JP3886837B2 - 可変面積型荷電粒子ビーム描画装置におけるパターン描画状態測定方法 - Google Patents
可変面積型荷電粒子ビーム描画装置におけるパターン描画状態測定方法 Download PDFInfo
- Publication number
- JP3886837B2 JP3886837B2 JP2002099915A JP2002099915A JP3886837B2 JP 3886837 B2 JP3886837 B2 JP 3886837B2 JP 2002099915 A JP2002099915 A JP 2002099915A JP 2002099915 A JP2002099915 A JP 2002099915A JP 3886837 B2 JP3886837 B2 JP 3886837B2
- Authority
- JP
- Japan
- Prior art keywords
- pattern
- charged particle
- deflector
- shaping
- edge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Electron Beam Exposure (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Description
【発明の属する分野】
本発明は、描画すべきパターンの形状に応じて被描画材料上に照射される荷電粒子ビームの断面形状を変えるように成した可変面積型荷電粒子ビーム描画装置におけるパターン描画状態測定方法に関する。
【0002】
【従来の技術】
電子ビーム描画装置は、被描画材料上の所定の位置に電子ビームをショットする事により被描画材料上の所定の位置に所定のICパターンを描くことの出来る装置であり、極めて密度の高い半導体素子を製作することが出来る。
【0003】
この様な電子ビーム描画装置の中で、特に、描くべきパターンの形状や大きさに応じて電子ビームの断面形状や大きさを変えてパターンを描画する可変面積型電子ビーム描画装置は高速描画装置として期待されている。
【0004】
この様な可変面積型電子ビーム描画装置として最も代表的なものは、図1に示す様な構造の装置である。
【0005】
図中1は電子銃で、該電子銃から発生した電子ビームは照射レンズ2を介して第1成形スリット3上に照射される。
【0006】
第1成形スリットの開孔像は、成形レンズ4により第2成形スリット5上に結像される。この結像位置は成形偏向器6により変えることが出来る。
【0007】
第2成形スリット5の開孔像は、集束レンズ7により被描画材料8上に縮小結像される。この結像位置は位置決め偏向器9により変えることが出来る。
【0008】
図中10は制御CPUで、例えば、磁気ディスクの如きパターンデータメモリ11からのパターンデータを描画用データ転送回路12とブランキング用データ転送回路13に転送する。
【0009】
描画用データ転送回路12はパターンデータメモリ11からのパターンデータに基づいて描くべきパターンの寸法・形状データ及びショット位置データを作成し、寸法・形状データを前記成形偏向器6をコントロールする成形偏向器制御回路14に、ショット位置データを位置決め偏向器9をコントロールする位置決め偏向器制御回路15にそれぞれ供給する。
【0010】
一方、ブランキング用データ転送回路13はパターンデータメモリ11からのパターンデータに基づいて描くべきパターンのショット照射時間データを作成し、電子銃1からの電子ビームのブランキングを行うブランカー17をコントロールするブランカー制御回路18に供給する。
【0011】
前記制御CPU10は、更に、被描画材料8を載置したステージ19を移動駆動するためのステージ駆動機構20をコントロールするステージ駆動機構制御回路21にステージ移動データを供給する。
【0012】
尚、前記成形偏向器6と位置決め偏向器9は、共に、実際には、X,Y方向用のものから成る。
【0013】
この様な構成の可変面積型電子ビーム描画装置においては、パターンデータメモリ11に格納されたパターンデータが逐次読み出され、描画用データ転送回路12とブランキング用データ転送回路13に供給される。
【0014】
そして、描画用データ転送回路12からのデータに基づき、成形偏向器制御回路14は成形偏向器6を、位置決め偏向器制御回路15は位置決め偏向器9をそれぞれコントロールする。又、ブランキング用データ転送回路13からのデータに基づき、ブランカー制御回路18はブランカー17をコントロールする。
【0015】
この様な各コントロールの結果、被描画材料8上に所定の位置に所定のパターンが電子ビームにより描かれることになる。
【0016】
この様な被描画材料8上への電子ビームによるパターン描画においては、許容偏向誤差の範囲内でパターンが描ける広さ(フィールドと称す)があるので、別のフィールドへパターンを描画する時には、制御CPU11からステージ駆動機構制御回路21に指令を送り、ステージ駆動機構20によりステージを所定の距離移動させる。
【0017】
所で、前記成型偏向器6は、実際には、図2に示す様に、二段の偏向器61,62から成り、上方の成形偏向器61により成形すべきビームの寸法に応じて第1成形スリット3を通過したビームBを、例えば、θ偏向し、下方の成形偏向器62により逆方向にθ偏向することにより、ビームを第2成形スリット5に垂直入射させ、第2成形スリット5から所定の断面寸法LOのビームを通過させている。
【0018】
しかし、これら二段の偏向器61と62の加工精度等により、上段偏向器61と下段偏向器62の偏向比が設計通り(例えば、1:1)にならずに、偏向比のずれが発生している場合がある。
【0019】
例えば、図3に示す様に、上方の成形偏向器61により第1成形スリット3を通過したビームBを、例えば、θ偏向しても、下方の成形偏向器62による偏向が逆方向にθ′(≠θ)偏向されることがある。この様な偏向により、第2成形スリット5を通過したビームの断面寸法が、例えば、所定のLOとは異なったLO′となり、更に、第2成形スリット5を通過したビームの位置決め偏向器9の偏向場における位置も所定の位置(偏向比のずれの無い時の位置)からずれてしまう。この結果、被描画材料上の所定の位置に予定のパターンが描かれないことになる。尚、この様なずれ(ビーム寸法のずれと位置決め偏向器の偏向場での位置ずれ)は実際にはX方向とY方向を考慮しなければならないが、以下、説明の便宜上、一方の方向のずれのみ取り上げて説明する。
【0020】
これらビーム寸法のずれと位置決め偏向器の偏向場での位置ずれは、成形すべきビームサイズ毎に異なっている。
【0021】
さて、ビーム寸法のずれは、二段の成形偏向器により成形されたビーム(成形ビーム)によりナイフエッジ上を走査し、該走査により得られたビーム信号波形から実際の成形ビームの寸法を測定し、該実測値と設計値の差を求めることにより簡単に分かる。従って、成形すべき寸法に応じた補正データを二段の成形偏向器に入れることによりビーム寸法のずれは無くすことが可能である。
【0022】
一方、位置決め偏向器の偏向場での位置ずれについては、実際に被描画材料上にパターンを描き、被描画材料を現像等の処理を行った後、描いたパターンの描画位置を測定することで知ることが出来き、成形すべき寸法に応じた補正データを位置決め偏向器に入れることにより位置決め偏向器の偏向場での位置ずれを無くすことは可能と考えられる。
【0023】
さて、ビーム寸法のずれの測定は前記した様に、極めて簡単なことから、予めパターン描画前に各ビーム寸法に対する補正値が求められており、パターン描画時にビーム寸法のずれが補正される。従って、被描画材料上に描画される複数のパターンが同一種類の場合は、描かれた全てのパターンの描画位置のずれは同一なので、パターン全体での描画位置のずれはあっても、各描画されたパターン間のずれはないのでパターンが描かれた被描画材料には何ら問題はない。
【0024】
【発明が解決しようとする課題】
しかし、被描画材料上に描画される複数のパターンが同一種類でない場合には問題となる。一般に、被描画材料上の複数の領域内にそれぞれ複数のパターンが描かれるが、説明の便宜上、被描画材料上の或る領域に異なった寸法のパターンAとパターンBを描画する場合を例に取ると、次の様な問題が発生する。
【0025】
例えば、図4の(a)に示す様に、寸法aの正方形パターンAと寸法bの正方形パターンBを隣接させて描きたい場合、二段の偏向器61と62の加工精度等により、上段偏向器61と下段偏向器62の偏向比が設計通り(例えば、1:1)にならずに、偏向比のずれが発生している時、ビーム断面寸法をaにした場合と、bにした場合とで、各ビームの位置決め偏向器の偏向場での位置ずれが異なるために、被描画材料上には、図4の(b)に示す様に、パターンAとパターンBが離れて描かれるか、若しくは、図4の(c)に示す様に、パターンAとパターンBとが一部重なって描かれる場合がある。
【0026】
そこで、従来においては、実際にパターンAとパターンBとを被描画材料上に電子ビームにより描き、被描画材料を一旦電子ビーム描画装置から取り外して、外部で現像等の処理をした後、例えば、走査電子顕微鏡の原理を応用した電子ビーム側長器の試料ステージに被描画材料を載せ、パターンA,B上を電子ビームでライン走査し、該ライン走査によって検出された二次電子信号から、パターンAとパターンBから成るグループパターンの一方のエッジ部から他方のエッジ部の長さを測定している。
【0027】
この測定により、得られた長さが(a+b)であれば、二段の偏向器61と62の加工精度等による、上段偏向器61と下段偏向器62の偏向比が設計通り(例えば、1:1)と考えられ、(a+b)′(>(a+b))であれば、偏向比のずれによりパターンBがパターンAから離れて描画されたと考えられ、(a+b)′′(<(a+b))であれば、偏向比のずれによりパターンBがパターンAに一部重なって描画されたと考えられる。
【0028】
しかしながら、この様に、実際にパターンAとパターンBとを被描画材料上に電子ビームにより描き、被描画材料を一旦電子ビーム描画装置から取り外して、外部で現像等の処理をした後、電子ビーム側長器の試料ステージに被描画材料を載せ、パターンA,B上を電子ビームでライン走査し、該ライン走査によって検出された二次電子信号からパターンA,Bから成るグループパターンの一方のエッジ部から他方のエッジ部の長さを測定する一連の操作には、極めて多くの時間が掛かり、又、操作自体も極めて厄介なものである。
【0029】
本発明はこの様に問題を解決することを目的としたもので、新規な可変面積型荷電粒子ビーム描画装置におけるパターン寸法測定方法を提供するものである。
【0030】
【課題を解決するための手段】
本発明に基づく可変面積型荷電粒子ビーム描画装置におけるパターン描画状態測定方法は、荷電粒子発生手段からの荷電粒子ビームを第一成形スリットの開孔を通過させ、該通過したビームを成形偏向手段により第二成形スリットの開孔の所望の部分を通過させることによって、第二成形スリットの開孔から少なくとも所望の大きさの正方形若しくは長方形の断面形状を有するビームを通過させ、該ビームを位置決め偏向器により被描画材料の所望の位置に照射することにより被描画材料の所望の位置にパターンを描くようにした可変面積型荷電粒子ビーム描画装置であって、前記偏向手段は二段偏向器からなり、上方偏向器により成形すべきビームの寸法に応じてビームを偏向し、下方偏向器により前記偏向方向に対して逆方向にビームを同一偏向量偏向させるように成しており、1グループを成すパターン各々の寸法に対応した寸法のビームを順次成形し、各ビームでエッジを有する部材上を走査し、該走査により得られた信号を加算し、該加算信号に基づいて1グループパターン全体の一方のエッジから他方のエッジまでの距離を求めるようにしたことを特徴とする。
【0031】
本発明に基づく可変面積型荷電粒子ビーム描画装置におけるパターン描画状態測定方法は、荷電粒子発生手段からの荷電粒子ビームを第一成形スリットの開孔を通過させ、該通過したビームを成形偏向手段により第二成形スリットの開孔の所望の部分を通過させることによって、第二成形スリットの開孔から少なくとも所望の大きさの正方形若しくは長方形の断面形状を有するビームを通過させ、該ビームを位置決め偏向器により被描画材料の所望の位置に照射することにより被描画材料の所望の位置にパターンを描くようにした可変面積型荷電粒子ビーム描画装置であって、前記偏向手段は二段偏向器からなり、上方偏向器により成形すべきビームの寸法に応じてビームを偏向し、下方偏向器により前記偏向方向に対して逆方向にビームを同一偏向量偏向させるように成しており、1グループを成すパターン各々の寸法に対応した寸法のビームを順次成形し、各ビームでエッジを有する部材上を走査し、該各走査により得られた信号を加算し、該加算信号に基づいて1グループパターンにおける隣り合うパターンの離れ具合若しくは重なり具合を求めるようにしたことを特徴とする。
【0032】
【作用】
寸法の異なったパターンAとパターンBを連続して描く場合、描画に先立って、次の操作を行う。
【0033】
パターンAの寸法に対応した断面寸法のビームを成形し、該ビームでエッジを有する部材上を走査し、該走査により得られた信号を記憶する。次に、パターンBの寸法に対応した断面寸法のビームを成形し、該ビームでエッジを有する部材上を走査し、該走査により得られた信号を記憶する。次に、2つの信号の波形のスタート位置を一致させた後、該2つの信号を加算する。次に、この加算信号波形からパターンAとB全体の一方のエッジから他方のエッジまでの寸法を求める。
【0034】
この方法は、極めて簡単な方法であり、この方法に要する時間も著しく少なくて済む。
【0035】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を詳細に説明する。
【0036】
図5は本発明のパターン描画状態測定方法を実施するための可変面積型電子ビーム描画装置の1概略例を表したものである。尚、図中、図1にて使用した記号と同一記号の付されたものは同一構成のものである。
【0037】
図中31はステージ19上の端部に設けられた電子ビーム検出機構で、図6に示す様に、ナイフエッジ32とファラディーカップ33とから成り、ナイフエッジのエッジに対し直角に走査した時に該エッジを透過した電子ビームをファラディーカップ33で捕獲するように成している。
【0038】
34は電流測定回路で、ファラデーカップ33が捕獲した電子ビームの電流量を、位置決め偏向器制御回路15からの走査位置信号に同期して測定し、走査位置とビーム電流量をメモリ35に送る。
【0039】
該メモリは各走査位置に対するビーム電流量を記憶するもので、複数のメモリから成り、この例の場合には、第1メモリ35A,第2メモリ35Bを備えている。
【0040】
36は波形整形回路で、前記第1メモリ35Aと第2メモリ35Bからの、ビーム走査位置に対するビーム電流強度の関係を表した信号を受け、第2メモリ35Bからの信号の波形を、次の様に整形する。
【0041】
(1)信号波形の傾き部分の傾きが第1メモリ35Aからの信号波形の傾き部分の傾きに一致するように、波形のスタート点から傾き部のスタート点までの間のレベルを変える。
【0042】
(2)波形のスタート位置が第1メモリ35Aからの信号波形のスタート位置に一致するように、信号波形全体のシフトを行う。
【0043】
37は波形整形回路からの2つの信号を加算する加算回路である。
【0044】
38は加算回路37から送られてくる加算信号を微分する第1微分回路、39は第1微分回路38からの信号を微分する第2微分回路である。
【0045】
40は第2微分回路39からの信号の両外側のピーク間の距離を測定するピーク間測定回路である。
【0046】
41はピーク間測定回路40が測定した外側ピーク間距離と基準値(理想値)との差を求める引き算回路である。
【0047】
42は引き算回路41の結果を表示する表示装置、43は引き算回路41の結果を記録する記録装置である。
【0048】
この様な構成の可変面積型電子ビーム描画装置によって、被描画材料上に異なった寸法の正方形パターンAと正方形パターンBを、図4の(a)に示す様に隣接して描画する場合を例に取って、その前に行われるパターン描画状態測定方法を説明する。
【0049】
先ず、制御CPU10からの指令をステージ駆動機構制御装置21に送ることにより、光軸上に電子ビーム検出機構31が来るようにステージ駆動機構20はステージ19を移動させる。
【0050】
次に、制御CPU10からの指令を描画用データ転送回路12に送ることにより、成形偏向器制御回路14は上段偏向器61と下段偏向器62から成る偏向器6をコントロールして、断面寸法が正方形パターンAの寸法に対応したaとなるビームが第2成型スリット5を通過するようにする。
【0051】
この時、同時に、制御CPU10からの指令を描画用データ転送回路12に送ることにより、位置決め偏向器制御回路15は位置決め偏向器に一次元の走査信号を送る。この際、走査幅が一定(W)となるような走査信号にしておく。
【0052】
すると、図7の(a)に示す様に、断面寸法aの正方形状ビームBaはナイフエッジ32のエッジEを直角に横切るように該エッジ上をライン状に走査する。
【0053】
この走査時に、ファラディーカップ33はナイフエッジに遮られなかった電子ビームを捕獲し、電流測定回路34は、走査位置に応じたビーム電流値を測定し、第1メモリ35Aに送る。
【0054】
第1メモリ35Aは送られてきた走査位置に応じたビーム電流値を順次記憶する(図7の(b)は走査位置対ビーム電流の関係を表す信号波形を示す)。
【0055】
次に、前記と同様にして、断面寸法が正方形パターンBの寸法に対応したbとなるビームが第2成型スリット5を通過するようにする。
【0056】
同時に、前記と同様に、位置決め偏向器制御回路15は位置決め偏向器9に走査幅が一定(W)の一次元の走査信号を送る。但し、パターンBはパターンAに隣接(パターンAとパターンBとの間には重なりや隙間がない)して描画されることから、寸法bのビームの走査開始が寸法b分だけナイフエッジ32に近い箇所から行うように、事前に、位置決め偏向器制御回路15は位置決め偏向器9をコントロールする。
【0057】
すると、図7の(c)に示す様に、断面寸法bの正方形状ビームBbはナイフエッジ32のエッジEを直角に横切るように該エッジ上をライン状に走査する。
【0058】
この走査時に、ファラディーカップ33はナイフエッジに遮られなかった電子ビームを捕獲し、電流測定回路34は、走査位置に応じたビーム電流値を測定し、第2メモリ35Bに送る。
【0059】
第2メモリ35Bは送られてきた走査位置に応じたビーム電流値を順次記憶する(図7の(d)は走査位置対ビーム電流の関係を表す信号波形を示す)。
【0060】
次に、波形整形回路36は前記第1メモリ35Aと第2メモリ35Bからの、ビーム走査位置に対するビーム電流強度の関係を表した信号を受け、第2メモリ35Bからの信号の波形(図7の(d))を、次の様に整形する。
【0061】
(1)信号波形の傾き部分(LB)の傾きが第1メモリ35Aからの信号波形(図7の(b))の傾き部分(LA)の傾きに一致するように、波形のスタート点から傾き部のスタートまでの間のレベルを変える。
【0062】
(2)波形のスタート位置(SB)が第1メモリ35Aからの信号波形のスタート位置(SA)に一致するように、信号波形全体のシフトを行う。
【0063】
図7の(e)はこの様な成形を行った後の信号波形を示す。
次に、加算回路37は、波形整形回路36から送られてきた2つの信号(図7の(b)に示す如き波形の信号と図7の(e)に示す如き波形の信号)を加算する。
図7の(f)は加算後の信号波形を示す。
【0064】
次に、第1微分回路38は加算信号を微分する。図7の(g)は微分後の信号波形を示す。
【0065】
次に、第2微分回路39は前記微分された信号を更に微分する。図7の(h)は微分後の信号波形を示す。
【0066】
さて、前記加算後の信号(図7の(f))は、寸法(a+b)のビームをナイフエッジ上で走査して得られた信号と等価となるので、その信号を1回微分した後の信号(図7の(g))の矩形部分の一方のエッジE1と他方のエッジE2との間の距離、或いは、2回微分した後の信号(図7の(h))の一方のピークP1と他方のピークP2との間の距離は、理想的(二段の偏向器61と62の加工精度等に基づく上段偏向器61と下段偏向器62の偏向比が設計通りになっており、偏向比のずれが発生していない場合)には(a+b)となる。
【0067】
従って、ピーク間測定回路40の算出値は(a+b)となり、その算出値と基準値(理想値)との差を算出する引き算回路41の出力は0となり、該出力が表示装置42或いは記録装置43に算出値が表示若しくは記録される。
【0068】
しかし、前記した様に、二段の偏向器61と62の加工精度等に基づく上段偏向器61と下段偏向器62の偏向比が設計通りになっていない場合には、偏向比のずれが発生する。即ち、位置決め偏向器9の偏向場で、寸法aのビームBaに対して、寸法bのビームBbの位置が、理想的な場合(図8の(a)に示す様に基準位置ROと一致する)と異なり、図8の(b)若しくは(c)に示す様に、基準位置に対して左右何れかの方向にずれてしまう。この様なずれが発生している場合には、以下のような動作になる。
【0069】
先ず、図9の(a)に示す様に、断面寸法aの正方形状ビームBaでナイフエッジ32のエッジEを直角に横切るように該エッジ上をライン状に走査する。そして、第1メモリ35Aに、走査位置に応じたビーム電流値を順次記憶する(図9の(b)は走査位置対ビーム電流の関係を表す信号波形を示す)。
【0070】
次に、断面寸法がbとなる正方形状ビームBbで、ナイフエッジ32のエッジEを直角に横切るように該エッジ上をライン状に走査する。この時、前記した様に、寸法bのビームBbの走査開始が寸法b分だけナイフエッジ32に近い箇所から行うように、事前に、位置決め偏向器制御回路15は位置決め偏向器9をコントロールしておく。又、この時、寸法aのビームBaと寸法bのビームBbの位置決め偏向器の偏向場での位置関係が図8の(b)に示す様、ビームBbが基準位置ROから右側にαnずれた状態にあると仮定すると、実際には、図9の(c)に示す様に、ビームBbはビームBaより(b+αn)だけナイフエッジ32に近い箇所から走査を開始する。
【0071】
そして、第2メモリ35Bに、走査位置に応じたビーム電流値を順次記憶する(図9の(d)は走査位置対ビーム電流の関係を表す信号波形を示す)。
【0072】
次に、波形整形回路36は前記第1メモリ35Aと第2メモリ35Bからの、ビーム走査位置に対するビーム電流強度の関係を表した信号を受け、第2メモリ35Bからの信号の波形(図9の(d))を、次の様に整形する。
【0073】
(1)信号波形の傾き部分(LB)の傾きが第1メモリ35Aからの信号波形(図9の(b))の傾き部分(LA)の傾きに一致するように、波形のスタートから傾き部のスタートまでの間のレベルを変える。
【0074】
(2)波形のスタート位置(SB1)が第1メモリ35Aからの信号波形のスタ ート位置(SA)に一致するように、信号波形全体のシフトを行う。
【0075】
図9の(e)はこの様な成形を行った後の信号波形を示す。
次に、加算回路37は、波形整形回路36から送られてきた2つの信号(図9の(b)に示す如き波形の信号と図9の(e)に示す如き波形の信号)を加算する。
図9の(f)は加算後の信号波形を示す。
【0076】
次に、第1微分回路38は加算信号を微分する。図9の(g)は微分後の信号波形を示す。
【0077】
次に、第2微分回路39は前記微分された信号を更に微分する。図9の(h)は微分後の信号波形を示す。
【0078】
さて、前記加算後の信号(図9の(f))は、寸法(a+αn+b)のビームをナイフエッジ上で走査して得られた信号と等価となるので、その信号を1回微分した後の信号(図9の(g))の矩形部分の一方の外側エッジE3と他方の外側エッジE4との間の距離、或いは、2回微分した後の信号(図9の(h))の一方の外側ピークP3と他方の外側ピークP4との間の距離は、(a+αn+b)となる。
【0079】
従ってピーク間測定回路40の出力は(a+αn+b)となり、引き算回路41の算出値は+αnとなり、該算出値が表示装置42或いは記録装置43に算出値が表示若しくは記録される。
【0080】
一方、寸法aのビームBaと寸法bのビームBbの位置決め偏向器の偏向場での位置関係が図8の(c)に示す様に、ビームBbが基準位置から左側にβnずれた状態にあると仮定すると、実際には、図10の(c)に示す様に、ビームBbはビームBaより(b−βn)だけナイフエッジ32から遠いい箇所から走査を開始する。
【0081】
そして、第2メモリ35Bに、走査位置に応じたビーム電流値を順次記憶する(図10の(d)は走査位置対ビーム電流の関係を表す信号波形を示す)。
【0082】
次に、波形整形回路36は前記第1メモリ35Aと第2メモリ35Bからの、ビーム走査位置に対するビーム電流強度の関係を表した信号を受け、第2メモリ35Bからの信号の波形(図10の(d))を、次の様に整形する。
【0083】
(1)信号波形の傾き部分(LB)の傾きが第1メモリ35Aからの信号波形(図10の(b))の傾き部分(LA)の傾きに一致するように、波形のスタートから傾き部のスタートまでの間のレベルを変える。
【0084】
(2)波形のスタート位置(SB2)が第1メモリ35Aからの信号波形のスタ ート位置(SA)に一致するように、信号波形全体のシフトを行う。
【0085】
図10の(e)はこの様な成形を行った後の信号波形を示す。
次に、加算回路37は、波形整形回路36から送られてきた2つの信号(図10の(b)に示す如き波形の信号と図10の(e)に示す如き波形の信号)を加算する。
図10の(f)は加算後の信号波形を示す。
【0086】
次に、第1微分回路38は加算信号を微分する。図10の(g)は微分後の信号波形を示す。
【0087】
次に、第2微分回路39は前記微分された信号を更に微分する。図10の(h)は微分後の信号波形を示す。
【0088】
さて、前記加算後の信号(図10の(f))は、寸法(a+b−βn)のビームをナイフエッジ上で走査して得られた信号と等価となるので、その信号を1回微分した後の信号(図10の(g))の矩形部分の一方の外側エッジE5他方の外側エッジE6との間の距離、或いは、2回微分した後の信号(図10の(h))の一方の外側ピークP5と他方の外側ピークP6との間の距離は、(a+b−βn)となる。
【0089】
従ってピーク間測定回路40の出力は(a+b−βn)となり、引き算回路41の算出値は−βnとなり、該算出値が表示装置42或いは記録装置43に算出値が表示若しくは記録される。
【0090】
以上説明した方法により、被描画材料上に異なった寸法のパターンを描く場合、その描画前に、或る描画パターンに対し次に描かれるパターンの描画精度が極めて簡単に且つ短時間に知ることが出来る。
尚、電流測定機構は、図6に示すものに限定されない。例えば、ナイフエッジの代わりにステージ若しくは被描画材料の端部に形成されマークを使用し、ファラデーカップの代わりに二次電子検出器を使用し、電子ビームでナイフエッジを走査してエッジ部を透過した電子ビームを検出する代わりに、電子ビームでマークのエッジ部を走査し、各走査位置に応じた二次電子の量を検出してもよい。
【0091】
又、前記例では、ピーク間測定回路40において、第2微分回路39の出力波形から両外側のピークとピークの間の距離を測定するようにしたが、これと同時に若しくは、この代わりに、内側の2つのピークの間の距離を測定するようにしても良い。内側の2つのピークの間の距離は、そのまま、或るパターンに対して隣りに描くべき寸法の異なったパターンの寸法に対応したビームの偏向場での位置ずれ、及び、該位置に基づく描画位置のずれを表す。尚、両外側のピークとピークの間の距離を測定しない場合には、引き算回路41は不要となる。
【0092】
又、前記例では本発明を寸法の異なった2つのグループパターンを描く場合について説明したが、隣同士に描かれるパターンの寸法が異なった3つ以上のグループパターンを描く場合に、本発明は応用可能である。3つ以上のグループパターンを描く場合でも、加算信号波形(即ち、グループパターンの全体に対応する波形)の両端の変曲点に基づいて、グループパターン全体の一方のエッジから他方のエッジまでの距離を求める、及び/若しくは、加算信号波形の変曲点の内、末端の変曲点から(2N−1)番目(Nは1以上の自然数)と2N番目の変曲点間の距離に基づいてグループパターンにおける隣り合うパターンの離れ具合若しくは重なり具合を求める様にする。
【0093】
又、前記例では、一方方向(例えばX方向)の偏向場でのビームの位置ずれ等に基づく描画位置のずれを説明したが、他方向(例えばY方向)のずれも同じ様に測定される。
【0094】
又、前記例では電子ビームによる描画を例に上げたが、イオンビームによる描画にも応用可能である。
【図面の簡単な説明】
【図1】 可変面積型電子ビーム描画装置として最も代表的な一概略例を示している。
【図2】 二段偏向器による電子ビームの断面成形の説明に使用した図である。
【図3】 二段偏向器による電子ビームの断面成形の説明に使用した図である。
【図4】 パターンAの寸法に対応したビームとパターンBの寸法に対応したビームの位置決め偏向器の偏向場における位置ずれに基づくパターンAとBの描画例を示している。
【図5】 本発明のパターン描画状態測定方法を実施するための可変面積型電子ビーム描画装置の1概略例を表したものである。
【図6】 電流測定機構の1例を示している。
【図7】 本発明のパターン描画状態測定方法の動作説明に使用した図である。
【図8】 位置決め偏向器の偏向場における寸法の異なった各ビームの位置関係の例を示している。
【図9】 本発明のパターン描画状態測定方法の動作説明に使用した図である。
【図10】 本発明のパターン描画状態測定方法の動作説明に使用した図である。
【符号の説明】
1…電子銃
2…照射レンズ
3…第1成形スリット
4…成形レンズ
5…第2成形スリット
6…成形偏向器
61…上方偏向器
62…下方偏向器
7…集束レンズ
8…被描画材料
9…位置決め偏向器
10…制御CPU
11…パターンデータメモリ
12…描画用データ転送回路
13…ブランキング用データ転送回路
14…成形偏向器制御回路
15…位置決め偏向器制御回路
17…ブランカー
18…ブランカー制御回路
19…ステージ
20…ステージ駆動機構
21…ステージ駆動機構制御回路
32…ナイフエッジ
33…ファラディーカップ
34…電流測定回路
35…メモリ
35A…第1メモリ
35B…第2メモリ
36…波形整形回路
37…加算回路
38…第1微分回路
39…第2微分回路
40…ピーク間測定回路
41…引き算回路
42…表示装置
43…記録装置
Claims (6)
- 荷電粒子発生手段からの荷電粒子ビームを第一成形スリットの開孔を通過させ、該通過したビームを成形偏向手段により第二成形スリットの開孔の所望の部分を通過させることによって、第二成形スリットの開孔から少なくとも所望の大きさの正方形若しくは長方形の断面形状を有するビームを通過させ、該ビームを位置決め偏向器により被描画材料の所望の位置に照射することにより被描画材料の所望の位置にパターンを描くようにした可変面積型荷電粒子ビーム描画装置であって、前記偏向手段は二段偏向器からなり、上方偏向器により成形すべきビームの寸法に応じてビームを偏向し、下方偏向器により前記偏向方向に対して逆方向にビームを同一偏向量偏向させるように成しており、1グループを成すパターン各々の寸法に対応した寸法のビームを順次成形し、各ビームでエッジを有する部材上を走査し、該走査により得られた信号を加算し、該加算信号に基づいて1グループパターン全体の一方のエッジから他方のエッジまでの距離を求めるようにした可変面積型荷電粒子ビーム描画装置におけるパターン描画状態測定方法。
- 荷電粒子発生手段からの荷電粒子ビームを第一成形スリットの開孔を通過させ、該通過したビームを成形偏向手段により第二成形スリットの開孔の所望の部分を通過させることによって、第二成形スリットの開孔から少なくとも所望の大きさの正方形若しくは長方形の断面形状を有するビームを通過させ、該ビームを位置決め偏向器により被描画材料の所望の位置に照射することにより被描画材料の所望の位置にパターンを描くようにした可変面積型荷電粒子ビーム描画装置であって、前記偏向手段は二段偏向器からなり、上方偏向器により成形すべきビームの寸法に応じてビームを偏向し、下方偏向器により前記偏向方向に対して逆方向にビームを同一偏向量偏向させるように成しており、1グループを成すパターン各々の寸法に対応した寸法のビームを順次成形し、各ビームでエッジを有する部材上を走査し、該各走査により得られた信号を加算し、該加算信号に基づいて1グループパターンにおける隣り合うパターンの離れ具合若しくは重なり具合を求めるようにした可変面積型荷電粒子ビーム描画装置におけるパターン描画状態測定方法。
- 得られた各信号波形のスタート位置を一致させて加算するようにした請求項1若しくは2記載の可変面積型荷電粒子ビーム描画装置におけるパターン描画状態測定方法。
- 加算信号波形の変曲点の内、両端の変曲点に基づいて1グループパターン全体の一方のエッジから他方のエッジまでの距離を求めるようにした請求項1記載の可変面積型荷電粒子ビーム描画装置におけるパターン描画状態測定方法。
- 加算信号波形の変曲点の内、末端の変曲点から(2N−1)番目(Nは1以上の自然数)と2N番目(Nは1以上の自然数)の変曲点間の距離に基づいて1グループパターンにおける隣り合うパターンの離れ具合若しくは重なり具合を求めるようにした請求項2記載の可変面積型荷電粒子ビーム描画装置におけるパターン描画状態測定方法。
- 加算信号を1回若しくは2回微分するようにした請求項1,2,4,5の何れかに記載の可変面積型荷電粒子ビーム描画装置におけるパターン描画状態測定方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002099915A JP3886837B2 (ja) | 2002-04-02 | 2002-04-02 | 可変面積型荷電粒子ビーム描画装置におけるパターン描画状態測定方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002099915A JP3886837B2 (ja) | 2002-04-02 | 2002-04-02 | 可変面積型荷電粒子ビーム描画装置におけるパターン描画状態測定方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003297724A JP2003297724A (ja) | 2003-10-17 |
JP3886837B2 true JP3886837B2 (ja) | 2007-02-28 |
Family
ID=29388272
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002099915A Expired - Fee Related JP3886837B2 (ja) | 2002-04-02 | 2002-04-02 | 可変面積型荷電粒子ビーム描画装置におけるパターン描画状態測定方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3886837B2 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4627771B2 (ja) * | 2002-09-11 | 2011-02-09 | 株式会社日立ハイテクノロジーズ | 荷電粒子線装置 |
JP2005276639A (ja) * | 2004-03-25 | 2005-10-06 | Jeol Ltd | 走査型電子ビーム装置における対物レンズ絞りの位置調整方法 |
JP4908799B2 (ja) * | 2005-08-08 | 2012-04-04 | 株式会社ニューフレアテクノロジー | 電子ビーム装置 |
-
2002
- 2002-04-02 JP JP2002099915A patent/JP3886837B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003297724A (ja) | 2003-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7511272B2 (en) | Method for controlling charged particle beam, and charged particle beam apparatus | |
US7423274B2 (en) | Electron beam writing system and electron beam writing method | |
JPH03108312A (ja) | 荷電ビームの非点収差補正方法 | |
JPH06124883A (ja) | 荷電ビーム補正方法及びマーク検出方法 | |
JP4167904B2 (ja) | 電子ビーム描画装置及び電子ビーム描画方法 | |
JPH0513037A (ja) | 荷電粒子ビーム装置及びその制御方法 | |
JP2001085303A (ja) | 荷電ビーム露光装置及び荷電ビーム露光方法 | |
JPH09320931A (ja) | 結像特性計測方法及び該方法を使用する転写装置 | |
JP3886837B2 (ja) | 可変面積型荷電粒子ビーム描画装置におけるパターン描画状態測定方法 | |
JPH11271458A (ja) | ビームの測定方法 | |
US6573508B1 (en) | Electron beam exposing method | |
JP2647732B2 (ja) | 電子線寸法計測装置 | |
JPH11271499A (ja) | 可変面積型電子ビーム描画装置におけるビームの測定方法 | |
JPWO2002075246A1 (ja) | パターン寸法測定方法 | |
JPH08227840A (ja) | 荷電粒子線描画装置における調整方法および描画方法 | |
JP3430788B2 (ja) | 試料像測定装置 | |
JP3065472B2 (ja) | 荷電粒子ビーム描画装置における矩形ビームのサイズ及び位置決め調整方法 | |
KR102031170B1 (ko) | 멀티빔 초점 조정 방법, 멀티빔 초점 측정 방법 및 하전 입자빔 묘화 장치 | |
JP2005064041A (ja) | 荷電粒子ビーム描画装置におけるビームの照射位置補正方法 | |
JP2828320B2 (ja) | 電子ビーム測長方法 | |
JPS6229136A (ja) | 荷電粒子ビ−ム露光におけるマ−ク位置検出方法及びこの方法を用いた装置 | |
JPS58106746A (ja) | 電子レンズの軸合せ方法 | |
JPH09190792A (ja) | 集束ビームのフォーカス調整方法 | |
JP2786662B2 (ja) | 荷電ビーム描画方法 | |
JP2848417B2 (ja) | 荷電粒子ビーム露光装置および露光方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041210 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061005 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061031 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061122 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3886837 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101201 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101201 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111201 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121201 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121201 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131201 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |