JP3883411B2 - 発振回路 - Google Patents

発振回路 Download PDF

Info

Publication number
JP3883411B2
JP3883411B2 JP2001320719A JP2001320719A JP3883411B2 JP 3883411 B2 JP3883411 B2 JP 3883411B2 JP 2001320719 A JP2001320719 A JP 2001320719A JP 2001320719 A JP2001320719 A JP 2001320719A JP 3883411 B2 JP3883411 B2 JP 3883411B2
Authority
JP
Japan
Prior art keywords
signal
oscillation
circuit
frequency
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001320719A
Other languages
English (en)
Other versions
JP2003124804A (ja
Inventor
浩三 一丸
Original Assignee
日本テキサス・インスツルメンツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本テキサス・インスツルメンツ株式会社 filed Critical 日本テキサス・インスツルメンツ株式会社
Priority to JP2001320719A priority Critical patent/JP3883411B2/ja
Priority to US10/256,175 priority patent/US6700449B2/en
Publication of JP2003124804A publication Critical patent/JP2003124804A/ja
Application granted granted Critical
Publication of JP3883411B2 publication Critical patent/JP3883411B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2032Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner
    • H04L27/2092Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner with digital generation of the modulated carrier (does not include the modulation of a digitally generated carrier)
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • H03L1/02Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only
    • H03L1/022Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature
    • H03L1/026Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature by using a memory for digitally storing correction values
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • H03L1/02Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only
    • H03L1/022Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature
    • H03L1/027Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature by using frequency conversion means which is variable with temperature, e.g. mixer, frequency divider, pulse add/substract logic circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、発振回路、例えばSAW(Surface Acoustic Wave )共振素子を用いた発振回路に関するものである。
【0002】
【従来の技術】
SAW共振器を用いた発振回路は、位相雑音(また、ジッタとも呼ばれる)を低いレベルに抑制することができ、他の発振回路に較べて優れた位相雑音特性が得られる。さらに、SAW共振器は機械的な振動に強く、発振周波数が外部から与えられた機械的な衝撃にほとんど影響されないので、携帯型の通信端末、例えば、移動電話などに広く利用されている。
【0003】
【発明が解決しようとする課題】
ところで、SAW発振器を用いた発振回路において、素子の構造上発振周波数を調整することは困難である。例えば、SAW発振器を用いた発振回路の負荷の容量を変化させてもその発振周波数の変化範囲は狭い。このことから、負荷容量を調整することによってSAW発振器の発振周波数を制御する場合、周波数の制御可能な範囲は非常に狭いという不利益がある。
【0004】
また、SAW発振器は温度変化に従ってその発振周波数が大きく遷移する、いわゆる温度特性が大きいので、動作環境の温度変化に影響されることなく、安定した発振信号を供給するために、何らかの補正回路を用いて温度変化によって生じた発振周波数の変動を補正する必要がある。しかし、上述した原因で、SAW発振器の発振周波数の制御が困難であるため、温度特性の補正は容易ではなかった。
【0005】
本発明は、かかる事情に鑑みてなされたものであり、その目的は、SAW発振器を用いながら、発振周波数を容易に制御でき、かつ発振器の温度特性を補正でき、高い温度安定性を持つ発振信号を生成できる発振回路を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するため、本発明の発振回路は、発振信号を出力する発振器と、上記発振信号を所定の分周値で分周して分周信号を出力する分周回路と、上記分周信号に応じて入力データを取り込んで保持するデータ保持回路と、温度センサーにより検出された温度に応じて上記発振信号に対する補正データを生成する補正データ生成回路と、上記データ保持回路から出力される保持データと上記補正データとを加算して上記データ保持回路に出力する加算器と、上記保持データに応じて互いに直交する第1の信号と第2の信号とを出力する直交信号生成回路と、上記第1の信号と上記第2の信号とに応じて上記発振信号を変調して上記直交信号の周波数分だけずれた出力信号を出力する変調回路とを有する。
【0007】
また本発明の発振回路においては、温度を検出するための温度センサーを更に有し、上記補正データ生成回路が上記温度センサーにより検出された温度に応じて上記発振信号に対する補正データを生成する。
【0008】
また、本発明では、好適には、上記加算器は桁上げ信号を除いた加算値を上記データ保持回路に出力する。
【0009】
また、本発明では、好適には、上記変調回路は上記第1の信号と上記第2の信号とに応じて上記発振信号を位相変調する。
【0010】
更に、本発明では、好適には、上記発振器がSAW発振器であり、上記変調回路がIQ変調器である。
【0011】
【発明の実施の形態】
第1実施形態
図1は本発明に係る発振回路の第1の実施形態を示す回路図である。
図示のように、本実施形態の発振回路は、SAW発振器10、分周器20、レジスタ30、加算器40、三角関数ROM50、ディジタル/アナログ変換回路(DAC)60−1,60−2、及びIQ変調器70によって構成されている。
【0012】
以下、本実施形態の発振回路を構成する各部分について説明する。
SAW発振器10は、所定の発振周波数で発振し、クロック信号CLKを出力する。クロック信号CLKは、分周器20及びIQ変調器70にそれぞれ供給される。
【0013】
分周器20は、クロック信号CLKを予め設定された分周比mで分周し、分周クロック信号CKDを出力する。ここで、例えば、SAW発振器10によって出力されるクロック信号CLKの周波数f0 が315.2MHzで、分周器20の分周比mが64であるとすると、分周クロック信号CKDの周波数fd は、315.2/64=4.925MHzとなる。分周クロック信号CKDは、レジスタ30に供給される。
【0014】
レジスタ30は、分周クロック信号CKDによって駆動される。即ち、レジスタ30は、分周クロック信号CKDの周期毎に加算器40の出力データDs を取り込み、次回の取り込みを行うまでに、取り込んだデータを保持し、三角関数ROM50及び加算器40にそれぞれ出力する。なお、図1において、区別のため加算器40からレジスタ30に出力される加算データをDs と表記し、レジスタ30から出力されるデータをDa と表記する。
【0015】
加算器40は、外部から入力される加算値Fとレジスタ30の出力データDaとの加算値Ds を算出してレジスタ30に出力する。即ち、加算器40に入力される入力加算値F、レジスタ30の出力データDa に基づき、加算器40の出力データDs は、次式によって計算される。
【0016】
【数1】
s =F+Da …(1)
【0017】
ここで、例えば、加算器40は12ビットのデータ幅を持つとする。即ち、加算器40の出力データDs は、最小値0から最大値4095までである。加算器40の加算結果が最大値4095を越える、いわゆるオーバーフローが発生した場合、キャリー(桁上げ)データが吐き捨てられ、加算結果は残りの下位ビット値となる。このため、レジスタ30と加算器40によって、分周クロック信号CKDの周期毎に加算値Fだけ増加する12ビットの加算データDs が得られ、この加算データDs は最小値0と最大値4095の間で繰り返される。
同様に、レジスタ30も12ビットのデータ幅を持ち、レジスタ30に12ビットの加算データDs が順次取り込まれ、分周クロック信号CKDのタイミングで、加算器40及び三角関数ROM50に出力される。
【0018】
三角関数ROM50は、レジスタ30の出力データDa に応じて、当該出力データDa が換算した角度に対応するSIN関数値Dsin とCOS関数値DCOS を出力する。例えば、レジスタ30の出力データDa を12ビットのデータとし、212=4096を角度360度に対応させ、任意の出力データDa に対応する角度θが次式によって求められる。
【0019】
【数2】
θ=360Da /4096 …(2)
【0020】
式(2)によって求められた角度θに対応するSIN関数値Dsin とCOS関数値DCOS はそれぞれ次のように計算できる。
【0021】
【数3】
sin =sinθ
COS =cosθ …(3)
【0022】
実際の発振回路において、レジスタ30の出力データDa に応じて、毎回式(2)及び式(3)に示す演算でSIN関数値とCOS関数値を求めてもよいが、図1に示す本実施形態の発振回路のように、予めすべての出力データDa に対応したSIN関数値とCOS関数値を求めて、SIN関数とCOS関数のテーブルを作成して三角関数ROM50に記憶しておけば、レジスタ30の出力データDa に応じて毎回演算することなく、三角関数ROM50からそれぞれSIN関数値とCOS関数値を読み出せばよい。
【0023】
DAC60−1とDAC60−2は、それぞれ三角関数ROM50から読み出したSIN関数値Dsin とCOS関数値DCOS をアナログ信号に変換する。SIN関数値Dsin をアナログ信号に変換して、直交信号SI が得られ、COS関数値DCOS をアナログ信号に変換して、同相信号SQ が得られる。なお、直交信号SI と同相信号SQ はそれぞれIQ変調器70に供給される。
【0024】
IQ変調器70は、DAC60−1とDAC60−2から供給される直交信号SI と同相信号SQ に応じて、SAW発振器10から出力されるクロック信号CLKに対してIQ変調、即ち位相変調を行う。IQ変調器70における位相変調の結果、直交信号SI と同相信号SQ に応じて、入力クロック信号CLKに対して位相(周波数)の調整が行われる。即ち、IQ変調器70によってクロック信号CLKに対して位相変調を行なうことにより、SAW発振器10によって発生されたクロック信号CLKの周波数を調整することができる。
【0025】
以下、具体的に数値例を用いて本実施形態の発振回路における周波数調整について説明する。
ここで、例えば、理想の発振周波数をf=315MHzとし、実際のSAW発振器10の発振周波数がf0 =315.2MHzであるとする。即ち、本実施形態の発振回路の目的は、SAW発振器10の発振周波数315.2MHzを調整し、理想の発振周波数315MHzの発振信号を出力することにある。
【0026】
分周器20から出力される分周クロック信号CKDの周波数fd は、315.2MHz/64=4.925MHzである。分周クロック信号CKDがレジスタ30に出力されるので、レジスタ30は分周クロック信号CKDの周期毎に加算器40の出力データDs を取り込み、加算器40にフィードバックするとともに、三角関数ROM50に出力する。
【0027】
加算器40に入力される加算値Fは、レジスタ30及び加算器40の最大値Dmax 、SAW発振器の発振周波数f0 と所望の周波数fとの差分Δf及び分周クロック信号CKDの周波数fd に応じて、次式によって計算される。
【0028】
【数4】
F=Dmax ・Δf/fd …(4)
【0029】
ここで、レジスタ30及び加算器40が12ビットのデータ幅を持つとして、かつ、Δf=f0 −f=(315.2−315)MHz=0.2MHz、fd =4.925MHzとすると、式(4)によって、加算値Fが次のように算出される。F=4096×0.2/4.925≒166である。
【0030】
即ち、加算値F=166を加算器40に入力すれば、SAW発振器10の発振周波数と理想の発振周波数とのずれを補正することができる。以下、これについて説明する。
【0031】
レジスタ30から、分周クロック信号CKDの周期毎に加算値Fずつ値が増加する加算データDa が出力される。この加算結果Da が三角関数ROM50に入力され、それに応じたSIN関数値Dsin 及びCOS関数値DCOS がそれぞれ出力される。さらに、DAC60−1とDAC60−2によって、SIN関数値Dsin 及びCOS関数値DCOS に応じた直交信号SI と同相信号SQ がそれぞれ出力される。
【0032】
直交信号SI と同相信号SQ の周波数fa は、加算値F、データDa の最大値Dmax 及び分周クロック信号CKDの周波数fd に応じて、次式によって計算できる。
【0033】
【数5】
a =F・fd /Dmax …(5)
【0034】
ここで、F=166、fd =4.925MHz、かつDmax =4096であるので、式(5)によって、周波数fa が199.6kHzとなる。IQ変調器70において直交信号SI と同相信号SQ に応じて、クロック信号CLKに対して位相変調した結果、周波数fa だけずれた発振信号が得られる。即ち、IQ変調器70の出力信号Sout の周波数は、315.2MHz−199.6kHz=315.0004MHzとなる。
【0035】
このように、本実施形態の発振回路を用いることによって、SAW発振器10の発振周波数のずれに応じて加算器40に入力する加算値Fの値を適宜設定することによって、発振周波数を補正し、所望の発振周波数を持つクロック信号を生成することができる。
【0036】
なお、上述した例は、SAW発振器10の発振周波数が理想値より例えば、200kHzが高くなる場合の周波数の補正例であるが、本実施形態の発振回路は加算値Fの値を適宜設定することによって、任意の周波数ずれを補正することができる。例えば、SAW発振器10の発振周波数が理想値より200kHz低くなっている場合、加算器40に入力する加算値Fを4096−166=3930にすれば、三角関数ROM50によって出力されるSIN関数値とCOS関数値に応じて生成した直交信号SI と同相信号SQ の周波数は、−199.6kHzである。これに応じてIQ変調器70によって、SAW発振器10の発振周波数を199.6kHzだけ高くずらした発振信号が得られる。
【0037】
以上説明したように、本実施形態によれば、SAW発振器10によって理想の発振周波数から所定の周波数誤差を持つクロック信号CLKを生成し、当該クロック信号を所定の分周比で分周した分周クロック信号でレジスタ30を駆動し、分周クロック信号の周期毎に所定の加算値Fを足した加算値Da に応じて発生した直交信号SI と同相信号SQ を出力し、さらにこれらの信号に応じてクロック信号CLKをIQ変調することによって、クロック信号CLKの周波数誤差が補正され、理想の発振周波数を持つ出力信号Sout が得られる。
【0038】
第2実施形態
図2は、本発明に係る発振回路の第2の実施形態を示す回路図である。
図示のように、本実施形態の発振回路は、上述した第1の実施形態の発振回路に温度センサー80と補正値演算回路90を追加したものである。即ち、本実施形態において、温度センサー80及び補正値演算回路90を除く他の各構成部分は、上述した第1の実施形態の発振回路の各構成部分とほぼ同じである。このため、図2において図1と同じ構成部分に同じ符号を付して表記している。
【0039】
本実施形態の発振回路は、発振回路の動作環境温度に応じてSAW発振器10の発振周波数のずれを補正することによって、温度変化にほとんど依存しない高安定性の発振信号を供給できる。
【0040】
SAW発振器は、周波数ノイズが低く、安定した周波数の発振信号を供給できる反面、温度変化によって発振周波数が大きく変動する温度特性を有する。例えば、動作環境の温度変化に応じて、100ppm(10-6)前後若しくはそれ以上の温度特性を持つことがある。このため、温度変化に依存性せず安定した周波数を持つ発振信号を提供するために、SAW発振器に温度補償回路を設ける必要がある。
【0041】
図2に示すように、本実施形態の発振回路において、温度センサー80及び補正値演算回路90を設けることによって、発振回路の動作環境の温度を検出し、この環境温度及び既知のSAW発振器の温度特性に従って、SAW発振器の発振周波数を補正する補正値Fを算出し、これに従ってSAW発振器の出力クロック信号CLKに対してIQ変調することによって、温度変化による発振周波数の変化を補正し、ほとんど温度依存性のない安定した発振信号を提供できる。
【0042】
以下、本実施形態の発振回路の構成及び動作について説明する。
温度センサー80は、発振回路の動作環境温度を測定し、環境温度に対応する温度データDT を出力する。
補正値演算回路90は、温度センサー80によって得られた温度データDT に応じて、SAW発振器10の発振周波数を補正するための補正値Fを計算し、加算器40に出力する。
【0043】
SAW発振器10の温度特性は、予め測定することによって既知である。そして、この温度特性に従って、現在の動作環境温度におけるSAW発振器10の発振周波数f0 を推定することができる。現在の発振周波数f0 と理想の発振周波数との誤差Δfを求めることができるので、上述した第1の実施形態の周波数補正の原理に従って、補正値演算回路90によって補正値Fを算出して加算器40に出力すればよい。
【0044】
例えば、SAW発振器10は、図3に示す温度特性を有する。ここで、fC は温度TC における発振周波数である。理想的には、SAW発振器10の発振周波数は温度変化に依存せずfC に安定することが望まれるが、実際に温度Tに従って図3に示す曲線で発振周波数が遷移する。
補正値演算回路90において、まず、温度センサー80によって検出された温度データDT に従って、現在の動作環境温度T0 における発振周波数のずれΔfを取得できる。そして、周波数ずれΔfに従って、上述した式(4)に基づき、補正値Fを求めることができる。補正値演算回路90は、こうして求めた補正値Fを加算器40に出力すれば、これに応じて温度変化によって生じた周波数のずれΔfを補正する直交信号SI と同相信号SQ がそれぞれ生成され、さらにIQ変調器70によって、クロック信号CLKに対する位相変調の結果、周波数のずれが補正され、理想の発振周波数fC を持つ発振信号Sout が出力される。
【0045】
なお、本実施形態の発振回路において、補正値演算回路90は、演算手段、例えば、CPUなどを用いるほか、予め温度データDT に対応する補正値Fの値を演算したテーブルをメモリ、例えばROMに記憶することによって、温度センサー80で測定した温度データDT に基づき、ROMから補正値Fを読み出して、加算器40に出力することができる。これによって、CPUなどの演算回路及び演算のためのプログラムを作成する必要がなく、補正値を容易に取得できる。
【0046】
以上説明したように、本実施形態によれば、温度センサー80によって動作環境温度に応じて温度データDT を取得し、それに対応する補正値Fを補正値演算回路90によって取得して加算器40に出力する。補正値Fに応じて温度変化によって生じたSAW発振器10の発振周波数のずれを補正するための直交信号SI と同相信号SQ が生成され、IQ変調器70によってSAW発振器10の出力クロック信号CLKの周波数ずれが補正され、温度変化に依存せず、高い温度安定性を持つ発振信号Sout を出力できる。
【0047】
【発明の効果】
以上説明したように、本発明の発振回路によれば、SAW発振器の周波数のずれに応じて設定した補正値を用いて周波数補正用直交信号及び同相信号をそれぞれ生成し、これらの信号に基づきIQ変調によって発振周波数を補正することで所望の発振周波数を持つ発振信号を提供することが可能である。
さらに、本発明の発振回路によれば、温度センサーを用いて発振回路の動作環境温度を計測して温度データを取得し、当該温度データに基づきSAW発振器の発振周波数のずれを求め、これに応じた補正値を算出してSAW発振器の出力信号の周波数を補正することによって、動作温度の変化によって生じた発振周波数のずれを補正することができ、温度変化に依存せず安定した発振周波数を持つ発振信号を提供できる利点がある。
【図面の簡単な説明】
【図1】本発明に係る発振回路の第1の実施形態を示す回路図である。
【図2】本発明に係る発振回路の第2の実施形態を示す回路図である。
【図3】SAW発振器の温度特性の一例を示すグラフである。
【符号の説明】
10…SAW発振器、
20…分周器、
30…レジスタ、
40…加算器、
50…三角関数ROM、
60−1,60−2…ディジタル/アナログ変換回路(DAC)、
70…IQ変調器、
80…温度センサー、
90…補正値演算回路。

Claims (5)

  1. 発振信号を出力する発振器と、
    上記発振信号を所定の分周値で分周して分周信号を出力する分周回路と、
    上記分周信号に応じて入力データを取り込んで保持するデータ保持回路と
    温度センサーにより検出された温度に応じて上記発振信号に対する補正データを生成する補正データ生成回路と、
    上記データ保持回路から出力される保持データと上記補正データとを加算して上記データ保持回路に出力する加算器と、
    上記保持データに応じて互いに直交する第1の信号と第2の信号とを出力する直交信号生成回路と、
    上記第1の信号と上記第2の信号とに応じて上記発振信号を変調して上記直交信号の周波数分だけずれた出力信号を出力する変調回路と、
    を有する発振回路。
  2. 温度を検出するための温度センサーを更に有し、
    上記補正データ生成回路が当該温度センサーにより検出された温度に応じて上記発振信号に対する補正データを生成する請求項1に記載の発振回路。
  3. 上記加算器は桁上がり信号を除いた加算値を上記データ保持回路に出力する
    請求項1又は2に記載の発振回路。
  4. 上記変調回路は上記第1の信号と上記第2の信号とに応じて上記発振信号を位相変調する
    請求項1又は2に記載の発振回路。
  5. 上記発振器がSAW発振器であり、上記変調回路がIQ変調器である
    請求項1又は2に記載の発振回路。
JP2001320719A 2001-10-18 2001-10-18 発振回路 Expired - Fee Related JP3883411B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001320719A JP3883411B2 (ja) 2001-10-18 2001-10-18 発振回路
US10/256,175 US6700449B2 (en) 2001-10-18 2002-09-26 Saw oscillation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001320719A JP3883411B2 (ja) 2001-10-18 2001-10-18 発振回路

Publications (2)

Publication Number Publication Date
JP2003124804A JP2003124804A (ja) 2003-04-25
JP3883411B2 true JP3883411B2 (ja) 2007-02-21

Family

ID=19138063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001320719A Expired - Fee Related JP3883411B2 (ja) 2001-10-18 2001-10-18 発振回路

Country Status (2)

Country Link
US (1) US6700449B2 (ja)
JP (1) JP3883411B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4679782B2 (ja) * 1999-12-10 2011-04-27 富士通株式会社 温度センサ
US20050084047A1 (en) * 2003-09-30 2005-04-21 Seiko Epson Corporation Clock signal correcting circuit and communicating apparatus
US7075377B2 (en) * 2004-06-10 2006-07-11 Theta Microeletronics, Inc. Quadrature voltage controlled oscillators with phase shift detector
JP6709454B2 (ja) * 2015-11-20 2020-06-17 デ・ファクト・スタンダード合同会社 位相同期回路、rfフロントエンド回路、無線送受信回路、携帯型無線通信端末装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5748047A (en) * 1996-08-15 1998-05-05 Northrop Grumman Corporation Microwave frequency generator and method of generating a desired microwave frequency signal
US5770977A (en) * 1996-09-25 1998-06-23 Texas Instruments Incorporated Microwave frequency synthesizer with ultra-fast frequency settling and very high frequency resolution

Also Published As

Publication number Publication date
US6700449B2 (en) 2004-03-02
JP2003124804A (ja) 2003-04-25
US20030076186A1 (en) 2003-04-24

Similar Documents

Publication Publication Date Title
US10268164B2 (en) Circuit device, physical quantity measurement device, electronic apparatus, and vehicle
US10908558B2 (en) Circuit device, physical quantity measurement device, electronic apparatus, and vehicle
US20110286510A1 (en) Electronic device for generating a fractional frequency
US7755443B2 (en) Delay-based modulation of RF communications signals
JP5011440B2 (ja) Fm変調器
JP3934585B2 (ja) 広帯域変調pll、広帯域変調pllのタイミング誤差補正システム、変調タイミング誤差補正方法および広帯域変調pllを備えた無線通信装置の調整方法
JP4745102B2 (ja) 基準電流制御回路、温度補償機能付き水晶発振器制御ic、水晶発振器および携帯電話機
TW201534057A (zh) 使用三角積分調變之用於信號錯誤更正之方法及裝置
US7791416B2 (en) PLL circuit
JP3883411B2 (ja) 発振回路
JP4113207B2 (ja) 位相制御方法及び位相制御発振装置、送信用アレーアンテナ
US11043954B2 (en) Oscillation circuit, oscillator, communication device, and method of controlling oscillation circuit
JP5253318B2 (ja) 発振装置
KR100795478B1 (ko) 전압제어발진기
JP5424473B2 (ja) 発振回路
JP2005295014A (ja) 圧電発振器の周波数温度特性の補償方法、温度補償型発振器およびこれを用いた電子機器
JP2010206720A (ja) Pll装置及びその制御方法
JP2001077670A (ja) 周波数補正回路、移動体通信機
US20230336162A1 (en) Reference Clock Frequency Correction By Mixing With Digitally-Controlled Low-Frequency Compensation Signal
JP2005198120A (ja) ジッタ発生装置
JP2004072244A (ja) デジタルvco及びそのデジタルvcoを用いたpll回路
JP5918546B2 (ja) 温度補償型水晶発振器
JP4835596B2 (ja) シンセサイザまたは発振器モジュールと、このシンセサイザを用いたシンセサイザモジュール、受信装置、及び電子機器
JP2015154249A (ja) 位相同期回路および同期方法
JP5786184B2 (ja) Ifftクロック調整装置、デジタルテレビジョン放送装置およびifftクロックの調整方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061114

R150 Certificate of patent or registration of utility model

Ref document number: 3883411

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees