JP3883150B2 - 基板処理装置 - Google Patents

基板処理装置 Download PDF

Info

Publication number
JP3883150B2
JP3883150B2 JP35832397A JP35832397A JP3883150B2 JP 3883150 B2 JP3883150 B2 JP 3883150B2 JP 35832397 A JP35832397 A JP 35832397A JP 35832397 A JP35832397 A JP 35832397A JP 3883150 B2 JP3883150 B2 JP 3883150B2
Authority
JP
Japan
Prior art keywords
pipe
processing
temperature
substrate
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35832397A
Other languages
English (en)
Other versions
JPH11191549A (ja
Inventor
祐介 村岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Screen Holdings Co Ltd
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd, Dainippon Screen Manufacturing Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP35832397A priority Critical patent/JP3883150B2/ja
Publication of JPH11191549A publication Critical patent/JPH11191549A/ja
Application granted granted Critical
Publication of JP3883150B2 publication Critical patent/JP3883150B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、基板処理装置に関し、より特定的には、半導体デバイス製造プロセス、液晶ディスプレイ製造プロセス、電子部品関連製造プロセス等において、シリコンウェハ、FPD(Flat Panel Display)用基板、フォトマスク用ガラス基板、電子部品等の各種基板に対して処理ガスを供給して基板を処理する基板処理装置に関する。
【0002】
【従来の技術】
従来の基板処理装置としては、例えば、「特開平8−141526号」公報に開示されたものが知られている。この従来の基板処理装置では、処理槽は、所定の間隔を開けてかつ平行に配列するよう複数枚の基板を収容する。その後、処理槽内には所定の薬液が供給され、各基板は薬液中に浸漬される。このようにして、基板処理装置では薬液処理が行われる。
薬液処理が終了すると、基板処理装置は、薬液が貯留されている処理槽に純水を当該処理槽の下方から供給して、当該薬液と純水の混合液を処理槽の上部からオーバーフローさせる。基板処理装置が処理槽に純水を供給し続けると、やがて処理槽内は完全に純水に置換される。基板処理装置は、処理槽内が純水に置換された後も、処理槽に純水を供給し続けて処理槽からオーバーフローさせ、当該処理槽内の各基板を洗浄する。このようにして、基板処理装置では洗浄処理が行われる。
洗浄処理が終了すると、基板処理装置は、純水が貯留されている処理槽から純水を排出させた後、IPA(イソプロピルアルコール)蒸気(厳密にはIPA蒸気と窒素ガスとの混合ガス)を処理槽内に供給して各基板に当該IPA蒸気を吹き付ける。IPA蒸気は、各基板表面上に付着している純水の液滴と置換した後、蒸発する。その結果、各基板の表面に液滴を残すことなく当該各基板は十分に乾燥する。このようにして、基板処理装置では乾燥処理が行われる。
【0003】
上述したように、IPA蒸気は、基板を乾燥させるために処理槽内に供給される。そのため、一般的な基板処理装置には、図4に示すようなIPA蒸気の供給機構が設けられる。図4において、この供給機構は、蒸発槽41と窒素供給源42とが配管43により接続されており、当該蒸発槽41はさらに、処理槽44と配管45によって接続されている。
蒸発槽41内には液状のIPAが貯留されており、当該蒸発槽41に設けられているヒータ411により加熱される。その結果、液状のIPAは蒸発し、これによって、蒸発槽41内でIPA蒸気が生成される。また、この蒸発槽41には、配管43を通じて、窒素供給源42から送出された窒素ガスが導入される。これによって、蒸発槽41内では、窒素ガスとIPA蒸気との混合ガス(以下、処理ガスと称す)が生成され、当該処理ガスが配管45を通じて処理槽44に供給される。つまり、IPA蒸気は、窒素ガスをキャリアガスとして処理槽44に供給される。
【0004】
ところで、この処理ガス内のIPA蒸気は、基板表面上の液滴を乾燥させることから、その濃度は適切に制御される必要がある。図4に示す供給機構では、温度センサ461が蒸発槽41内の液状IPAの温度Tを検出し、液温制御部46が、この検出された温度Tに基づいて、ヒータ411による当該液状IPAの加熱温度を制御していた。つまり、処理ガス内のIPA蒸気の濃度は、液状のIPAの飽和蒸気圧に基づいて制御されていた。
【0005】
【発明が解決しようとする課題】
蒸発槽41内でIPA蒸気と窒素ガスとが混合されるが、この時、常温の窒素ガスが蒸発槽41に供給される。そのため、蒸発槽41内のIPA蒸気の温度は低下する。その結果、IPAの飽和蒸気圧も変化するため、生成される処理ガス中のIPA蒸気の濃度は変化する。したがって、従来のように、液温制御部46が、蒸発槽41内の液状IPAの温度を検出しても、処理ガス中のIPA蒸気の濃度を正確に検出することはできない。その結果、従来の基板処理装置は、上述した基板乾燥処理を正確に制御することができなくなり、そのオペレータが期待するような基板乾燥処理を基板に施せないという問題点があった。
【0006】
なお、上述した課題は、IPA蒸気に関して具体的に説明した。しかしながら、半導体デバイス等の各製造工程では、IPA蒸気だけでなく有機溶剤蒸気や水蒸気等もまた処理蒸気として用いられる。これら処理蒸気もまたキャリアガスと混合された上で処理ガスとして用いられるので、その処理蒸気の濃度もまた正確に制御される必要がある。
【0007】
それ故に、本発明の目的は、基板に供給される処理ガス内に含まれる処理蒸気の濃度を正確に制御し、当該処理蒸気によって基板に対して所望の処理を施すことができる基板処理装置を提供することである。
【0008】
【課題を解決するための手段および発明の効果】
第1の発明は、所定の処理蒸気とキャリアガスとが混合されて生成される処理ガスを、チャンバに収容された基板に供給し、当該処理蒸気に基づく所定の基板処理を当該基板に対して実行する基板処理装置であって、外部から供給されるキャリアガスを導く第1の配管と、予め貯留している処理液を加熱して処理蒸気を内部で生成し、第1の配管からキャリアガスが供給された場合には、内部の処理蒸気とキャリアガスとを混合して処理ガスを生成し、送出する蒸発槽と、蒸発槽及びチャンバを接続し、蒸発槽から送出される処理ガスをチャンバに導く第2の配管と、蒸発槽で生成された処理ガスを希釈するために、外部から供給されるキャリアガスを第2の配管へと導く第3の配管と、チャンバ内に設置されており、第2の配管により導かれる処理ガスを基板に吐出して供給する吐出部と、第2の配管に介設されており、蒸発槽から送出された後、第2の配管内を導かれる処理ガス内に含まれる処理蒸気の濃度を検出する濃度検出部と、濃度検出部による検出結果に基づいて、蒸発槽内で処理液が加熱される温度、第1の配管によって導かれるキャリアガスの温度、及び当該第1の配管によって導かれるキャリアガスの流量を制御する制御部とを備え、第3の配管は、蒸発槽と、濃度検出部との間で第2の配管と接続されており、当該接続箇所において、蒸発槽内で生成された処理ガスを自身が導くキャリアガスで希釈し、濃度検出部は、接続箇所と前記吐出部との間で第2の配管に介設され、制御部はさらに、濃度検出部による検出結果に基づいて、第3の配管によって導かれるキャリアガスの温度、及び当該第3の配管によって導かれるキャリアガスの流量を制御することを特徴とする。
【0009】
