JP3887338B2 - コリメータ間の調芯方法および光ビーム強度分布測定装置 - Google Patents

コリメータ間の調芯方法および光ビーム強度分布測定装置 Download PDF

Info

Publication number
JP3887338B2
JP3887338B2 JP2003087411A JP2003087411A JP3887338B2 JP 3887338 B2 JP3887338 B2 JP 3887338B2 JP 2003087411 A JP2003087411 A JP 2003087411A JP 2003087411 A JP2003087411 A JP 2003087411A JP 3887338 B2 JP3887338 B2 JP 3887338B2
Authority
JP
Japan
Prior art keywords
light beam
collimator
intensity distribution
light
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003087411A
Other languages
English (en)
Other versions
JP2004294790A (ja
Inventor
剛 山本
貴 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2003087411A priority Critical patent/JP3887338B2/ja
Publication of JP2004294790A publication Critical patent/JP2004294790A/ja
Application granted granted Critical
Publication of JP3887338B2 publication Critical patent/JP3887338B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光通信装置で用いられるフリースペース型光スイッチなどの光軸を調整するコリメータ間の調芯方法およびこの調芯方法に用いる光ビーム強度分布測定装置に関する。
【0002】
【従来の技術】
ADSLや光アクセス回線に代表される広帯域アクセス網の急激な普及,さらにブロードバンドコンテンツの流通開始に伴い,インターネットを構成する基幹ネットワークのさらなる大容量化が求められている。ネットワークの伝送路部分には、40Gb/s級の高速大容量光通信装置や,同一光ファイバ上に波長の異なる光信号を多重化することでさらなる大容量化を実現したDWDM(Dens-wavelength division multiplexing)光通信装置の導入が予定されている。
【0003】
一方、ネットワークのノード部分においては、一旦光信号を電気信号に変換し,超高速LSIで構成されるスイッチで方路の切り替えを行った後,再び光信号に変換してネットワークに戻す方法を採ることが一般的である。このため、ノード部分においては、電気信号から光信号,または光信号から電気信号に変換する装置のコストや占有体積,および消費電力などが、信号帯域の向上に伴って大幅に増加する状態である。
【0004】
この問題を解決するため,光信号を光のままスイッチングする光スイッチをノード部に導入することが検討されている。中でも,光ビームを用いた高密度立体配線を用いるフリースペース型光スイッチは,1000端子を越える大規模光スイッチをコンパクトに構成することができるため,光クロスコネクト装置やルータを構成するスイッチ部への導入が見込まれている(非特許文献1参照)。
【0005】
以下、フリースペース型光スイッチについて、簡単に説明する。この光スイッチは、図5に示すように、入力側の光ファイバアレイ501、入力側のコリメート用マイクロレンズアレイ502、入力側のマイクロ可動ミラーアレイ503、出力側のマイクロ可動ミラーアレイ504、出力側の集光用マイクロレンズアレイ505、出力側の光ファイバアレイ506から構成されている。
【0006】
光ファイバアレイ501,506は、複数の光ファイバが2次元的(マトリクス状)に配列されたものである。また、コリメート用マイクロレンズアレイ502,集光用マイクロレンズアレイ505は、複数のマイクロレンズが2次元的に配列されたものである。また、マイクロ可動ミラーアレイ503,504は、複数の微細な可動ミラーが、2次元的に配列されたものである。マイクロ可動ミラーは、マイクロマシン(MEMS)技術を用いて半導体基板の上に形成された能動素子であり,図5に示すX軸,およびY軸を中心とする回転方向にそれぞれミラー面の傾きを調整できる。
【0007】
このように構成されたフリースペース型光スイッチでは、例えば、図5中に矢印で示すように、光ビームが進行する。光ファイバアレイ501のいずれかの光ファイバを伝搬してきた光信号は、この光ファイバを出射してコリメート用マイクロレンズアレイ502の対応するレンズにより光ビームに変換され、マイクロ可動ミラーアレイ503の対応する可動ミラーに到達する。
【0008】
可動ミラーに到達した光ビームは、到達した可動ミラーの傾きに応じて進行方向が変更され、マイクロ可動ミラーアレイ504の対応する可動ミラーに到達する。この可動ミラーにおいても、到達した光ビームは可動ミラーの傾きに応じて進行方向が変更され、集光用マイクロレンズアレイ505の所定のマイクロレンズに入射し、光ファイバアレイ506の所定の光ファイバに導かれる。
【0009】
例えば、図5においては、光ファイバアレイ501,506の各光ファイバは、X軸方向とY軸方向とに2次元に配列されているが、まず、Y軸を中心にマイクロ可動ミラーアレイ503,504の可動ミラーの反射角度を適当に調整することで、X軸の上に配列されている任意の光ファイバ間を接続することができる。同様に、X軸を中心にマイクロ可動ミラーアレイ503,504の可動ミラーの反射角度を適当に調整することで、Y軸の上に配列されている任意の光ファイバ間を接続することができる。このような、図5に示すフリースペース型光スイッチによれば、マイクロ可動ミラーアレイ503,504の可動ミラーの反射角度を、XY両軸を中心に調整することにより,二次元配列された任意の入出力光ファイバ間を接続することができる。
【0010】
引き続き,同構成による光スイッチ内部で生じる接続損失について説明する。一般にフリースペース光学系内部で生じる損失は,光ビームと出力光ファイバのコア部との結合部分におけるスポットサイズ不整合と位置ずれ,および角度ずれに起因する損失が支配的である。他の損失要因としては各屈折率境界面におけるフレネル反射損失や散乱が考えられるが,無反射コートが取り付けられた光学部品の表面反射率は0.5%以下であり,ほぼ無視できる。
また,各光学部品開口によって生じるケラレ損失の影響は、各構成部品に十分な大きさの開口を持たせることで回避できる。
【0011】
図6に光ファイバ入出力部を持つフリースペース光学系のモデルを示す。図6のモデルでは、入力用光ファイバ601より出射された光信号は、マイクロレンズ602により光ビーム610とされ、マイクロレンズ603により集光されて出力用光ファイバ604に導かれるものとしている。入力用光ファイバ601とマイクロレンズ602とで、入力用ファイバコリメータが構成され、出力用光ファイバ604とマイクロレンズ603とにより出力用ファイバコリメータが構成されている。
【0012】
ここで、出力用ファイバコリメータ(出力用光ファイバ604)の光軸と光ビーム610の進行方向(光軸)とのずれ角をθとし、マイクロレンズ603により集光された光ビーム610のビームウエスト径をωbeamとし、出力用光ファイバ604のモードフィールド径をωfiberとする。また、出力用光ファイバ604の入射端面の光ビーム610の光軸からのずれ量をd、ビームウエストが形成される位置と出力用光ファイバ604の入射端面との光軸方向のずれ量をzとする。このとき、出力用光ファイバ604の入射端面に到達した光ビームと出力用光ファイバ604との光接続損失(Coupling Loss)は、以下に示すガウシアンビーム同士の結合式を用いて求めることができる。なお、式中、λは、光源の波長を示している。
【0013】
【数1】
Figure 0003887338
【0014】
以上のことから、光接続損失は、以下に示す3つの条件を同時に満たす場合に最小となる。
1)集光された光ビームのビームウエスト径と光ファイバのモードフィールド径が等しい(ωbeam=ωfiber)。
2)光ビーム光軸とファイバ光軸との角度ずれ,および光ビームのビームウエスト形成位置と光ファイバ端面におけるコア部中心位置との光軸に対して垂直方向の軸ずれがそれぞれ零(θ=d=0)。
3)光ビームのビームウエスト形成位置と光ファイバ端面との光軸方向の距離が零(z=0)。
【0015】
【非特許文献1】
山本他,“3−D MEMS大規模光スイッチ”,信学技報,PS2002−55,2002
【0016】
【発明が解決しようとする課題】
ところで、図6に示す光学系のモデルにおいて,光ファイバ間の位置調整を行う場合には、各構成部品を自動ステージ等に取り付けた後、一方の光ファイバに光信号を入射し、網一方の光ファイバから出射される光信号の強度を測定し、測定される光信号の強度が最大となる各々の位置を探索する方法が、一般に採用されている。しかし、このような方法では、最適な状態の探索に長い時間を必要とし、さらに、前述した光接続損失が最小となる3つの条件をすべて満たしていることを検証することができない。
【0017】
本発明は、以上のような問題点を解消するためになされたものであり、フリースペース光学系などを構成する光学系内部を伝搬する光ビームの伝搬特性、特にビームウエストの大きさとこれが形成位置や、光軸傾きを測定することにより、対向配置されるコリメータ間の光接続損失が最小となるように調芯できるようにすることを目的とする。
【0018】
【課題を解決するための手段】
本発明に係るコリメータ間の調芯方法は、対向配置して互いに光結合させる第1コリメータと第2コリメータとの間に設定したアライメント参照軸の上に、光ビームの光強度分布を測定する測定装置を配置し、第1コリメータより出射された第1光ビームの光強度分布を測定装置で測定し、測定される光強度分布のピークの位置が所定の位置となるように第1コリメータの位置を変更し、第1コリメータの光軸とアライメント参照軸とを一致させ、第2コリメータより出射された第2光ビームの光強度分布を測定装置で測定し、測定される光強度分布のピークの位置が所定の位置となるように第2コリメータの位置を変更し、第2コリメータの光軸とアライメント参照軸とを一致させ、測定装置で測定される第1光ビームの光強度分布のピーク幅が最小となる第1光ビームのビームウエストの位置と、測定装置で測定される第2光ビームの光強度分布のピーク幅が最小となる第2光ビームのビームウエストの位置とを一致させるようにしたものである。
この調芯方法では、第1コリメータと第2コリメータとの間に配置された測定装置により、第1コリメータおよび第2コリメータ各々より出射された第1光ビームと第2光ビームの光強度分布を測定することで、第1コリメータの光軸と第2コリメータの光軸とを一致させ、また、第1光ビームのビームウエスト位置と第2光ビームのビームウエスト位置とを一致させることで、光接続損失を最小としている。
【0019】
本発明に係る光ビーム強度分布測定装置は、対向配置して互いに光結合させる第1コリメータと第2コリメータとの間に設定したアライメント参照軸の上の所定箇所に配置されて第1コリメータより出射された第1光ビームおよび第2コリメータより出射された第2光ビームの光強度分布を測定する光ビーム強度分布測定装置であって、アライメント参照軸を法線とする主表面および裏面を備えた透明な基板と、この基板の主表面に形成され、第1光ビームを受光して光電変換し、かつ、基板を透過した第2光ビームを受光して光電変換する光電変換膜と、この光電変換膜の前面および基板の裏面の前面に各々対向して設けられ、主表面および裏面に平行な方向に移動可能な遮光板とを少なくとも備えるようにしたものである。
この測定装置は、向きを変更することなく、対向配置された第1コリメータと第2コリメータとより出射された第1光ビームと第2光ビームの光強度分布を測定する。
【0020】
【発明の実施の形態】
以下、本発明の実施の形態について図を参照して説明する。
図1は、本発明の実施の形態における光ビーム強度分布測定用の測定装置120の構成例を示す構成図である。測定装置120は、入力用ファイバコリメータ(第1コリメータ)100と出力用ファイバコリメータ(第2コリメータ)110との間に配置されて用いられる。測定装置120は、光ビーム強度の分布を測定する測定器121と、測定器121が固定される回転ステージ124と回転ステージ124を光ビームの伝搬方向に移動させる直動ステージ125とから構成されている。
【0021】
回転ステージ124が回転することで、測定器121は回転し、また、回転ステージ124が直動ステージ125の上を移動することで、測定器121も直動ステージ125の上を移動する。従って、測定器121は、測定対象の光ビームの伝搬方向(進行方向)に移動可能にされ、また、光ビームの進行方向に対して垂直方向の軸を中心に回転可能とされている。
【0022】
また、測定器121は、光検出器122と遮光板123とから構成されている。光検出器122は、例えば、光通信に用いられる波長1300〜1600nmの光に感度をもつPbSなどからなる光電変換素子である。なお、入力用ファイバコリメータ100は、入力用光ファイバ101とマイクロレンズ102とから構成され、出力用ファイバコリメータ110は、出力用光ファイバ111とマイクロレンズ112とから構成されている。
また、図中太い破線の矢印は、測定対象の光ビームの進行方向を示し、細い実線の矢印は、遮光板123の移動方向を示している。
【0023】
つぎに、上述した測定装置120を用いた本実施の形態における2つのコリメータ間の調芯方法について説明する。
この調芯方法は、まず、図2(a)に示すように、基本となる所定の軸(アライメント参照軸)202の上の一方のコリメータである入力用ファイバコリメータ100に近い位置に、測定器121を配置する。ここで、測定器121の直動ステージ125の移動軸が、軸202に重なるようにする。
【0024】
軸202は、調芯対象の2つのコリメータの光軸を一致させるための対象であり、2つのコリメータの各々の光軸を軸202に一致させることで、2つのコリメータの光軸を一致させることができる。従って、測定器121を配置した状態における直動ステージ125の移動軸を、軸202としても良い。
【0025】
以上に説明したような測定装置120を、軸202の上の2つのコリメータの間に配置された状態とし、入力用ファイバコリメータ100より出射させた光ビーム201の強度分布を測定器121で測定し、測定された光ビーム201の強度分布が、所定の状態となるように入力用ファイバコリメータ100のX軸方向およびY軸方向の位置を調整する。
【0026】
ここで、測定装置120の測定器121による光ビームの強度分布測定について説明する(参考文献:「ビームアナライザ・スタンドアロンシステム・カタログ」、メレスグリオ社発行)。まず、測定器121の受光面は、測定対象の光ビームの進行方向に対してほぼ垂直な状態に配置し、ここでは、光ビーム201が上記受光面に入射するように配置する。このようにして光強度を測定する状態で、遮光板123を受光面に平行に移動させ、測定器121の受光面に入射する光ビームを徐々に遮断する。このような遮光板を移動させた状態における測定器121により測定される光強度は、図3の実線で示されるように変化する。
【0027】
また、実線で示される光強度の変化の変化分は、点線で示されるようになる。この点線で示される光強度の変化の変化分が、光ビームの光強度分布を示すものとなる。この点線で示される光強度分布のピークの出現位置Lが、光ビーム201による光軸と測定装置120が配置されている軸202とのずれの状態を示している。遮光板123の位置が測定器121の受光面の中央部にある状態で、上記ピークが出現すれば、光ビーム201による光軸と測定装置120が配置されている軸202とが一致していることを示している。すなわち、光検出器122の受光面が半分遮光される遮光板123の位置に、ピークの出現位置Lが重なれば、光ビーム201による光軸と測定装置120が配置されている軸202とが一致したことになる。
【0028】
また、図3に点線で示される光強度分布の半値幅Wが、光ビーム201のビーム径を示している。例えば、直動ステージ125の上で測定器121を移動させていくと、上記半値幅Wが変化し、測定器121が所定の位置になると、半値幅Wが最も小さくなる。この位置が、光ビーム201のビームウエストの位置を示すことになる。
【0029】
これらのように、光検出器122の受光面の上で、位置を正確に把握した状態で遮光板123を移動させて光ビーム201の光強度を測定し、図3の点線で示すような光強度の変化分(光強度分布)を求めることで、光ビーム201の軸と軸202とのずれの状態や、ビームウエストの位置を測定することが可能となる。また、遮光板123を移動させる方向を、図中に示すX軸方向およびY軸方向の両方とすることで、X−Y面の光強度分布が求められ、光ビームのX軸方向とY軸方向のずれ量を測定することが可能となる。
【0030】
以上に説明したようにすることで、入力用ファイバコリメータ100より出射させた光ビーム201の光強度分布を測定し、この測定の結果得られる上記ピークの出現位置Lが所定の位置になるように、入力用ファイバコリメータ100のX軸方向およびY軸方向の位置を調整する。
【0031】
つぎに、図2(b)に示すように、測定器121を直動ステージ125の上で移動させ、測定器121を入力用ファイバコリメータ100から離れた位置に配置する。この状態で、光ビーム201の光強度分布を測定し、この測定の結果得られる上記ピークの出現位置Lが所定の位置になるように、入力用ファイバコリメータ100のX軸およびY軸を中心とする回転方向の位置を調整する。
ここで、X軸方向およびY軸方向の位置の調整をした後、測定器121の位置を変更し、X軸およびY軸を中心とする回転方向の位置を調整すると、最初に調整したX軸方向およびY軸方向の位置が多少変化する。従って、図2(a)に示すX軸方向およびY軸方向の位置の調整と、図2(b)に示すX軸およびY軸を中心とする回転方向の位置の調整とを繰り返し、入力用ファイバコリメータ100の光軸と軸202とのずれが、許容する誤差内となるようにする。
【0032】
以上のようにして、入力用ファイバコリメータ100の光軸を軸202に合わせた後、前述したように、測定器121を直動ステージ125の上で移動させて光強度分布を測定し、光強度分布の半値幅Wが最小となる位置を検出し、検出した位置を光ビーム201のビームウエスト位置として記憶しておく(図2(c)。
つぎに、回転ステージ124を180°回転させ、測定器121の受光面を他方のコリメータである出力用ファイバコリメータ110が配置される側に向ける。この状態で、出力用ファイバコリメータ110を所定位置に配置し、出力用ファイバコリメータ110より光ビームを出射させ、この強度分布を測定器121で測定し、前述と同様にすることで、出力用ファイバコリメータ110の光軸を軸202に合わせる(図2(d))。
【0033】
つぎに、測定器121を直動ステージ125の上で移動させて光強度分布を測定し、出力用ファイバコリメータ110より出射させた光ビームのビームウエスト位置を検出する。最後に、このビームウエストの位置と、記憶されている光ビーム201のビームウエスト位置とのずれ量を算出し、算出したずれ量だけ、出力用ファイバコリメータ110の位置を修正する。以上のようにして、入力用ファイバコリメータ100と出力用ファイバコリメータ110との位置を調整(調芯)した後、これらの間より測定装置120を取り除くことで、2つのコリメータの調芯が終了する。
【0034】
ところで、上述した調芯方法では、光結合させる2つのコリメータの各々より出射させた光ビームの各々のビームウエスト位置を一致させるようにした。これは、例えば、マイクロレンズ112で集光した光ビームのビームウエスト位置と出力用光ファイバ111の光入射端の位置とを一致させることと同様である。
従って、上述した本実施の形態における調芯方法によれば、前述した光接続損失を最小にする3つの条件を同時に満たすものとなる。
【0035】
ところで、上述では、測定器121の向きを180°回転させ、対向する2つのコリメータより出射させた光ビームの光強度分布を得るようにしたが、以下に示すことにより、これらを同時に得るようにしても良い。
図4は、対向する2つのコリメータより出射された光ビームの強度分布を同時の測定する測定器(光ビーム強度分布測定装置)の構成例を示す概略的な断面図である。
【0036】
この測定器は、例えば石英などから構成された透明な基板403の主面に光電変換膜404を設け、基板403の両面に近設する2つの遮光板401,402を設けたものである。基板403は、測定対象となる光ビームの波長に対して透過性を持つ材料であればよい。また、光電変換膜404は、測定対象となる光の波長に感度をもつ材料から構成すれば良く、例えば、PbSなどから構成すればよい。
【0037】
図4に示す測定器によれば、破線の矢印で示す両側から到達した光ビームの光強度分布を測定することが可能となる。この測定器によれば、図1,2に示した測定装置120の回転ステージ124を用いる必要が無くなる。また、図4に示す測定器によれば、回転させる際の位置ずれによる誤差の影響を回避でき、より高い精度で光強度分布を得ることができるようになる。
【0038】
なお、上述では、入力用ファイバコリメータ100と出力用ファイバコリメータ110との間の光接続損失を最小とするために、これらの光軸を合わせる場合を例にしたが、これに限るものではない。
本発明は、例えば、半導体レーザから出射された光をマイクロレンズなどによって光ビームとし、この光ビームをファイバコリメータに結合させる場合にも適用できる。
【0039】
【発明の効果】
以上説明したように、本発明では、第1コリメータと第2コリメータとの間に配置された測定装置により、第1コリメータおよび第2コリメータ各々より出射された第1光ビームと第2光ビームの光強度分布を測定することで、第1コリメータの光軸と第2コリメータの光軸とを一致させ、また、第1光ビームのビームウエスト位置と第2光ビームのビームウエスト位置とを一致させることで、光接続損失が最小となるように調芯するようにした。
この結果、本発明によれば、より迅速にかつ精度良く、対向配置されるコリメータ間の光接続損失が最小となるように調芯できるようになるという優れた効果が得られる。
【0040】
また、本発明では、向きを変更することなく、対向配置された第1コリメータと第2コリメータとより出射された第1光ビームと第2光ビームの光強度分布を測定できるので、高い精度で調芯できるようになる。
【図面の簡単な説明】
【図1】 本発明の実施の形態における光ビーム強度分布測定用の測定装置の構成例を示す構成図である。
【図2】 本発明の実施の形態における光ビーム強度分布測定による調芯方法を説明するための概略的な構成図である。
【図3】 測定器121により測定される光強度の状態を示す特性図である。
【図4】 本発明の光ビーム強度分布測定装置の一部構成を示す模式的な断面図である。
【図5】 フリースペース型光スイッチの構成を示す斜視図である。
【図6】 光ファイバ入出力部を持つフリースペース光学系のモデルを示す構成図である。
【符号の説明】
100…入力用ファイバコリメータ(第1コリメータ)、101…入力用光ファイバ、102…マイクロレンズ、110…出力用ファイバコリメータ(第2コリメータ)、111…出力用光ファイバ、112…マイクロレンズ、120…測定装置、121…測定器、122…光検出器、123…遮光板、124…回転ステージ、125…直動ステージ、201…光ビーム、202…軸(アライメント参照軸)。

Claims (2)

  1. 対向配置して互いに光結合させる第1コリメータと第2コリメータとの間に設定したアライメント参照軸の上に、光ビームの光強度分布を測定する測定装置を配置する第1ステップと、
    前記第1コリメータより出射された第1光ビームの光強度分布を前記測定装置で測定し、測定される光強度分布のピークの位置が所定の位置となるように前記第1コリメータの位置を変更し、前記第1コリメータの光軸と前記アライメント参照軸とを一致させる第2ステップと、
    前記第2コリメータより出射された第2光ビームの光強度分布を前記測定装置で測定し、測定される光強度分布のピークの位置が所定の位置となるように前記第2コリメータの位置を変更し、前記第2コリメータの光軸と前記アライメント参照軸とを一致させる第3ステップと、
    前記測定装置で測定される前記第1光ビームの光強度分布のピーク幅が最小となる前記第1光ビームのビームウエストの位置と、前記測定装置で測定される前記第2光ビームの光強度分布のピーク幅が最小となる前記第2光ビームのビームウエストの位置とを一致させる第4のステップと
    を少なくとも備えたことを特徴とするコリメータ間の調芯方法。
  2. 対向配置して互いに光結合させる第1コリメータと第2コリメータとの間に設定したアライメント参照軸の上の所定箇所に配置されて前記第1コリメータより出射された第1光ビームおよび前記第2コリメータより出射された第2光ビームの光強度分布を測定する光ビーム強度分布測定装置であって、
    前記アライメント参照軸を法線とする主表面および裏面を備えた透明な基板と、
    この基板の主表面に形成され、前記第1光ビームを受光して光電変換し、かつ、前記基板を透過した前記第2光ビームを受光して光電変換する光電変換膜と、
    この光電変換膜の前面および前記基板の裏面の前面に各々対向して設けられ、前記主表面および裏面に平行な方向に移動可能な遮光板と
    を少なくとも備えたことを特徴とする光ビーム強度分布測定装置。
JP2003087411A 2003-03-27 2003-03-27 コリメータ間の調芯方法および光ビーム強度分布測定装置 Expired - Fee Related JP3887338B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003087411A JP3887338B2 (ja) 2003-03-27 2003-03-27 コリメータ間の調芯方法および光ビーム強度分布測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003087411A JP3887338B2 (ja) 2003-03-27 2003-03-27 コリメータ間の調芯方法および光ビーム強度分布測定装置

Publications (2)

Publication Number Publication Date
JP2004294790A JP2004294790A (ja) 2004-10-21
JP3887338B2 true JP3887338B2 (ja) 2007-02-28

Family

ID=33401800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003087411A Expired - Fee Related JP3887338B2 (ja) 2003-03-27 2003-03-27 コリメータ間の調芯方法および光ビーム強度分布測定装置

Country Status (1)

Country Link
JP (1) JP3887338B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5685924B2 (ja) * 2010-12-22 2015-03-18 日立化成株式会社 光電気複合基板の製造方法及び光電気複合モジュールの製造方法
CN103235419B (zh) * 2013-04-28 2015-07-22 哈尔滨工业大学 一种楔形透镜拆装单元的精准离线定轴装置与方法
KR102550666B1 (ko) * 2014-12-05 2023-07-04 컨버전트 덴탈 인크 레이저 빔의 정렬을 위한 시스템들 및 방법들

Also Published As

Publication number Publication date
JP2004294790A (ja) 2004-10-21

Similar Documents

Publication Publication Date Title
JP5714229B2 (ja) 二重レンズの単一光受信器アセンブリ
US7123809B2 (en) Optical fiber array
JP5134028B2 (ja) 光部品
US6819815B1 (en) Method and apparatus for indirect adjustment of optical switch reflectors
EP3431918B1 (en) Multichannel confocal sensor and related method for inspecting a sample
CN109581584B (zh) 一种硅-铌酸锂异质集成扫描芯片及其制备方法、应用
US6501876B1 (en) Bidirectional optical communication device and bidirectional optical communication apparatus
JP6379224B2 (ja) 多チャンネル光受信モジュールおよび多チャンネル光受信モジュールの光整列方法
JP2003202205A (ja) 光学式距離センサ
JPH0258568B2 (ja)
US6757460B2 (en) Electro-optical module for transmitting and/or receiving optical signals on at least two optical data channels
JP5475560B2 (ja) 光スイッチ
JP3887338B2 (ja) コリメータ間の調芯方法および光ビーム強度分布測定装置
JP3742382B2 (ja) 光ファイバアレイ
JP2021060569A (ja) テストデバイス及びヘテロジニアスに集積化した構造体
Peter et al. Microoptical fiber switch for a large number of interconnects: optical design considerations and experimental realizations using microlens arrays
EP0463779A1 (en) Fibre optic waveguide beam splitter
US20060165351A1 (en) Optical device unit, optical device and microlens array
JP5016009B2 (ja) 光信号処理装置およびその組み立て方法
Cho et al. Board-level optical interconnection and signal distribution using embedded thin-film optoelectronic devices
WO2022056756A1 (zh) 一种棋盘式成像仪及实现方法
US20020092963A1 (en) Semitransparent sensor for steering an optical beam
JP2010009048A (ja) マイクロ光学フォトニックバンドギャップファイバーカプラー
Goering et al. Miniaturized optical switches based on piezoelectrically driven microprism arrays
JPH07301717A (ja) 集積光学装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees