WO2022056756A1 - 一种棋盘式成像仪及实现方法 - Google Patents

一种棋盘式成像仪及实现方法 Download PDF

Info

Publication number
WO2022056756A1
WO2022056756A1 PCT/CN2020/115763 CN2020115763W WO2022056756A1 WO 2022056756 A1 WO2022056756 A1 WO 2022056756A1 CN 2020115763 W CN2020115763 W CN 2020115763W WO 2022056756 A1 WO2022056756 A1 WO 2022056756A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
array
checkerboard
imager
quadrature modulation
Prior art date
Application number
PCT/CN2020/115763
Other languages
English (en)
French (fr)
Inventor
于清华
Original Assignee
中国科学院上海技术物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海技术物理研究所 filed Critical 中国科学院上海技术物理研究所
Publication of WO2022056756A1 publication Critical patent/WO2022056756A1/zh
Priority to US18/164,532 priority Critical patent/US20230185021A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • G02B6/06Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres the relative position of the fibres being the same at both ends, e.g. for transporting images
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12019Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the optical interconnection to or from the AWG devices, e.g. integration or coupling with lasers or photodiodes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • G02B27/1013Beam splitting or combining systems for splitting or combining different wavelengths for colour or multispectral image sensors, e.g. splitting an image into monochromatic image components on respective sensors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12002Three-dimensional structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12014Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the wavefront splitting or combining section, e.g. grooves or optical elements in a slab waveguide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/005Diaphragms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof

Definitions

  • the invention relates to the field of photoelectric imaging, in particular to a checkerboard imager and a realization method.
  • Lockheed Martin proposed a segmented planar photoelectric detection imaging technology based on optical interference (SPIDER, Segmented Planar Imaging Detector for Electro- optical Reconnaissance), this technology is based on the principle of interference imaging, which is different from the large and bulky lenses in traditional telescopes. It uses thousands of lens arrays to collect light, and uses photonic integration technology to integrate lens arrays and waveguide arrays on the substrate. An array of interferometric telescopes are miniaturized on a single chip. The technology combines optics, processing systems and readout circuitry on a single chip that can be ten or even a hundred times smaller in size, mass and power consumption than conventional telescopes.
  • SPIDER Segmented Planar Imaging Detector for Electro- optical Reconnaissance
  • the SPIDER imaging system adopts a gear-shaped arrangement structure, which has the problems of incomplete sampling in the spatial frequency domain and poor image quality.
  • 2017, Shanghai Institute of Technical Physics proposed "a compact rectangular aperture arrangement structure and sampling method of target spatial frequency” (201711000143.2) to solve the problem of incomplete sampling of SPIDER spatial frequency, and then published a scientific paper (System design for a "checkerboard” "imager, Applied Optics, Vol.57, No.35) uses 3D optical waveguides for aperture-paired beam transmission, but does not describe the spectral splitting scheme, does not solve the problem of beam cross-loss, and does not provide that the development of 3D optical waveguides can be implemented.
  • Technical solutions are described for a "checkerboard” "imager, Applied Optics, Vol.57, No.35)
  • the purpose of the present invention is to provide a checkerboard imager and a realization method, which mainly solve the problems existing in the above-mentioned prior art, solve the problems of spectral splitting scheme and beam cross loss, and provide a 3D optical waveguide and a checkerboard imager.
  • Implementable implementation methods play an important role in scientific exploration, national defense, space exploration and other fields.
  • the technical solution adopted in the present invention is to provide a checkerboard imager, which is characterized in that a rectangular array of aperture pairs, a 2D optical waveguide grating array, a 3D optical waveguide beam transmission array, and a 2D optical waveguide positive
  • the intermodulation coupler array and the photoelectric conversion data acquisition and image processing module are composed; the aperture pair array is located at the front, and the sub-apertures converge the focus light, which is then collected by the rear 2D optical waveguide grating array and split into narrow-spectrum beams Then, output to the 3D optical waveguide beam transmission array to complete the cross-pairing transmission of the narrow-spectrum beams, and then modulate multiple narrow-spectrum beams of different frequencies through the 2D optical waveguide quadrature modulation coupler array. Coupling reaches the photoelectric conversion data acquisition and image processing module, so that the object image is finally obtained through data processing and image inversion reconstruction algorithm.
  • the array of aperture pairs arranged in a rectangle satisfies one, two, three or four quadrant aperture pairs described in a compact rectangular aperture arrangement structure and a sampling method for a target spatial frequency;
  • the 3D optical waveguide The beam transmission array corresponds to the array of one, two, three or four quadrant aperture pairs, and completes the cross-pairing transmission of the narrow-spectrum beams according to a compact rectangular aperture arrangement structure and a sampling method of the target spatial frequency ;
  • Each quadrant of the 3D optical waveguide beam transmission array is formed by nesting of back-shaped transmission optical waveguide chips with different inner and outer dimensions.
  • the zigzag-shaped transmission optical waveguide chip is formed by an optical fiber bundle, or is composed of four 3D transmission waveguide chips with limited thickness and four 90-degree turning mirrors.
  • the 2D optical waveguide grating array is composed of a plurality of 2D optical waveguide grating chips; each of the 2D optical waveguide grating chips is composed of one or more layers of 2D optical waveguide gratings with consistent functions.
  • the 2D optical waveguide quadrature modulation coupler array is composed of a plurality of 2D quadrature modulation coupler chips; each of the 2D quadrature modulation coupler chips is composed of one or more layers of 2D quadrature modulation coupler arrays.
  • the working spectral section of the 2D quadrature modulation coupler array covers the spectral section of the input light wave after the 2D optical waveguide grating array is dispersed and dispersed by the 3D optical waveguide beam transmission array and cross-paired; different working spectral sections
  • 2D quadrature modulation coupler arrays suitable for different operating spectrum bands are located on the same layer or different layers of the 2D quadrature modulation coupler chip.
  • an optical path compensation optical path for the narrow-spectrum light beam is set.
  • the present invention also provides a method for realizing a checkerboard imager, which is characterized in that it comprises the steps of:
  • Step S101 independently manufacture the aperture pair array, the 2D optical waveguide grating array, the 3D optical waveguide beam transmission array, the 2D optical waveguide quadrature modulation coupler array, and the The photoelectric conversion data acquisition and image processing module;
  • Step S102 completing the coupling between the aperture pair array, the 2D optical waveguide grating array, the 3D optical waveguide beam transmission array, and the 2D optical waveguide quadrature modulation coupler array to form an optical waveguide working unit;
  • Step S103 coupling the optical waveguide working unit and the photoelectric conversion data acquisition and image processing module to form a checkerboard imager.
  • a 2D optical waveguide manufacturing process is used to complete the manufacture of the 2D optical waveguide grating array and the 2D optical waveguide quadrature modulation coupler array, and a 3D optical waveguide manufacturing process is used to complete the 3D optical waveguide beam transmission.
  • Fabrication of the array; the back-shaped transmission optical waveguide chips in the 3D optical waveguide beam transmission array are molded by fiber bundles, or composed of four 3D transmission waveguide chips with limited thickness and four 90-degree turning mirrors.
  • step S102 the coupling is completed through an alignment gluing process to form an optical waveguide working unit.
  • step S103 the coupling is completed through an alignment and gluing process to form a checkerboard imager.
  • the present invention has the following advantages:
  • the technical solution of the present invention introduces a 3D optical waveguide beam transmission array for beam transmission, which avoids the cross loss of beam transmission in the 2D optical waveguide common substrate, and improves the optical efficiency and modular development yield of the checkerboard imager.
  • the technical scheme of the present invention places the dispersive light-splitting functional device before the 3D optical waveguide transmission array, performs dispersive light splitting first, and then completes the paired transmission of each narrow-spectrum beam with the help of the 3D optical waveguide transmission array to ensure that the imager interferes with the object light. While detecting the acquisition capability, it completely avoids the problem of physical intersection of optical paths in the 2D optical waveguide, and improves the optical efficiency of each optical path of the imager.
  • the optical fiber bundle molding solution proposed by the technical solution of the present invention implements a 3D optical wave transmission chip implementation method, which combines the 2D optical waveguide grating array and the 2D optical waveguide orthogonal modulation coupler array to make the optical transmission efficiency of the checkerboard imager higher. , and the equivalent aperture can be extended to the meter level or even larger scale, which greatly improves the working ability of the checkerboard imager.
  • the technical solution of the present invention introduces the method of firstly manufacturing each module independently and then integrating it, which is beneficial to the development of sub-modules. By controlling the interface between each module, the yield of modules and the development yield of the imager are greatly improved.
  • FIG. 1 is a schematic diagram of the overall structure of a preferred embodiment of the checkerboard imager of the present invention
  • FIG. 2 is a schematic diagram of a back-shaped area in the aperture pair array of a preferred embodiment of the checkerboard imager of the present invention
  • FIG. 3 is a schematic structural diagram (four quadrants) of a preferred embodiment of the checkerboard imager of the present invention.
  • FIG. 4 is a schematic structural diagram (one of four quadrants) of a preferred embodiment of the checkerboard imager of the present invention.
  • FIG. 5 is a schematic diagram (side view) of the working principle of the spliced 3D optical waveguide beam transmission of a preferred embodiment of the checkerboard imager of the present invention
  • Fig. 6 is the top view of Fig. 5;
  • FIG. 7 is a schematic diagram (top view) of the optical fiber molding 3D optical waveguide beam transmission working principle of a preferred embodiment of the checkerboard imager of the present invention.
  • Fig. 8 is the top view of Fig. 7;
  • FIG. 9 is an input original diagram of a preferred embodiment of the checkerboard imager of the present invention.
  • FIG. 10 is a simulation effect diagram after processing of a preferred embodiment of the checkerboard imager of the present invention.
  • FIG. 11 is a flowchart of a preferred embodiment of a method for implementing a checkerboard imager of the present invention.
  • 301-90-degree turning mirror 302-3D transmission waveguide chip; 303-"back-shaped" 3D light wave transmission chip; 304-fiber bundle;
  • the Chinese invention patent "A Compact Rectangular Aperture Arrangement Structure and Sampling Method of Target Spatial Frequency" (Application No.: 201711000143.2) adopts a compact rectangular aperture arrangement, and divides the rectangular aperture into 4 quadrants.
  • the apertures are symmetrically paired with respect to the center, so as to achieve continuous integer coverage sampling of spatial frequencies within a certain spatial frequency range, and obtain the target image through inverse Fourier transform.
  • This aperture arrangement can realize all acquisitions in a certain continuous spatial frequency range, obtain continuous and non-redundant spatial frequency coverage, and improve the imaging quality of the target.
  • the size of the array of the rectangular array of apertures of the present invention is related to the scale and imaging quality requirements, according to the requirements of imaging quality requirements, and in accordance with the Chinese invention patent "A compact rectangular aperture arrangement structure and the sampling method of target spatial frequency" ( Application number: 201711000143.2) for design.
  • the array of aperture pairs arranged in a rectangle is divided into four quadrants, the aperture pairs in each quadrant are arranged in a zigzag shape, and the aperture pairs are symmetrically paired about the geometric center of the zigzag in their respective zigzags.
  • the array of aperture pairs in each quadrant plays a role in converging the spatial frequency domain information of the object light in the imager.
  • the aperture pair array used by the imager includes the four quadrants described in the Chinese invention patent "A Compact Rectangular Aperture Arrangement Structure and the Sampling Method of Target Spatial Frequency" (application number: 201711000143.2), it is a four-quadrant checkerboard imager .
  • the imager can also use only one of the four quadrants described in this sampling method, or the second or third, combined with the image processing algorithm to improve the imaging quality. Therefore, the checkerboard imager also Can be one, two, or three of a four-quadrant array of a four-quadrant checkerboard imager.
  • the checkerboard imager in each quadrant is composed of a rectangular array of aperture pairs, a 2D optical waveguide grating array, a 3D optical waveguide beam transmission array, a 2D optical waveguide quadrature modulation coupler array, and a photoelectric conversion data acquisition and image processing module. .
  • the dispersive optical splitting module In order to ensure the interferometric detection and acquisition capability of the object light beam information of the checkerboard imager, it is necessary to disperse and disperse the wide-spectrum object light into a narrow spectrum and then conduct orthogonal modulation and interference.
  • the dispersive optical splitting module must be placed before the optical path of the quadrature modulation coupler, but if the layout of SPIDER (US invention patent, US 8913859B1) is used, the dispersive optical splitting function module and the quadrature modulation coupler module are closely linked together on the same substrate , even if the 3D optical waveguide pairing is used to transmit a wide-spectrum beam, there will still be a problem of physical cross-loss between multi-spectral optical paths in the 2D optical waveguide.
  • the present invention proposes to place the dispersive spectroscopic functional device before the 3D optical waveguide transmission array. , firstly perform dispersion light splitting, and then use the 3D optical waveguide transmission array to complete the paired transmission of each narrow-spectrum beam, completely avoid the problem of physical crossover of optical paths in the 2D optical waveguide, and improve the optical efficiency of each optical path of the imager.
  • the 3D optical waveguide beam transmission array pairs the input beams of different narrow spectrum bands according to the Chinese invention patent "A Compact Rectangular Aperture Arrangement Structure and Sampling Method of Target Spatial Frequency" (application number: 201711000143.2) for pairing output .
  • the 3D optical waveguide beam delivery array is a four-quadrant array, or one, two, or three of the four-quadrant arrays.
  • Each quadrant array is composed of nested zigzag-shaped transmission optical waveguide chips with different inner and outer scales.
  • each zigzag 3D light wave transmission chip meets the requirements of the Chinese invention patent "A Compact Rectangular Aperture Arrangement Structure and Sampling Method of Target Spatial Frequency" (application number: 201711000143.2), and completes the corresponding zigzag aperture pair array.
  • the aperture pairs of the beams within each narrow working spectrum are paired and output.
  • a preferred embodiment of a checkerboard imager of the present invention has a designed working wavelength of 500nm to 600nm, divided into 10 working narrow spectrum bands, each band width is 10nm, the rectangular aperture pair array size is 31 ⁇ 31, the maximum baseline The length is 150mm, the aperture unit diameter of the matrix aperture pair array is 10mm, and the F number is 10.
  • a preferred embodiment of the present invention consists of a rectangular array of aperture pairs, an array 1, a 2D optical waveguide grating array 2, a 3D optical waveguide beam transmission array 3, a 2D optical waveguide quadrature modulation coupler array 4, and an optoelectronic
  • the conversion data acquisition and image processing module 5 is constituted.
  • the aperture pair array 1 is located at the front, and the sub-apertures gather the wide-spectrum object light, which is then collected by the rear 2D optical waveguide grating array 2 and split into a narrow-spectrum beam, which is output to the 3D optical waveguide beam transmission array 3 to complete each narrow-spectrum beam.
  • the multi-channel and multi-frequency narrow-spectrum beams are coupled through the 2D optical waveguide quadrature modulation coupler array 4 to reach the photoelectric conversion data acquisition and image processing module 5, so as to be reconstructed through data processing and image inversion.
  • the algorithm finally obtains the object image.
  • each aperture corresponds to an optical waveguide receiving light input end, that is, the 2D optical waveguide grating array 2 for receiving light is composed of 31 pieces of 2D optical waveguide grating chips 201 with a length of 150 mm and a thickness of 2 mm.
  • All of them are fabricated by a 2D lithography chip process, and include 31 optical waveguide grating devices 202 , and the distance between the input ends of the optical waveguide grating devices 202 is 10 mm.
  • Each optical waveguide grating device 202 realizes 10-channel beam splitting as a group of outputs, the center-to-center distance of each group of output ends is 10 mm, and the distance between the output ends of the 10 narrow-bands in the group is 250 microns.
  • Each zigzag-shaped 3D optical waveguide beam transmission array 3 is constituted by a "zigzag-shaped" 3D optical wave transmission chip 303 , and the optical fiber bundle 304 is fixed by means of optical fiber bundle molding.
  • the distance between the output ends of the optical waveguides in each group is 250 microns.
  • the output ends of different narrowbands are arranged in pairs in a plane.
  • the center distance of each group of transmission ends in a plane is 10mm. Any two adjacent ones in different planes
  • the center-to-center spacing of the planes is 10mm, and they are parallel.
  • the 2D optical waveguide grating array 2 in the four-quadrant checkerboard imager of this embodiment is composed of a series of 2D optical waveguide grating chips 201 .
  • each 2D optical waveguide grating chip 201 is composed of one or more layers of 2D optical waveguide gratings, and each optical waveguide grating unit has the same function.
  • the four-quadrant checkerboard imager in this embodiment corresponds to four groups of 3D optical waveguide beam transmission arrays 3 composed of “back-shaped” 3D optical wave transmission chips 303 respectively, and their sizes correspond to 15 ⁇ 15, 16 ⁇ 15, and 15 ⁇ 16 respectively. and 16x16 4 sets of aperture pair array 1, where:
  • the output end array of the back-shaped 3D optical waveguide beam transmission array 3 corresponding to the 15 ⁇ 15 aperture pair array 1 is composed of 8 planar arrays with a spacing of 10 mm. Except for the 8th plane (corresponding to the central area of the zigzag shape), there are 15 groups of 10 pairs of optical waveguide arrays in each plane (each pair corresponds to a narrow-spectrum beam of a working narrow-spectrum, including the Aperture narrow-band beam).
  • the center-to-center distance of any adjacent optical waveguide array group is 10 mm, and the distance between the 10 pairs of optical waveguides in each group is 250 microns.
  • each pair corresponds to a narrow-spectrum beam of a working narrow-band, including narrow-spectrum beams from 2 apertures at different positions
  • a group of 10 beams Waveguide array corresponding to the 15 ⁇ 15 aperture, after the central aperture beam of the array 1 is collected, the narrow-band beam is output after the grating dispersion and splitting, and only the narrow-band beam from one aperture position.
  • the center-to-center distance of any adjacent optical waveguide array groups is 10 mm, and the spacing between 10 pairs or 10 optical waveguides in each group is 250 ⁇ m.
  • the output end array of the 16 ⁇ 15 aperture pair array 1 corresponding to the back-shaped 3D optical waveguide beam transmission array 3 is composed of 8 plane arrays with a spacing of 10mm. There are 15 groups of 10 pairs of optical waveguide arrays in each plane. The center-to-center distance of the waveguide array groups is 10 mm, and the spacing between the 10 pairs of optical waveguides in each group is 250 ⁇ m.
  • the output end array of the 15 ⁇ 16 aperture pair array 1 corresponding to the back-shaped 3D optical waveguide beam transmission array 3 is composed of 8 plane arrays with a spacing of 10mm, and there are 15 groups of 10 pairs of optical waveguide arrays in each plane.
  • the center-to-center distance of the waveguide array groups is 10 mm, and the spacing between the 10 pairs of optical waveguides in each group is 250 ⁇ m.
  • the arrangement direction of each output narrow-band optical waveguide array is orthogonal to the arrangement direction of each input narrow-band optical waveguide array.
  • the output end array of the 16 ⁇ 16 aperture pair array 1 corresponding to the back-shaped 3D optical waveguide beam transmission array 3 is composed of 8 plane arrays with a spacing of 10mm. There are 16 groups of 10 pairs of optical waveguide arrays in each plane. The center-to-center distance of the waveguide array groups is 10 mm, and the spacing between the 10 pairs of optical waveguides in each group is 250 ⁇ m.
  • the 4 groups of back-shaped 3D optical waveguide beam transmission arrays 3 are followed by 2D optical waveguide quadrature modulation coupler arrays 4.
  • the size of the array, the size of the array, the direction of the optical waveguide array, and the narrow-band working band are all the same as those of the back-shaped 3D optical waveguide.
  • the beam delivery array 3 corresponds.
  • the 2D optical waveguide quadrature modulation coupler array 4 is composed of a series of 2D quadrature modulation coupler chips 401 .
  • each 2D quadrature modulation coupler chip 401 is composed of one or more layers of 2D quadrature modulation coupler arrays, and the 2D quadrature modulation coupler array covers all the working spectral segments of the optical waveguide grating dispersion.
  • the working spectrum bands correspond to different quadrature modulation couplers, and the 2D quadrature modulation couplers suitable for different working spectrum bands can be on the same layer or different layers of the optical waveguide.
  • the input end of the 2D optical waveguide quadrature modulation coupler array 4 directly corresponds to the output end of the 3D optical waveguide beam transmission array 3 , that is, each 2D quadrature modulation coupler chip corresponds to the output of 4 groups of back-shaped 3D optical waveguide beam transmission array 3 An optical waveguide output end array plane at the end.
  • the 15 ⁇ 15 aperture pair array, the 16 ⁇ 15 aperture pair array and the 16 ⁇ 16 aperture pair array correspond to the array direction of the 2D optical waveguide grating chip 201 and the array direction of the 2D quadrature modulation coupler chip 401
  • the 15 ⁇ 16 aperture pair array is parallel to the array direction of the 2D quadrature modulation coupler chip 401 .
  • the array corresponding to the array of the 2D optical waveguide grating chips 201 is orthogonal to the array direction of the 2D quadrature modulation coupler chips 401 .
  • the outputs of the quadrature modulation couplers are output in sequence, and the spacing between the output ends of the optical waveguides is 125 ⁇ m.
  • an optical path compensation optical path is introduced into the optical path of each narrow-band working channel at the input end of the 2D optical waveguide quadrature modulation coupler array 4 to compensate the optical path difference introduced by the aperture of the 3D optical waveguide beam transmission array 3 to the optical path pairing, so as to ensure The optical path difference introduced inside the imager is zero, or infinitely close to zero.
  • the output end of the 2D optical waveguide quadrature modulation coupler array 4 is directly connected to the linear array detector and readout circuit of the photoelectric conversion data acquisition and image processing module 5, and each 2D quadrature modulation coupler chip 401 corresponds to a linear array Detector and readout circuit.
  • an optical waveguide module Butt gluing can improve the beam transmission efficiency of the beam transmission interface.
  • the coupling efficiency between the rectangular aperture and the 2D optical waveguide grating chip array 2 is about 80%, the beam transmission efficiency in the 2D optical waveguide grating chip array 2 is about 70%, and the glue coupling between the 3D optical waveguide beam transmission array 3
  • the efficiency is 90%, the transmission efficiency within the 3D optical waveguide beam transmission array 3 is about 99%, the coupling efficiency between the 3D optical waveguide beam transmission array 3 and the 2D optical waveguide quadrature modulation coupler array 4 is about 90%, the 2D
  • the coupling efficiency between the optical waveguide quadrature modulation coupler array 4 and the photoelectric conversion data acquisition and image processing module 5 is about 80%, that is, the optical efficiency of each channel of the imager is about 35.9%.
  • the image information of the object is obtained through the inverse Fourier transform algorithm.
  • an implementation manner is: it consists of four 3D transmission waveguide chips 302 with limited thickness and four 90-degree turning mirrors 301 .
  • the 4 pieces of 3D transmission waveguide chips with limited thickness can be fabricated by using fiber bundle molding method; the light beams in the 4 pieces of 3D transmission waveguide chips with limited thickness 302 are transmitted along the fiber bundle 304, and the light beams between the 3D transmission waveguide chips 302 are transmitted by means of 4 A 90-degree turning mirror 301 is refracted or reflected.
  • Four 3D transmission waveguide chips with limited thickness can also be fabricated by direct laser writing.
  • each "reverse-shaped" 3D light wave transmission chip 303 is realized by a fiber bundle. 304 Transmission.
  • the plastic construction scheme here mainly plays the role of fixing the optical fiber bundle 304 to prevent the optical fiber bundle 304 from being jittered by an external force and causing its refractive index to change, which further affects the optical path of the beam transmission.
  • FIG. 9 and FIG. 10 input the original image of FIG. 9 into the 31 ⁇ 31 aperture pair array four-quadrant checkerboard imager of this embodiment, and the obtained imaging simulation effect is shown in FIG. 10 .
  • this embodiment also includes a method for implementing a checkerboard imager, including steps:
  • Step S101 independently manufacture an aperture pair array, a 2D optical waveguide grating array, a 3D optical waveguide beam transmission array, a 2D optical waveguide quadrature modulation coupler array, and a photoelectric conversion data acquisition and image processing module in the component array.
  • the 2D optical waveguide grating array and the 2D optical waveguide quadrature modulation coupler array are manufactured by the 2D optical waveguide manufacturing process, and the 3D optical waveguide beam transmission array is manufactured by the 3D optical waveguide manufacturing process.
  • the back-shaped transmission optical waveguide chip in the 3D optical waveguide beam transmission array is made of optical fiber bundles, or it can be composed of four 3D transmission waveguide chips with limited thickness and four 90-degree turning mirrors.
  • Step S102 completing the coupling between the aperture pair array, the 2D optical waveguide grating array, the 3D optical waveguide beam transmission array and the 2D optical waveguide quadrature modulation coupler array through the alignment and gluing process to form an optical waveguide working unit.
  • Step S103 through the alignment and gluing process, the optical waveguide working unit and the photoelectric conversion data acquisition and image processing module are coupled to form a checkerboard imager.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Astronomy & Astrophysics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

一种棋盘式成像仪,由矩形排列的孔径对阵列(1)、2D光波导光栅阵列(2)、3D光波导光束传输阵列(3)、2D光波导正交调制耦合器阵列(4)和光电转换数据采集与图像处理模块(5)构成。物光经孔径对阵列(1)分孔径汇聚,然后由2D光波导光栅阵列(2)收集后分光成窄谱段光束,输出给3D光波导光束传输阵列(3)完成交叉配对,再经2D光波导正交调制耦合器阵列(4)调制耦合,最后到达光电转换数据采集与图像处理模块(5),获得物方图像。还包含棋盘式成像仪的实现方法,提高了棋盘式成像仪的光学效率,拓展了等效口经,提升了棋盘式成像仪工作能力,采用各模块先独立制造再集成的实现方法,提升了模块和成像仪的成品率。

Description

一种棋盘式成像仪及实现方法 技术领域
本发明涉及光电成像领域,特别是一种棋盘式成像仪及实现方法。
背景技术
针对传统望远镜尺寸大,质量重,组装运输困难的局限性,2012年洛克希德.马丁公司提出了一种基于光学干涉的分块式平面光电探测成像技术(SPIDER,Segmented Planar Imaging Detector for Electro-optical Reconnaissance),该技术基于干涉成像原理,不同于传统望远镜中大而笨重的透镜,它使用数千个透镜阵列收集光,利用光子集成技术将透镜阵列和波导阵列集成在基底上,即将数千个干涉望远镜阵列微缩在一个芯片上。该技术将光学、处理系统和读出电路集中在一个芯片上,其尺寸、质量和功耗可比传统望远镜小十倍甚至百倍。SPIDER成像系统采用齿轮形的排布结构,存在空间频域采样不全,像质较差的问题。2017年上海技术物理研究所提出“一种紧凑型矩形孔径排布结构及目标空间频率的采样方法”(201711000143.2),解决SPIDER空间频率采样不全问题,并随后发表科技论文(System design for a“checkerboard”imager,Applied Optics,Vol.57,No.35)采用3D光波导进行孔径对配对光束传输,但是,没有阐述光谱分光方案,没有解决光束交叉损耗问题,更没有给出3D光波导研制可实施技术方案。
发明内容
本发明的目的在于提供一种棋盘式成像仪及实现方法,主要解决上述现有技术存在的问题,它解决了光谱分光方案、光束交叉损耗的问题,并提供 3D光波导及棋盘式成像仪的可实施的实现方法,在科学探索、国家防御、空间探测等领域发挥重要作用。
为了实现上述目的,本发明所采用的技术方案是提供一种棋盘式成像仪,其特征在于,由矩形排列的孔径对阵列、2D光波导光栅阵列、3D光波导光束传输阵列、2D光波导正交调制耦合器阵列和光电转换数据采集与图像处理模块构成;所述孔径对阵列位于最前方,分孔径汇聚物光,然后被后方的所述2D光波导光栅阵列收集并分光成窄谱段光束后,输出给所述3D光波导光束传输阵列完成所述窄谱段光束的交叉配对传输,再经所述2D光波导正交调制耦合器阵列分别对多路不同频率的窄谱段光束进行调制耦合,到达所述光电转换数据采集与图像处理模块,从而经数据处理与图像反演重建算法最终获得物方图像。
进一步地,所述矩形排列的孔径对阵列满足一种紧凑型矩形孔径排布结构及目标空间频率的采样方法所述的一个、两个、三个或者四个象限孔径对阵;所述3D光波导光束传输阵列对应所述一个、两个、三个或者四个象限孔径对阵列,并依据一种紧凑型矩形孔径排布结构及目标空间频率的采样方法完成所述窄谱段光束的交叉配对传输;所述3D光波导光束传输阵列的每个象限均由内外尺度不一的回字形传输光波导芯片嵌套构成。
进一步地,所述回字形传输光波导芯片由光纤束塑筑而成,或由4片有限厚度的3D传输波导芯片和4个90度转折镜组成。
进一步地,所述2D光波导光栅阵列由多个2D光波导光栅芯片组成;每个所述2D光波导光栅芯片由一层或多层功能一致的2D光波导光栅组成。
进一步地,所述2D光波导正交调制耦合器阵列由多个2D正交调制耦合器芯片组成;每个所述2D正交调制耦合器芯片由一层或多层2D正交调制耦合器阵列组成;所述2D正交调制耦合器阵列的工作谱段覆盖由所述2D光波导光栅阵列色散分光并通过所述3D光波导光束传输阵列交叉配对后的输入光波的谱段;不同工作谱段对应不同的2D正交调制耦合器阵列,适用不同工作谱段的2D正交调制耦合器阵列位于所述2D正交调制耦合器芯片的同一层或者不同层。
进一步地,在所述2D光波导正交调制耦合器阵列的输入端,设置针对所述窄谱段光束的光程补偿光路。
本发明还提供一种棋盘式成像仪的实现方法,其特征在于,包含步骤:
步骤S101、分别独立制造所述组部件阵列中的所述孔径对阵列、所述2D光波导光栅阵列、所述3D光波导光束传输阵列、所述2D光波导正交调制耦合器阵列,以及所述光电转换数据采集与图像处理模块;
步骤S102、完成所述孔径对阵列、所述2D光波导光栅阵列、所述3D光波导光束传输阵列和所述2D光波导正交调制耦合器阵列之间的耦合,形成光波导工作单元;
步骤S103、耦合所述光波导工作单元和所述光电转换数据采集与图像处理模块,形成棋盘式成像仪。
进一步地,步骤S101中,采用2D光波导制造工艺完成所述2D光波导光栅阵列和所述2D光波导正交调制耦合器阵列的制造,采用3D光波导制造工艺完成所述3D光波导光束传输阵列的制造;所述3D光波导光束传输阵列中 的回字形传输光波导芯片由光纤束塑筑而成,或由4片有限厚度的3D传输波导芯片和4个90度转折镜组成。
进一步地,步骤S102中,通过对准胶合工艺完成耦合,形成光波导工作单元。
进一步地,步骤S103中,通过对准胶合工艺完成耦合,形成棋盘式成像仪。
鉴于上述技术特征,本发明具有如下优点:
1、本发明的技术方案引入了3D光波导光束传输阵列进行光束传输,避免了2D光波导共基板光束传输的交叉损耗,提高了棋盘式成像仪的光学效率和模块化研制成品率。
2、本发明的技术方案将色散分光功能器件放在3D光波导传输阵列之前,先进行色散分光,之后借助3D光波导传输阵列完成各窄谱段光束的配对传输,保证成像仪对物光干涉探测获取能力的同时,彻底避免在2D光波导内的光路物理交叉问题,提升成像仪各光路的光学效率。
3、本发明的技术方案提出的光纤束塑筑方案进行3D光波传输芯片实现方法,结合2D光波导光栅阵列和2D光波导正交调制耦合器阵列,使棋盘式成像仪的光学传输效率更高,且可使等效口经拓展至米级,甚至更大尺度,大大提升了棋盘式成像仪工作能力。
4、本发明的技术方案引入了各模块先独立制造再集成的方法,有利于分模块研制,通过控制各模块之间的接口,大大提升模块成品率,和成像仪的研制成品率。
附图说明
图1是本发明棋盘式成像仪的一个较佳实施例的整体结构示意图;
图2是本发明棋盘式成像仪的一个较佳实施例的孔径对阵列内的回字形区域示意图;
图3是本发明棋盘式成像仪的一个较佳实施例的结构示意图(四象限);
图4是本发明棋盘式成像仪的一个较佳实施例的结构示意图(四象限之一);
图5是本发明棋盘式成像仪的一个较佳实施例的拼接型3D光波导光束传输工作原理示意图(侧视图);
图6是图5的俯视图;
图7是本发明棋盘式成像仪的一个较佳实施例的光纤塑筑型3D光波导光束传输工作原理示意图(俯视图);
图8是图7的俯视图;
图9是本发明棋盘式成像仪的一个较佳实施例的输入原图;
图10是本发明棋盘式成像仪的一个较佳实施例的处理后仿真效果图;
图11是本发明棋盘式成像仪实现方法的一个较佳实施例的流程图。
图中:1-孔径对阵列,2-2D光波导光栅阵列,3-3D光波导光束传输阵列,4-2D光波导正交调制耦合器阵列,5-光电转换数据采集与图像处理模块;
201-2D光波导光栅芯片;202-光波导光栅器件;
301-90度转折镜;302-3D传输波导芯片;303-“回字形”3D光波传输芯片;304-光纤束;
401-2D正交调制耦合器芯片。
具体实施方式
下面结合具体实施方式,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
中国发明专利《一种紧凑型矩形孔径排布结构及目标空间频率的采样方法》(申请号:201711000143.2)采用紧凑型矩形孔径排布方式,将矩形孔径分成的4个象限,每个象限中的孔径相对中心对称配对,从而实现在某个空间频率范围内空间频率连续整数覆盖采样,经傅里叶逆变换得到目标图像。该孔径排布方式可实现在某个连续空间频率范围内全部采集,得到连续且无冗余的空间频率覆盖,提高目标的成像质量。
本发明的矩形排列的孔径对阵列的大小与规模和成像质量需求相关,根据成像质量需求的要求,并按照中国发明专利《一种紧凑型矩形孔径排布结构及目标空间频率的采样方法》(申请号:201711000143.2)进行设计。矩形排列的孔径对阵列分为四个象限,每个象限内的孔径对排列呈回字形,孔径对在各自所在的回字形内,关于回字形几何中心对称配对。各象限孔径对阵列在成像仪中起到对物光的空间频域信息汇聚作用。若成像仪采用的孔径对阵列包括中国发明专利《一种紧凑型矩形孔径排布结构及目标空间频率的采样方法》(申请号:201711000143.2)阐述的四个象限,则为四象限棋盘式成像仪。另外,根据图像清晰度仪器体积重量等需求,成像仪也可仅采用 该采样方法阐述的四象限之一,或者之二、之三,结合图像处理算法提升成像质量,因此,棋盘式成像仪也可为四象限棋盘式成像仪的四象限阵列之一、之二或者之三。每个象限的棋盘式成像仪均由矩形排列的孔径对阵列、2D光波导光栅阵列、3D光波导光束传输阵列、2D光波导正交调制耦合器阵列、和光电转换数据采集与图像处理模块组成。
为了保证棋盘式成像仪对物光光束信息的干涉探测获取能力,需要将宽谱段物光进行色散分光为窄谱段后再正交调制干涉。根据功能作用,该色散分光模块必须放在正交调制耦合器光路之前,但若沿用SPIDER的布局方式(美国发明专利,US 8913859B1),色散分光功能模块与正交调制耦合器模块共基板紧链接,即使采用了3D光波导配对传输宽光谱光束,在2D光波导内仍会存在多谱段光路间的物理交叉损耗问题,因此,本发明提出将色散分光功能器件放在3D光波导传输阵列之前,先进行色散分光,之后借助3D光波导传输阵列完成各窄谱段光束的配对传输,彻底避免在2D光波导内的光路物理交叉问题,提升成像仪各光路的光学效率。其中,3D光波导光束传输阵列对输入的不同窄谱段的光束,均按照中国发明专利《一种紧凑型矩形孔径排布结构及目标空间频率的采样方法》(申请号:201711000143.2)进行配对输出。
根据3D光波导光束传输阵列对输入的不同窄谱段的光束按照中国发明专利《一种紧凑型矩形孔径排布结构及目标空间频率的采样方法》(申请号:201711000143.2)进行配对输出的特点,3D光波导光束传输阵列是个四象限阵列,或者四象限阵列之一、之二或之三。每个象限阵列均由内外尺度不一 的回字形传输光波导芯片嵌套构成。每个回字形3D光波传输芯片光束配对传输功能满足中国发明专利《一种紧凑型矩形孔径排布结构及目标空间频率的采样方法》(申请号:201711000143.2)的要求,完成对应回字形孔径对阵列内的各窄工作谱段光束的孔径对配对输出。
实施例
本发明一种棋盘式成像仪的一个较佳实施例的设计工作波长为500nm至600nm,分为10个工作窄谱段,每个波段宽度10nm,矩形孔径对阵列大小为31×31,最大基线长度150mm,矩阵孔径对阵列的孔径单元口径为10mm,F数为10。
请参阅图1,本发明的一个较佳实施例,由矩形排列的孔径对阵列1、2D光波导光栅阵列2、3D光波导光束传输阵列3、2D光波导正交调制耦合器阵列4和光电转换数据采集与图像处理模块5构成。孔径对阵列1位于最前方,分孔径汇聚宽谱段物光,然后被后方的2D光波导光栅阵列2收集后分光成窄谱段光束后,输出给3D光波导光束传输阵列3完成各个窄谱段光束的交叉配对传输,再经2D光波导正交调制耦合器阵列4对多路多频率的窄谱段光束进行耦合,到达光电转换数据采集与图像处理模块5,从而经数据处理与图像反演重建算法最终获得物方图像。
请参阅图2、图3和图4,本实施例中采用四象限设计,即为四象限棋盘式成像仪。物光经孔径对阵列1汇聚后,被其后的对应光波导收集。其中,每个孔径后对应1个光波导收光输入端,即收光的2D光波导光栅阵列2为31片长150mm厚2mm的2D光波导光栅芯片201组成,每片2D光波导光栅芯片 201均采用2D光刻芯片工艺制作,包含31个光波导光栅器件202,光波导光栅器件202的输入端间距为10mm。每个光波导光栅器件202实现10通道分光作为一组输出,每组输出端中心距为10mm,组内10个窄波段的输出端间距为250微米。
在2D光波导光栅阵列2后对接4组回字形3D光波导光束传输阵列3(图2以7×7矩形孔径对阵列为示例,描述了回字形的划分方式):本实施例的4组阵列规模分别对应15×15、16×15、15×16和16×16孔径对阵列规模(对应图3中,以3×3、4×3、3×4和4×4为示意)。每个回字形的3D光波导光束传输阵列3由“回字形”3D光波传输芯片303构成,采取光纤束塑筑方式固定光纤束304。首先按照2D光波导光栅阵列2的光波导输出端每组10路阵列输出的方向(与2D光波导光栅芯片201平行),各组间10mm的中心间距,确定3D光波导光束传输阵列3的光纤束304的输入端排布方式;之后,按照中国发明专利《一种紧凑型矩形孔径排布结构及目标空间频率的采样方法》(申请号:201711000143.2),完成对应回字形孔径对阵列内的各窄工作谱段光束的孔径对配对输出。在配对输出过程中,尽量保持配对孔径对光束传输光路长度一致性,将不同孔径对的窄谱段光束配对输出,各输出端仍以组输出,每对孔径对配对输出为一组。每组内光波导输出端间距为250微米,不同窄波段输出端依次成对在一个平面内排开,在一个平面内的每组传输端中心距为10mm,处于不同平面内的任意两相邻平面的中心间距为10mm,且平行。
本实施例的四象限棋盘式成像仪中的2D光波导光栅阵列2由系列2D光 波导光栅芯片201组成。其中,每个2D光波导光栅芯片201是一层或多层2D光波导光栅组成,每个光波导光栅单元功能均一致。
本实施例的四象限棋盘式成像仪,分别对应4组由“回字形”3D光波传输芯片303构成的3D光波导光束传输阵列3,其大小分别对应15×15、16×15、15×16和16×16的4组孔径对阵列1,其中:
15×15的孔径对阵列1对应的回字形3D光波导光束传输阵列3的输出端阵列由间距10mm的8个平面阵列构成。除第8个平面外(对应回字形中心区域位置),每个平面内有15组10对光波导阵列(每对对应1个工作窄谱段的窄谱段光束,包含来自2个不同位置的孔径的窄谱段光束)。任意相邻光波导阵列组的中心距为10mm,每组内的10对光波导间距为250微米。第8个平面内有7组10对光波导阵列(每对对应1个工作窄谱段的窄谱段光束,包含来自2个不同位置的孔径的窄谱段光束),外加1组10根光波导阵列(对应15×15的孔径对阵列1的中心孔径光束收集后,光栅色散分光后窄波段光束输出,仅来自一个孔径位置的窄谱段光束)。任意相邻光波导阵列组的中心距为10mm,每组内的10对或10根光波导间距为250微米。
16×15的孔径对阵列1对应的回字形3D光波导光束传输阵列3的输出端阵列为间距10mm的8个平面阵列构成,每个平面内有15组10对光波导阵列,任意相邻光波导阵列组的中心距为10mm,每组内的10对光波导间距为250微米。
15×16的孔径对阵列1对应的回字形3D光波导光束传输阵列3的输出端阵列为间距10mm的8个平面阵列构成,每个平面内有15组10对光波导阵列, 任意相邻光波导阵列组的中心距为10mm,每组内的10对光波导间距为250微米。其中,输出各窄波段光波导阵列排布方向与输入各窄波段光波导阵列排布方向为正交的。
16×16的孔径对阵列1对应的回字形3D光波导光束传输阵列3的输出端阵列为间距10mm的8个平面阵列构成,每个平面内有16组10对光波导阵列,任意相邻光波导阵列组的中心距为10mm,每组内的10对光波导间距为250微米。
4组回字形3D光波导光束传输阵列3之后紧跟2D光波导正交调制耦合器阵列4,其阵列的规模大小、规格尺寸、光波导阵列方向,以及窄带工作波段均与回字形3D光波导光束传输阵列3相对应。2D光波导正交调制耦合器阵列4由系列2D正交调制耦合器芯片401组成。其中,每个2D正交调制耦合器芯片401都是一层或多层2D正交调制耦合器阵列组成,且该2D正交调制耦合器阵列覆盖光波导光栅色散分光的所有工作谱段,不同工作谱段对应不同的正交调制耦合器,适用不同工作谱段的2D正交调制耦合器可以在光波导的同一层或者不同层。
2D光波导正交调制耦合器阵列4的输入端直接与3D光波导光束传输阵列3输出端对应,即每个2D正交调制耦合器芯片对应4组回字形3D光波导光束传输阵列3的输出端的一个光波导输出端阵列平面。其中,15×15孔径对阵列、16×15孔径对阵列和16×16孔径对阵列对应2D光波导光栅芯片201的阵列与2D正交调制耦合器芯片401的阵列方向平行,15×16孔径对阵列对应2D光波导光栅芯片201的阵列与2D正交调制耦合器芯片401的阵列方向正交。 在2D正交调制耦合器芯片401内,正交调制耦合器输出端依此排序输出,各光波导输出端间距均为125微米。另外,在2D光波导正交调制耦合器阵列4的输入端对各窄带工作通道分光路引入光程补偿光路,补偿3D光波导光束传输阵列3的孔径对光路配对引入的光程差,以保证成像仪内部引入光程差为零,或者无限接近于零。
2D光波导正交调制耦合器阵列4的输出端之后直接与光电转换数据采集与图像处理模块5的线阵探测器及读出电路对接,每个2D正交调制耦合器芯片401对应一条线阵探测器及读出电路。
为了提升系统光学效率,在2D光波导光栅芯片阵列2、回字形3D光波导光束传输阵列3和2D光波导正交调制耦合器阵列4之间,除了必要的固定支撑外,采用光波导模块间的对接胶合,提升光束传输界面的光束传输效率。矩形孔径对光汇聚及2D光波导光栅芯片阵列2之间的耦合效率约80%,2D光波导光栅芯片阵列2内光束传输效率约70%,与3D光波导光束传输阵列3之间的胶合耦合效率为90%,3D光波导光束传输阵列3内的传输效率约为99%,3D光波导光束传输阵列3和2D光波导正交调制耦合器阵列4之间的耦合效率约为90%,2D光波导正交调制耦合器阵列4与光电转换数据采集与图像处理模块5之间的耦合效率约80%,即该成像仪各通道光学效率约为35.9%。
在光电转换数据采集与图像处理模块5中,物光经上述成像仪获得各空间频率的复相关强度信息后,经逆傅里叶变换算法获得物的图像信息。
请参阅图5、图6、图7和图8,受限于激光直写方式的局限性,如果3D光波导光束传输阵列3为尺寸较大块状体材料,则不利于采用激光直写方式 进行直写。即便3D光波导光束传输阵列的每个“回字形”光波导均为一体薄壁的体材料,由于回字形的壁比较薄刚度不足,也不便激光先后对四个薄壁的进行直写,因此,本发明中的每一个“回字形”波导芯片有两种实现方式。
请参阅图5和图6,一种实现方式是:由4片有限厚度的3D传输波导芯片302和4个90度转折镜301组成。4片有限厚度的3D传输波导芯片可采用采用光纤束塑筑方式制作;4片有限厚度的3D传输波导芯片302内的光束沿着光纤束304传输,3D传输波导芯片302间的光束传输借助4个90度转折镜301折射或反射来实现。4片有限厚度的3D传输波导芯片也可以采用激光直写的方式制作。
请参阅图7和图8,另一种实现方式是每个“回字形”3D光波传输芯片303均由光纤束塑筑实现,在“回字形”3D光波传输芯片303中,光束沿着光纤束304传输。
无论采用激光直写还是光纤束塑筑,在研制过程中,均需注意转弯半径,控制弯曲损耗。另外,由于激光直写光波导存在芯层和包层波导折射率变化界面不均匀,光束在其内传输过程中侧壁散射吸收损耗较大(0.5dB/cm),因此,采用光纤束塑筑方案有利降低该侧壁散射吸收损耗(0.36dB/km),提升成像仪的光学效率。这里的塑筑方案主要起到固定光纤束304,防止光纤束304受到外力出现抖动导致其折射率变化,进一步影响光束传输光程的作用。
请参阅图9和图10,将图9的原图输入至本实施例的31×31孔径对阵列四象限棋盘式成像仪,得到的其成像仿真效果图10所示。
请参阅图11,本实施例还包含一种棋盘式成像仪的实现方法,包含步骤:
步骤S101、分别独立制造组部件阵列中的孔径对阵列、2D光波导光栅阵列、3D光波导光束传输阵列,2D光波导正交调制耦合器阵列,以及光电转换数据采集与图像处理模块。
其中,采用2D光波导制造工艺完成2D光波导光栅阵列和2D光波导正交调制耦合器阵列的制造,采用3D光波导制造工艺完成3D光波导光束传输阵列的制造。3D光波导光束传输阵列中的回字形传输光波导芯片由光纤束塑筑而成,也可以由4片有限厚度的3D传输波导芯片和4个90度转折镜组成。
步骤S102、通过对准胶合工艺,完成孔径对阵列、2D光波导光栅阵列、3D光波导光束传输阵列和2D光波导正交调制耦合器阵列之间的耦合,形成光波导工作单元。
步骤S103、通过对准胶合工艺,耦合光波导工作单元和光电转换数据采集与图像处理模块,形成棋盘式成像仪。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种棋盘式成像仪,其特征在于,由矩形排列的孔径对阵列、2D光波导光栅阵列、3D光波导光束传输阵列、2D光波导正交调制耦合器阵列和光电转换数据采集与图像处理模块构成;所述孔径对阵列位于最前方,分孔径汇聚物光,然后被后方的所述2D光波导光栅阵列收集并分光成窄谱段光束后,输出给所述3D光波导光束传输阵列完成所述窄谱段光束的交叉配对传输,再经所述2D光波导正交调制耦合器阵列分别对多路不同频率的窄谱段光束进行调制耦合,到达所述光电转换数据采集与图像处理模块,从而经数据处理与图像反演重建算法最终获得物方图像。
  2. 根据权利要求1所述的棋盘式成像仪,其特征在于,所述矩形排列的孔径对阵列满足一种紧凑型矩形孔径排布结构及目标空间频率的采样方法所述的一个、两个、三个或者四个象限孔径对阵;所述3D光波导光束传输阵列对应所述一个、两个、三个或者四个象限孔径对阵列,并依据一种紧凑型矩形孔径排布结构及目标空间频率的采样方法完成所述窄谱段光束的交叉配对传输;所述3D光波导光束传输阵列的每个象限均由内外尺度不一的回字形传输光波导芯片嵌套构成。
  3. 根据权利要求2所述的棋盘式成像仪,其特征在于,所述回字形传输光波导芯片由光纤束塑筑而成,或由4片有限厚度的3D传输波导芯片和4个90度转折镜组成。
  4. 根据权利要求1所述的棋盘式成像仪,其特征在于,所述2D光波导光栅阵列由多个2D光波导光栅芯片组成;每个所述2D光波导光栅芯片由一 层或多层功能一致的2D光波导光栅组成。
  5. 根据权利要求1所述的棋盘式成像仪,其特征在于,所述2D光波导正交调制耦合器阵列由多个2D正交调制耦合器芯片组成;每个所述2D正交调制耦合器芯片由一层或多层2D正交调制耦合器阵列组成;所述2D正交调制耦合器阵列的工作谱段覆盖由所述2D光波导光栅阵列色散分光并通过所述3D光波导光束传输阵列交叉配对后的输入光波的谱段;不同工作谱段对应不同的2D正交调制耦合器阵列,适用不同工作谱段的2D正交调制耦合器阵列位于所述2D正交调制耦合器芯片的同一层或者不同层。
  6. 根据权利要求5所述的棋盘式成像仪,其特征在于,在所述2D光波导正交调制耦合器阵列的输入端,设置针对所述窄谱段光束的光程补偿光路。
  7. 一种如权利要求1所述的棋盘式成像仪的实现方法,其特征在于,包含步骤:
    步骤S101、分别独立制造所述组部件阵列中的所述孔径对阵列、所述2D光波导光栅阵列、所述3D光波导光束传输阵列、所述2D光波导正交调制耦合器阵列,以及所述光电转换数据采集与图像处理模块;
    步骤S102、完成所述孔径对阵列、所述2D光波导光栅阵列、所述3D光波导光束传输阵列和所述2D光波导正交调制耦合器阵列之间的耦合,形成光波导工作单元;
    步骤S103、耦合所述光波导工作单元和所述光电转换数据采集与图像处理模块,形成棋盘式成像仪。
  8. 根据权利要求7所述的棋盘式成像仪的实现方法,其特征在于,步骤 S101中,采用2D光波导制造工艺完成所述2D光波导光栅阵列和所述2D光波导正交调制耦合器阵列的制造,采用3D光波导制造工艺完成所述3D光波导光束传输阵列的制造;所述3D光波导光束传输阵列中的回字形传输光波导芯片由光纤束塑筑而成,或由4片有限厚度的3D传输波导芯片和4个90度转折镜组成。
  9. 根据权利要求7所述的棋盘式成像仪的实现方法,其特征在于,步骤S102中,通过对准胶合工艺完成耦合,形成光波导工作单元。
  10. 根据权利要求7所述的棋盘式成像仪的实现方法,其特征在于,步骤S103中,通过对准胶合工艺完成耦合,形成棋盘式成像仪。
PCT/CN2020/115763 2020-09-15 2020-09-17 一种棋盘式成像仪及实现方法 WO2022056756A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/164,532 US20230185021A1 (en) 2020-09-15 2023-02-03 Checkerboard imager and implementation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010965700.XA CN112099139B (zh) 2020-09-15 2020-09-15 一种棋盘式成像仪及实现方法
CN202010965700.X 2020-09-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/164,532 Continuation US20230185021A1 (en) 2020-09-15 2023-02-03 Checkerboard imager and implementation method therefor

Publications (1)

Publication Number Publication Date
WO2022056756A1 true WO2022056756A1 (zh) 2022-03-24

Family

ID=73758594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115763 WO2022056756A1 (zh) 2020-09-15 2020-09-17 一种棋盘式成像仪及实现方法

Country Status (3)

Country Link
US (1) US20230185021A1 (zh)
CN (1) CN112099139B (zh)
WO (1) WO2022056756A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115241074A (zh) * 2021-04-23 2022-10-25 南京光智元科技有限公司 光子半导体装置及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104359553A (zh) * 2014-12-05 2015-02-18 中国科学院光电研究院 一种紧凑型光栅色散光谱成像仪
CN106989821A (zh) * 2017-05-16 2017-07-28 中国电子科技集团公司第四十研究所 基于光纤光学成像波导的轻型光谱成像仪
CN107748397A (zh) * 2017-10-24 2018-03-02 中国科学院上海技术物理研究所 一种紧凑型矩形孔径排布结构及目标空间频率的采样方法
CN109239940A (zh) * 2018-11-02 2019-01-18 京东方科技集团股份有限公司 一种分光装置及其制作方法、光色散方法和光谱仪
US20190179082A1 (en) * 2016-08-12 2019-06-13 Sicoya Gmbh Photonic component and method for producing same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10012827B1 (en) * 2015-05-14 2018-07-03 Lockheed Martin Corporation Segmented planar imaging detector for electro-optic reconnaissance (SPIDER) zoom

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104359553A (zh) * 2014-12-05 2015-02-18 中国科学院光电研究院 一种紧凑型光栅色散光谱成像仪
US20190179082A1 (en) * 2016-08-12 2019-06-13 Sicoya Gmbh Photonic component and method for producing same
CN106989821A (zh) * 2017-05-16 2017-07-28 中国电子科技集团公司第四十研究所 基于光纤光学成像波导的轻型光谱成像仪
CN107748397A (zh) * 2017-10-24 2018-03-02 中国科学院上海技术物理研究所 一种紧凑型矩形孔径排布结构及目标空间频率的采样方法
CN109239940A (zh) * 2018-11-02 2019-01-18 京东方科技集团股份有限公司 一种分光装置及其制作方法、光色散方法和光谱仪

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YU QINGHUA, GE BEN, LI YAN, YUE YINGBO, CHEN FUCHUN, SUN SHENGLI: "System design for a "checkerboard" imager", APPLIED OPTICS, OPTICAL SOCIETY OF AMERICA, US, vol. 57, no. 35, 10 December 2018 (2018-12-10), US , pages 10218, XP055912593, ISSN: 1559-128X, DOI: 10.1364/AO.57.010218 *

Also Published As

Publication number Publication date
CN112099139B (zh) 2022-07-29
CN112099139A (zh) 2020-12-18
US20230185021A1 (en) 2023-06-15

Similar Documents

Publication Publication Date Title
Su et al. Interferometric imaging using Si 3 N 4 photonic integrated circuits for a SPIDER imager
US10365435B1 (en) Surface gratings, photonics circuit, and method for wafer-level testing thereof
CN111212592B (zh) 使用集成光子器件的空分复用光学相干层析成像技术
CN103608708B (zh) 光学装置
CN109581584B (zh) 一种硅-铌酸锂异质集成扫描芯片及其制备方法、应用
US20230185021A1 (en) Checkerboard imager and implementation method therefor
JPH11326688A (ja) 多重ポ―ト光装置
Wang et al. On-chip integration of metasurface-doublet for optical phased array with enhanced beam steering
Martin et al. Recent results on electro-optic visible multi-telescope beam combiner for next generation FIRST/SUBARU instruments: hybrid and passive devices
CN201828683U (zh) 一种低损耗光波分复用器
Klinner-Teo et al. Achromatic design of a photonic tricoupler and phase shifter for broadband nulling interferometry
CN115993690A (zh) 单模光纤到光芯片波导的双透镜高效耦合系统及优化方法
CN109343174A (zh) 一种多通道多模式复用波导交叉及其制备方法
CN211603602U (zh) 液晶光涡旋解复用器
WO2021255241A1 (en) Optical device
JP3661036B2 (ja) 導波路型光機能素子
Kern et al. Planar Integrated Optics and astronomical interferometry
JP2022549544A (ja) 導波路デバイス
CN111740786A (zh) 一种集成光波导波束赋形装置
Liu et al. Design of a Beam-coupling System for a Chip-integrated Spectrometer with a Discrete Linear Waveguide
CN113790800B (zh) 一种波导阵列型高分辨光谱检测芯片
Miller Self‐configuring algorithms, topologies and fundamental limits for photonic circuits and structures
Zhou et al. Butler matrix enabled multi-beam optical phased array for two-dimensional beam-steering and ranging
CN215986751U (zh) 一种分光装置及系统
Chanclou et al. Design and demonstration of a multicore single-mode fiber coupled lens device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20953614

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20953614

Country of ref document: EP

Kind code of ref document: A1