第1の発明では、濃度検出部は、蒸発槽から送出された処理ガス中に含まれる処理蒸気の濃度を直接的に検出し、自身の検出結果を制御部にフィードバックできる。そのため、第1の発明は、蒸発槽内で処理液が加熱される温度、第1の配管によって導かれるキャリアガスの温度、及び当該第1の配管によって導かれるキャリアガスの流量を正確に制御でき、その結果、基板に対して所望の基板処理を施すことができる。
【0011】
の発明によれば、処理ガス内の処理蒸気の濃度を変更するためには、この第1の配管及び第2の配管の流量を制御すればよく、従来のように熱容量が大きい処理液の温度を変更する必要はない。これによって、本基板処理装置は、処理ガス内の処理蒸気の濃度を迅速にかつ正確に変更することができる。また、処理液の蒸発の条件を変更する必要をなくすことができるため、処理ガスの流量を一定に保ちつつ処理ガス内の処理蒸気の濃度を容易に変更できたり、処理ガス内の処理蒸気の濃度を一定に保ちつつ処理ガスの流量を容易に変更できたりする。
また、第1の発明によれば、蒸発槽内で生成される処理ガスは飽和蒸気であるため、結露しやすい。そこで、第の発明では、第3の配管は、蒸発槽と濃度検出部との間で第2の配管と接続されており、当該接続箇所において、蒸発槽で生成された処理ガスを自身が導くキャリアガスで希釈する。これによって、第2の配管によって導かれる処理ガスは結露しにくくなる。ここで、濃度検出部は、接続箇所と吐出部との間で第2の配管に介設される。さらに、この第3の配管によって導かれるキャリアガスの温度や、当該第3の配管によって導かれるキャリアガスの流量を制御することにより、第2の配管内を導かれる処理ガス内の処理蒸気は所望の濃度を常に有するように制御できるため、本基板処理装置は、基板に対して所望の基板処理を施すことができる。
また、第1の発明では、制御部は、濃度検出部による検出結果を用いて、第3の配管によって導かれるキャリアガスの温度及び流量をより適切にフィードバック制御することができ、これによって、基板に対してより好適な基板処理を施すことができる。
【0012】
の発明は、第の発明において、基板処理装置は、接続箇所と吐出部との間で第2の配管に介設されており、当該接続箇所において希釈された処理ガスの温度を検出する温度検出部をさらに備える。ここで、制御部はさらに、温度検出部による検出結果に基づいて、第3の配管によって導かれるキャリアガスの温度を制御することを特徴とする。
の発明では、温度検出部で、第2の配管上を導かれる処理ガスの温度が検出される。制御部は、この検出結果を用いることができるので、第3の配管によって導かれるキャリアガスの流量をより適切にフィードバック制御することができ、基板に対してより好適な基板処理を施すことができる。
の発明は、第の発明において、温度検出部による検出結果に基づいて、吐出部から吐出される処理ガスの温度を制御する処理ガス温度制御部をさらに備える。
の発明では、吐出部の直前において処理ガスの温度が制御されるので、基板に対して所望の温度を有する処理ガスを供給することができる。これによって、本基板処理装置は基板に対してより好適な基板処理を施すことができる。
【0014】
の発明は、第1の発明において、基板処理装置は、第2の配管に介設されており、蒸発槽から送出された後、第2の配管内を導かれる処理ガスの温度を検出する温度検出部をさらに備える。ここで、制御部はさらに、温度検出部による検出結果に基づいて、蒸発槽内で処理液が加熱される温度、第1の配管によって導かれるキャリアガスの温度、及び当該第1の配管によって導かれるキャリアガスの流量の内、少なくとも一つを制御する。
【0015】
の発明は、所定の処理蒸気とキャリアガスとが混合されて生成される処理ガスを、チャンバに収容された基板に供給し、当該処理蒸気に基づく所定の基板処理を当該基板に対して実行する基板処理装置であって、外部から供給されるキャリアガスを導く第1の配管と、予め貯留している処理液を加熱して処理蒸気を内部で生成し、第1の配管によって導かれてくるキャリアガスが供給された場合には、内部の処理蒸気とキャリアガスとを混合して処理ガスを生成し、送出する蒸発槽と、蒸発槽及びチャンバを接続し、蒸発槽から送出された処理ガスをチャンバに導く第2の配管と、チャンバ内に設置されており、第2の配管により導かれる処理ガスを基板に吐出して供給する吐出部と、第2の配管に介設されており、蒸発槽から送出された後、第2の配管内を導かれる処理ガスの温度を検出する第1の温度検出部と、第1の温度検出部と吐出部との間で第2の配管と接続されており、外部から供給されるキャリアガスを導いて、当該接続箇所において蒸発槽内で生成された処理ガスを自身が導くキャリアガスで希釈する第3の配管と、接続箇所と吐出部との間で第2の配管に介設されており、当該接続箇所において希釈された処理ガスの温度を検出する第2の温度検出部と、第2の温度検出部と吐出部との間で第2の配管に介設されており、当該第2の配管内を導かれる希釈された処理ガス内に含まれる処理蒸気の濃度を検出する濃度検出部とを備え、濃度検出部による検出結果に基づいて、第1の配管によって導かれるキャリアガスの流量を制御し、濃度検出部による検出結果に基づいて、第3の配管によって導かれるキャリアガスの流量を制御し、第1の温度検出部による検出結果に基づいて、蒸発槽内で処理液が加熱される温度及び第1の配管によって導かれるキャリアガスの温度を制御し、さらに、第2の温度検出部による検出結果に基づいて、第3の配管によって導かれるキャリアガスの温度を制御することを特徴とする。
【0016】
の発明では、第1の温度検出部は、蒸発槽から送出された処理ガスの温度を直接的に検出し、その検出結果を制御部にフィードバックする。第2の温度検出部は、接続箇所において希釈された処理ガスの温度を直接的に検出し、その検出結果を制御部にフィードバックする。さらに、濃度検出部は、この希釈された処理ガス内に含まれる処理蒸気の濃度を直接的に検出し、その検出結果を制御部にフィードバックする。そのため、第の発明は、蒸発槽内で処理液が加熱される温度、第1の配管によって導かれるキャリアガスの温度、当該第1の配管によって導かれるキャリアガスの流量、第3の配管によって導かれるキャリアガスの温度、及び当該第3の配管によって導かれるキャリアガスの流量を正確に制御でき、その結果、基板に対して所望の基板処理を施すことができる。
【0017】
の発明は、第の発明において、第2の温度検出部による検出結果に基づいて、吐出部から吐出される処理ガスの温度を制御する温度制御部をさらに備える。
の発明では、吐出部の直前において処理ガスの温度が制御されるので、基板に対して所望の温度を有する処理ガスを供給することができる。これによって、本基板処理装置は、基板に対してより好適な基板処理を施すことができる。
【0018】
【発明の実施の形態】
図1は、本発明の一実施形態に係る基板処理装置の構成を示す図である。図1において、基板処理装置は、蒸発槽1と、処理槽2を収容するチャンバ3と、中央演算処理部4と、入力部5と、第1〜第3の配管61〜63と、第1〜第4の温度センサ71〜74と、第1〜第4の温度制御部81〜84と、第1〜第4のヒータ91〜94と、濃度検出センサ101と、第1及び第2のマスフローコントローラ111及び112とを備える。なお、以下の説明では、第1〜第4の温度制御部81〜84は、第1〜第4のTC(Temperature Controller)81〜84と称し、第1及び第2のマスフローコントローラ111及び112は、第1及び第2のMFC(Mass Flow Controller)111及び112と称することとする。また、基板処理装置の外部には、窒素供給源13が設置される。次に、基板処理装置が備える各部をより具体的に説明する。
【0019】
まず、窒素供給源13は、窒素ガスを内部に貯留している。この窒素ガスは、典型的な基板処理工程では、チャンバ3をパージしたり、配管をウォームアップしたりする等様々な用途に用いられるが、本基板処理装置では、主として、キャリアガスとして用いられる。また、この窒素供給源13は、第1の配管61の一方端と接続されており、外部から加圧されることにより、内部に貯留している窒素ガスを、当該第1の配管61に送出する。
【0020】
第1の配管61は、まず、窒素供給源13から送り込まれた窒素ガスを2分岐する。2分岐された一方の窒素ガスは、第3の配管63(後述)によって導かれる。他方の窒素ガスは、そのまま第1の配管61によって導かれ、当該第1の配管61の他方端に接続されている蒸発槽1(後述)に供給される。この第1の配管61には第1のMFC111が介設される。第1のMFC111は、後述するような中央演算処理部4の制御下で、内部のコントロールバルブ1111を制御し、第1の配管61に導かれる窒素ガスの流量を所定流量QMFC1に調節する。また、第1の配管61の他方端近傍には、後述するような第1のTC81の制御下で、第1の配管61内を導かれる窒素ガスを加熱する第1のヒータ91が設置されている。
【0021】
蒸発槽1には、液状のIPAまたはその他の処理液が予め貯留されており、さらに、後述するような第2のTC82の制御下で、液状IPAを加熱する第2のヒータ92が設けられている。さらに、蒸発槽1には、液状IPAの実際の温度を測定して、その測定結果をTDET4として第2のTC82に出力する第4の温度センサ74が設けられている。第2のヒータ92による加熱の結果、蒸発槽1内では液状IPAが蒸発する。また、この蒸発槽1には、第1の配管61を通じて窒素ガス(流量QMFC1)が供給される。その結果、蒸発槽1内では、IPAの蒸気と窒素ガスとの混合ガス(以下、処理ガスと称す)が生成される。さらに、この蒸発槽1は、第2の配管62の一方端と接続されており、内部で生成した処理ガスを、当該第2の配管62に送出する。この第2の配管62に送出される処理ガスの流量は、IPAの蒸気の流量をQIPA とすると、QMFC1+QIPA となる。
【0022】
上述したように、第3の配管63は、その一方端が第1の配管61と接続されており、2分岐された一方の窒素ガスを導く。この第3の配管63の他方端は、第2の配管62と接続される。この第3の配管63には第2のMFC112が介設される。第2のMFC112は、後述するような中央演算処理部4の制御下で、内部のコントロールバルブ1121を制御し、第3の配管63に導かれる窒素ガスの流量を所定流量QMFC2に調節する。また、第3の配管63の他方端近傍には、後述するような第3のTC83の制御下で、第3の配管63内を導かれる窒素ガスを加熱する第3のヒータ93が設置されている。
【0023】
第2の配管62は、その他方端がチャンバ3内の2個の吐出管31(後述)と接続されており、当該吐出管31から吐出されるべき処理ガスを導く。まず、この第2の配管62の一方端近傍(蒸発槽1の近傍)には、蒸発槽1から送出された直後の処理ガスが有する実際の温度を測定して、その測定結果をTDET1として第1及び第2のTC81及び82に出力する第1の温度センサ71が設置される。このTDET1は、第1及び第2のTC81及び82が第1及び第2のヒータ91及び92の温度を制御する時に用いられる。さらに、この第2の配管62の一方端近傍には第3の配管63が接続される。この接続箇所において、蒸発槽1から送出された処理ガスは、第3の配管63によって導かれてくる窒素ガスによって希釈され、希釈された処理ガスの流量(以下、総流量と称す)は、QMFC1+QMFC2+QIPA =Qtotal となる。ところで、処理槽1から送出された直後の処理ガスは、飽和蒸気であり結露しやすいが、第3の配管63を導かれてくる窒素ガスにより希釈されることにより、当該処理ガスに含まれるIPA蒸気は結露しにくくなる。なお、IPA蒸気の結露を防止するという観点からは、第3の配管63は、可能な限り蒸発槽1と近い箇所で第2の配管62と接続されることが好ましい。
【0024】
また、第2及び第3の配管62及び63の接続箇所の近傍には、当該接続箇所で希釈された処理ガスが有する実際の温度を測定し、その測定結果をTDET2として第3のTC83に出力する第2の温度センサ72が設置される。このTDET2は、第3のTC83が第3のヒータ93の温度を制御する時に用いられる。また、第2の配管62の他方端近傍(チャンバ3の近傍)には、希釈された処理ガス内に含まれるIPA蒸気の実際の濃度を測定して、その測定結果をCDET として中央演算処理部4に出力する濃度検出センサ101が介設される。このCDET は、中央演算処理部4が第1及び第2のMFC111及び112の流量を制御する時に用いられる。この濃度検出センサ101は、典型的には光学式又は燃焼式のものが用いられる。また、第2の配管62の他方端近傍には、後述するような第4のTC84の制御下で、希釈された処理ガスを加熱する第4のヒータ94と、当該第4のヒータ94により加熱された処理ガスが有する実際の温度を測定して、その測定結果をTDET3として第4のTC84に出力する第3の温度センサ73とが設置される。このTDET3は、第4のTC84が第4のヒータ94を制御する時に用いられる。
【0025】
この第2の配管62を導かれる希釈された処理ガスは、最終的にチャンバ3内に導入される。このチャンバ3は、前述したように処理槽2を内部に収容しており、さらに複数の吐出口(図示せず)を備えた吐出管31を含んでいる。処理槽2は、各種工程からなる基板処理工程が施される基板Wを収容する。吐出管31は、上述したように第2の配管62の他方端と接続されており、希釈された処理ガスを処理槽2内の基板Wに対して複数の吐出口から吐出して供給する。
【0026】
次に、中央演算処理部4について説明する。中央演算処理部4には、図2に示すように、CPU41と、ROM42と、RAM43と、インターフェイス部44とが通信可能に接続される。CPU41は、後述するようにして本基板処理装置の動作を統括的に制御する。ROM42には、本基板処理装置の動作のための制御プログラム421が格納されている。RAM43は、CPU41の動作のための作業領域として用いられる。インターフェイス部44は、中央演算処理部4の外部の、第1〜第4のTC81〜84、濃度検出センサ101、第1及び第2のMFC111及び112並びに入力部5と通信可能に接続される。入力部5は、ディスプレイやキーボード等を含んでおり、これによって、本基板処理装置のための制御パラメータがオペレータによって設定される。
【0027】
以上のように構成される本基板処理装置の動作を、以下説明する。なお、以下の説明では、中央演算処理部4は、内部のCPU41がROM42内に予め格納される制御プログラム421に従って、RAM43を作業領域として用いて動作することを予め指摘しておく。
【0028】
まず最初に、CPU41は、制御プログラム421に含まれており、上述の制御パラメータを設定するための処理プログラム(いわゆる、レシピ)を起動し、制御パラメータ設定のための画面を入力部5のディスプレイに表示する。この表示に応答して、オペレータは、入力部5のディスプレイ上に上述の画面が表示されると、各種制御パラメータを設定しなければならないが、本実施形態に特に必要とされるものは、吐出管31から吐出される処理ガスの総流量Qtotal 、吐出管31から吐出される処理ガスの温度Tgas 及び処理ガス内に含まれるIPAの濃度CIPA である。本基板処理装置は、基板Wに供給する処理ガスの濃度及び温度を、3個の制御パラメータQtotal 、Tgas 及びCIPA に基づいて調節することにより、当該基板Wに対してオペレータの希望通りの基板処理を実行する。CPU41は、オペレータにより設定された3個の制御パラメータを、入力部5よりインターフェイス部44を介して受け取った後、RAM43に格納する。その後、本基板処理装置による基板処理工程が開始される。この基板処理工程は、大略的には、スタンバイ、薬液処理、基板洗浄処理及び基板乾燥処理の工程に分けられるが、本基板処理装置の特徴は基板乾燥処理工程に向けられている。そのため、他の3工程については簡単に説明する。
【0029】
基板処理が開始されると、中央演算処理部4のCPU41は、制御プログラム421に従ってスタンバイ工程を実行する。まず、CPU41は、制御プログラム421に予め設定されている一定の温度T0 を、インターフェイス部44を介して、第1〜第3のTC81〜83に通知する。この一定温度T0 は、蒸発槽1内に貯留されている液状のIPAの飽和蒸気圧に関連して、適当な温度に選ばれる(例えば、66℃程度)。つまり、一定温度T0 が相対的に低い値であると、この飽和蒸気圧も低くなり、後述する基板乾燥処理工程において蒸発槽1内で生成されるIPA蒸気の流量を確保しにくくなる。その結果、オペレータにより設定される処理ガスの総流量Qtotal 及びそれに含まれるIPAの濃度CIPA が確保しにくくなるという問題点が発生する。そのため、一定温度T0 は、好ましくは、このような問題点が発生しないような適当な温度に選ばれる。なお、本実施形態は、説明の簡素化の観点から、制御プログラム421にこの一定温度T0 が予め設定されているとして説明するが、当該一定温度T0 は、オペレータにより入力部5を通じて設定されるように、基板処理装置を構成してもよい。
【0030】
第1〜第3のTC81〜83は、CPU41により通知された一定温度T0 を内部に保持すると共に、第1〜第3のヒータ91〜93の加熱温度を一定温度T0 に調節する。これによって、第1のヒータ91は第1の配管61を一定温度T0 で加熱し始め、第2のヒータ92は蒸発槽1内の液状IPAを一定温度T0 で加熱し始め、第3のヒータ93は第3の配管63を一定温度T0 で加熱し始める。このような加熱は、以降の一連の基板処理工程の間中ずっと行われる。
このスタンバイ工程では、制御プログラム421に予め設定されている微小流量Q0 (例えば、10[l/min])の窒素ガスが、第3の配管63及び第2の配管62内に導かれる。この微小流量Q0 の窒素ガスは、第3のヒータ93によって加熱されるので、第2の配管62は加熱される。これによって、後工程である基板乾燥処理工程でIPA蒸気を含む処理ガスが第2の配管62内を導かれても、当該IPA蒸気が結露しにくくなる。なお、このスタンバイ工程ではIPA蒸気が必要とされないので、微小流量の窒素ガスは第1の配管61に導かれな
い。
【0031】
次に、前工程が施された基板Wが搬送ロボット(図示せず)により処理槽2内の所定位置に収容される。その後、薬液処理工程と基板洗浄処理工程とが所定回数繰り返し実行される。より具体的には、各基板Wが収容された処理槽2内に、所定の薬液(エッチング液等)が供給され、各基板Wが薬液中に浸漬される。その結果、当該各基板Wに対して薬液処理工程が実行される。薬液処理工程が終了すると、各基板Wが収容された処理槽2内に、洗浄液(純水等)が供給され、処理槽2内に貯留されている薬液を洗浄液に置換して、各基板Wを洗浄する。このようにしてな薬液処理工程及び基板洗浄処理工程は必要な回数繰り返し行われる。なお、図1には、薬液処理工程及び基板洗浄処理工程に必要となる構成(例えば、薬液供給源、純水供給源、並びに薬液及び純水供給のための配管)は、本基板処理装置の特徴的な構成でないため、図示されていない。
【0032】
この薬液処理工程及び基板洗浄処理工程では、必要に応じてチャンバ3内がパージされる。このパージのタイミングになると、制御プログラム421に予め設定されている流量Q1 (例えば、100[l/min])の窒素ガスが、途中の第3のヒータ93によって加熱された上で、第3の配管63及び第2の配管62内に導かれる。この第2の配管62内を導かれる窒素ガス(流量Q1 )は最終的に吐出管31からチャンバ3内に吐出され、これによってチャンバ3内はパージされる。
【0033】
薬液処理工程及び基板洗浄処理工程が必要な回数繰り返された後、基板処理装置は、基板乾燥処理工程に移行し、現在処理槽2に貯留されている純水を処理1槽の外部に排出すると同時に、蒸発槽1で生成された処理ガスを処理槽2内の各基板Wに供給する。処理ガス内に含まれるIPAは、各基板表面上に残溜しようとする純水の液滴と置換した後、蒸発する。その結果、各基板の表面に液滴を残すことなく当該各基板は十分に乾燥する。このようにして、基板処理装置では基板乾燥処理工程が行われる。この基板乾燥処理工程において、基板処理装置は、以下のようにして、処理ガスの温度制御及び濃度制御を実行する。
【0034】
前述したように、現在、本基板処理装置のRAM43(作業領域)には、総流量Qtotal 、温度Tgas 及び濃度CIPA が格納されている。中央演算処理部4のCPU41は、基板乾燥処理工程に必要な処理ガスを生成する場合、まず最初に、処理ガス内に含まれるIPA蒸気の濃度を初期設定するために、第1の配管61に導かれる窒素ガスの流量QMFC1、及び第3の配管63に導かれる窒素ガスの流量QMFC2を制御プログラム421に従って決定する。そのため、CPU41は、現在RAM43に格納されている総流量Qtotal と濃度CIPA とをかけ算して、今回基板Wに供給する処理ガス内に含まれていなければならないIPA蒸気の流量QIPA を求める。例えば、オペレータが、前述したレシピに従って、Qtotal を100[l/min]と、また濃度CIPA を5%と設定したと仮定する。この仮定に従えば、流量QIPA は5[l/min]となる。
【0035】
ところで、前述したように、蒸発槽1内の液状IPAは、一定温度T0 (本実施形態では、66℃)になるように加熱されている。液状IPAの飽和蒸気圧は、温度に対して一義的な値を有している。今、この一定温度T0 下におけるIPAの飽和蒸気圧をX0 %とする。また、この液状IPAの飽和蒸気圧は、今回必要なIPAの流量QIPA と、蒸発槽1内から送出された処理ガスの流量(QMFC1+QIPA )との比で表せるので次式(1)が成立し、QMFC1は次式(2)により求まる。
0 =QIPA /(QMFC1+QIPA )…(1)
MFC1=QIPA ×(1−X0 )/X0 …(2)
ここで、液状IPAの飽和蒸気圧X0 は、既知の物理量であり、本実施形態では、制御プログラム421は、図2に示すように、液状IPAの温度T0 に対する飽和蒸気圧X0 の値が予め記載されたテーブル422(図3参照)を予め含んでいる。今、このテーブル422に記載されているように(図3参照)、飽和蒸気圧X0 は、温度T0 =66℃では50%であると仮定する。なお、ここで、この飽和蒸気圧X0 は正しい値ではなく、説明の簡素化の観点から、このような値を仮定していることを注釈しておく。この仮定に従えば、上式(2)より、QMFC1は5[l/min]となる。
【0036】
また、蒸発槽1から送出される処理ガス(流量QMFC1+QIPA )は、第2の配管62及び第3の配管63の接続箇所において、当該第3の配管63により導かれる窒素ガス(流量QMFC2)により希釈される。故に、最終的に基板Wに供給される処理ガスの総流量Qtotal は次式(3)で表されため、QMFC2は次式(4)より求まる。
total =QMFC1+QMFC2+QIPA …(3)
MFC2=Qtotal −(QMFC1+QIPA )…(4)
上述の仮定に従えば、上式(4)より、QMFC2は90[l/min]となる。
【0037】
中央演算処理部4のCPU41は、上述のようにして求めた流量QMFC1(本実施形態では5[l/min])を、インターフェイス部44を介して第1のMFC111に通知し、また流量QMFC2(本実施形態では90[l/min])をインターフェイス部44を介して第2のMFC112に通知する。第1及び第2のMFC111及び112は、通知された流量QMFC1及びQMFC2に従って、第1及び第3の配管61及び63内で流量QMFC1及びQMFC2が得られるように内部のコントロールバルブ1111及び1121を開く。
【0038】
その後、窒素供給源13は、所定流量であって常温の窒素ガスを送出する。窒素供給源13から送出された窒素ガスは、直後に2分岐されて、第1及び第3の配管61及び63によって導かれる。まず、第1の配管61内を導かれる窒素ガスは、第1のMFC111によって流量QMFC1に制御され、さらに第1のヒータ91により一定温度T0 になるように加熱された後に、蒸発槽1に導入される。蒸発槽1内には、前述したようにIPA蒸気が発生している。IPA蒸気を生成している蒸発槽1内に窒素ガス(キャリアガス)が導入されると、処理ガスつまりIPA蒸気と窒素ガスとの混合ガスが生成される。この生成された処理ガスは、蒸発槽1から第2の配管62に送出される。一方、第3の配管63内を導かれる窒素ガスは、第2のMFC112によって流量QMFC2に制御され、さらに第3のヒータ93により一定温度T0 になるように加熱された後に、第2の配管62に導入される。
【0039】
よって、蒸発槽1から送出された処理ガスは、第3の配管63内を導かれてくる窒素ガスによって、第2の配管62と当該第3の配管63との接続箇所で希釈され、その結果、希釈された処理ガスの流量は、(QMFC1+QMFC2+QIPA )=Qtotal となり、また、希釈された処理ガス内のIPA蒸気の濃度は、上述からも明らかなように、QIPA /(QMFC1+QMFC2+QIPA )=CIPA となる。この希釈された処理ガスは、第2の配管62内を吐出管31へと導かれていき、やがて、第4のヒータ94により温度Tgas に昇温された後に、吐出管31から基板Wに供給される。その結果、基板処理装置内では、上述した乾燥処理工程(ドレン乾燥)が実行される。以上の説明からも明らかなように、基板Wに供給される処理ガスの温度はTgas であり、当該処理ガス内に含まれるIPA蒸気の濃度はCIPA であり、当該処理ガスの総流量はQtotal である。これらはオペレータにより設定された制御パラメータそのものである。このように、本基板処理装置では、処理ガス内のIPA蒸気の濃度は、総流量に対する、第1及び第3の配管61及び63の流量の比率により決まり、従来のように蒸発槽内の液状IPAの温度では決まらない。このように、本基板処理装置は、熱容量が大きい液状IPAの蒸発条件を変更することなく処理ガス内のIPA蒸気の濃度を制御できるので、迅速にオペレータの希望通りにIPA蒸気の濃度を制御することができる。
【0040】
本基板処理装置では、処理ガスは、上述のようにして生成され、吐出管31から基板Wに対して供給される。さらに、本基板処理装置は、処理ガスを生成している間中ずっと、当該基板Wに供給される処理ガス内に含まれるIPA蒸気の濃度と、第1〜第4のヒータ91〜94の加熱温度とを、以下のようにして制御している。
【0041】
まず、IPA蒸気の濃度制御について説明する。前述したように、第2の配管62上には、濃度検出センサ101が設けられている。この濃度検出センサ101は、基板Wに対して供給される処理ガス内に含まれるIPA蒸気の濃度を常時測定しており、その測定結果をCDET として中央演算処理部4に出力する。中央演算処理部4のCPU41(図2参照)は、インターフェイス部44を介してCDET を受け取る。また、中央演算処理部4のRAM42には、オペレータにより設定された今回必要なIPAの濃度であるCIPA (目標値)が保持されている。CPU42は、目標値であるCIPA と実際の濃度CDET との間の偏差に基づいて、好ましくはPID(Proportional−plus−integral−plus−derivative)動作を実行して、第1のMFC111の流量を微調整する。このように、第1のMFC111の流量は、濃度検出センサ101の測定結果CDET に基づいてフィードバック制御される。ここで、第1のMFC111の流量QMFC1を微調整し、第2のMFC112の流量QMFC2を微調整しない場合、基板Wに供給される処理ガスの総流量Qtotal は変化する。しかしながら、第1のMFC111の調整量は微小であるため、第2のMFC112の流量QMFC2を微調整して、常時一定の総流量Qtotal を得る必要性は少ない。ただし、一定の総流量Qtotal を得ることができるように、第2のMFC112の流量QMFC2も微調整してもよい。
このように、本基板処理装置は、IPA蒸気の現在の濃度を直接測定し、その測定結果に基づいて、少なくとも第1のMFC111の流量QMFC1を微調整するためにフィードバック制御している。これによって、オペレータの希望通りの基板乾燥処理を基板Wに対して施すことができる。
【0042】
第1のヒータ91の温度制御について説明する。前述したように、第2の配管62上には、第1の温度センサ71が設けられている。この第1の温度センサ71は、蒸発槽1から送出された直後の処理ガスが有する実際の温度を常時測定しており、その測定結果をTDET1として第1のTC81に出力する。第1のTC81には、CPU41によって通知された一定温度T0 が保持されている。第1のTC81は、一定温度T0 と実際の温度TDET1との間の偏差に基づいて、好ましくはPID動作を実行して、第1のヒータ91の加熱温度を微調整するためのフィードバック制御を実行する。このように、第1の配管61を導かれる窒素ガスは、蒸発槽1から送出される処理ガスの温度が一定温度T0 になるように加熱されるため、処理ガスの温度によって決まるIPA蒸気の濃度もまた、オペレータの希望通りに一定濃度に制御できるようになる。そのため、本基板処理装置では、従来のように、蒸発槽1に窒素ガスが導入されることによるIPA蒸気の濃度変化が起こりにくくなる。これによって、オペレータの希望通りの基板乾燥処理工程を基板Wに対して施すことができる。
【0043】
次に、第2のヒータ92の温度制御について説明する。上述した第1の温度センサ71は、TDET1を第2のTC82にも出力する。第2のTC82にも、前述したように一定温度T0 が保持されている。第2のTC82もまた、第1のTC81と同様に、好ましくはPID動作を実行して、第2のヒータ92の加熱温度を微調整するためのフィードバック制御を実行する。このように、蒸発槽1に貯留されている液状のIPAは、蒸発槽1から送出される処理ガスの温度が一定温度T0 になるように加熱されるため、処理ガスの温度によって決まるIPA蒸気の濃度もまた、オペレータの希望通りに一定温度に制御できるようになる。これによって、オペレータの希望通りの基板乾燥処理を基板Wに対して施すことができる。
【0044】
次に、第3のヒータ93の温度制御について説明する。前述したように、第2の配管62には、第2の温度センサ72が設けられている。この第2の温度センサ72は、希釈された処理ガス(流量Qtotal )の実際の温度を常時測定しており、その測定結果をTDET2として第3のTC83に出力する。第3のTC83にも、前述したように一定温度T0 が保持されている。第3のTC83は、一定温度T0 と実際の温度TDET2との間の偏差に基づいて、好ましくは上述のPID動作を実行して、第3のヒータ93の加熱温度を微調整するためのフィードバック制御を実行する。このように、第3の配管63を導かれる窒素ガスは、希釈された処理ガスの温度が一定温度T0 になるように加熱されるため、希釈された処理ガスの温度低下を招かない。そのため、希釈された処理ガスの温度によって決まるIPA蒸気の濃度は、オペレータの希望通りに一定濃度に制御できるようになる。これによって、オペレータの希望通りの基板乾燥処理を基板Wに対して施すことができる。
【0045】
以上説明したように、このように、本基板処理装置は、蒸発槽1内に貯留されている液状IPAの温度に基づいて処理ガス内のIPA蒸気の濃度を制御するのではなく、第2の配管62を導かれる処理ガス自体の濃度を測定し、この測定結果に基づいて、第1の配管61内を導かれる窒素ガスの流量を少なくとも微調整して処理ガス内のIPA蒸気の濃度を制御している。そのため、本基板処理装置は、基板Wに対してオペレータの希望通りの基板乾燥処理を施すことができる。また、IPA蒸気の濃度制御において、液状IPAの温度及び第1の配管61を導かれる窒素ガスは、蒸発槽1から送出された直後の処理ガスが有する温度に基づいて一定温度T0 にフィードバック制御されている。これによって、蒸発槽1内の液状IPAの温度は窒素ガスが蒸発槽1内に導入されても変化しにくく、つまり処理ガス内のIPA蒸気はオペレータの希望通りの濃度を常に有しているため、本基板処理装置は、基板Wに対してオペレータの希望通りの基板乾燥処理を施すことができる。
【0046】
次に、第4のヒータ94の温度制御について説明する。前述したように、第2の配管62上には、第3の温度センサ73が設けられている。この第3の温度センサ73は、希釈された処理ガス(流量Qtotal )の実際の温度を常時測定しており、その測定結果をTDET3として第4のTC84に出力する。第4のTC84には、前述したように基板Wに対して供給する処理ガスの温度Tgas が保持されている。第4のTC84は、所定温度Tgas と実際の温度TDET4との間の偏差に基づいて、好ましくは上述のPID動作を実行して、第4のヒータ94の加熱温度を微調整するためのフィードバック制御を実行する。このように、第4のヒータ94は、吐出管31の直前において、基板Wに供給される処理ガスが有する実際の温度に基づいてフィードバック制御される。そのため、当該処理ガスの温度は常に、オペレータが希望する温度Tgas に保たれる。上述した基板乾燥処理工程においては、処理ガス内のIPA蒸気の濃度だけでなく、当該処理ガスの温度もまた、基板Wの乾燥時間に関わってくる。つまり、供給される処理ガスの温度によって、基板W自体の温度が上昇し、当該基板Wに形成された細かな溝等に入り込んだ液滴を蒸発させることが可能となる。これによって、オペレータの期待通りの基板乾燥処理を基板Wに対してより好適に施すことができる。
【0047】
次に、一連の基板処理工程が終了し、新たな基板処理工程に移行する場合において、本基板処理装置は、処理ガスの総流量を一定に保ちつつ、処理ガス内のIPA蒸気の濃度を変更するためには、以下の動作を実行する。まず最初に、オペレータは、前述したレシピに従って、新しい3個の制御パラメータQtotal 、Tgas 及びCIPA を設定する。次に、基板処理装置は、スタンバイ工程を実行し、薬液処理工程及び基板洗浄処理工程を必要な回数繰り返し実行した後、基板乾燥処理工程に移行する。基板乾燥処理工程に移行した時点では、本基板処理装置のRAM43(作業領域)には、総流量Qtotal 、温度Tgas 及び濃度CIPA が格納されている。前述したように、基板処理装置は、まず最初に、流量QMFC1及び流量QMFC2を初期設定する。そのため、CPU41は、総流量Qtotal と濃度CIPA とをかけ算して流量QIPA を求める。例えば、オペレータが、今回、レシピに従って、Qtotal を100[l/min]と、また濃度CIPA を10%と設定したと仮定すると、流量QIPA は10[l/min]となる。
【0048】
蒸発槽1内の液状IPAは、一定温度T0 (飽和蒸気圧X0 %)になるように加熱されている。この時、QMFC1は、前式(2)より10[l/min]となる。また、QMFC2は、前式(4)より、80[l/min]となる。基板処理装置の第1のMFC111及び第2のMFC112は、上述のようにして求めた流量QMFC1(本実施形態では10[l/min])及び流量QMFC2(本実施形態では80[l/min])が得られるように内部のコントロールバルブ1111及び1121を開く。
【0049】
このように、本基板処理装置は、蒸発槽1内に導入する窒素ガスの流量、及び第3の配管63を導かれる窒素ガスの流量を変更することにより、処理ガスの総流量を一定に保ちつつ、処理ガス内のIPA蒸気の濃度を変更することができる。このように、本基板処理装置では、熱容量の大きな液状IPA(蒸発槽1内に貯留)の温度を変更する必要がない。そのため、本基板処理装置によれば、次の基板処理工程に短時間で容易に移行できる。
【0050】
また同様に、前回の基板処理工程から新たな基板処理工程に移行する場合において、本基板処理装置は、処理ガス内のIPA蒸気の濃度を一定に保ちつつ処理ガスの総流量を変更するためには、以下の動作を実行する。まず最初に、オペレータは、前述したレシピに従って、新しい3個の制御パラメータQtotal 、Tgas 及びCIPA を設定する。次に、基板処理装置は、スタンバイ工程を実行し、薬液処理工程及び基板洗浄処理工程を必要な回数繰り返し実行した後、基板乾燥処理工程に移行する。この移行時、本基板処理装置のRAM43(作業領域)には、総流量Qtotal 、温度Tgas 及び濃度CIPA が格納されている。前述したように、基板処理装置は、まず最初に、流量QMFC1及び流量QMFC2を初期設定する。そのため、CPU41は、総流量Qtotal と濃度CIPA とをかけ算して流量QIPA を求める。例えば、オペレータが、今回、レシピに従って、Qtotal を200[l/min]と、濃度CIPA を10%と設定したと仮定する。この仮定に従えば、流量QIPA は20[l/min]となる。
【0051】
蒸発槽1内の液状IPAは、一定温度T0 (飽和蒸気圧X0 )になるように加熱されている。この時、QMFC1は、前式(2)より20[l/min]となる。また、QMFC2は、前式(4)より、160[l/min]となる。基板処理装置の第1のMFC111及び第2のMFC112は、上述のようにして求めた流量QMFC1(本実施形態では20[l/min])及び流量QMFC2(本実施形態では160[l/min])が得られるように内部のコントロールバルブ1111及び1121を開く。
【0052】
このように、本基板処理装置は、蒸発槽1内に導入する窒素ガスの流量、及び第3の配管63を導かれる窒素ガスの流量を変更することにより、処理ガス内のIPA蒸気の濃度を一定に保ちつつ処理ガスの総流量を変更することができる。このように、本基板処理装置では、熱容量の大きな液状IPA(蒸発槽1内に貯留)の温度を変更する必要がない。そのため、本基板処理装置によれば、次の基板処理工程に短時間で容易に移行できる。
【0053】
なお、上述した基板処理装置では、第1の温度センサ71がその検出結果TDET1を第1及び第2のTC81及び82に出力するようにし、第1及び第2のTC81及び82はTDET1に基づいて、第1及び第2のヒータ91及び92の加熱温度をフィードバック制御していた。しかしながら、基板処理装置は、第1及び第2のヒータ91及び92の加熱温度をフィードバック制御するために、第1の温度センサ71に代えて、濃度検出センサを用いてもよい。この濃度検出センサは、蒸発槽1から送出された処理ガス内に含まれるIPAの実際の濃度を測定する。前述したように、蒸発槽1から送出された直後の処理ガスは飽和蒸気であるため、IPA蒸気の濃度を測定できれば、当該処理ガスの温度は一義的に求められる。したがって、第1及び第2のTC81及び82は、この濃度検出センサの測定結果に基づいて、第1及び第2のヒータ91及び92の加熱温度をフィードバック制御することもできる。
【0054】
また、上述した基板処理装置では、第2の温度センサ72がその検出結果TDET2を第3のTC83に出力するようにし、第3のTC83はTDET2に基づいて、第3のヒータ93の加熱温度をフィードバック制御していた。しかしながら、基板処理装置は、このようなフィードバック制御のために、第3の温度センサ73に代えて、濃度検出センサを用いてもよい。この濃度検出センサは、前述の希釈された処理ガス内に含まれるIPAの実際の濃度を測定する。前述したように、IPAの濃度を測定できれば、一定温度T0 は一義的に求められる。したがって、第3のTC83は、この濃度検出センサの測定結果に基づいて、第3のヒータ93の加熱温度をフィードバック制御することもできる。なお、第3の温度センサ73に代えて濃度検出センサを用いる場合には、当該濃度検出センサの測定結果を中央演算処理部4に出力することができるので、濃度検出センサ101は特に必要とされない。
【0055】
また、上述した基板処理装置は、濃度検出センサ101がその測定結果CDET を中央演算処理部4に出力するようにし、中央演算処理部4はCDET に基づいて、少なくとも第1のMFC111の流量をフィードバック制御するようにしていた。しかしながら、中央演算処理部4は、少なくとも第1のMFC111の流量をフィードバック制御するために、濃度検出センサ101の検出結果CDET ではなく、第1の温度センサ71又は第2の温度センサ72の測定結果TDET1又はTDET2を用いてもよい。上述したように、第1の温度センサ71及び第2の温度センサ72は、一定温度(上述の実施形態ではT0 )に制御された処理ガスの温度を測定する。上述からも明らかな通り、一定温度(T0 )を測定できれば、第2の配管62を導かれる処理ガス内に含まれるIPAの濃度は一義的に求められる。したがって、中央演算処理部4は、この第1の温度センサ71又は第2の温度センサ72の測定結果に基づいて、少なくとも第1のMFC111の流量QMFC1をフィードバック制御することもできる。
【0056】
また、上述した基板処理装置は、第3の温度センサ73がその測定結果TDET3を第4のTC84に出力するようにし、第4のTC84はTDET3に基づいて、第3のヒータ93の加熱温度をフィードバック制御していた。しかしながら、基板処理装置は、このようなフィードバック制御のために、第3の温度センサ73の測定結果TDET3に代えて、第2の温度センサ72の測定結果TDET2を用いてもよい。このように測定結果TDET2を用いることができるのは、第2の温度センサ72及び第3の温度センサ73は両方とも、第2の配管62内を導かれかつ希釈された処理ガスの温度を求めているからである。
【0057】
なお、上述の実施形態では、IPA蒸気に関して具体的に説明した。しかしながら、半導体デバイス等の各製造工程では、IPA蒸気だけでなく有機溶剤蒸気や水蒸気等もまた処理蒸気として用いられる。これら処理蒸気もまたキャリアガスと混合された上で用いられる場合が多く、当該処理蒸気の濃度もまた正確に制御される必要がある。本基板処理装置は、これらの処理蒸気に関しても適用することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る基板処理装置の構成を示す図である。
【図2】図1に示す中央演算処理部4の内部の詳細な構成を示す図である。
【図3】図2に示すテーブル422を示す図である。
【図4】従来の基板処理装置における供給機構の構成を示す図である。
【符号の説明】
1…蒸発槽
31…吐出管
4…中央演算処理部
61…第1の配管
62…第2の配管
63…第3の配管
71〜74…第1〜第4の温度センサ
81〜84…第1〜第4のTC
91〜94…第1〜第4のヒータ
101…濃度検出センサ
111,112…第1,第2のMFC

Claims (6)

  1. 所定の処理蒸気とキャリアガスとが混合されて生成される処理ガスを、チャンバに収容された基板に供給し、当該処理蒸気に基づく所定の基板処理を当該基板に対して実行する基板処理装置であって、
    外部から供給されるキャリアガスを導く第1の配管と、
    予め貯留している処理液を加熱して前記処理蒸気を内部で生成し、前記第1の配管からキャリアガスが供給された場合には、内部の処理蒸気とキャリアガスとを混合して前記処理ガスを生成し、送出する蒸発槽と、
    前記蒸発槽及び前記チャンバを接続し、前記蒸発槽から送出される処理ガスを前記チャンバに導く第2の配管と、
    前記蒸発槽で生成された処理ガスを希釈するために、外部から供給されるキャリアガスを前記第2の配管へと導く第3の配管と、
    前記チャンバ内に設置されており、前記第2の配管により導かれる処理ガスを前記基板に吐出して供給する吐出部と、
    前記第2の配管に介設されており、前記蒸発槽から送出された後、前記第2の配管内を導かれる処理ガス内に含まれる処理蒸気の濃度を検出する濃度検出部と、
    前記濃度検出部による検出結果に基づいて、前記蒸発槽内で前記処理液が加熱される温度、前記第1の配管によって導かれるキャリアガスの温度、及び当該第1の配管によって導かれるキャリアガスの流量を制御する制御部とを備え
    前記第3の配管は、前記蒸発槽と、前記濃度検出部との間で前記第2の配管と接続されており、当該接続箇所において、前記蒸発槽内で生成された処理ガスを自身が導くキャリアガスで希釈し、
    前記濃度検出部は、前記接続箇所と前記吐出部との間で前記第2の配管に介設され、
    前記制御部はさらに、前記濃度検出部による検出結果に基づいて、前記第3の配管によって導かれるキャリアガスの温度、及び当該第3の配管によって導かれるキャリアガスの流量を制御することを特徴とする、基板処理装置。
  2. 記基板処理装置は、前記接続箇所と前記吐出部との間で前記第2の配管に介設されており、当該接続箇所において希釈された処理ガスの温度を検出する温度検出部をさらに備え、
    前記制御部はさらに、前記温度検出部による検出結果に基づいて、前記第3の配管によって導かれるキャリアガスの温度を制御することを特徴とする、請求項に記載の基板処理装置。
  3. 前記温度検出部による検出結果に基づいて、前記吐出部から吐出される処理ガスの温度を制御する処理ガス温度制御部をさらに備える、請求項に記載の基板処理装置。
  4. 前記第2の配管に介設されており、前記蒸発槽から送出された後、前記第2の配管内を導かれる処理ガスの温度を検出する温度検出部をさらに備え、
    前記制御部はさらに、前記温度検出部による検出結果に基づいて、前記蒸発槽内で前記処理液が加熱される温度、前記第1の配管によって導かれるキャリアガスの温度、及び当該第1の配管によって導かれるキャリアガスの流量の内、少なくとも一つを制御する、請求項1に記載の基板処理装置。
  5. 所定の処理蒸気とキャリアガスとが混合されて生成される処理ガスを、チャンバに収容された基板に供給し、当該処理蒸気に基づく所定の基板処理を当該基板に対して実行する基板処理装置であって、
    外部から供給されるキャリアガスを導く第1の配管と、
    予め貯留している処理液を加熱して前記処理蒸気を内部で生成し、前記第1の配管によって導かれてくるキャリアガスが供給された場合には、内部の処理蒸気とキャリアガスとを混合して前記処理ガスを生成し、送出する蒸発槽と、
    前記蒸発槽及び前記チャンバを接続し、前記蒸発槽から送出された処理ガスを前記チャンバに導く第2の配管と、
    前記チャンバ内に設置されており、前記第2の配管により導かれる処理ガスを前記基板に吐出して供給する吐出部と、
    前記第2の配管に介設されており、前記蒸発槽から送出された後、前記第2の配管内を導かれる処理ガスの温度を検出する第1の温度検出部と、
    前記第1の温度検出部と前記吐出部との間で前記第2の配管と接続されており、外部から供給されるキャリアガスを導いて、当該接続箇所において前記蒸発槽内で生成された処理ガスを自身が導くキャリアガスで希釈する第3の配管と、
    前記接続箇所と前記吐出部との間で前記第2の配管に介設されており、当該接続箇所において希釈された処理ガスの温度を検出する第2の温度検出部と、
    前記第2の温度検出部と前記吐出部との間で前記第2の配管に介設されており、当該第2の配管内を導かれる希釈された処理ガス内に含まれる処理蒸気の濃度を検出する濃度検出部とを備え、
    前記濃度検出部による検出結果に基づいて、前記第1の配管によって導かれるキャリアガスの流量を制御し、前記濃度検出部による検出結果に基づいて、前記第3の配管によって導かれるキャリアガスの流量を制御し、前記第1の温度検出部による検出結果に基づいて、前記蒸発槽内で前記処理液が加熱される温度及び前記第1の配管によって導かれるキャリアガスの温度を制御し、さらに、前記第2の温度検出部による検出結果に基づいて、前記第3の配管によって導かれるキャリアガスの温度を制御することを特徴とする、基板処理装置。
  6. 前記第2の温度検出部による検出結果に基づいて、前記吐出部から吐出される処理ガスの温度を制御する温度制御部をさらに備える、請求項に記載の基板処理装置。
JP35832397A 1997-12-25 1997-12-25 基板処理装置 Expired - Fee Related JP3883150B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35832397A JP3883150B2 (ja) 1997-12-25 1997-12-25 基板処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35832397A JP3883150B2 (ja) 1997-12-25 1997-12-25 基板処理装置

Publications (2)

Publication Number Publication Date
JPH11191549A JPH11191549A (ja) 1999-07-13
JP3883150B2 true JP3883150B2 (ja) 2007-02-21

Family

ID=18458712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35832397A Expired - Fee Related JP3883150B2 (ja) 1997-12-25 1997-12-25 基板処理装置

Country Status (1)

Country Link
JP (1) JP3883150B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3592702B1 (ja) 2003-08-12 2004-11-24 エス・イー・エス株式会社 基板処理方法及び基板処理装置
KR100634376B1 (ko) 2004-07-07 2006-10-16 삼성전자주식회사 기판 건조 장치
JP4790470B2 (ja) * 2006-03-30 2011-10-12 大日本スクリーン製造株式会社 基板処理装置
JP4790638B2 (ja) * 2006-03-30 2011-10-12 大日本スクリーン製造株式会社 基板処理装置
JP5281363B2 (ja) * 2008-10-31 2013-09-04 株式会社堀場製作所 材料ガス濃度制御システム
JP5180919B2 (ja) * 2009-06-22 2013-04-10 株式会社荏原製作所 有機ガス供給装置の有機ガス濃度検出方法、有機ガス供給装置、及び有機ガス供給装置の運転方法
JP5844633B2 (ja) * 2011-12-21 2016-01-20 株式会社Screenホールディングス 基板処理装置

Also Published As

Publication number Publication date
JPH11191549A (ja) 1999-07-13

Similar Documents

Publication Publication Date Title
US9852920B2 (en) Etch system and method for single substrate processing
US5614247A (en) Apparatus for chemical vapor deposition of aluminum oxide
US7637029B2 (en) Vapor drying method, apparatus and recording medium for use in the method
TWI505350B (zh) 遮罩層蝕刻速率與選擇性之增強
JP2016519424A (ja) 加熱されたエッチング溶液を供する処理システム及び方法
JP3883150B2 (ja) 基板処理装置
CN108630571A (zh) 处理液供给装置、基板处理装置以及处理液供给方法
US5953828A (en) Silicon substrate cleaning apparatus
JP4662352B2 (ja) 蒸気乾燥方法及びその装置並びにその記録媒体
JP2007027567A (ja) プラズマ処理装置
JPH065505A (ja) フォトレジスト塗布前処理装置
TW202217046A (zh) 特徵部內的濕蝕刻速率比例縮減
KR20110029593A (ko) 약액 공급 장치 및 방법
JPH07161674A (ja) 半導体ウエハの処理装置およびその処理方法
JPH0536268Y2 (ja)
JPH04188728A (ja) 湿式エッチング装置
KR20060129790A (ko) 기판 세정 건조 장치
JP2008028323A (ja) 基板処理装置
JP3582784B2 (ja) 基板処理装置および基板処理方法
JPH0350724A (ja) ウエットエッチング装置
JP4052506B2 (ja) 基板処理装置
KR20220116160A (ko) 가스 공급 방법, 기판 처리 방법 및 가스 공급 장치
JP2000204473A (ja) 化学気相蒸着処理用原料ガスの供給装置
JPH0574758A (ja) 化学気相成長装置
JPH09181061A (ja) 液体原料の気化方法および供給装置ならびにそれを用いて構成された半導体製造装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050118

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050121

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees