JP3900914B2 - 機関冷却水温度に基づく機関温度検出方法 - Google Patents
機関冷却水温度に基づく機関温度検出方法 Download PDFInfo
- Publication number
- JP3900914B2 JP3900914B2 JP2001373802A JP2001373802A JP3900914B2 JP 3900914 B2 JP3900914 B2 JP 3900914B2 JP 2001373802 A JP2001373802 A JP 2001373802A JP 2001373802 A JP2001373802 A JP 2001373802A JP 3900914 B2 JP3900914 B2 JP 3900914B2
- Authority
- JP
- Japan
- Prior art keywords
- engine
- temperature
- hot water
- storage tank
- cooling water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Combined Controls Of Internal Combustion Engines (AREA)
Description
【発明の属する技術分野】
本発明は、内燃機関に係り、特に内燃機関の機関温度を機関冷却水の温度に基づいて検出することに係る。
【0002】
【従来の技術】
内燃機関の温度は、従来より一般に、機関冷却水の温度により検出されている。機関冷却水の温度による機関温度の検出は、旧来の内燃機関に於いては、機関の冷却系が正常に作動しており、機関に過熱が生ずる恐れがないことを確認するために行われていた。しかし、マイクロコンピュータによる車輌運転制御装置を備え、運転者の運転操作を助け、また場合によってはそれに凌駕して車輌をより安全かつ高性能に作動せしめる現今の自動車等の車輌に於いては、機関温度は、それ以上に、車輌運転制御装置が内燃機関の運転状態を把握し、適切な車輌運転制御を行うために不可欠のパラメータである。
【0003】
一方、内燃機関の暖機を助けるため、機関の暖機後の作動中に暖まった機関冷却水を一部抽出して温水貯槽に蓄え、機関冷温始動時等の機関冷温時に、機関冷却水の少なくとも一部を温水貯槽に蓄えられた温水により置き換え、これによって機関を暖めることが知られている。かかる温水貯槽を備えた内燃機関は、例えば、特開平10−37785あるいは特開2001−65384に示されている。尚、上記前者の公報の発明は、そのような温水貯槽を備えた内燃機関に於いて、温水貯槽の内部または出口付近に設けられた温度検出手段により検出される温水の温度が所定値よりも高いとき、機関冷温始動時に行う燃料増量に於ける燃料増量度を低減するものであり、また上記後者の公報の発明は、そのような温水貯槽を備えた内燃機関が電動機と組み合わされて車輌のハイブリッド駆動装置を構成している場合に、内燃機関を一時停止しようとするとき、温水貯槽内の水温が所定値未満であるときには、それが該所定値以上となるまで内燃機関の停止を禁止するものである。
【0004】
【発明が解決しようとする課題】
車輌の運転を制御するには駆動力の制御が不可欠であり、従って車輌運転制御装置により車輌の運転を制御するには、内燃機関の出力性能を把握することが必要である。機関出力性能の把握には機関温度を知ることが必要である。ところで、激しい振動にさらされる機関本体の温度を長期間にわたって安定して検出するには、現在のところやはり機関冷却水の温度によるのが最適のようである。ところが、上記の通り内燃機関に温水貯槽が付加され、温水貯槽にて保温されていた温水が冷えた機関内に急に導入されると、機関冷却水温度検出手段が検出する温度と機関本体の実際の温度との間に一時的にかなりの差が生じ、機関温度に関する正しい情報が車輌運転制御装置へ供給されなくなる。正しい機関温度情報が与えられなければ、車輌運転制御装置は機関を適切に制御することができない。しかも、マイクロコンピュータを備えた車輌運転制御装置による高度な機関運転制御が最も強く求められるのは、機関の始動性と環境保全のため排ガス浄化性能が問題となる機関の冷温始動時の如く機関が冷えていて温水による加熱が望まれるときである。
【0005】
本発明は、上記の問題に着目し、温水貯槽を備えた内燃機関の冷温始動時にも、機関の作動性能上正しい機関温度を車輌運転制御装置に認識させ、機関の高い始動性能と高い始動時排気ガス浄化性能を確保することを課題とするものである。但し、温水による機関の加熱は機関が冷えているときには適宜行われてよいものであり、必ずしも機関始動時に限られない。尚、機関運転により暖められた機関冷却水を温水貯槽に蓄えるとき、機関より温水貯槽へ向けて流失した機関冷却水に代わってそれ迄温水貯槽内にあった水が内燃機関内へ流入するようになっている場合には、温水貯槽への温水回収を行うときにも、機関冷却水温度検出手段による機関温度の把握に一時的な狂いが生ずる。従って、本発明は、この問題にも着目し、機関運転中常に高い排気ガス浄化性能を確保することをも課題とするものである。
【0006】
【課題を解決するための手段】
上記の課題を解決すべく、本発明は、温水貯槽を付加され、機関運転により暖められた機関冷却水を前記温水貯槽に蓄え、機関冷温時に機関冷却水の少なくとも一部を前記温水貯槽に蓄えられた温水により置き換えられるよう構成された内燃機関の機関温度を機関冷却水温度に基づいて検出する方法にして、機関冷却水を前記温水貯槽からの温水により置き換えるとき、一時的に機関温度を機関冷却水温度より過渡偏差分だけ下げて認識することを特徴とする機関温度検出方法を提案するものである。
【0007】
前記過渡偏差は、一つの実施例として、温水貯槽より機関への温水の注入が開始された時点に於ける該検出値をその後の時間の経過に対応する該検出値より差し引いた値を該時間の経過に連れて縮小した値とされてよい。
【0008】
前記過渡偏差はまた、他の一つの実施例として、温水貯槽より機関への温水の注入が開始された時点に於ける機関冷却水温度の検出値を該時点に於ける該温水貯槽内の温水の温度より差し引いた値を該時間の経過に連れて縮小した値とされてもよい。
【0009】
更にまた、本発明は、機関運転により暖められた機関冷却水を温水貯槽に蓄えるとき、それ迄温水貯槽内にあった水が内燃機関内へ流入するようになっている場合に対し、内燃機関内の機関冷却水の少なくとも一部がそれより低い温度の温水貯槽内にあった水により置き換えられるとき、一時的に機関温度を機関冷却水温度より過渡偏差分だけ上げて認識することを特徴とする機関温度検出方法を提案するものである。
【0010】
この場合にも、内燃機関より温水貯槽へ向けての温水の回収中に、機関温度を機関冷却水温度より上げて認識するための過渡偏差は、一つの実施例として、機関より温水貯槽への温水の回収が開始された時点に於ける該検出値よりその後の時間の経過に対応する該検出値を差し引いた値を該時間の経過に連れて縮小した値とされてよい。
【0011】
あるいはまた、同様に機関温度を機関冷却水温度より上げて認識するための過渡偏差は、機関より温水貯槽への温水の回収が開始された時点に於ける機関冷却水温度の検出値より該時点に於ける該温水貯槽内の水の温度を差し引いた値を該時間の経過に連れて縮小した値とされてもよい。
【0012】
【発明の作用及び効果】
上記の如く、内燃機関に温水貯槽が付加され、機関運転により暖められた機関冷却水が温水貯槽に蓄えられ、機関冷温時に機関冷却水の少なくとも一部が温水貯槽に蓄えられた温水により置き換えられるとき、機関温度を機関冷却水温度に基づいて検出するに当たって、一時的に機関温度を機関冷却水温度より過渡偏差分だけ下げて認識するようにしておけば、かかる過渡偏差分を適切に設定することにより、機関冷却水が温水貯槽からの温水により置き換えられつつあり、機関冷却水温検出手段が機関へ注入されつつある温水に直に接しつつあるときにも、その一時的な偏差を修正し、機関本体、特にシリンダヘッド部の温度を正しく認識することができる。
【0013】
この場合、機関へ注入されつつある温水に直に接しつつある機関冷却水温検出手段が検出する温度は、機関本体、特にシリンダヘッド部の温度に対比して、当初大きく高い側に偏倚し、その後時間の経過と共に偏差は縮小していくことが考えられる。そこで、一つの方法として、温水貯槽より機関への温水の注入が開始された時点に於ける該検出値を初期値として記憶しておき、その後は、時間の経過とともに、それに対応する機関冷却水温検出手段の検出値より前記初期値を差し引いた差を該時間の経過に連れて縮小した値としておけば、機関本体、特にシリンダヘッド部の温度に対する機関冷却水温検出手段検出値の偏倚を模することができると考えられる。上記の差を時間の経過に連れて縮小する一つの適当な方法は、物性的に推測して、該差を時間の経過とともに増大する値にて除することであると考えられる。
【0014】
或いはまた、機関冷却水温検出手段が検出する温度が機関本体、特にシリンダヘッド部の温度に対比して当初高い側に偏倚する大きさは、温水貯槽より機関への温水の注入が開始された時点に於ける温水貯槽内温水温度と機関冷却水温度との差に比例すると考えられるので、該時点に於ける温水貯槽内温水温度よりその時の機関冷却水温度検出値を差し引いた差を、時間の経過に連れて縮小した値をもって上記の過渡偏差としてもよいと考えられる。この場合にも、上記の差を時間の経過に連れて縮小する一つの適当な方法は、該差を時間の経過とともに増大する値にて除することであると考えられる。
【0015】
機関運転により暖められた機関冷却水を温水貯槽に蓄えるとき、それ迄温水貯槽内にあった水が内燃機関内へ流入するようになっていると、温水貯槽への温水貯蔵時に、内燃機関内の機関冷却水がそれより低い温度の温水貯槽内にあった水により置き換えられるので、このときにも機関冷却水温度検出値と機関本体、特にシリンダヘッド部の温度の間に一時的に偏差が生ずる。そこで、この場合にも、機関温度を機関冷却水温度より適当な過渡偏差分だけ上げて認識するよう にしておけば、かかる温水貯蔵時に機関温度の検出に不適当な狂いが生ずることが避けられる。
【0016】
この場合の過渡偏差も、機関に温水を注入する場合と同様の考え方により、温水貯槽への機関冷却水の回収が開始された時点に於ける機関温度検出値を初期値として記憶しておき、その後、時間の経過ともに、前記初期値より時間の経過に対応する検出値を差し引いた値を時間の経過に連れて縮小した値、あるいは温水貯槽に蓄えられた温水による機関冷却水の置き換えが開始された時点に於ける機関冷却水温度の検出値と温水貯槽内の水の温度の差を時間の経過に連れて縮小した値とされてよく、またこれらの差を時間の経過に連れて縮小することは、これらの差を時間の経過とともに増大する値にて除することであってよいと考えられる。
【0017】
【発明の実施の形態】
図1は、本発明による機関温度検出方法が適用される内燃機関、特に機関冷温始動のための温水貯槽を備えた車輌用内燃機関とその冷却水循環系の一例を示す概略図である。図に於いて、1は内燃機関、特にその本体であり、2はラジエータである。機関本体1内には周知の要領にて冷却水通路が設けられており、この冷却水通路は管路3、4および冷却水循環ポンプ5を含む水路にてラジエータ2と連結され、機関冷却用水循環系を構成している。管路4の途中にサーモスタット弁6が設けられており、冷却水温度が低く、ラジエータ2を通さずに機関本体内に冷却水を循環させるべき時、冷却水循環ポンプ5の吸込み口を管路4より遮断してバイパス管路7に接続し、常時は、機関本体の冷却水通路内にて機関本体より熱を吸収した冷却水は、冷却水循環ポンプ6の作動により管路3を経てラジエータ2へ流れ、ここで熱を放出し、管路4およびサーモスタット弁6を経て機関本体内の冷却水通路に戻るようになっている。8は車内暖房用のヒータであり、管路9、10およびヒータ用ポンプ11を含む水路にて機関本体の冷却水通路と連結され、ヒータ用温水循環系を構成している。尚、管路9は、図示の通り、機関本体の上部、即ちシリンダヘッド部に於ける機関本体内冷却水通路と連結されており、また図示の実施例に於いては、管路9の途中に三方向切換弁12が設けられている。ヒータを作動させる際には、ヒータ用ポンプ11が運転され、機関本体内の冷却水通路内にて温められた機関冷却水が管路9を経て取り出され、ヒータ内を流れた後、管路10を経て機関本体内へ戻される。管路9の始端は、図示の実施例に於いては、ラジエータ2へ向かう管路3の始端とは別に機関本体に接続されているが、これら両管路の始端は共通の管路をなして機関本体に接続されていてもよい。いずれにしても、ラジエータ2へ向かう冷却水もヒータ8へ向かう冷却水も、機関本体内冷却水通路にて最終的に暖められ、機関冷却水として最も高い温度まで加熱された水である。13は電子制御式の吸気絞り弁であり、図示の実施例に於いては、管路9の途中より分技管路14を経て暖まった機関冷却水を供給され、常時これによって温められるようになっている。
【0018】
15が機関冷温始動のための温水貯槽である。この温水貯槽は管路16、17および温水給送ポンプ18を含む水路にて機関本体の冷却水通路と連結され、温水循環系を構成している。尚、図示の実施例に於いては、管路16は三方向切換弁12と管路9を経てシリンダヘッド部の冷却水通路と連結され、また管路17は管路10、サーモスタット弁6および冷却水循環ポンプ5あるいはバイパス管路7を経て機関本体内冷却水通路に連結されている。温水給送ポンプ18は、矢印にて示されている如く、サーモスタット弁6および管路10を経て機関本体内冷却水通路より取り出した冷却水を温水貯槽15へ回収し、また温水貯槽15に蓄えられた温水を管路16および9を経てシリンダヘッド部の機関本体内冷却水通路へ送り込むようになっている。これは、機関の冷温始動に当たって温水貯槽からの温水により最も優先的に暖められるべき部分はシリンダヘッドの部分であるからである。ただ、かかる構成により、機関本体内冷却水通路にて温められた冷却水を温水貯槽に蓄えるとき、それまで温水貯槽内にあった冷えた水は管路16および9を経てシリンダヘッド部の機関本体内冷却水通路へ送り込まれることになる。
【0019】
機関冷却水温度として把握されるべき温度は、やはり機関本体内冷却水通路を通って暖められた水の最終到達温度である。従って、冷却水温度検出手段、即ち冷却水温センサは、図にて19により示されている如く、管路3および9の始端近傍に配置される。
【0020】
以上の構成から理解される通り、機関の冷温始動に当たって、それまで温水貯槽15に蓄えられていた温水が温水給送ポンプ18の作動により管路16および9を経て機関本体内冷却水通路へ向けて給送されると、冷却水温センサ19は直ちに温水に接し、それが検出する温度は、一時的に機関本体の温度よりかなり高くなる。これを例示すれば図2の通りである。図2に於いて、時刻t1にて機関始動と同時に温水貯槽より機関本体内冷却水通路への温水の注入が開始されたとすると、機関本体の温度は図にて二点鎖線にて示す如く上昇するが、冷却水温センサ19が検出する温度は図にて実線により示す如く急に変化する。尚、図中破線は温水による加熱が行われない場合の機関本体の温度上昇である。
【0021】
また同様に、機関が暖機状態に達した後、暖まった機関冷却水を温水貯槽15に蓄えるべく温水給送ポンプ18が作動されると、それまで温水貯槽内にあった冷えた水は管路16および9を経て機関本体内冷却水通路へ向けて流れ、その際、冷却水温センサ19は直ちに冷たい水に接するので、その検出温度は一時的に機関本体の温度よりかなり低くなる。これを例示すれば図3の通りである。図3に於いて、時刻t2にて機関本体内冷却水通路より温水貯槽へ向けての温水の回収が開始されたとすると、機関本体の温度は総じて図にて二点鎖線にて示す如く変化するが、冷却水温センサ19が検出する温度は図にて実線により示す如く急に変化する。
【0022】
図4は、温水貯槽を備えた内燃機関の始動時の制御を一つの実施例について示すフローチャートである。図には示されていないイグニションスイッチがオンとされることにより同じく図には示されていない車輌運転制御装置制御を構成するコンピュータにより行われる機関始動制御が開始されると、ステップ1にて機関始動が指令されているか否かが判断される。答がイエスであると、制御はステップ2へ進み、機関温度Teが温水貯槽からの温水による予熱が望まれる所定のしきい値温度Tec以下であるか否かが判断される。答がイエスであれば、制御はステップ3へ進み、温水貯槽に蓄えられている温水の温度Tsが機関の予熱に供し得るしきい値温度Tsh以上であるか否かが判断される。答がイエスであれば、制御はステップ4へ進み、上記のコンピュータの一部により構成されるタイマがセットされる。このタイマは、一つの実施例として、温水貯槽より機関本体への温水注入の開始から終了までを時間で管理するためのものである。次いで制御はステップ5へ進み、タイマがタイマアウトしたか否かが判断される。当初は答はノーであり、制御はステップ6へ進み、機関への温水の注入が開始される。次いで制御はステップ7へ進み、機関への温水注入が実行されつつあることを示すフラグF1が1にセットされる。これより制御はステップ5の前に戻り、タイマがタイムアウトするまで制御はステップ5,6,7を通って循環し、機関への温水の注入が続けられる。
【0023】
やがて所定の時間が経過し、ステップ5の答がノーからイエスに転じると、制御はステップ8へ進み、機関への温水の注入は停止される。次いで制御はステップ9へ進み、フラグF1および図5について後述するフラグf1が0にリセットされ、機関の冷温始動に対する温水注入制御は終了する。機関のクランキングはここで開始されてよい(ステップ10)。尚、ステップ1、2、3のいずれかに於ける答がノーのときには、制御はそれ以上行われることなく終了する。
【0024】
図5は、図4の機関冷温始動制御に於いて設定されるフラグF1が1であるか0であるかに応じて、冷却水温センサの検出値を修正し、冷温始動時に温水の注入が行われる内燃機関に於いて、温水注入時にも、機関冷却水温に基づく機関温度の検出を的確に行わせる本発明の方法を一つの実施例について示すフローチャートである。このフローチャートによる制御も、図4のフローチャートによる制御と同様に車輌運転制御装置を構成するコンピュータにより実行され、イグニションスイッチがオンとされることにより開始される。
【0025】
制御が開始されると、ステップ12にて図1に於ける冷却水温センサ19の如き機関冷却水温センサにより機関冷却水温度Twが検出される。次いで制御はステップ14へ進み、フラグf1が1であるか否かが判断される。この種のフラグは制御の開始時に0にリセットされているので、制御が最初にこのステップに至ったときには答はノーであり、制御は先ずステップ16へ進む。ステップ16に於いては、上記の図4に於けるフラグF1が1にセットされているか否かが判断される。答がイエスのときには、制御はステップ18へ進み、その時点に於ける機関冷却水温センサの読み値Twが機関温度の初期値Teoとして記憶される。次いで制御はステップ20へ進み、機関運転制御装置を構成するコンピュータの一部により構成されたタイマがセットされる。このタイマは、本発明による機関冷却水温センサの読み値を修正する期間の最大値を制限するものである。次いで制御はステップ22へ進み、フラグf1が1にセットされる。これより明らかな通り、制御が一度ステップ14〜22を通ると、その後制御はステップ16〜22をバイパスし、ステップ14より直ちにステップ24へ向かう。
【0026】
ステップ24に於いては、タイマがタイムアウトしたか否かが判断される。当初は答はノーであり、制御はステップ26へ進み、機関温度の過渡偏差ΔTeが計算される。この実施例では、ΔTeは、制御がステップ12〜30を通って循環する各サイクルの時点に於ける機関冷却水温センサの読み値Tw、最初にステップ18にて記憶された機関温度の初期値Teo、および制御開始からそれまでの経過時間tに基づき、aを適当な時定数とし、mを1より大きい適当な冪数とし、K1を適当な係数として、
ΔTe=K1(Tw−Teo)/(a+t)m
として計算される。
【0027】
次いで制御はステップ28へ進み、上に計算された機関温度の過渡偏差ΔTeが所定の小さなしきい値α以下に低下してか否かが判断される。答がノーである間、制御はステップ30へ進み、TwよりΔTeを差し引いた値を機関温度Teとすることが続けられる。機関冷却水温センサの読み値Twは、制御開始、即ち機関の始動および機関本体への温水の注入開始、よりの時間の経過とともに図2に例示した如く上昇し、従って差(Tw−Teo)は時間の経過とともに概ね増大するが、(a+t)mは、冪数mを1より大きい適当な値としておくことにより時間の経過とともにより大きく増大し、時定数aと冪数mと係数K1を適当に選定しておくことにより、ΔTeの変化を図2に於ける実線と二点鎖線との間の差の変化に近似させることが可能である。
【0028】
そのうち時間が経過し、ステップ24の答がイエスとなるか、或いはそれより先にステップ28の答がイエスになると、制御はステップ30をバイパスし、TwをΔTeにて修正することが中止される。制御はその後もステップ12へ戻り、このフローチャーをめぐる制御は続けられるが、ステップ24の答がイエスとなるか或いはステップ28の答がイエスとなるに時点に前後して図4のフローチャートによる機関への温水の注水が終了し、フラグF1およびf1が0にリセットされるので、その後制御はステップ16よりステップ32へ向かい、TwをそのままTeとする機関温度検出が続けられる。
【0029】
図6は、図5のフローチャートに代わる他の一つの実施例を示す同様のフローチャートである。図6に於いて、図5に於けるステップに対応するステップは、図5に於けるステップ番号と同じステップ番号により示されており、同様に作動する。図6の実施例に於いては、ステップ19に於いて、その時の温水貯槽に蓄えられていた温水の温度Tsが温水温度の初期値Tsoとして、またその時の機関冷却水温センサの読み値Twが初期値Teoとして記憶される。そして、ステップ27に於いては、温水温度初期値Tso、機関冷却水温初期値Teo、および制御開始からそれまでの経過時間tに基づき、bを適当な時定数、nを適当な冪数、K2を適当な係数とし、機関温度の過渡偏差ΔTeが、
ΔTe=K2(Tso−Teo)/(b+t)n
として計算され、ΔTeを図2に於ける実線と二点鎖線との間の差の変化に近似させることが行われる。
【0030】
図7は、機関暖機後、暖まった機関冷却水を次の冷温始動のために温水貯槽へ蓄える制御を一つの実施例として示すフローチャートである。この制御は、ステップ41にて機関が運転中であるか否かを判断することから始まる。機関が運転中であり、答がイエスであると、制御はステップ42へ進み、機関冷却水温度Twが温水貯槽に温水を蓄えるに十分な或る所定のしきい値温度Twh以上となっているか否かが判断される。答がイエスであると、制御はステップ43へ進み、温水貯槽の水温Tsが暖まった機関冷却水による温水の再貯蔵を要するしきい値温度Tsc以下に下がっているか否かが判断される。答がイエスであると、制御はステップ44へ進み、上記と同様のタイマがセットされる。そして制御はステップ45へ進み、タイマアウトしたか否かが判断される。当初は答はノーであり、制御はステップ46へ進み、機関本体の冷却水通路より温水貯槽への温水の回収が開始される。この後制御はステップ47へ進み、温水貯槽へ温水回収中であることを示すフラグF2が1にセットされる。その後しばらくの間、制御はステップ45〜47をめぐって循環する。この実施例も、温水貯槽への温水の回収終了を時間にて管理するものである。
【0031】
やがて温水貯槽への温水の回収が完了する時間が経過すると、ステップ45の答がイエスとなる。そこで制御はステップ48へ進み、温水貯槽への温水の回収が停止される。その後はステップ49にてフラグF2および以下の図8および9に使用されるフラグf2が0にリセットされ、1回の温水回収制御が終わる。
【0032】
図8は、図7の温水回収制御に於いて設定されるフラグF2が1であるか0であるかに応じて、温水貯槽に温水の回収が行われ、従ってまた温水貯槽から冷たい水が機関本体へ注入されている間に、冷却水温センサの検出値を修正し、温水回収時にも、機関冷却水温に基づく機関温度の検出を的確に行わせる本発明の方法を一つの実施例について示すフローチャートである。このフローチャートによる制御も、図4のフローチャートによる制御と同様に、車輌運転制御装置を構成するコンピュータにより実行され、イグニションスイッチがオンとされることにより開始される。
【0033】
制御が開始されると、ステップ52にて図1に於ける冷却水温センサ19の如き機関冷却水温センサにより機関冷却水温度Twが検出される。次いで制御はステップ54へ進み、フラグf2が1であるか否かが判断される。制御が最初にこのステップに至ったときには答はノーであり、制御はステップ56へ進む。ステップ56に於いては、上記の図7に於けるフラグF2が1にセットされているか否かが判断される。答がイエスのときには、制御はステップ58へ進み、その時点に於ける機関冷却水温センサの読み値Twが機関温度の初期値Teoとして記憶される。次いで制御はステップ60へ進み、同様のタイマがセットされる。このタイマは、温水回収中に本発明による機関冷却水温センサの読み値を修正する期間の最大値を制限するものである。次いで制御はステップ62へ進み、フラグf2が1にセットされる。この後制御はステップ56〜62をバイパスし、ステップ54より直ちにステップ64へ向かう。
【0034】
ステップ64に於いては、タイマがタイムアウトしたか否かが判断される。当初は答はノーであり、制御はステップ66へ進み、機関温度の過渡偏差ΔTeが計算される。この実施例では、ΔTeは、最初にステップ58にて記憶された機関温度の初期値Teo、制御がステップ52〜70を通って循環する各サイクルの時点に於ける機関冷却水温センサの読み値Tw、および制御開始からそれまでの経過時間tに基づき、cを適当な時定数とし、pを適当な冪数とし、K3を適当な係数として、
ΔTe=K3(Teo−Tw)/(c+t)p
として計算され、図3に於ける実線と二点鎖線の間の差を近似するΔTeの値が計算される。
【0035】
これより制御はステップ68へ進み、上に計算された機関温度の過渡偏差ΔTeが所定のしきい値β以下に低下してか否かが判断される。答がノーである間、制御はステップ70へ進み、TwにΔTeを加えた値を機関温度Teとすることが続けられる。機関冷却水温センサの読み値Twは、温水貯槽への温水の回収開始より時間の経過とともに図3に例示した如く変化し、差(Teo−Tw)は一度増大し、その後時間の経過とともに減少する。そこで、(c+t)pに於ける時定数cと冪数pと係数K3を適当に選定しておくことにより、ΔTeの変化を図3に於ける実線と二点鎖線との間の差の変化に近似させることが可能である。
【0036】
そのうち時間が経過し、ステップ64の答がイエスとなるか、或いはそれより先にステップ68の答がイエスになると、制御はステップ70をバイパスし、TwをΔTeにて修正することが中止される。制御はその後もステップ52へ戻り、このフローチャーをめぐる制御は続けられるが、ステップ64の答がイエスとなるか或いはステップ68の答がイエスとなるに時点に前後して図7のフローチャートによる温水貯槽への温水の回収が終了し、フラグF2およびf2が0にリセットされるので、その後制御はステップ56よりステップ72へ向かい、TwをそのままTeとする機関温度検出が続けられる。
【0037】
図9は、図8のフローチャートに代わる他の一つの実施例を示す同様のフローチャートである。図9に於いて、図8に於けるステップに対応するステップは、図8に於けるステップ番号と同じステップ番号により示されており、同様に作動する。図9の実施例に於いては、ステップ59に於いて、その時の機関冷却水温度Twおよび温水貯槽の水の温度Tsがそれぞれの初期値TeoおよびTsoとして記憶される。そして、ステップ67に於いては、上記の初期値TeoおよびTso、および制御開始からそれまでの経過時間tに基づき、dを適当な時定数、qを適当な冪数、K4を適当な係数とし、機関温度の過渡偏差ΔTeが、
ΔTe=K4(Teo−Tso)/(d+t)q
として計算され、ΔTeを図3に於ける実線と二点鎖線との間の差の変化に近似させることが行われる。
【0038】
以上に於いては本発明をいくつかの実施例について詳細に説明したが、本発明がこれらの実施例にのみ限られることなく、発明の範囲内にて種々の態様にて実施可能であることは当業者にとって明らかであろう。
【図面の簡単な説明】
【図1】本発明による機関温度検出方法が適用される機関冷温始動のための温水貯槽を備えた車輌用内燃機関とその冷却水循環系の一例を示す概略図。
【図2】機関冷温始動に当たって温水貯槽に蓄えられていた温水が機関本体内冷却水通路へ向けて給送されるとき冷却水温センサが検出する温度を機関本体の温度に対比させて示す線図。
【図3】機関本体内冷却水通路より暖まった冷却水を温水貯槽に回収する際に温水貯槽より冷えた水が機関本体内冷却水通路へ向けて流れるとき冷却水温センサが検出する温度を機関本体の温度に対比させて示す線図。
【図4】温水貯槽を備えた内燃機関の冷温始動時の制御を一つの実施例について示すフローチャート。
【図5】図4の機関冷温始動制御に於いて設定されるフラグF1が1であるか0であるか否かに応じて冷却水温センサの検出値を修正する一つの実施例を示すフローチャート。
【図6】図5に示す実施例の一部修正例を示すフローチャート。
【図7】温水貯槽を備えた内燃機関の温水回収時の制御を一つの実施例について示すフローチャート。
【図8】図7の温水回収制御に於いて設定されるフラグF2が1であるか0であるか否かに応じて冷却水温センサの検出値を修正する一つの実施例を示すフローチャート。
【図9】図8に示す実施例の一部修正例を示すフローチャート。
【符号の説明】
1…内燃機関本体
2…ラジエータ
3,4…管路
5…冷却水循環ポンプ
6…サーモスタット弁
7…バイパス管路
8…ヒータ
9,10…管路
11…ヒータ用ポンプ
12…三方向切換弁
13…電子制御式の吸気絞り弁
14…分技管路
15…温水貯槽
16,17…管路
17…ディファレンシャル装置
18…温水給送ポンプ
Claims (3)
- 温水貯槽を付加され、機関運転により暖められた機関冷却水を前記温水貯槽に蓄え、機関冷温時に機関冷却水の少なくとも一部を前記温水貯槽に蓄えられた温水により置き換え、機関運転により暖められた機関冷却水を前記温水貯槽に蓄えるときそれ迄前記温水貯槽内にあった水が内燃機関内へ流入するよう構成された内燃機関の機関温度を機関冷却水温度に基づいて検出する方法にして、内燃機関内の機関冷却水の少なくとも一部がそれより低い温度の前記温水貯槽内にあった水により置き換えられるとき、一時的に機関温度を機関冷却水温度より過渡偏差分だけ上げて認識することを特徴とする機関温度検出方法。
- 機関温度を機関冷却水温度より上げて認識するための前記過渡偏差は、機関より前記温水貯槽への温水の回収が開始された時点に於ける該検出値よりその後の時間の経過に対応する該検出値を差し引いた値を該時間の経過に連れて縮小した値とされることを特徴とする請求項1に記載の機関温度検出方法。
- 機関温度を機関冷却水温度より上げて認識するための前記過渡偏差は、機関より前記温水貯槽への温水の回収が開始された時点に於ける機関冷却水温度の検出値より該時点に於ける該温水貯槽内の水の温度を差し引いた値を該時間の経過に連れて縮小した値とされることを特徴とする請求項1に記載の機関温度検出方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001373802A JP3900914B2 (ja) | 2001-12-07 | 2001-12-07 | 機関冷却水温度に基づく機関温度検出方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001373802A JP3900914B2 (ja) | 2001-12-07 | 2001-12-07 | 機関冷却水温度に基づく機関温度検出方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003172191A JP2003172191A (ja) | 2003-06-20 |
JP3900914B2 true JP3900914B2 (ja) | 2007-04-04 |
Family
ID=19182458
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001373802A Expired - Fee Related JP3900914B2 (ja) | 2001-12-07 | 2001-12-07 | 機関冷却水温度に基づく機関温度検出方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3900914B2 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7464681B2 (en) | 2006-02-28 | 2008-12-16 | Caterpillar Inc. | Engine and engine control method |
JP4697199B2 (ja) * | 2007-07-05 | 2011-06-08 | トヨタ自動車株式会社 | エンジン停止始動車両 |
JP5803818B2 (ja) * | 2012-06-08 | 2015-11-04 | トヨタ自動車株式会社 | 冷却システムの制御装置 |
-
2001
- 2001-12-07 JP JP2001373802A patent/JP3900914B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003172191A (ja) | 2003-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1382475B1 (en) | Hybrid vehicle and method in which the engine is preheated before start | |
US7823798B2 (en) | Method and device for heating a motor vehicle cabin | |
US20090241863A1 (en) | Control method of engine rapid warm-up system | |
JP3555269B2 (ja) | 車両用冷却水温度制御システム | |
US6928962B2 (en) | Hot coolant type heat accumulating apparatus for a hybrid vehicle and heat accumulating method thereof | |
JP5193982B2 (ja) | 内燃機関の燃料供給装置 | |
JP3900914B2 (ja) | 機関冷却水温度に基づく機関温度検出方法 | |
JP4062285B2 (ja) | 蓄熱システム | |
JPH1010074A (ja) | 空燃比センサのヒータ制御装置 | |
JP2007283854A (ja) | エンジンの始動装置 | |
JP4228199B2 (ja) | エンジンの暖機制御装置 | |
JP5200923B2 (ja) | 圧縮自己着火式エンジンの制御方法及びその装置 | |
JP2009167960A (ja) | 内燃機関の始動制御装置 | |
JPH0626427A (ja) | Ffv用エンジンの始動制御方法 | |
US10221823B2 (en) | Method of heating and retaining heat in an internal combustion engine to improve fuel economy | |
JP2006083800A (ja) | 車輌運転開始時刻を推定してエンジン暖機運転を行う車輌 | |
JP4066726B2 (ja) | 蓄熱装置の異常検出装置 | |
JP2610498B2 (ja) | ディーゼル機関のエアヒータ制御装置 | |
JP4238543B2 (ja) | 蓄熱装置を備えた内燃機関 | |
JP3906745B2 (ja) | 内燃機関の冷却装置 | |
JP2003184620A (ja) | ポンプ相関制御による内燃機関用温水式暖機装置 | |
JP3833752B2 (ja) | エンジンのアイドル回転数制御装置 | |
JP2833376B2 (ja) | 電熱触媒の通電制御装置 | |
JPH0540279Y2 (ja) | ||
JPH0332776Y2 (ja) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040806 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060110 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060223 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061212 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061225 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110112 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110112 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120112 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |