトランジスタの基板領域が接地されているのは、基板バイアス効果を避け、しきい値電圧の変動を防ぐためである。
【0052】
また、第1ゲート制御回路5は、ESD試験の際に第1のNチャネル型MISトランジスタ7のゲートを”L”(ロー)レベルに固定するものであり、第1のNチャネル型MISトランジスタ7のゲートに接続された出力ノード18と、一端が出力ノード18に接続され、他端が電源電圧VDDを供給する電源に接続された抵抗体10と、一方の電極が接地に接続され、これと対向する電極が出力ノード18に接続されたキャパシタ11とを有している。また、本実施形態において第2ゲート制御回路6は、接地と第2のNチャネル型MISトランジスタ8のゲートとの間に介設された出力ノードを有しており、第2のNチャネル型MISトランジスタ8のゲートを常に”L”レベルに保持している。
【0053】
本実施形態の半導体集積回路装置が従来と異なる点は、ESD試験の際に第1のNチャネル型MISトランジスタ7のゲート電位が”L”レベルに固定されている点である。このため、図8(a)に示す評価回路を用いて、図8(b)に示すようなHBM放電波形規定に基づいてESD試験を行う際には、静電放電保護回路2のブレークダウン電圧を低くすることができる。
【0054】
次に、静電放電保護回路2の動作について説明する。
【0055】
まず、動作時の入力回路に入力される電圧を5.0Vとし、電源電圧VDDを3.3Vとする。このとき、第1のNチャネル型MISトランジスタ7のゲートには抵抗体10により3.3Vより低く、該トランジスタをオンにするだけの電圧が印加される。また、第2のNチャネル型MISトランジスタ8のドレインには、第1のNチャネル型MISトランジスタ7のゲート電圧から第1のNチャネル型MISトランジスタ7のしきい値電圧Vth1を引いた電圧が印加される。ここで、第2のNチャネル型MISトランジスタ8のゲート電位は接地レベルであるため、第2のNチャネル型MISトランジスタ8はオフになっており、静電放電保護回路2に電流は流れない。また、第1のNチャネル型MISトランジスタ7のゲートには正電圧が印加されているので、ゲート絶縁膜が損傷を受けないようになっている。
【0056】
次に、ESD試験の際には、外部接続用パッド1からノード21を経由して第1のNチャネル型MISトランジスタ7のドレインにサージが印加される。ここで、ドレイン−ゲート間にカップリング容量が生じることによるゲート電位の持ち上がりは、接地に接続されたキャパシタ11を設けることでゲートに誘起される電荷をキャパシタ11が吸収することにより抑えられる。そのため、第1のNチャネル型MISトランジスタ7のブレークダウン電圧は従来の静電放電保護回路における電圧よりも低下し、そのため静電放電保護回路2,入力回路3及び内部回路4が高電圧により損傷を受けにくくなっている。
【0057】
このように、本実施形態の半導体集積回路装置においては、ESD試験の際に従来よりも確実に、入力回路3及び内部回路4が高電圧から保護されている。また、この際に静電放電保護回路が受ける損傷は、従来の半導体集積回路装置に比べて著しく低減されている。
【0058】
なお、上述のESD試験において、第1のNチャネル型MISトランジスタ7及び第2のNチャネル型MISトランジスタ8のそれぞれのゲート絶縁膜には一時的に高電圧が印加されるが、ブレークダウン電圧が従来よりも低くなっている上、高電圧が印加されるのは非常に短い時間であるのでゲート絶縁膜が絶縁破壊を起こすことはない。
【0059】
なお、チップ搬送時やワイヤボンディング時などのように、電源電圧が供給されないときに外部接続用パッド1からサージが入力される場合にも、ESD試験の時と同様の動作により入力回路3及び内部回路4は保護される。もちろん静電放電保護回路2も従来に比べて損傷を受けにくくなっている。
【0060】
以上のように、本実施形態の半導体集積回路装置によれば、ESD試験時に静電放電保護回路2,入力回路3及び内部回路4の損傷を防ぐことができる。また、静電気等のサージが入力された場合のESD耐圧を従来の半導体集積回路装置よりも向上させることができる。
【0061】
なお、本実施形態の半導体集積回路装置において、外部接続用パッド1と内部回路4との間に入力回路3が配置された構成であったが、入力回路3に代えて出力回路や入出力回路であってもよい。出力回路が配置されているときは、通常動作時には内部回路4からの出力信号が出力回路を経て外部接続用パッド1へと伝達される点が異なるが、静電放電保護回路2の配置及び構成は入力回路3が配置された場合と同様である。
【0062】
なお、本実施形態の半導体集積回路装置中の静電放電保護回路2において、電源に接続された抵抗体10が設けられていたが、特に設けなくても第1のNチャネル型MISトランジスタ7のゲートは低電位に保たれるので、ESD試験の際に各回路の損傷を低減する効果は変わらない。
【0063】
また、本実施形態の半導体集積回路装置では、第1ゲート制御回路5に片方の電極が接地に接続されたキャパシタ11が設けられていたが、第1のNチャネル型MISトランジスタ7のゲート電位を低電位に固定するためには、キャパシタ11に限らず容量を生じる素子であれば用いることができる。例えば、電源電圧VDDの電源から接地へ向かう方向を順方向とするとき、キャパシタ11に代えて逆向きのダイオードを用いてもよい。
【0064】
なお、本実施形態の半導体集積回路装置においては、電源電圧VDDよりも入力回路3に入力される電圧の方が高い例について説明したが、電源電圧VDDの方が入力回路3に入力される電圧よりも高い場合にも同様の構成の静電放電保護回路2を用いることができる。また、外部接続用パッド1と入力回路3との間に静電放電保護回路2を複数個設けてもよい。
【0065】
なお、以上では、外部接続用パッド1に正電圧のサージが入る場合について説明したが、本実施形態の静電放電保護回路は、サージが負電圧であっても速やかに接地に逃がし、内部回路を保護することができる。
【0066】
(第2の実施形態)
本発明の第2の実施形態として、第1の実施形態とは第2ゲート制御回路6の構成が異なっている静電放電保護回路2を備える半導体集積回路装置の例を説明する。
【0067】
図2は、本発明の第2の実施形態に係る半導体集積回路装置の構成を示す電気回路図である。なお、ここでは、静電放電保護回路を、入力回路に適用した例を示す。
【0068】
図2に示すように、本実施形態の半導体集積回路装置は、外部接続用パッド1と、入力回路3と、外部接続用パッド1と入力回路3との間に設けられた静電放電保護回路2と、内部回路4と、外部接続用パッド1と入力回路3との間に介設されたノード21とを備えており、静電放電保護回路2によって外部接続用パッド1から侵入するサージから入力回路3及び内部回路4を保護するように構成されている。
【0069】
静電放電保護回路2は、ドレインがノード21に接続された第1のNチャネル型MISトランジスタ7と、ドレインが第1のNチャネル型MISトランジスタ7のソースに接続され、ソースが接地に接続された第2のNチャネル型MISトランジスタ8と、第1のNチャネル型MISトランジスタ7と第2のNチャネル型MISトランジスタ8との間に介設されたフローティングノード9と、第1のNチャネル型MISトランジスタ7のゲートに接続された第1ゲート制御回路5と、第2のNチャネル型MISトランジスタ8のゲートに接続された第2ゲート制御回路6とを有している。そして、第1のNチャネル型MISトランジスタ7の基板領域(pウェル)は接地に接続され、第2のNチャネル型MISトランジスタ8の基板領域及びソースは、共に接地に接続されている。
【0070】
また、第1ゲート制御回路5は、第1の実施形態と同一の構成であり、ESD試験の際に第1のNチャネル型MISトランジスタ7のゲートを”L”(ロー)レベルに固定するものである。すなわち、第1ゲート制御回路5は、第1のNチャネル型MISトランジスタ7のゲートに接続された出力ノード18と、一端が出力ノード18に接続され、他端が電源電圧VDDを供給する電源に接続された抵抗体10と、一方の電極が接地に接続され、これと対向する電極が出力ノード18に接続されたキャパシタ11とを有している。
【0071】
一方、本実施形態の半導体集積回路装置において、第2ゲート制御回路6は、ESD試験の際に第2のNチャネル型MISトランジスタ8のゲート電位を”H(ハイ)”レベルに上がりやすくするための回路であり、第1の実施形態における第2ゲート制御回路とは異なっている。すなわち、本実施形態の第2ゲート制御回路6は、ドレインが第2のNチャネル型MISトランジスタ8のゲートに接続された第3のNチャネル型MISトランジスタ12と、一端が電源電圧VDDを供給する電源に接続され、他端が第3のNチャネル型MISトランジスタ12のゲートに接続された抵抗体13と、第3のNチャネル型MISトランジスタ12のドレインと第2のNチャネル型MISトランジスタ8のゲートとの間に介設された出力ノードとを有している。そして、第3のNチャネル型MISトランジスタ12のソース及び基板領域(pウェル)は、接地に接続されている。
【0072】
次に、静電放電保護回路2の動作について説明する。
【0073】
まず、動作時の入力回路に入力される電圧を5.0Vとし、電源電圧VDDを3.3Vとする。このとき、第1のNチャネル型MISトランジスタ7はオンになっており、第2のNチャネル型MISトランジスタ8のドレインには、第1のNチャネル型MISトランジスタ7のゲート電圧から第1のNチャネル型MISトランジスタ7のしきい値電圧Vth1を引いた電圧が印加される。ここで、第3のNチャネル型MISトランジスタ12はオンになっているため、出力ノード19及び第2のNチャネル型MISトランジスタ8のゲートの電位は、接地電位となっている。そのため、第2のNチャネル型MISトランジスタ8はオフになっており、静電放電保護回路2に電流は流れない。
【0074】
次に、ESD発生時には、外部接続用パッド1からノード21を経由して第1のNチャネル型MISトランジスタ7のドレインにサージが印加される。ここで、接地に接続されたキャパシタ11を設けることでゲートに誘起される電荷をキャパシタ11が吸収するので、ドレイン−ゲート間にカップリング容量が生じることによるゲート電位の持ち上がりは抑えられる。また、ESD印加時はVDDに電源投入されておらず、第3のNチャネル型MISトランジスタ12はオフとなっている。よって、第2のNチャネル型MISトランジスタ8のゲートはフローティング状態であり、第2のNチャネル型MISトランジスタ8のチャネルが開き、フローティングノード9の電位をゼロに近づけ、第1のNチャネル型MISトランジスタ7のドレイン近傍の電位勾配が大きくなる。そのため、第1のNチャネル型MISトランジスタ7のブレークダウン電圧は従来の静電放電保護回路における電圧よりも低下し、静電放電保護回路2、入力回路3及び内部回路4が高電圧により損傷を受けにくくなっている。
【0075】
なお、チップ搬送時やワイヤボンディング時などのように、電源電圧が供給されないときに外部接続用パッド1からサージが入力される場合にも、ESD試験の時と同様の動作により静電放電保護回路2,入力回路3及び内部回路4は従来に比べて損傷を受けにくくなっている。
【0076】
以上のように、本実施形態の半導体集積回路装置においては、ESD試験時及びサージ入力時に第1ゲート制御回路5が第1のNチャネル型MISトランジスタ7のゲート電位を”L”レベルに保ち、第2ゲート制御回路6が第2のNチャネル型MISトランジスタ8のゲート電位を”H”レベルになりやすくするため、両制御の相乗効果が期待でき、静電放電保護回路2,入力回路3及び内部回路4の損傷を第1の実施形態よりも効果的に防ぐことができる。
【0077】
なお、本実施形態の半導体集積回路装置においては、ESD試験時に第1のNチャネル型MISトランジスタ7のゲート電位を”L”レベルに保ち、第2のNチャネル型MISトランジスタ8のゲート電位を”H”になりやすくしていたが、第1のNチャネル型MISトランジスタ7のゲート電位を従来と同様に”H”レベルに保持しても、従来に比べて静電放電保護回路2,入力回路3及び内部回路4の損傷を抑えられる。
【0078】
なお、本実施形態の半導体集積回路装置の静電放電保護回路2において、第2ゲート制御回路6は、図2に示す構成によって装置の動作時に第2のNチャネル型MISトランジスタ8のゲート電位を”L”にし、ESD試験時またはサージ入力時には該ゲート電位を”H”レベルになりやすくするよう制御しているが、これ以外でも同様の制御を行える回路構成であればよい。例えば、第3のNチャネル型トランジスタ12に代えて、出力を出力ノード19に接続したCMOSを用いてもよい。また、抵抗体13は、必要に応じて配置すればよく、省いても制御に支障を来すことはない。
【0079】
また、本実施形態の半導体集積回路装置は、外部接続用パッド1と内部回路4との間に入力回路3が配置された構成を有していたが、第1の実施形態と同様に、入力回路3に代えて出力回路や入出力回路が設けられていてもよい。
【0080】
また、本実施形態の半導体集積回路装置においては、必要に応じて外部接続用パッド1と入力回路3との間に静電放電保護回路2を複数個設けてもよい。
【0081】
なお、本実施形態の半導体集積回路装置に含まれる静電放電保護回路2は、第1の実施形態のものと同様に、正電圧のサージだけでなく負電圧のサージからも内部回路を保護することができる。
【0082】
(第3の実施形態)
本発明の第3の実施形態として、第1及び第2の実施形態とは第2ゲート制御回路6の構成が異なっている半導体集積回路装置の例を説明する。
【0083】
図3は、本発明の第3の実施形態に係る半導体集積回路装置の構成を示す電気回路図である。なお、ここでは、静電放電保護回路を入力回路に適用した場合を例に示す。
【0084】
図3に示すように、本実施形態の半導体集積回路装置は、外部接続用パッド1と、入力回路3と、外部接続用パッド1と入力回路3との間に設けられた静電放電保護回路2と、内部回路4と、外部接続用パッド1と入力回路3との間に介設されたノード21,22とを備えており、静電放電保護回路2によって外部接続用パッド1から侵入するサージから入力回路3及び内部回路4を保護するように構成されている。
【0085】
静電放電保護回路2は、ドレインがノード21に接続された第1のNチャネル型MISトランジスタ7と、ドレインが第1のNチャネル型MISトランジスタ7のソースに接続され、ソースが接地に接続された第2のNチャネル型MISトランジスタ8と、第1のNチャネル型MISトランジスタ7と第2のNチャネル型MISトランジスタ8との間に介設されたフローティングノード9と、第1のNチャネル型MISトランジスタ7のゲートに接続された第1ゲート制御回路5と、第2のNチャネル型MISトランジスタ8のゲートに接続された第2ゲート制御回路6とを有している。そして、第1のNチャネル型MISトランジスタ7の基板領域(pウェル)は接地に接続され、第2のNチャネル型MISトランジスタ8の基板領域及びソースは、共に接地に接続されている。
【0086】
また、第1ゲート制御回路5は、第1及び第2の実施形態と同一の構成であり、ESD試験の際に第1のNチャネル型MISトランジスタ7のゲートを”L”(ロー)レベルに固定するものである。すなわち、第1ゲート制御回路5は、第1のNチャネル型MISトランジスタ7のゲートに接続された出力ノード18と、一端が出力ノード18に接続され、他端が電源電圧VDDを供給する電源に接続された抵抗体10と、一方の電極が接地に接続され、これと対向する電極が出力ノード18に接続されたキャパシタ11とを有している。
【0087】
また、第2ゲート制御回路6は、ESD試験時における第2のNチャネル型MISトランジスタ8のゲート電位を”H”レベルに固定するためのものであるが、第2の実施形態とは異なる構成となっている。具体的には、本実施形態の第2ゲート制御回路6は、一端が接地に接続され、他端が第2のNチャネル型MISトランジスタ8のゲートに接続された抵抗体15と、抵抗体15と第2のNチャネル型MISトランジスタ8のゲートとの間に介設された出力ノード19と、一端がノード22に接続され、他端が出力ノード19を介して第2のNチャネル型MISトランジスタ8のゲートに接続されたキャパシタ14とを備えている。
【0088】
次に、静電放電保護回路2の動作について説明する。
【0089】
まず、動作時の入力回路に入力される電圧を5.0Vとし、電源電圧VDDを3.3Vとする。このとき、第1のNチャネル型MISトランジスタ7はオンになっており、第2のNチャネル型MISトランジスタ8のドレインには、第1のNチャネル型MISトランジスタ7のゲート電圧から第1のNチャネル型MISトランジスタ7のしきい値電圧Vth1を引いた電圧が印加される。ここで、第2のNチャネル型MISトランジスタ8のゲートは抵抗体15を介して接地に接続されているため、該ゲートの電位は”L”レベルになっている。そのため、第2のNチャネル型MISトランジスタ8はオフになっており、静電放電保護回路2に電流は流れない。
【0090】
次に、ESD発生時には、外部接続用パッド1からノード21を経由して第1のNチャネル型MISトランジスタ7のドレインにサージが印加される。ここで、接地に接続されたキャパシタ11を設けることでゲートに誘起される電荷をキャパシタ11が吸収するため、ドレイン−ゲート間にカップリング容量が生じることによるゲート電位の持ち上がりは抑えられる。また、この時、キャパシタ14にもノード22を介して高電圧が印加されるため、第2のNチャネル型MISトランジスタ8のゲート電位は”H”レベルに固定されやすくなり、第2の実施形態よりも第2のNチャネル型MISトランジスタ8のチャネルが開き、フローティングノード9の電位をゼロに近づけ、第1のNチャネル型MISトランジスタ7のドレイン近傍の電位勾配が大きくなる。そのため、第1のNチャネル型MISトランジスタ7のブレークダウン電圧は従来の静電放電保護回路における電圧よりも低下し、静電放電保護回路2、入力回路3及び内部回路4が高電圧により損傷を受けにくくなっている。
【0091】
なお、チップ搬送時やワイヤボンディング時などのように、電源電圧が供給されないときに外部接続用パッド1からサージが入力される場合にも、ESD試験の時と同様の動作により静電放電保護回路2、入力回路3及び内部回路4は従来に比べて損傷を受けにくくなっている。
【0092】
以上のように、本実施形態の半導体集積回路装置においては、ESD試験時及びサージ入力時に第1ゲート制御回路5が第1のNチャネル型MISトランジスタ7のゲート電位を”L”レベルに保ち、第2ゲート制御回路6が第2のNチャネル型MISトランジスタ8のゲート電位を”H”レベルに固定するため、両制御の相乗効果が期待でき、静電放電保護回路2,入力回路3及び内部回路4の損傷を第1の実施形態よりも効果的に防ぐことができる。
【0093】
なお、本実施形態の半導体集積回路装置の静電放電保護回路2において、第1ゲート制御回路5の構成を従来の半導体集積回路装置における構成と置き換えて、ESD試験時に第1のNチャネル型MISトランジスタのゲート電位が”H”レベルに固定されるような構成にした場合にも、従来の半導体集積回路装置と比べて静電放電保護回路2,入力回路3及び内部回路4の損傷を抑え、ESD耐圧を向上させることができる。
【0094】
なお、本実施形態の半導体集積回路装置においても第1及び第2の実施形態同様、入力回路3を出力回路あるいは入出力回路に置き換えた構成をとることができる。
【0095】
(第4の実施形態)
本発明の第4の実施形態として、第1〜第3の実施形態とは第2ゲート制御回路6の構成のみが異なっている半導体集積回路装置の例を説明する。
【0096】
図4は、本発明の第4の実施形態に係る半導体集積回路装置の構成を示す電気回路図である。なお、ここでは、静電放電保護回路を入力回路に適用した場合を例に示している。
【0097】
外部接続用パッド1と、入力回路3と、外部接続用パッド1と入力回路3との間に設けられた静電放電保護回路2と、内部回路4と、外部接続用パッド1と入力回路3との間に介設されたノード21,22とを備えており、静電放電保護回路2によって外部接続用パッド1から侵入するサージから入力回路3及び内部回路4を保護するように構成されている。
【0098】
静電放電保護回路2は、ドレインがノード21に接続された第1のNチャネル型MISトランジスタ7と、ドレインが第1のNチャネル型MISトランジスタ7のソースに接続され、ソースが接地に接続された第2のNチャネル型MISトランジスタ8と、第1のNチャネル型MISトランジスタ7と第2のNチャネル型MISトランジスタ8との間に介設されたフローティングノード9と、第1のNチャネル型MISトランジスタ7のゲートに接続された第1ゲート制御回路5と、第2のNチャネル型MISトランジスタ8のゲートに接続された第2ゲート制御回路6とを有している。そして、第1のNチャネル型MISトランジスタ7の基板領域(pウェル)は接地に接続され、第2のNチャネル型MISトランジスタ8の基板領域及びソースは、共に接地に接続されている。
【0099】
また、第1ゲート制御回路5は、第1〜第3の実施形態と同一の構成であり、ESD試験の際に第1のNチャネル型MISトランジスタ7のゲートを”L”(ロー)レベルに固定するものである。
【0100】
また、第2ゲート制御回路6は、ESD試験時における第2のNチャネル型MISトランジスタ8のゲート電位を”H”レベルに固定するための回路であり、第3の実施形態におけるキャパシタ14を互いに直列接続した複数のダイオード16と置き換えた構成をとっている。具体的には、本実施形態の第2ゲート制御回路6は、一端が接地に接続され、他端が第2のNチャネル型MISトランジスタ8のゲートに接続された抵抗体17と、抵抗体17と第2のNチャネル型MISトランジスタ8のゲートとの間に介設された出力ノード19と、ノード22と出力ノード19との間に介設され、ノード22から出力ノード19に向かう方向を順方向とする複数のダイオード16とを備えている。また、複数のダイオード16は、例えば、入力された電流の電圧を0.7Vだけ降圧させるダイオードが7つ以上互いに直列に接続されたものである。
【0101】
本実施形態の半導体集積回路装置において、静電放電保護回路2中の第1のNチャネル型MISトランジスタ7及び第2のNチャネル型MISトランジスタ8のゲート電位は、内部回路4の通常動作時にはそれぞれ”H”レベル及び”L”レベルに固定され、ESD試験時にはそれぞれ”L”レベル及び”H”レベルに固定されている。このような第1のNチャネル型MISトランジスタ7及び第2のNチャネル型MISトランジスタ8の制御は、第3の実施形態と同様の制御である。従って、ここでは第3の実施形態と異なる複数のダイオード16の動作を主に説明する。
【0102】
まず、通常動作時には外部接続用パッド1から5.0Vの電圧が供給される。すると、第1のNチャネル型MISトランジスタ7はオンとなり、フローティングノード9を経由して第2のNチャネル型MISトランジスタ8のドレインに電流が達する。このとき、複数のダイオード16の入力側にはノード22を経由して5.0Vの電圧が印加されるが、複数のダイオード16の出力側では、7つのダイオードで7×0.7=4.9Vだけ電圧降下され、出力される電流も非常に小さくなっている。なお、ダイオードの数が8つ以上のときは、複数のダイオード16で電流が遮断される。このとき、第2のNチャネル型MISトランジスタ8のゲートは抵抗体17を介して接地に接続されているため、該ゲート電位は”L”レベルに固定される。この結果、第2のNチャネル型MISトランジスタ8はオフとなり、電流は静電放電保護回路2には流れない。
【0103】
次に、ESD発生時には、外部接続用パッド1からノード21を経由して第1のNチャネル型MISトランジスタ7のドレインにサージが印加される。ここで、接地に接続されたキャパシタ11を設けることでゲートに誘起される電荷をキャパシタ11が吸収するため、ドレイン−ゲート間にカップリング容量が生じることによるゲート電位の持ち上がりが抑えられる。また、この時、複数のダイオード16のアノード側にもノード22を介して高電圧が印加され、カソード側の電位も上昇し、第2のNチャネル型MISトランジスタ8のゲート電位は”H”レベルに固定されやすくなり、第3の実施形態と同様に第2のNチャネル型MISトランジスタ8のチャネルが開きフローティングノード9の電位をゼロに近づけ、第1のNチャネル型MISトランジスタ7のドレイン近傍の電位勾配が大きくなる。そのため、第1のNチャネル型MISトランジスタ7のブレークダウン電圧は従来の静電放電保護回路における電圧よりも低下し、静電放電保護回路2、入力回路3及び内部回路4が高電圧により損傷を受けにくくなっている。
【0104】
また、サージが外部接続用パッド1から侵入した場合にも、ESD試験時と同様の動作により入力回路3及び内部回路4をより効果的にサージから保護することができる。つまり、本実施形態の半導体集積回路装置は、サージに対する耐圧性も従来の半導体集積回路装置に比べて大幅に向上している。
【0105】
なお、以上で説明した複数のダイオード16としては、pnダイオードやpinダイオードなど、整流機能を有するダイオードが好ましく用いられる。また、直列に接続するダイオードの数もダイオードの種類や通常動作時に印加される電圧に応じて適宜変えてよい。
【0106】
また、複数のダイオード16に代えて、出力側をノード22に接続したツェナーダイオードを設けても半導体集積回路装置のESD耐圧を向上させることができる。
【0107】
また、第2ゲート制御回路6の構成は図4に示すような構成でなくてもよく、少なくとも通常動作時に第2のNチャネル型MISトランジスタ8のゲート電位を”L”レベルに固定する接地手段と、ESD試験時及びサージ侵入時に第2のNチャネル型MISトランジスタ8のゲート電位を”H”レベルにする高電圧源と、通常動作時に該高電圧源と第2のNチャネル型MISトランジスタ8のゲートとの間の電気的接続を遮断する素子とを有する構成であればよい。
【0108】
なお、本実施形態の半導体集積回路装置の静電放電保護回路2において、第1ゲート制御回路5の構成を従来の半導体集積回路装置における構成と置き換えて、ESD試験時に第1のNチャネル型MISトランジスタのゲート電位が”H”レベルに固定されるような構成にした場合にも、従来の半導体集積回路装置と比べて静電放電保護回路2,入力回路3及び内部回路4の損傷を抑え、ESD耐圧を向上させることができる。
【0109】
なお、本実施形態の半導体集積回路装置においても第1〜第3の実施形態同様、入力回路3を出力回路あるいは入出力回路に置き換えた構成をとることができる。
【0110】
【発明の効果】
本発明の半導体集積回路装置によれば、特に電源電圧よりも高い電圧の入力信号を扱う場合、静電放電保護回路2に含まれる第1のNチャネル型MISトランジスタ7及び第2のNチャネル型MISトランジスタ8のゲート電位を、通常動作時にはそれぞれ”H”レベル及び”L”レベルに固定し、ESD試験時にはそれぞれ”L”レベル及び”H”レベルに固定することで、静電放電保護回路のブレークダウン電圧を低くすることができる。その結果、入力回路や内部回路に過電圧が印加されるのを防ぐことができ、ESD試験後のESD耐圧の低下を防止することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る半導体集積回路装置の構成を示す電気回路図である。
【図2】本発明の第2の実施形態に係る半導体集積回路装置の構成を示す電気回路図である。
【図3】本発明の第3の実施形態に係る半導体集積回路装置の構成を示す電気回路図である。
【図4】本発明の第4の実施形態に係る半導体集積回路装置の構成を示す電気回路図である。
【図5】(a),(b)は、それぞれ一段構成の静電放電保護回路を示す回路図、及び二段構成の従来の静電放電保護回路を示す回路図である。
【図6】(a),(b)は、それぞれ図5(a)に示す一段構成の静電放電保護回路の電流電圧特性を示す図、及び図5(b)に示す二段構成の静電放電保護回路の電流電圧特性を示す図である。
【図7】静電放電保護回路を有する従来の半導体集積回路装置の回路構成を示す電気回路図である。
【図8】(a),(b)は、それぞれ順に、HBM試験規格によるESD試験を行うための評価回路の電気回路図、及びMIL規格によるHBM放電波形規定を示す波形図である。
【符号の説明】
1 外部接続用パッド
2 静電放電保護回路
3 入力回路
4 内部回路
5 第1ゲート制御回路
6 第2ゲート制御回路
7 第1のNチャネル型MISトランジスタ
8 第2のNチャネル型MISトランジスタ
9 フローティングノード
10,13,15,17 抵抗体
11,14 キャパシタ
12 第3のNチャネル型MISトランジスタ
16 複数のダイオード
18,19 出力ノード
21,22 ノード

Claims (17)

  1. 外部接続用パッドと、
    上記外部接続用パッドに接続された被保護回路と、
    上記外部接続用パッドと上記被保護回路との間に介設された第1のノードと、
    上記第1のノードに接続された静電放電保護回路と
    を備え、
    上記静電放電保護回路は、
    上記第1のノードと接地との間に順に直列に配置され、各々第1及び第2のゲートを有する第1のトランジスタ及び第2のトランジスタと、
    上記第1のゲートに接続され、ESD発生時には実使用時よりも上記第1のトランジスタのブレークダウン電圧が低くなるようにゲートバイアスを制御する第1のゲート制御回路と、
    上記第2のゲートに接続された第2のゲート制御回路とを有することを特徴とする半導体集積回路装置。
  2. 請求項1に記載の半導体集積回路装置において、
    上記被保護回路は、入力回路、出力回路及び入出力回路のうちのいずれか1つの回路であることを特徴とする半導体集積回路装置。
  3. 請求項1または2に記載の半導体集積回路装置において、
    上記第1のゲート制御回路は、ESD発生時には実使用時よりもゲートバイアスを下げるように制御することを特徴とする半導体集積回路装置。
  4. 請求項1〜3のうちいずれか1つに記載の半導体集積回路装置において、
    上記第1のトランジスタ及び上記第2のトランジスタが共にNチャネル型MISFETであることを特徴とする半導体集積回路装置。
  5. 請求項1〜4のうちいずれか1つに記載の半導体集積回路装置において、
    上記第1のゲート制御回路は、キャパシタと、上記キャパシタと上記第1のゲートとの間に介設された第2のノードとを有し、
    上記第1のゲートは、上記キャパシタを挟んで接地に接続していることを特徴とする半導体集積回路装置。
  6. 請求項5に記載の半導体集積回路装置において、
    上記第1のゲート制御回路は、上記第2のノードを介して上記第1のトランジスタのゲートに接続された電源電圧供給配線と、
    上記電源電圧供給配線と上記第2のノードとの間に介設された抵抗素子と
    をさらに有することを特徴とする半導体集積回路装置。
  7. 外部接続用パッドと、
    上記外部接続用パッドに接続された被保護回路と、
    上記外部接続用パッドと上記被保護回路との間に介設された第1のノードと、
    上記第1のノードに接続された静電放電保護回路と
    を備え、
    上記静電放電保護回路は、
    上記第1のノードと接地との間に順に直列に配置され、各々第1及び第2のゲートを有する第1のトランジスタ及び第2のトランジスタと、
    上記第1のゲートに接続された第1のゲート制御回路と、
    上記第2のゲートに接続され、ESD発生時には実使用時よりも上記第1のトランジスタのブレークダウン電圧が低くなるようにゲートバイアスを制御する第2のゲート制御回路とを有することを特徴とする半導体集積回路装置。
  8. 請求項7に記載の半導体集積回路装置において、
    上記被保護回路は、入力回路、出力回路及び入出力回路のうちのいずれか1つの回路であることを特徴とする半導体集積回路装置。
  9. 請求項7または8に記載の半導体集積回路装置において、
    上記第2のゲート制御回路は、ESD発生時には実使用時よりもゲートバイアスを上げるように制御することを特徴とする半導体集積回路装置。
  10. 請求項7〜のうちいずれか1つに記載の半導体集積回路装置において、
    上記第1のトランジスタ及び上記第2のトランジスタが共にNチャネル型MISFETであることを特徴とする半導体集積回路装置。
  11. 請求項7〜10のうちいずれか1つに記載の半導体集積回路装置において、
    上記第2のゲート制御回路は、
    上記第2のゲートに接続され、実使用時にESD発生時よりも上記第2のゲートに印加するゲートバイアスを下げるための低電圧供給手段と、
    ESD発生時に実使用時よりも上記第2のゲートに印加するゲートバイアスを上げるための昇圧手段とを有していることを特徴とする半導体集積回路装置。
  12. 請求項11に記載の半導体集積回路装置において、
    上記低電圧供給手段及び上記昇圧手段は、
    接地と上記第2のゲートとの間に介設され、実使用時にはオンとなり、ESD発生時にはオフとなるように制御される第3のトランジスタであることを特徴とする半導体集積回路装置。
  13. 請求項11に記載の半導体集積回路装置において、
    上記外部接続用パッドと上記被保護回路との間に介設された第2のノードと、
    上記第2のゲートに接続された第3のノードとをさらに備え、
    上記低電圧供給手段は、接地と上記第3のノードとの間に介設された抵抗素子であり、
    上記昇圧手段は、上記第2のノードと上記第3のノードとの間に配置されていることを特徴とする半導体集積回路装置。
  14. 請求項13に記載の半導体集積回路装置において、
    上記昇圧手段はキャパシタであることを特徴とする半導体集積回路装置。
  15. 請求項13に記載の半導体集積回路装置において、
    上記昇圧手段は、上記第2のノードから上記第3のノードに向かう方向を順方向としたときの、順方向に配置された少なくとも1つのダイオードであることを特徴とする半導体集積回路装置。
  16. 請求項13に記載の半導体集積回路装置において、
    上記昇圧手段は、上記第2のノードから上記第3のノードに向かう方向を順方向としたときの、逆方向に配置された少なくとも1つのツェナーダイオードであることを特徴とする半導体集積回路装置。
  17. 請求項7〜16のうちいずれか1つに記載の半導体集積回路装置において、
    上記第1のゲート制御回路は、ESD発生時には実使用時よりも上記第1のゲートに印加するゲートバイアスを下げるように制御することを特徴とする半導体集積回路装置。
JP2002062400A 2002-03-07 2002-03-07 半導体集積回路装置 Expired - Fee Related JP3901549B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002062400A JP3901549B2 (ja) 2002-03-07 2002-03-07 半導体集積回路装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002062400A JP3901549B2 (ja) 2002-03-07 2002-03-07 半導体集積回路装置

Publications (2)

Publication Number Publication Date
JP2003264233A JP2003264233A (ja) 2003-09-19
JP3901549B2 true JP3901549B2 (ja) 2007-04-04

Family

ID=29196197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002062400A Expired - Fee Related JP3901549B2 (ja) 2002-03-07 2002-03-07 半導体集積回路装置

Country Status (1)

Country Link
JP (1) JP3901549B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3949647B2 (ja) * 2003-12-04 2007-07-25 Necエレクトロニクス株式会社 半導体集積回路装置
KR100688531B1 (ko) * 2005-02-14 2007-03-02 삼성전자주식회사 정전기 전압에 대해서도 안정적인 고전압 내성을 갖는 입출력 회로
KR101633858B1 (ko) 2009-02-17 2016-06-28 삼성전자주식회사 패드인터페이스회로 및 패드인터페이스회로 신뢰성 향상방법
US8760827B2 (en) * 2009-04-15 2014-06-24 International Business Machines Corporation Robust ESD protection circuit, method and design structure for tolerant and failsafe designs
CN103412216B (zh) * 2013-07-31 2016-03-16 格科微电子(上海)有限公司 静电放电检测电路及处理系统
KR102134605B1 (ko) * 2014-04-04 2020-07-17 매크로닉스 인터내셔널 컴퍼니 리미티드 안테나 효과 방전 회로 및 제조 방법
JP6405986B2 (ja) * 2014-12-22 2018-10-17 セイコーエプソン株式会社 静電気保護回路及び半導体集積回路装置
JP6398696B2 (ja) * 2014-12-22 2018-10-03 セイコーエプソン株式会社 静電気保護回路及び半導体集積回路装置

Also Published As

Publication number Publication date
JP2003264233A (ja) 2003-09-19

Similar Documents

Publication Publication Date Title
US7280328B2 (en) Semiconductor integrated circuit device
US9209620B2 (en) Combination ESD protection circuits and methods
US7295411B2 (en) Semiconductor integrated circuit device
US7233467B2 (en) Method and apparatus for protecting a gate oxide using source/bulk pumping
US7755870B2 (en) Semiconductor integrated circuit device
US7274546B2 (en) Apparatus and method for improved triggering and leakage current control of ESD clamping devices
US20070047162A1 (en) Electrostatic protection circuit
US8995101B2 (en) Electrostatic discharge protection circuit
US6927957B1 (en) Electrostatic discharge clamp
US11114848B2 (en) ESD protection charge pump active clamp for low-leakage applications
US20120236447A1 (en) Input-output esd protection
US20170163032A1 (en) Area-efficient active-fet esd protection circuit
US10320185B2 (en) Integrated circuit with protection from transient electrical stress events and method therefor
US20030016480A1 (en) Semiconductor integrated circuit device
JP3901549B2 (ja) 半導体集積回路装置
US11728643B2 (en) Level sensing shut-off for a rate-triggered electrostatic discharge protection circuit
WO2016017386A1 (ja) 保護素子、保護回路及び半導体集積回路
US10749336B2 (en) ESD protection circuit with passive trigger voltage controlled shut-off
JP3780896B2 (ja) 半導体集積回路装置
JP3997857B2 (ja) 半導体集積回路装置
JP3025373B2 (ja) 半導体集積回路
CN104183595B (zh) 栅极介电层保护
JPH01124251A (ja) 半導体集積回路装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees