JP3899489B2 - 電動ディスクブレーキ装置 - Google Patents

電動ディスクブレーキ装置 Download PDF

Info

Publication number
JP3899489B2
JP3899489B2 JP2002190881A JP2002190881A JP3899489B2 JP 3899489 B2 JP3899489 B2 JP 3899489B2 JP 2002190881 A JP2002190881 A JP 2002190881A JP 2002190881 A JP2002190881 A JP 2002190881A JP 3899489 B2 JP3899489 B2 JP 3899489B2
Authority
JP
Japan
Prior art keywords
temperature
coil
phase
phase coil
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002190881A
Other languages
English (en)
Other versions
JP2003322182A (ja
Inventor
小弥太 杉本
昭一 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002190881A priority Critical patent/JP3899489B2/ja
Publication of JP2003322182A publication Critical patent/JP2003322182A/ja
Application granted granted Critical
Publication of JP3899489B2 publication Critical patent/JP3899489B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Braking Systems And Boosters (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)
  • Braking Arrangements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電動モータの回転力によって制動力を発生させる電動ディスクブレーキ装置に関する。
【0002】
【従来の技術】
自動車などの車両の制動装置として、ブレーキ液圧管路を使用せず、電動モータの出力によって制動力を発生させるようにした、所謂電動ブレーキ装置が知られている。
【0003】
電動ブレーキ装置としては、特開昭60−206766号公報に開示されているように、ピストンによってブレーキパッドをディスクロータに押圧させることにより、制動力を発生させるようにした電動ディスクブレーキ装置がある。この種の電動ディスクブレーキ装置は、運転者によるブレーキペダル踏力(又は変位量)をセンサによって検出し、コントローラによって、この検出に応じて電動モータの回転を制御して、所望の制動力を得るようにしている。
【0004】
また、上記のような電動ディスクブレーキ装置においては、各種センサを用いて、各車輪の回転速度、車両速度、車両加速度、操舵角、車両横加速度などの車両状態を検出し、これらの検出に基づいてメインコントローラやモータドライバなどのコントローラによって電動モータの回転を制御することにより、倍力制御、アンチロック制御、トラクション制御及び車両安定化制御などを比較的簡単に組み込むことができる。
【0005】
【発明が解決しようとする課題】
現在、電動ディスクブレーキ装置は、回転式サーボモータの回転動を直線運動に変換してブレーキパッドを押すようにする構造になっている。そして、電動モータに必要な電力はバッテリ又は発電機よりコントローラを介して供給される。この場合、モータにいたるケーブルが長くなること、及び電動モータが設けられるブレーキキャリパ部が変位するものであることから、ケーブルの断線やコネクタの外れに注意する必要がある。
【0006】
また、ブレーキをかける場合、ブレーキパッドをモータの回転で押し付けることになるので、ブレーキがかかっている状態ではモータの回転は微小もしくは停止している。そのため、モータの各相のコイルに流れる電流は平均電流ではなく、1相だけが大きく他の相は少ないといった状況があり得る。そのため、通常行なわれている、1個の温度センサを用いたモータ温度(コイル温度)の測定では、コイル被覆の保護を適切には行なえない。
【0007】
また、温度センサを、各相のコイルに個別に配置し、別々に温度測定を行なうことが考えられるが、ブレーキ本体が設置される場所がばね下であるので、コントローラに対する引出し線(信号線)の本数が増える〔例えば3相コイルにそれぞれ温度センサを配置した場合、引出し線は6本(2本×3系統)必要となる〕と、これらを含めて束ねたケーブルは曲がりにくいものとなる。このため、ケーブルに同じ振幅の振動が加わったときのダメージが大きくなり断線の虞が高くなる。さらに、ケーブルの引き回しに困難を招くことになる。
【0008】
本発明は、上記事情に鑑みてなされたもので、モータの温度検出を適切に行ってモータコイルや絶縁皮膜の劣化防止を図ることができる電動ディスクブレーキ装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
請求項1記載の発明は、コントローラから電力供給を受ける複数相のコイルを有するモータの作動により制動力を発生するディスクブレーキ本体を備えた電動ディスクブレーキ装置であって、前記複数相のコイルのリード線を束ねたリード線束ね部分に設けられる温度センサと、前記複数相のコイルを流れるコイル電流をそれぞれ検出するカレントセンサと、を備え、前記コントローラは、前記各カレントセンサにより検出されるコイル電流に基づいて得られる複数相のコイルのリード線束ね部分に対する相対温度上昇値を前記温度センサの検出値に加算して複数相の各コイルの温度を求めるコイル温度算出部を設けたことを特徴とする。
【0011】
【発明の実施の形態】
以下、本発明の一実施形態に係る電動ディスクブレーキ装置を図13及び図14に基づいて説明する。なお、説明の便宜上、本発明の一実施形態の説明に先だって、図1ないし図7に基づいて第1参考技術を説明し、図8及び図9に基づいて第2参考技術を説明し、第1、第2参考技術を参考にして第3、第4参考技術を説明し、さらに、本発明の一実施形態の前提となる前提技術を図10〜図12に基づいて説明する。
まず、第1参考技術に係る電動ディスクブレーキ装置を図1ないし図7に基づいて説明する。
【0012】
図1ないし図4に示すように、第1参考技術に係る電動ディスクブレーキ装置1は、車輪(図示せず)とともに回転するディスクロータ2の一側(通常は車体に対して内側)にキャリパ本体3が配置されており、キャリパ本体3には、略C字形に形成されてディスクロータ2を跨いで反対側へ延びる爪部4がボルト5によって一体的に結合されている。ディスクロータ2の両側、すなわち、ディスクロータ2とキャリパ本体3との間および爪部4の先端部との間に、それぞれブレーキパッド6,7が設けられている。ブレーキパッド6,7は、車体側に固定されるキャリヤ8によってディスクロータ2の軸方向に沿って移動可能に支持されて、制動トルクをキャリヤ8で受けるようになっており、また、キャリパ本体3は、キャリヤ8に取付けられたスライドピン9によってディスクロータ2の軸方向に沿って摺動可能に案内されている。
【0013】
爪部4の基部に形成された環状のフランジ部10が結合されたキャリパ本体3の略円筒状のケース11内には、電動モータ(以下、モータという。)12および回転検出器13が設けられ、ボールランプユニット14が爪部4の環状のフランジ部10側からモータ12のロータ15内に挿入されている。ケース11の後端部には、カバー16がボルト17によって取付けられている。本第1参考技術では、ディスクロータ2、キャリパ本体3、ブレーキパッド6,7、モータ12及びボールランプユニット14からディスクブレーキ本体60が構成されている。ディスクブレーキ本体60はばね下に設けられている。
【0014】
モータ12は、ケース11の内周部に固定されたステータ18と、ステータ18の内周部に対向させてケース11に滑り軸受19,20によって回転可能、かつ、軸方向に移動可能に支持されたロータ15とを備えている。回転検出器13は、ケース11にボルト21によって取付けられたレゾルバケース22に固定されたレゾルバステータ23と、レゾルバステータ23に対向させてロータ15に固定されたレゾルバロータ24とを備え、これらの相対回転に基づいてロータ15の回転位置を検出するものである。レゾルバケース22、レゾルバステータ23及びレゾルバロータ24からレゾルバ61が構成されている。
【0015】
カバー16には、モータ12および回転検出器13に接続されるコネクタ25およびケーブル26が取付けられており、モータ12は、図5に示すように、モータ12を制御するメインコントローラ62からの制御信号(電気信号)に応答してロータ15を所望トルクで所望角度だけ回転させられるようになっている。コネクタ25およびケーブル26は、当該車両のサスペンション装置のアーム、リンク、ナックル、ストラット等の部材との干渉を避けるため、ディスクロータ2の軸方向に対して傾斜されて、その径方向外側へ延ばされている。
【0016】
ボールランプユニット14は、モータ12のロータ15の回転運動を直線運動に変換するボールランプ機構27(伝動機構)と、ブレーキパッド6を押圧するピストン28と、これらの間に介装される調整ナット29と、ボールランプ機構27の回転を調整ナット29に伝達するリミッタ機構30とを備えている。
【0017】
ボールランプ機構27は、円周方向に沿って円弧状に延びる3つのボール溝37,38がそれぞれ120°の間隔で中心角90°の範囲で延ばされて形成されている。これらのボール溝37,38は、同方向に傾斜しており、ボール溝37,38間にはボール34が装入されて、固定ディスク32と可動ディスク33との相対回転によって、3つのボール34がボール溝37,38内を転動して、その回転角度に応じて可動ディスク33と固定ディスク32とが軸方向に相対移動するようになっている。
【0018】
前記メインコントローラ62は、図5に示すように、車両状態検出センサからの検出信号に基づいて前記制御信号E0を生成し、この制御信号E0によりモータドライバ63を制御してモータ12を駆動させてディスクブレーキ本体60に制動力を発生させるようにしている。
【0019】
メインコントローラ62は、発振器41と、発振器41に接続された同期検波回路42と、同期検波回路42から信号に応じて制御信号E0(制御信号E1〜E6)をモータドライバ63の第1〜第6FET81〜86に出力して第1〜第6FET81〜86を作動させるPWM変換回路43と、補正回路50と、加算回路51と、後述するコンパレータ91と、を有している。
【0020】
メインコントローラ62の各構成部材について、以下に説明する。運転者が操作するブレーキペダルの信号(踏力センサの検出信号)に応じてモータ12に供給する電流値が計算され、トルク指令値EPが求められる。トルク指令値EPについては、ブレーキパッドの引きずりを防止するためにブレーキペダルを離した場合にモータ12を逆回転させる機能や、トラクションコントロールのための4輪各々に対してブレーキ力を可変する機能を考慮して値を定めることも可能である。
【0021】
上述したように求められたトルク指令値EPに応じて発振器41は、正弦波信号Esin(ωt)、この正弦波信号Esinωtと位相がそれぞれ120°、240°異なる正弦波信号Esin(ωt−2π/3)、及びEsin(ωt−4π/3)を生成し、これらを同期検波回路42に出力し、また、レゾルバ61に信号Ecosωt、Esinωtを出力する。
【0022】
同期検波回路42では、レゾルバ61から得られたEsin(ωt+θ)を同期検波することで、信号Esin(θ)、Esin(θ−2π/3)、Esin(θ−4π/3)を得、これをPWM変換回路43に出力する。
PWM変換回路43は、前記信号Esin(θ)、Esin(θ−2π/3)、Esin(θ−4π/3)に基づいて、図5に示すように制御信号E0(制御信号E1〜E6)を生成してこれをモータドライバ63に出力する。これにより、制御信号E0(制御信号E1〜E6)に応じた電圧が、図5に示すようにY結線されたU相コイル70U、V相コイル70V及びW相コイル70Wに印加されるようにしている。
【0023】
U相コイル70U、V相コイル70V及びW相コイル70Wに上述したように電圧が印加されることにより、モータ12のステータ18には回転磁界が発生し、これに応じてロータ15は回転トルクを発生して回転する。このロータ15の回転作動について概略的に説明すると次のようになる。
【0024】
すなわち、図5におけるロータ15とステータ18の位置で上述したように正弦波電圧をステータ18のU相コイル70U、V相コイル70V及びW相コイル70Wに印加し、例えばU相コイル70UにS極(コイルへの通電により形成される回転磁界の磁極)が発生し、またW相コイル70WにN極(コイルへの通電により形成される回転磁界の磁極)が発生した場合、ロータ15のN極はU相コイル70U側に引き寄せられる。S極も同様にW相コイル70W側に引き寄せられる。このように電磁力が作用することにより、ロータ15に回転トルクが発生してロータ15は回転する。
【0025】
ここで、モータ12が正方向に回転するとブレーキパッドの間隔が狭くなりブレーキパッドとディスクロータが接触して制動力が働くことになる。すると、ブレーキの反力によってキャリパが変形したり、ブレーキパッドが圧縮されたりすることを除けば、モータ12は停止する。制動力を大きくするとモータ12の停止位置(ロータとステータの相対位置関係)が決まる。そのときのU相コイル70U、V相コイル70V及びW相コイル70Wの電圧Vu、Vv、Vwは、モータ12の回転角をθとすると、次式で求められる。
【0026】
Vu=Esin(θ)
Vv=Esin(θ−2π/3)
Vw=Esin(θ−4π/3)
【0027】
そのため、回転角θが所定角度の場合、例えばθ=0の場合、U相コイル70Uの電圧は、0となり、U相コイル70Uには電流は流れない。また、他のコイル(V相コイル70V及びW相コイル70W)には、反対方向の電圧がかかるので、V相コイル70VからW相コイル70Wへ(もしくはW相コイル70WからV相コイル70Vへ)電流が流れることになる。ここで、モータ12のコイルの発熱量は、モータ12が回転していないのでコイル(U相、V相及びW相コイル70U、70V、70W)の抵抗値と電流値から決まる。発熱量は、コイル抵抗値に電流値の2乗を掛けたものとなる。
【0028】
前記モータ12のU相、V相、W相の各コイル(U相コイル70U、V相コイル70V及びW相コイル70W)の近傍には、NTCサーミスタ95(温度センサ)がそれぞれ配置されている。それぞれのNTCサーミスタ95をU相、V相、W相コイル70U ,70V,70Wに対応してそれぞれU相、V相、W相のNTCサーミスタ95U,95V,95Wという。
【0029】
この第1参考技術では、温度センサとして上述したようにNTCサーミスタ95を用いているが、温度センサとしては、サーミスタや白金測温抵抗体などが広く使われている。通常のサーミスタ(前記NTCサーミスタ95が相当する)は負の温度係数を持ち、白金測温抵抗体は正の温度係数を持つ。又、サーミスタのうち、負の温度係数を持つサーミスタをNTCサーミスタ〔本第1参考技術の温度線センサ(NTCサーミスタ95)がこれに相当する。〕と呼び、正の温度係数を持つサーミスタをPTCサーミスタ96〔後述する第2参考技術の温度線センサ(PTCサーミスタ96)がこれに相当する。〕と呼ぶ。サーミスタは材質を変えることで3種類の温度係数を実現でき、次のような種類が広く用いられている。
【0030】
(1)NTCサーミスタ:ニッケル・コバルト・マンガンなどからなり、温度が高くなると抵抗値が低くなり、抵抗値の温度係数が負の半導体。
(2)PTCサーミスタ:チタン酸バリウム(BaTio3)を主成分とし、抵抗値が温度と共に急増する酸化物セラミックス。
(3)CTRサーミスタ:5酸化バナジウムに金属酸化物を混合した粉末を略1000℃で燒結したものであり、抵抗値が温度と共に急激に減少するサーミスタ。
【0031】
前記NTCサーミスタ95の抵抗値Rは、サーミスタ定数B及び温度TA(絶対温度、ケルビン)から次式(1)で求められる。
R=R∞exp(B/TA) … (1)
ここで、R∞は仮想的な無限大温度におけるサーミスタの抵抗値であり、この抵抗値R∞は次式(2)で求められる。
R∞=R25/exp(B/T25
ただし、T25は25℃に対応する絶対温度である。
【0032】
NTCサーミスタ95は、図6に示すように温度が高くなると抵抗値が低下する温度―抵抗値特性を示している。
ここで、3相のコイル(U相、V相、W相コイル70U ,70V,70W)に流れる電流に差ができ、その結果、コイル温度に差が生じた場合を考えてみる。
モータ電流Imは、次式(3)に示すように、各相の電流値〔Iu、Iv、Iw〕を2乗して加算したものを1/3倍して平方根を求めて得られるものになっている。
Im=[(Iu2+Iv2+Iw2)/3]1/2 … (3)
【0033】
この状態で、コイル電流のアンバランスの状態を考えると、W相とV相に流れ込んだ電流がそのままU相から流れ出す状態であるので、U相の電流の大きさ|Iu|は、次式(4)に示すようになる。
|Iu|=2×|Iv|=2×|Iw| … (4)
このため、モータ電流Imの1.4倍が1つのコイルに流れる場合があり、そこでの発熱量は2倍となることがわかる。他のコイルでは0.7倍の電流であるので、発熱量は1/2となる。このため、前記1つのコイルに対応するNTCサーミスタ95と前記他のコイルに対応するNTCサーミスタ95では、4倍異なった温度差を測定してしまうことになる。
【0034】
そこで、本第1参考技術では、NTCサーミスタ95を、U相コイル70U、V相コイル70V及びW相コイル70Wにそれぞれ設置し、各相に対応した3つのNTCサーミスタ95(U相、V相、W相のNTCサーミスタ95U,95V,95W)を並列に接続している。上述したように各相のコイル温度が異なる場合において、並列に接続されたU相、V相、W相のNTCサーミスタ95U,95V,95Wの各抵抗値Ru、Rv及びRw及び合成抵抗値を求める。この場合、サーミスタ定数Bを3000K、モータ12(モータ本体)の温度(雰囲気温度)を100℃、サーミスタ抵抗値Rを3KΩとし、コイル発熱によりU相コイル70Uは20℃、V相コイル70V及びW相コイル70Wは5℃、温度上昇したとする。そして、式(1)に基づいてU相、V相、W相のNTCサーミスタ95U,95V,95Wの抵抗値Ru、Rv及びRwを求めると、抵抗値Ruは約2.0KΩ、抵抗値Rv、Rwは約2.7KΩとなる。このため、その合成抵抗値は、式(5)に示されるように、約0.8KΩとなる。
【0035】
R(120℃+105℃+105℃)=1.992//2.697//2.697=0.804〔KΩ〕 … (5)
【0036】
式(5)で得られる合成抵抗値(0.804KΩ)は、次式(6)に示すように、U相、V相、W相コイル70U ,70V,70Wの温度上昇が共に10.3℃(平均温度上昇)であるとした場合に得られる合成抵抗値(0.806KΩ)と略同等である。すなわち、上述した各相のコイルの温度上昇が異なる場合と同等である場合とについて、後述する一定の対応関係があるので、合成抵抗値(電流)を求めることにより、U相、V相、W相コイル70U ,70V,70Wの平均温度上昇及び最大の温度上昇を検出することができる。
R(110.3℃+110.3℃+110.3℃)=2.417//2.417//2.417=0.806〔KΩ〕 … (6)
【0037】
前記一定の対応関係は、サーミスタの平均温度上昇は、3本のサーミスタの合成抵抗値から計算した温度上昇〔計算温度上昇値〕と略同等で、最大温度上昇は、前記平均温度上昇〔計算温度上昇値と略同等である〕のおおよそ2倍の値となる関係をいう。
なお、コイル温度のアンバランスとなる条件として、3つのコイルのうち1つのコイルに電流が流れない場合が考えられるが、その場合の温度上昇は次のようになる。
3つのコイルのうち電流が流れる2つのコイルの温度上昇が20℃であり、電流が流れない1つのコイルの温度上昇が0℃であると、抵抗値〔雰囲気温度が100℃で温度上昇前の値が3KΩであるとする。〕はそれぞれ1.992〔KΩ〕及び3.000〔KΩ〕、となるから、合成抵抗R(120℃+120℃+100℃)は式(6A)に示すように、0.748〔KΩ〕となる。
R(120℃+120℃+100℃)=1.992//1.992//3.000=0.748〔KΩ〕 … (6A)
【0038】
また、3つのサーミスタが同等に温度上昇(14℃の温度上昇)し、同等温度(114℃)となったときの3本のサーミスタの合成抵抗値R(114℃+114℃+114℃)は、
R(114℃+114℃+114℃)=2.243//2.243//2.243=0.748〔KΩ〕 … (6B)
となる。この式(6B)で得られる同等温度上昇(14℃)での3本のサーミスタの合成抵抗値R(114℃+114℃+114℃)は、前記式(6A)で得られる温度上昇が異なる場合の合成抵抗R(120℃+120℃+100℃)と略同等〔なお、この場合は同等になっている。〕である。このため、3つのサーミスタが同等に温度上昇した、すなわち、平均温度上昇後の温度(114℃)は、上述したアンバランス時(3つのコイルのうち1つのコイルに電流が流れない場合)の3つのコイルの平均温度(120℃+120℃+100℃)/3=113.3℃と略等しく、いずれか一方から他方を求めることが可能となる。
また、この場合、最大温度上昇(20℃)は合成抵抗値から求めた温度上昇14℃(114℃−100℃)の約1.4倍となるので、前記U相に2倍の電流が流れる場合より、最大温度上昇は低くなる。
【0039】
温度上昇を上記の場合より2倍の40℃(RU相コイル70U)、10℃(RV相コイル70V及びW相コイル70W)としてみても、式(7)に示されるように、U相のNTCサーミスタ95の抵抗値は約1.4KΩ、V相、W相のNTCサーミスタ95の抵抗値は約2.4KΩとなり、合成抵抗値は約0.65KΩとなる。
R(140℃+110℃+110℃)=1.377//2.432//2.432=0.646〔KΩ〕 … (7)
【0040】
この場合も、式(7)で得られる合成抵抗値(0.646KΩ)は、次式(8)に示すように、U相、V相、W相コイル70U ,70V,70W の温度上昇が共に21℃(平均温度上昇)であるとした場合に得られる合成抵抗値(0.651KΩ)と略同等であるので、この場合にも、各相のコイルの温度上昇が異なる場合と同等である場合とについて、上述した一定の対応関係があり、合成抵抗値(電流)を求めることにより、U相、V相、W相コイル70U ,70V,70Wの平均温度上昇及び最大の温度上昇を検出することができる。
R(121℃+121℃+121℃)=1.954//1.954//1.954=0.651〔KΩ〕 … (8)
【0041】
次に、サーミスタ定数Bが異なる複数種類のNTCサーミスタ95を対象にし、U相、V相、W相のNTCサーミスタ95U,95V,95Wの温度検出誤差を計算した結果を図7の表1に示す。
ここで、平均温度差と最大温度誤差は次のように計算している。
2つのコイル(ここではV相、W相コイル70V,70Wとする。)に流れた電流が1つのコイル(U相コイル70U)に流れると、その1つのコイル(U相コイル70U)の温度上昇は4倍となる。そして、例えばV相、W相コイル70V,70Wの温度上昇がそれぞれ5℃、U相コイル70Uの温度上昇が20℃であるとすると、モータ内部の平均温度上昇は10℃〔測定している部分の質量が略同等であるので、V相、W相コイル70V,70Wの温度上昇がそれぞれ5℃、U相コイル70Uの温度上昇が20℃であると、最終的に温度上昇は10℃となる。〕であり、各相コイル(V相、W相コイル70V,70W)の最大温度上昇は20℃である。表1(図7)で、平均温度差は、合成抵抗値から求めた温度上昇値〔計算温度上昇値〕と前記平均温度上昇との差分〔(平均温度差)=(計算温度上昇値)−(平均温度上昇)〕として求めた値である。
【0042】
そして、U相、V相、W相のNTCサーミスタ95U,95V,95W〔サーミスタ定数Bが2500Kであるとする。〕を並列接続したときの抵抗値に基づいて計算により算出された温度上昇〔計算温度上昇値〕は10.3℃となるので、この温度上昇10.3℃とモータ内部の平均温度上昇(前記10℃)との差〔この差を平均温度差という。〕を求め、
10.3−10=0.3℃を得る。
また、U相、V相、W相コイル70U ,70V,70Wの温度上昇値のうち最大の温度上昇値(最大温度)〔20℃〕から計算温度上昇値〔10.3℃〕を減算して最大温度誤差を求める。
〔最大温度誤差〕=〔最大温度上昇値(最大温度)〕−〔計算温度上昇値〕=20−10.3=9.7〔℃〕
【0043】
この表1〔温度上昇が40℃の場合でも、合成抵抗値から計算した温度〔計算温度上昇値〕と、最終的に到達する温度(平均温度)との差が略1℃であり、両者は略同等とみなせる〕に示されるように、100℃から140℃までの温度範囲でコイル〔U相、V相、W相コイル70U ,70V,70W〕の温度の平均値が測定できる。
そして、上述したように、平均温度上昇〔計算温度上昇値と略同等である〕について、最大温度上昇の約1/2の値であるとして、その値を検出でき、雰囲気温度(ブレーキをかけ始める前の温度)から、温度上昇が求められる。上記の例では、最大温度が120℃と140℃で計算したが、この場合、最大温度上昇は40℃と20℃となる。しかし、平均温度上昇は20℃と10℃(10.3℃)であるので、最大温度誤差は、20℃(40℃−20℃)と10℃(20℃−10.3℃)となる。
【0044】
また、表1に示されるようにサーミスタ定数Bが3000Kより大きい場合には、温度上昇が同じでも、抵抗値の下がり方が大きいので、高い温度となったサーミスタの抵抗がより下がる。このため、各サーミスタの平均温度での3本並列での抵抗値よりも抵抗値が下がり、より実際に即した温度を検出できることがサーミスタ定数Bが大きくなるのに伴い最大温度誤差が減少していくことからわかる。
【0045】
この第1参考技術では、上述したようにNTCサーミスタ95を、U相コイル70U、V相コイル70V及びW相コイル70Wに設置し、かつ各相に対応した3つのNTCサーミスタ95は、並列に接続されている。そして、並列接続された3つのNTCサーミスタ95の各一端側は引出し線(以下、第1引出し線という。)89aの一端に接続され、また各他端側は引出し線(以下、第2引出し線という。)89bの一端に接続されている。第1引出し線89a及び第2引出し線89bの他端側ははばね下に配置されたモータ12から外部に引出され、車内側に配置されたメインコントローラ62のコンパレータ91(温度検出回路)に接続されている。
【0046】
コンパレータ91は、オペアンプ92と、オペアンプ92のプラス(+)端子に接続されるしきい値をつくるための2つの抵抗(第1、第2抵抗R2,R3という。)と、オペアンプ92のマイナス(−)端子に接続されたプルアップ抵抗R1とを備えている。オペアンプ92のマイナス端子には前記第2引出し線89bが接続され、プラス端子には前記第1引出し線89aが接続されている。
オペアンプ92のマイナス端子(ひいてはNTCサーミスタ95)には前記プルアップ抵抗R1を介してバッテリ93(電源)が接続されており、NTCサーミスタ95にプルアップ抵抗R1を介して電圧が印加されるようになっている。NTCサーミスタ95に印加される電圧(NTCサーミスタ95電圧)はコンパレータ91で第1、第2抵抗R2,R3により得られる基準電圧と比較される。
【0047】
NTCサーミスタ95の電圧が基準電圧より小さければコンパレータ91の出力はプラスとなり、NTCサーミスタ95の電圧が基準電圧より高ければコンパレータ91の出力はマイナスとなる。
コンパレータ91の出力はPWM変換回路43のオンオフ変換回路(図示省略)のオンオフを制御するトランジスタ94に接続され、NTCサーミスタ95の電圧が低い場合にはトランジスタ94がオンすることで、PWM信号の出力が停止される。このため、コイル(U相コイル70U、V相コイル70VまたはW相コイル70W)の温度が高くなりコイル被覆の劣化する温度に近くなった場合は,モータドライバ63へのPMW信号の出力を停止するので、モータ12はそれ以上過熱されなくなる。
【0048】
上述したように構成された第1参考技術では、U相コイル70U、V相コイル70V及びW相コイル70Wに設置されたNTCサーミスタ95を並列に接続し、各相のNTCサーミスタ95U,95V,95Wの温度情報を第1引出し線89a及び第2引出し線89bを通して車内側のコンパレータ91に送り、モータ12の過熱防止を図っている。このようにモータ12の過熱防止をメインコントローラ62に対する温度センサ(NTCサーミスタ95)からの引出し線を2本(第1引出し線89a及び第2引出し線89b)に抑えて果たしているので、引出し線が撓みやすくなり、ひいては断線の発生を抑制し、かつ引出し線を容易に引き回すことができる。
【0049】
次に、第2参考技術を図8及び図9に基づいて説明する。この第2参考技術は、前記第1参考技術のNTCサーミスタ95に代えてPTCサーミスタ96(温度係数がプラスである)を用い、かつ3つのPTCサーミスタ96を直列に接続してコンパレータ91に接続したことが主に異なっている。PTCサーミスタ96は、図9に示すように温度上昇によって抵抗値が急激に大きくなる温度―抵抗値特性を示し、抵抗値の対数値が温度に比例する特性を有する。この温度係数をαとして、抵抗値Rは次式(10)で示される。
R=Rαexp(α(T−TA)) … (10)
【0050】
αの値は、チタン酸バリウム(BaTio3)のみを使用すると、35%程度となり、バリウムの一部をストロンチウムに置き換えると、その値は小さくなる。20%の添加量でαは8%程度となる。抵抗値の例としてはαは15%、100℃の抵抗値が1KΩとして、80℃までが10Ω程度で、その後150℃で2MΩとなる。
【0051】
この第2参考技術では、上述したようにモータ12の過熱を検出するPTCサーミスタ96を、U相コイル70U、V相コイル70V及びW相コイル70Wに設置している。各相に対応した3つのPTCサーミスタ96は、直列に接続され、その一端側のPTCサーミスタ96及び他端側のPTCサーミスタ96に引出し線(以下、第1引出し線89a、第2引出し線89bという。)が接続されている。
【0052】
モータ12が温度上昇すると、PTCサーミスタ96の抵抗値は大きくなり、コンパレータ91のプラス入力電圧は大きくなる。このため、所定電圧以上でコンパレータ91の出力はプラスとなり、前記PWM変換回路43のオンオフ変換回路のオンオフを制御するトランジスタ94がオンするので、PWM出力が停止される。このため、モータ12はそれ以上過熱されなくなる。
【0053】
上述したように構成された第2参考技術では、U相コイル70U、V相コイル70V及びW相コイル70Wに設置されたPTCサーミスタ96を直列に接続し、各相のPTCサーミスタ96の温度情報を第1引出し線89a及び第2引出し線89bを通して車内側のコンパレータ91(メインコントローラ62)に送り、モータ12の過熱防止を図っている。このようにモータ12の過熱防止をメインコントローラ62に対する温度センサ(PTCサーミスタ96)からの引出し線を2本(第1引出し線89a及び第2引出し線89b)に抑えて果たしているので、引出し線が撓みやすくなり、ひいては断線の発生を抑制し、かつ引出し線を容易に引き回すことができる。
【0054】
ここで、PTCサーミスタ96を直列に接続した場合の抵抗値と温度の関係を求める。U相コイル70U、V相コイル70V及びW相コイル70Wにそれぞれ対応したPTCサーミスタ96(以下、U相、V相及びW相のPTCサーミスタ96U,96V,96Wという)は、100℃のときに1KΩの抵抗値をもつものとする。
100℃であったU相コイル70U、V相コイル70V及びW相コイル70Wが温度上昇し、そのうち最も温度上昇したコイル(U相コイル70U)の温度が120℃(温度上昇20℃)になった場合及び140℃(温度上昇40℃)になった場合の2つの場合におけるU相、V相及びW相のPTCサーミスタ96U,96V,96Wの抵抗値及び合成抵抗値を求める。
【0055】
前者の場合〔U相コイル70Uが120℃(温度上昇20℃)になった場合〕には、V相コイル70V及びW相コイル70Wが105℃(温度上昇5℃)になるとしてU相、V相及びW相のPTCサーミスタ96U,96V,96Wの抵抗値を求める。なお、このようにU相コイル70Uが120℃(温度上昇20℃)になるとした場合にV相コイル70V及びW相コイル70Wが105℃(温度上昇5℃)になるとしたのは、2つのコイル(ここではV相コイル70V及びW相コイル70Wとする。)に流れた電流が1つのコイル(U相コイル70U)に流れると、その1つのコイル(U相コイル70U)の温度上昇は他の2つのコイル(V相コイル70V及びW相コイル70W)の温度上昇の4倍となることに基づくものである。
また、同様に、後者の場合〔U相コイル70Uが140℃(温度上昇40℃)になった場合〕には、V相コイル70V及びW相コイル70Wが110℃(温度上昇10℃)になるとして抵抗値を求める。
【0056】
まず、前者の場合〔U相コイル70Uが120℃(温度上昇20℃)になった場合〕について、式(10)に基づいてU相、V相及びW相のPTCサーミスタ96U,96V,96Wの抵抗値Ru(120℃)、Rv(105℃)及びRw(105℃)及び合成抵抗値R(120℃+105℃+105℃)を求めると、次式(11)〜(14)に示すようになる。
【0057】
Figure 0003899489
【0058】
また、同様に、後者の場合〔U相コイル70Uが140℃(温度上昇40℃)になった場合〕、U相、V相及びW相のPTCサーミスタ96U,96V,96Wの抵抗値Ru(140℃)、Rv(110℃)及びRw(110℃)及び合成抵抗値R(140℃+110℃+110℃)を求めると、次式(15)〜(18)に示すようになる。
【0059】
Figure 0003899489
【0060】
上記前者及び後者の場合について、U相コイル70U、V相コイル70V及びW相コイル70Wが同一に温度上昇した場合の合成抵抗値を求めると次のようになる。
まず、前者の場合〔U相コイル70Uが120℃(温度上昇20℃)になった場合〕、合成抵抗値は次式(19)となる。
R(114℃+114℃+114℃)=8.1+8.1+8.1=24.3〔KΩ〕 … (19)
【0061】
また、後者の場合〔U相コイル70Uが140℃(温度上昇40℃)になった場合〕、合成抵抗値は次式(20)となる。
R(132.5℃+132.5℃+132.5℃)=131+131+131=393〔KΩ〕 … (20)
【0062】
上記算出例から、U相コイルの温度(最大温度)である120℃に対して、合成抵抗値から求めた温度〔計算温度上昇値〕が114℃と求められるので、最大温度差に比べ−6℃、平均温度(110℃)に比べ+4℃と求められるので、平均温度よりも高めに求められている。平均温度が120℃の場合(最大温度140℃で、他のコイル温度が110℃)では、最大温度との差は7.5℃で、平均温度との差は、+2.5℃であるので、これも平均温度よりも高めに検出される。
【0063】
上述したNTCサーミスタ及びPTCサーミスタの特性から、モータが発熱する前の温度(モータに電流が流れていない場合の温度)がわかれば、並列もしくは直列に接続した温度センサの検出値から計算した温度と温度差の約2倍の値がモータのコイルが呈する最大の温度であると言える。このため、モータ温度の算出に際し、モータに電流を流さない場合の温度と、モータに電流を流した場合での温度上昇の2倍の値を見込んでモータのコイル温度を計算することにより、一番、温度上昇が考えられる状態での温度を求めることができる。
【0064】
なお、前記第1参考技術において、CTRサーミスタをU相コイル70U、V相コイル70V及びW相コイル70Wにそれぞれ配置すると共に、3本のCTRサーミスタをNTCサーミスタ95と並列に接続するように構成(第3参考技術)してもよい。CTRサーミスタは、上述したように温度が所定温度Tcを超えると抵抗値が急激に低下する特性を有している。
【0065】
この第3参考技術では、所定温度Tcになるまでは、CTRサーミスタの抵抗値が非常に大きいので、電流はCTRサーミスタを流れず、NTCサーミスタ95を流れる。このため、所定温度Tcになるまでは、上述した3つのNTCサーミスタ95を用いた場合(第1参考技術)と同様に作動する。また、所定温度Tcに達すると、CTRサーミスタの抵抗値が急激に下がる。これにより、CTRサーミスタにも電流が流れるようになり、電流値がそれまでと異なる特異な変化を示すことになる。この電流値の特異な変化によりCTRサーミスタが所定の温度Tcに達したことがわかる。
【0066】
次に、第4参考技術を説明する。この第4参考技術は、U相コイル70U、V相コイル70V及びW相コイル70Wにそれぞれ配置されたサーミスタ(温度センサ)を有し、該サーミスタに電流を流してサーミスタを自己放熱させ、この際に熱放散係数を求め、この熱放散係数が小さくなった場合にサーミスタが断線していると判定するようにしている。サーミスタに電流を流すと、自己放熱により、サーミスタ自体の温度が上昇する。その温度上昇は、熱放散係数と呼ばれる外部とサーミスタ内部との熱のやり取りの関係から決まる。熱放散係数Cは、サーミスタに供給した電力Pと、温度上昇ΔTの関係から決まり、次式(30)で表すことができる。
C=P/ΔT … (30)
【0067】
ここで、温度上昇ΔTは、サーミスタの温度から求められるが、サーミスタの構造や測定したいモータコイルの構造、取付け方法が変わらなければ、U相コイル70U、V相コイル70V及びW相コイル70Wにそれぞれ配置したサーミスタの熱放散係数をC1,C2,C3とするとき、正常であればC1=C2=C3となり、温度上昇ΔTと電力Pの関係は、1個のサーミスタで考えた場合と同じになる。
【0068】
U相コイル70U、V相コイル70V及びW相コイル70Wに対する供給電力をP1,P2,P3とし、正常状態で、全体の電力Pの1/3の値が1つのサーミスタに供給されるとすると、次の電力関係となる。
P1=P2=P3=P/3 … (31)
【0069】
そして、熱放散係数Cは、計算した温度上昇ΔTと供給された電力Pから、式(32)により求められる。
C=P/3/ΔT … (32)
【0070】
ここで、1つのサーミスタが断線した場合、電力Pは、同じであれば、1つのサーミスタに供給される電力が1.5倍に増える。このことは抵抗値が1.5倍となったことと同じであるので、温度換算した値は20℃低く検出される(サーミスタ定数Bが3000Kの場合)。
【0071】
ここで、計算した温度上昇値としては、サーミスタが3個でも2個でも実際の温度上昇値と同じ値が測定できるので、供給電力と温度上昇の比すなわち熱放散係数は小さい値に測定される。その割合は1/1.5である。これはある電力に対して温度上昇が高いことを示しており、サーミスタ内部から熱が出にくいことを示している。
【0072】
ここで、サーミスタが断線した場合を想定したが、サーミスタとコイルの接触が悪くなり、コイルの温度が正確に測れなくなった場合を考えると、この場合もサーミスタから熱が放出されにくくなるので、熱放散係数が小さくなる。そのため、サーミスタに温度上昇をさせるために電力パルスをいれると、サーミスタの断線及びサーミスタとコイルの間の接触状況が測定できる。上記全ての参考技術においては、引出し線をメインコントローラ62内のコンパレータ91に接続する構成で説明したが、これに限らず、コンパレータ91をモータドライバ63に設けて、モータドライバ63よりモータ12への電力供給を停止するようにしてもよい。
【0073】
次に、本発明の前提技術に係る電動ディスクブレーキ装置1Dを図10〜図12に基づき、図1及び図5を参照して説明する。なお、図1〜図9に示す部材、部分と同等の部材、部分は、同一の符号で示し、その説明及び図示は、適宜、省略する。図10において、この前提技術に係る電動ディスクブレーキ装置1Dには、3相の集中巻きのブラシレスモータ(以下、モータという。)12Aが用いられており、このモータ12Aは、前記第1参考技術と同様に、Y結線されたU相コイル70U、V相コイル70V及びW相コイル70W(図5参照)を有している。U相コイル70U、V相コイル70V及びW相コイル70Wの各一端部が接続された中性点98又はその近傍には、当該中性点98の温度(中性点温度)TSを検出する1個の温度センサ95Aが設けられている。
【0074】
また、U相コイル70U、V相コイル70V及びW相コイル70Wは、その各他端部に接続されたリード線(U相リード線100U、V相リード線100V及びW相リード線100W)、及びモータ12Aへの電力供給を行うモータドライバ63等を介してバッテリ93(電源)に接続されている。
U相リード線100UにはU相カレントセンサ102Uが設けられている。同様にして、V相リード線100V及びW相リード線100Wにはそれぞれ、V相カレントセンサ102V及びW相カレントセンサ102Wが設けられている。U相カレントセンサ102U、V相カレントセンサ102V及びW相カレントセンサ102Wのそれぞれは、U相リード線100U、V相リード線100V及びW相リード線100WひいてはU相コイル70U、V相コイル70V及びW相コイル70Wに流れる電流(各コイル電流IZU、コイル電流IZV及びコイル電流IZW)を検出するようになっている。
【0075】
電動ディスクブレーキ装置1Dは、モータ12Aを制御するコントローラ62Aを備えている。コントローラ62Aは、U相コイル70Uのコイル温度TU、V相コイル70Vのコイル温度TV及びW相コイル70Wのコイル温度TWを求めるコイル温度算出部110を有している。コイル温度算出部110で求められたコイル温度TU、TV及びTWは、それぞれに対応したU相コイル70U、V相コイル70V及びW相コイル70W及び絶縁皮膜の劣化防止等に用いられるようになっている。
【0076】
この前提技術では、U相リード線100U、V相リード線100V及びW相リード線100Wにそれぞれカレントセンサ(U相カレントセンサ102U、V相カレントセンサ102V及びW相カレントセンサ102W)が設けられており、これにより、上述したようにU相コイル70Uのコイル電流IU、V相コイル70Vのコイル電流IV及びW相コイル70Wのコイル電流IWを計測するようにしている。なお、カレントセンサは、3相全てに設ける必要はなく、2つの相に設け、残る1つの相の電流は計算により求めるようにしてもよい。
【0077】
U相コイル70U、V相コイル70V及びW相コイル70WのうちU相コイル70Uの発熱は、U相コイル70Uの抵抗値とコイル電流IUの2乗の積に相当するものであることから、U相コイル70Uの温度上昇ΔTUは、U相コイル70Uのコイル電流IUから推測することが可能である。そして、U相コイル70Uの温度上昇ΔTUは、次式(30)に示すように比例定数k、コイル電流IUの2乗及び通電時間Δtの積で表すことができる。
【0078】
ΔTU=kIU 2×Δt … … (30)
【0079】
また、V相コイル70Vの温度上昇ΔTV及びW相コイル70Wの温度上昇ΔTWについても、前記U相コイル70Uの温度上昇ΔTUの場合と同様に、前記式(30)に準じて表すことができる。
【0080】
なお、式(30)から、U相コイル70Uの温度上昇ΔTUは分かるが、式(30)だけでは、U相コイル70Uのコイル温度TUは不明である。このことは、V相コイル70Vの温度上昇ΔTV及びW相コイル70Wの温度上昇ΔTWについても同様に言えることであり、温度上昇ΔTV、ΔTWを示す式〔式(30)に準じた式〕だけではコイル温度TV及びコイル温度TWは、不明である。本前提技術では、モータコイルの発熱が次のように伝熱されることを考慮して、コイル温度TU、コイル温度TV及びコイル温度TWを、以下のようにして求めるようにしている。
【0081】
すなわち、モータコイル(U相コイル70U、V相コイル70V及びW相コイル70W)の熱は当該コイル70U,70V,70Wから鉄心等を通してキャリパ本体3(図1参照)に流れ、キャリパ本体3から外気に放熱するため、コイル温度(コイル温度TU、コイル温度TV及びコイル温度TW)は最終的には気温(雰囲気温度)と同等になる。しかし、自動車のブレーキキャリパ(キャリパ本体3)周辺の温度は不安定である。
そこで、モータコイル(コイル70U,70V,70W)の中性点98の温度(中性点温度TS)を温度センサ95Aにより測定する。モータコイル(コイル70U,70V,70W)の中性点98は、各相のコイル(コイル70U,70V,70W)の集合点であり、この中性点98の温度(中性点温度TS)は、モータ12Aの実効電流IMに応じて温度変化する。電流値が大きい相のコイルは、中性点温度TSよりも高い温度となり、電流値の小さいコイルの温度は中性点温度TSよりも低くなり、コイル温度(コイル温度TU、コイル温度TV及びコイル温度TW)は中性点温度TSを中心に電流値に応じて変化する。
【0082】
図11に、モータ12Aへ通電を開始した〔時点t1〕後、所定時間後通電を停止した〔時点t2〕場合におけるモータコイル、中性点98及びブレーキキャリパ(キャリパ本体3)の温度変化の様子を示す。図11のモータのコイル温度は、コイル70U,70V,70Wのうち、最も電流値が大きいコイル(ここではコイル70Uとする。)を対象として得た図である
本電動ディスクブレーキ装置1Dの作動当初は、ブレーキキャリパ(キャリパ本体3)及びコイル70U,70V,70Wの温度は一致しており、図11の時点t1でモータ12Aを拘束した状態で通電すると、コイル(ここではコイル70U)の温度、中性点温度TSは上昇する。時間経過と共にコイル温度及び中性点温度TSとの差は大きくなる。
これに対して、ブレーキキャリパ(キャリパ本体3)の温度の上昇は非常に小さい(横軸に対し僅かに傾斜する角度である)。図11の時点t2で通電を停止すると、コイル(ここではコイル70U)の温度、中性点温度TSは低下しながら近い値になる。これに対してブレーキキャリパ(キャリパ本体3)温度はコイル(ここではコイル70U)から熱が流れるため、温度上昇が継続される。なお、この場合も、ブレーキキャリパ(キャリパ本体3)の温度上昇変化は、図11に示されるように小さいものになっている。
【0083】
コイル温度算出部110が実行するコイル温度の算出内容について図12のフローチャートに基づいて説明する。
コントローラ62Aは、所定の制御周期で演算を行なうようになっており、コントローラ62Aに設けられるコイル温度算出部110は、まず、温度センサ95Aが検出した中性点温度TSを入力する(ステップS1)。次に、U相コイル70Uのコイル温度TU、V相コイル70Vのコイル温度TV及びW相コイル70Wのコイル温度TWに対して、前記中性点温度TSを代入し(ステップS2)、後述するステップS5、S6、S7の演算のための準備をする。次に、カレントセンサ(U相カレントセンサ102U、V相カレントセンサ102V及びW相カレントセンサ102W)によりそれぞれ計測されるU相コイル70Uのコイル電流IU、V相コイル70Vのコイル電流IV及びW相コイル70Wのコイル電流IWを入力する(ステップS3)。
【0084】
ステップS3に続くステップS4で、前記コイル電流IU、IV及びIWに基づいて、モータ実効電流IMを算出する。モータ実効電流IMは、「(1/3)×(IU 2+IV 2+IW 2)」の平方根で求められる。
【0085】
ステップS4に続いて、U相コイル70Uの中性点98に対する温度上昇の算出と、U相コイル70Uのコイル温度TUの算出を行なう(ステップS5)。U相コイル70Uのコイル温度上昇ΔTUは、コイル電流IUの2乗に比例し、中性点98の温度上昇ΔTSは、モータ実効電流IMの2乗に比例する。そして、中性点98に対するU相コイル70Uの温度上昇〔後述する伝達量の変化を考慮した温度上昇と区別するために、便宜上、基準温度上昇という〕ΔTZUは、次式(31)で求められる。
【0086】
ΔTZU=(k1U 2−k2M 2)Δt … (31)
ここで、k1及びk2は比例定数であり、温度が測定されている中性点98とコイルとは熱容量が異なるため両k1及びk2は異なっている。
【0087】
また、コイルと中性点98との間に温度差が生じると、コイル及び中性点98間の熱の伝達量が増加(変化)する。前記温度差〔伝達量の変化〕による影響を考慮すると、中性点98に対するコイルの温度上昇ΔTUは次式(32)に示すようになる。
【0088】
Figure 0003899489
3は比例定数である。
【0089】
コイル温度算出部110(コントローラ62A)は、ステップS5において、さらに次式(33)の演算を行ない、前記ステップS2で中性点温度TSが代入されたU相コイル70Uのコイル温度TUに、前記コイルの温度上昇ΔTUを加算して〔すなわち、中性点98に対するU相コイル70Uの温度上昇値ΔTUを前記温度センサ95Aの検出値(コイル温度TU)に加算して〕、U相コイル70Uのコイル温度TUを求める。
【0090】
U=ΔTU+TS … (33)
【0091】
ステップS5で行なったU相コイル70Uのコイル温度TUの算出と同様にして、ステップS6で式(34)及び(35)の演算を行ない、V相コイル70Vのコイル温度TVを算出する。
【0092】
ΔTV=(k1V 2−k2M 2)Δt−k3(TV−TS2Δt … (34)
V=ΔTV+TS … (35)
【0093】
また、ステップS6に続くステップS7で式(36)及び(37)の演算を行ない、W相コイル70Wのコイル温度TWを算出する。
【0094】
ΔTW=(k1W 2−k2M 2)Δt−k3(TW−TS2Δt … (36)
W=ΔTW+TS … (37)
【0095】
ステップS7に続くステップS8で、当該車両のキー(イグニッションキー)がオフされたか否かを判定する。ステップS8でキーがオフされていない(No)と判定すると、ステップS3に戻り上記ステップを実行する。ステップS8でキーがオフされた(Yes)と判定すると、コイル温度算出部110の処理を終了する。
【0096】
上述したように構成した本前提技術によれば、温度センサ95Aで中性点温度TSを計測する一方、U相カレントセンサ102Uで検出されたコイル電流IUからU相コイル70Uの温度上昇値ΔTUを求め、中性点温度TSに温度上昇値ΔTUを加算してU相コイル70Uのコイル温度TUを求める。さらに、U相コイル70Uのコイル温度TUの算出と同様にして、V相コイル70Vのコイル温度TV及びW相コイル70Wのコイル温度TWを求める。このため、1個の温度センサを用い中性点の温度のみでコイルの温度を推定する場合に比して、各相のコイル(U相コイル70U、V相コイル70V、W相コイル70W)の温度〔コイル温度TU、コイル温度TV及びコイル温度TW〕をより精度高く検出することができる。また、温度センサ95Aは1個で済むので、温度センサ95A用の配線及び配線組付け作業を減らすことができると共に、取扱い性の向上を図ることができる。また、ブレーキをかけていないときコイルの推定温度は、時間経過に伴って測定している温度センサ値に近づくため、コイルの推定温度の実際のコイル温度に対する誤差は、時間経過にかかわらず大きくはなっていかない。
【0097】
ここで、本発明の一実施の形態に係る電動ディスクブレーキ装置を説明する。上記前提技術では、中性点98又はその近傍に温度センサ95Aを設ける場合を例にしたが、本一実施の形態では、これに代えて、図13及び図14に示すように構成している。すなわち、この一実施の形態のモータ12Bは、キャリパ本体3(図1参照)内に納められている。このモータ12Bでは、キャリパ本体3(図1参照)内においてU相リード線100U、V相リード線100V及びW相リード線100Wが束ねられ、このU相リード線100U、V相リード線100V及びW相リード線100Wが束ねられた部分(リード線束ね部分)120には、温度センサ95Aが設けられている。そして、前提技術と同様にして、モータ実効電流IMを得、このモータ実効電流IMを用いてU相コイル70Uのコイル温度TU、V相コイル70Vのコイル温度TV及びW相コイル70Wのコイル温度TWを求めるようにしている。
この一実施の形態において、温度センサ95Aとコイルリード線(U相リード線100U、V相リード線100V及びW相リード線100W)は、図14に示すように、接触して配置される一方、相互にずれないように、モールド121で固定されている。この一実施の形態においても、前提技術と同様にして、U相コイル70Uのコイル温度TU、V相コイル70Vのコイル温度TV及びW相コイル70Wのコイル温度TWが求められる。
【0098】
このため、1個の温度センサのみでコイル(U相コイル70U、V相コイル70V、W相コイル70W)の温度を推定する場合に比して、各相のコイル(U相コイル70U、V相コイル70V、W相コイル70W)の温度〔コイル温度TU、コイル温度TV及びコイル温度TW〕をより精度高く検出することができる。
また、温度センサ95Aは1個で済むので、温度センサ95A用の配線及び配線組付け作業を減らすことができると共に、取扱い性の向上を図ることができる。
【0099】
【発明の効果】
請求項1に記載の発明によれば、複数相のコイルのリード線を束ねたリード線束ね部分に設けられる温度センサと、複数相のコイルを流れるコイル電流をそれぞれ検出するカレントセンサと、を備え、コントローラは、前記各カレントセンサにより検出されるコイル電流に基づいて得られる複数相のコイルのリード線束ね部分に対する相対温度上昇値を前記温度センサの検出値に加算して複数相の各コイルの温度を求めるコイル温度算出部を設けたことにより、温度センサのみの検出温度によるコイル温度の推定に比して、各相のコイル温度をより精度高く検出することができる。また、温度センサは1個で済むので、温度センサ用配線及び配線組付け作業を減らすことができ、さらに、取扱い性が向上する。
【図面の簡単な説明】
【図1】 第1参考技術の電動ディスクブレーキ装置を示す縦断面図である。
【図2】 図1の装置を一部破断して示す側面図である。
【図3】 図1の装置を一部破断して示す平面図である。
【図4】 図1の装置を一部破断して示す正面図である。
【図5】 図1の電動ディスクブレーキ装置のコントローラを示す回路図である。
【図6】 図5のコントローラに用いるNTCサーミスタの温度―抵抗値特性を示す図である。
【図7】 NTCサーミスタ95の温度検出誤差の計算例を表形式で示す図である。
【図8】 第2参考技術の電動ディスクブレーキ装置に用いられるコントローラを示す回路図である。
【図9】 図8のコントローラに用いるPTCサーミスタの温度―抵抗値特性を示す図である。
【図10】 本発明の前提技術の電動ディスクブレーキ装置を模式的に示す図である。
【図11】 モータへの通電及びその停止に伴うコイル、中性点及びブレーキキャリパの温度変化を示す図である。
【図12】 図10のコントローラの演算内容を示すフローチャートである。
【図13】 本発明の一実施の形態の電動ディスクブレーキ装置を模式的に示す図である。
【図14】 図13のリード線及び温度センサの配置状態を模式的に示す図である。
【符号の説明】
12 モータ
62 メインコントローラ(コントローラ)
63 モータドライバ(コントローラ)
91 コンパレータ
70U,70V,70W U相、V相、W相コイル
89a 第1引出し線(引出し線)
89b 第2引出し線(引出し線)
95A 温度センサ
120 リード線束ね部分

Claims (1)

  1. コントローラから電力供給を受ける複数相のコイルを有するモータの作動により制動力を発生するディスクブレーキ本体を備えた電動ディスクブレーキ装置であって、
    前記複数相のコイルのリード線を束ねたリード線束ね部分に設けられる温度センサと、
    前記複数相のコイルを流れるコイル電流をそれぞれ検出するカレントセンサと、を備え、
    前記コントローラは、前記各カレントセンサにより検出されるコイル電流に基づいて得られる複数相のコイルのリード線束ね部分に対する相対温度上昇値を前記温度センサの検出値に加算して複数相の各コイルの温度を求めるコイル温度算出部を設けたことを特徴とする電動ディスクブレーキ装置。
JP2002190881A 2002-02-28 2002-06-28 電動ディスクブレーキ装置 Expired - Fee Related JP3899489B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002190881A JP3899489B2 (ja) 2002-02-28 2002-06-28 電動ディスクブレーキ装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002-53917 2002-02-28
JP2002053917 2002-02-28
JP2002190881A JP3899489B2 (ja) 2002-02-28 2002-06-28 電動ディスクブレーキ装置

Publications (2)

Publication Number Publication Date
JP2003322182A JP2003322182A (ja) 2003-11-14
JP3899489B2 true JP3899489B2 (ja) 2007-03-28

Family

ID=29552131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002190881A Expired - Fee Related JP3899489B2 (ja) 2002-02-28 2002-06-28 電動ディスクブレーキ装置

Country Status (1)

Country Link
JP (1) JP3899489B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009007887B3 (de) * 2009-02-07 2010-09-16 Oechsler Ag Verfahren zum Ermitteln der Betriebstemperatur eines Gleichstrommotors, insbesondere zum Betätigen einer elektromotorischen Parkbremse, und zum Umpolen seines Motorstromes
DE102009022675A1 (de) * 2009-05-26 2010-12-16 Horiba Europe Gmbh Prüfstand mit temperaturgesteuertem Kühlgebläse
JP6570877B2 (ja) * 2015-05-22 2019-09-04 Ntn株式会社 電動ブレーキ装置
US10720874B2 (en) 2016-07-27 2020-07-21 Panasonic Intellectual Property Management Co., Ltd. Brushless DC motor
US11821483B2 (en) * 2018-03-27 2023-11-21 Hitachi Astemo, Ltd. Electric motor control device and brake device
KR20200142205A (ko) 2019-06-12 2020-12-22 주식회사 만도 전자식 브레이크 시스템 및 그 제어방법
KR20230045348A (ko) 2021-09-28 2023-04-04 에이치엘만도 주식회사 전자식 브레이크 시스템 및 그 제어방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09233687A (ja) * 1996-02-20 1997-09-05 Ngk Insulators Ltd 中性点接地方式
JPH11234964A (ja) * 1998-02-09 1999-08-27 Asmo Co Ltd モータの温度検知構造
JP2000184659A (ja) * 1998-12-14 2000-06-30 Kusatsu Denki Kk モータ
JP3668666B2 (ja) * 2000-03-21 2005-07-06 株式会社日立製作所 同期電動機とそれを用いた電気車及びその制御方法
JP2002013566A (ja) * 2000-06-29 2002-01-18 Tokico Ltd 電動ディスクブレーキ装置

Also Published As

Publication number Publication date
JP2003322182A (ja) 2003-11-14

Similar Documents

Publication Publication Date Title
JP6570877B2 (ja) 電動ブレーキ装置
JP4378151B2 (ja) モータ駆動装置
JP5624810B2 (ja) 電動機の駆動制御方法
CN102598502B (zh) 检查电机转矩的似然性的方法及调节电机和执行该方法的机器调节器
JPH08207812A (ja) 車両のヨーレート制御のための電気アシスト・ステアリング・システムの非線形減衰方法及び装置
CN102892997B (zh) 用于运行具有无刷电动马达的促动器的方法和装置
JP3899489B2 (ja) 電動ディスクブレーキ装置
WO2016181898A1 (ja) 電動モータ装置および電動式直動アクチュエータ
JP6799968B2 (ja) 電動式直動アクチュエータ
KR102618388B1 (ko) 전동 모터의 제어 장치 및 브레이크 장치
JP6758998B2 (ja) 電動モータ装置
WO2013190429A2 (en) A Method and Control Unit for an Electric Motor or Generator
JP2006184160A (ja) 故障検出機能付き三相交流電動機の電流検出装置
JP5498910B2 (ja) 電動機の駆動制御方法
JP4343898B2 (ja) 回転電機の温度推定装置
JP6502172B2 (ja) 電動ブレーキ装置
US6851765B1 (en) System and method for controlling a brake motor
JP6629017B2 (ja) 電動モータ装置および電動式直動アクチュエータ
CN102647133B (zh) 三相交流电动机
JP7368176B2 (ja) 誘導モータの制御装置及び制御システム
JP2008014323A (ja) 電動ブレーキ装置
JP2019075909A (ja) 制御装置
WO2021171322A1 (en) Measuring circuit of the voltage of an electric machine, system and process for estimating the temperature of the magnets of electric machines using such circuit
JP2004058956A (ja) 電動ブレーキ装置
KR20160013038A (ko) 전기적으로 구동된 모터 펌프 어셈블리에 의해 차량 제동 시스템에서 계측 유압 체적을 반송하는 방법 및 차량 제동 시스템

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040831

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061215

R150 Certificate of patent or registration of utility model

Ref document number: 3899489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees