JP3878462B2 - 画像診断支援システム - Google Patents

画像診断支援システム Download PDF

Info

Publication number
JP3878462B2
JP3878462B2 JP2001358114A JP2001358114A JP3878462B2 JP 3878462 B2 JP3878462 B2 JP 3878462B2 JP 2001358114 A JP2001358114 A JP 2001358114A JP 2001358114 A JP2001358114 A JP 2001358114A JP 3878462 B2 JP3878462 B2 JP 3878462B2
Authority
JP
Japan
Prior art keywords
image
magnetic resonance
ultrasonic
tomographic image
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001358114A
Other languages
English (en)
Other versions
JP2003153877A (ja
Inventor
鉄二 塚元
浩 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Medical Systems Global Technology Co LLC
Original Assignee
GE Medical Systems Global Technology Co LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GE Medical Systems Global Technology Co LLC filed Critical GE Medical Systems Global Technology Co LLC
Priority to JP2001358114A priority Critical patent/JP3878462B2/ja
Publication of JP2003153877A publication Critical patent/JP2003153877A/ja
Application granted granted Critical
Publication of JP3878462B2 publication Critical patent/JP3878462B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、磁気共鳴撮像(MRI:Magnetic Resonance Imaging)装置による画像(以下、MR画像という)、および超音波撮像装置による画像(以下、US画像という)を合成して、医師の診断を支援する画像診断支援システムおよびその合成のための画像処理方法に関するものである。
【0002】
【従来の技術】
MRI装置では、静磁場空間に被検体を収容し、磁気共鳴を利用して被検体の被検部位を撮像する。
具体的には、励起パルスで被検体内のスピン(spin)を励起し、それによって生じる磁気共鳴信号を、たとえばスピンエコー(spinecho)またはグラディエントエコー(gradientecho)として2次元フーリエ空間に収集する。
磁気共鳴信号には、いわゆるビュー(view)毎に異なる位相エンコードを付与し、2次元フーリエ空間において位相軸上の位置が異なる複数のビューのエコーデータをそれぞれ収集する。
そして、収集した全ビューのエコーデータを2次元逆フーリエ変換することにより、画像を再構成し、再構成画像を表示装置に表示する。
【0003】
また、超音波撮像装置では、超音波プローブを被検体の被検部位に当接させて被検体に超音波を送波し、たとえば被検体内での非線形効果による高調波エコーに基づいて画像を生成し、表示装置に表示する。
【0004】
これらのMRI装置および超音波撮像装置は、同じ電磁波シールド内で使用可能であるが、それぞれに装置が独立に画像を収集して表示するような形態で利用され、それぞれの画像は個別に医師等の検査時や手術中の診断の判定に用いられていた。
【0005】
【発明が解決しようとする課題】
ところで、このような利用形態では、検査中や手術中に個別に装置を使い分ける必要があり、操作が煩雑であることから、MRI装置の撮影断層像に応じた超音波撮影断面を容易に収集し、両画像を合成表示して診断に有用な画像を得ることが可能な超音波およびMRI複合診断装置が提案されている(たとえば、特開平9−24034号公報、特開平9−24035号公報 参照)。
【0006】
この超音波およびMRI複合診断装置は、MR画像とUS画像を合成表示するのであるが、MR画像とUS画像には、以下に示すような長所と短所を有することから、両画像を単に合成するだけでは、両者の画像情報の矛盾等から真に有用な画像をリアルタイムに得ることは困難である。
【0007】
すなわち、MRI装置は、一般に軟部組織のコントラスト分解能に優れており、高空間分解能画像を得ることができるが、撮像時間が超音波診断装置に比べて長いという欠点がある。
超音波診断装置は、リアルタイムイメージングが可能であるが、MR画像に比べて画像が粗いという欠点がある。
【0008】
また、上記提案された超音波およびMRI複合診断装置において、たとえばMRI装置で形態的な情報を取得し、超音波撮像装置のドップラモードの画像を重ね合わせる場合を想定すると、生体を撮像対象とすることから、呼吸や突発的な運動により相互の位置ずれが起きる可能性が容易に推察できる。
【0009】
本発明は、かかる事情に鑑みてなされたものであり、その目的は、MRI装置と超音波撮像装置の画像情報から真に有用な合成画像をリアルタイムに得ることが可能な画像診断支援システムおよび画像処理方法を提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するため、本発明の第1の観点は、異なる撮像装置で撮像された被検体の被検部位の複数の画像データを合成処理する画像診断支援システムであって、静磁場空間に被検体を収容し、磁気共鳴信号を得るパルスシーケンスでデータを収集し、収集したデータに基づいて画像を生成する磁気共鳴撮像装置と、被検体に超音波を送波し画像を生成する超音波撮像装置と、上記超音波撮像装置による被検部位の超音波画像データを用いて、少なくとも上記超音波画像の特定的な特徴部を抽出し、上記磁気共鳴撮像装置で事前に取得された磁気共鳴画像の上記特定的な特徴部に対して上記超音波画像の対応する特徴部を位置合わせし、超音波画像を重ね合わせた磁気共鳴画像を生成する画像合成装置とを有する。
【0011】
第1の観点では、上記画像合成装置は、上記超音波撮像装置による被検部位の超音波画像データを受けて、上記超音波画像の特徴を抽出し、当該特徴情報と整合させるように、上記磁気共鳴撮像装置で事前に取得された磁気共鳴画像を変形させて、磁気共鳴画像を補正する。
【0012】
また、第1の観点では、上記画像合成装置により補正された磁気共鳴画像を表示する表示装置を有する。
【0013】
また、第1の観点では、上記画像合成装置は、上記磁気共鳴撮像装置で事前に取得された磁気共鳴画像データを記憶する記憶装置を有し、上記画像合成装置は、上記記憶装置から読み出した磁気共鳴画像に対して上記位置合わせおよび重ね合わせ処理を行う。
【0014】
また、第1の観点では、上記画像合成装置は、上記磁気共鳴撮像装置で事前に取得された磁気共鳴画像データを記憶する記憶装置と、上記超音波撮像装置による被検部位の超音波画像データから超音波画像の少なくとも特定的な特徴部を抽出する特徴抽出部と、事前に取得され上記記憶装置に保持された磁気共鳴画像を読み出し、読み出した磁気共鳴画像の上記特定的な特徴部に対して上記超音波画像の対応する特徴部を位置合わせし、当該特定的な特徴部の超音波画像を重ね合わせて磁気共鳴画像を補正する磁気共鳴画像補正部とを有する。
【0015】
また、第1の観点では、上記磁気共鳴撮像装置は、励起パルスで被検体内のスピンを励起することによって生じる磁気共鳴信号を、エコーデータとして2次元フーリエ空間に収集し、収集したエコーデータを2次元逆フーリエ変換することにより、画像を再構成して上記画像合成装置に出力する。
【0016】
また、第1の観点では、上記超音波撮像装置は、超音波プローブを通して得られたエコー受信信号のドップラシフトに基づいた超音波画像をリアルタイムに生成して上記画像合成装置に出力する。
【0017】
本発明の第2の観点は、異なる撮像装置で撮像された被検体の被検部位の複数の画像データを合成処理する画像処理方法であって、磁気共鳴撮像装置における静磁場空間に被検体を収容し、磁気共鳴信号を得るパルスシーケンスでデータを収集し、収集したデータに基づいて画像を生成することにより磁気共鳴画像データを事前に取得しておき、超音波撮像装置により、被検体に超音波を送波して超音波画像データをリアルタイムに生成し、生成された超音波画像の少なくとも特定的な特徴部を抽出し、上記磁気共鳴撮像装置で事前に取得された磁気共鳴画像の上記特定的な特徴部に対して上記超音波画像の対応する特徴部を位置合わせし、超音波画像を重ね合わせた磁気共鳴画像を生成する。
【0018】
第2の観点では、上記超音波画像の特徴を抽出し、上記抽出した特徴情報と整合させるように、事前に取得された磁気共鳴画像を変形させて、磁気共鳴画像を補正する。
【0019】
また、第2の観点では、上記補正された磁気共鳴画像を表示する。
【0020】
また、第2の観点では、上記磁気共鳴画像データは、励起パルスで被検体内のスピンを励起することによって生じる磁気共鳴信号を、エコーデータとして2次元フーリエ空間に収集し、収集したエコーデータを2次元逆フーリエ変換することにより、画像を再構成して生成する。
【0021】
また、第2の観点では、上記超音波画像データは、超音波プローブを通して得られたエコー受信信号のドップラシフトに基づいた超音波画像をリアルタイムに形成して生成する。
【0022】
本発明によれば、まず、磁気共鳴撮像装置において、静磁場空間に被検体が収容され、励起パルスで被検体内のスピンを励起することによって生じる磁気共鳴信号が、エコーデータとして2次元フーリエ空間に収集される。そして、収集したエコーデータが2次元逆フーリエ変換され、これにより、画像が再構成されて画像合成装置に出力される。
画像合成装置では、磁気共鳴撮像装置による高分解能、高コントラスト分解能の磁気共鳴画像データがたとえば記憶装置に一端記憶される。
次に、超音波撮像装置の超音波プローブを通して得られたエコー受信信号のドップラシフトに基づいた超音波画像がリアルタイムに形成され、生成されたたとえば血流像である超音波画像データが画像合成装置に出力される。
画像合成装置では、超音波撮像装置によりリアルタイムに得られる超音波画像データを受けて、特徴抽出部により超音波画像から、たとえば被検部位の臓器の境界や血管などの特徴部が抽出され、磁気共鳴画像補正部に出力される。
磁気共鳴画像補正部では、超音波画像の特徴から、その情報と整合させるように記憶装置に格納されている事前に取得された磁気共鳴画像が変形されて、超音波画像と矛盾をなくした補正磁気共鳴画像が生成される。
これと並行してさらに、磁気共鳴画像補正部では、読み出した磁気共鳴画像の特定的な特徴部、たとえば血管等に対して超音波画像の対応する特徴部である血管部を位置合わせし、当該特定的な特徴部、たとえば血管領域の超音波画像(血流像)が重ね合わされて磁気共鳴画像が生成される。
この補正され、リアルタイムに生成された超音波画像と整合され、両画像間に矛盾がなく、しかも高分解能、高コントラスト分解能の磁気共鳴画像が表示装置に表示される。
【0023】
【発明の実施の形態】
以下、本発明の実施形態に係る画像診断支援システムについて図面に関連付けて説明する。
【0024】
図1は、本発明に係る画像診断支援システムの一実施形態を示す構成図である。
本画像診断支援システム1は、図1に示すように、MRI装置2、超音波撮像装置3、画像合成装置4、および表示装置5を有している。
なお、本実施形態では、超音波撮像装置3は、被検体内での非線形効果による高調波エコーに基づいて画像を生成する装置を例に説明するが、本発明は他の超音波撮像装置にも適用することができる。
【0025】
MRI装置2は、静磁場空間に被検体を収容し、磁気共鳴を利用して被検体の被検部位に、励起パルスで被検体内のスピン(spin)を励起し、それによって生じる磁気共鳴信号を、たとえばスピンエコー(spinecho)またはグラディエントエコー(gradientecho)として2次元フーリエ空間に収集し、収集した全ビューのエコーデータを2次元逆フーリエ変換することにより、画像を再構成し、再構成画像データを信号S2として画像合成装置4に供給するとともに、表示部に表示する。
【0026】
図2は、本実施形態に係るMRI装置2の構成例を示す図である。
【0027】
本実施形態に係るMRI装置2は、図2に示すように、マグネットからの放射電磁波の洩漏や外乱電磁波の進入を防止する閉空間を形成した図示しないスキャンルームに配設される本体装置2A、およびたとえばスキャンルームに隣接して設けられた操作ルーム内のオペレータOPが操作等するオペレータコンソール2Bを主構成要素として有している。
【0028】
本体装置2Aは、図2に示すように、マグネットシステム21、RF駆動部22、勾配駆動部23、データ収集部24、制御部25、およびクレードル26を有している。
【0029】
マグネットシステム21は、図2に示すように、上下の磁石に挟まれた内部空間(ギャップ:gap)211を有し、ギャップ211内には、クッションを介して被検体6を載せたクレードル26が図示しない搬送部によって搬入される。
【0030】
マグネットシステム21内には、図2に示すように、ギャップ211内のマグネットセンタ(走査する中心位置)の周囲に、主磁場マグネット部212a,212b、勾配コイル部213a,213b、およびRFコイル部214a,214bが配置されている。
【0031】
主磁場マグネット部212a,212b、勾配コイル部213a,213b、およびRFコイル部214a,214bのそれぞれは、検査時に被検体6が位置するギャップ211内の空間を挟んで対向する1対のコイルからなる。
【0032】
主磁場マグネット部212a,212bは、ギャップ211内に静磁場を形成する。静磁場の方向は、たとえば概ね被検体6の体軸方向と直交する方向である。すなわち、垂直磁場を形成する。主磁場マグネット部212a,212bを構成する一対の主磁場マグネットは、たとえば永久磁石などを用いて構成される。
【0033】
勾配コイル部213a,213bは、RFコイル部214a,214bが受信する磁気共鳴信号に3次元の位置情報を持たせるために、主磁場マグネット部212a,212bが形成した静磁場の強度に勾配を付加する勾配磁場を発生する。
勾配コイル部213a,213bが発生する勾配磁場は、スライス(slice)勾配磁場、リードアウト(read out)勾配磁場およびフェーズエンコード(phase encode)勾配磁場の3種類であり、これら3種類の勾配磁場に対応して勾配コイル部213は3系統の勾配コイルを有する。
【0034】
RFコイル部214a,214bは、主磁場マグネット部212が形成した静磁場空間内で被検体6の体内にスピンを励起するための高周波磁場を形成する。ここで、高周波磁場を形成することをRF励起信号の送信という。RFコイル部214は、被検体6の体内に励起されたスピンが生じる電磁波を磁気共鳴信号として受信する。
RFコイル部214は、図示しない送信用コイルおよび受信用コイルを有する。送信用コイルおよび受信用コイルは、同じコイルを兼用するかあるいはそれぞれ専用のコイルを用いる。
【0035】
なお、本実施形態の場合、RFコイル部214a,214bは、RF駆動部22によるプロトコル対応の駆動信号DR1を受けて高周波磁場を形成する。
磁気共鳴撮影処理においては、1繰り返し時間(TR;repetitiontime)毎に用いるパルスシーケンス(スキャンシーケンス)の数は、被検部位毎に対応して設定されたプロトコルによって異なる。
たとえば頭部等の被検部位に応じたプロトコル毎に、それぞれ異なる回数、たとえば64回〜512回繰り返されて、64ビューから512ビューのビューデータが得られる。
【0036】
RF駆動部22は、制御部25の指示に基づいたプロトコル対応の駆動信号DR1をRFコイル部214a,214bに与えてRF励起信号を発生させて、被検体6の体内のスピンを励起する。
【0037】
勾配駆動部23は、制御部25の指示に基づいたプロトコル対応の駆動信号DR2を勾配コイル部213a,213bに与えて勾配磁場を発生させる。
勾配駆動部23は、勾配コイル部213の3系統の勾配コイルに対応して、図示しない3系統の駆動回路を有する。
【0038】
データ収集部24は、RFコイル部214a,214bが受信した受信信号を取り込み、それをビューデータ(view data)として収集して、オペレータコンソール2Bのデータ処理部27に出力する。
【0039】
制御部25は、オペレータコンソール2Bのデータ処理部27から送られてくる被検体6の被検部位に対応した実行すべきプロトコルに即して、あらかじめ決められた繰り返し時間TR内において所定のパルスシーケンスが所定回数繰り返される駆動信号DR1をRFコイル部214に印加するようにRF駆動部22を制御する。
同様に、制御部25は、実行すべきプロトコルに即して、1TR内に、所定のパターンのパルス信号を勾配コイル213a,213bに印加するように勾配駆動部23を制御する。
また、制御部25は、RFコイル部214a,214bが受信した受信信号を取り込み、それをビューデータ(view data)として収集して、オペレータコンソール2Bのデータ処理部27に出力するように、データ収集部24を制御する。
【0040】
この磁気共鳴撮像用パルスシーケンスは、いわゆるスピンエコー(SE:Spin Echo)法、グラディエントエコー(GRE:GRadient Echo)法、ファーストスピンエコー(FSE:Fast Spin Echo)法、ファーストリカバリSE(Fast Recovery Spin Echo)法、エコープラナー・イメージング(EPI:Echo Planar Imaging)法等、各撮像方法によって異なる。
【0041】
ここで、各撮像方法のパルスシーケンスのうち、SE法のパルスシーケンスについて、図3に関連付けて説明する。
図3(a)はSE法におけるRF励起用の90°パルスおよび180°パルスのシーケンスであり、RF駆動部22がRFコイル部214に印加する駆動信号DR1に相当する。
図3(b)、(c)、(d)、および(e)は、それぞれスライス勾配Gs、リードアウト勾配Gr、フェーズエンコード勾配Gp、およびスピンエコーMRのシーケンスであり、スライス勾配Gs、リードアウト勾配Gr、およびフェーズエンコード勾配Gpのパルスは、勾配駆動部23が勾配コイル部213に印加する駆動信号DR2に相当する。
【0042】
図3(a)に示すように、RF駆動部22によりRFコイル部214a,214bに対して90°パルスが印加され、スピンの90°励起が行われる。このとき、図3(b)に示すように、勾配駆動部23により勾配コイル部213a,213bに対してスライス勾配パルスGsが印加され、所定のスライスについて選択励起が行われる。
図3(a)に示すように、90°励起から所定の時間後に、RF駆動部22によりRFコイル部214a,214bに対して180°パルスが印加され、180°励起、すなわちスピン反転が行われる。このときも、図3(b)に示すように、勾配駆動部23により勾配コイル部213a,213bに対してスライス勾配パルスGsが印加され、同じスライスについて選択的な反転が行われる。
【0043】
図3(c)および(d)に示すように、90°励起とスピン反転の間の期間に、勾配駆動部23により勾配コイル部213a,213bに対してリードアウト勾配パルスGr、およびフェーズエンコード勾配パルスGpが印加される。
そして、リードアウト勾配パルスGrによりスピンのディフェーズが行われ、フェーズエンコード勾配パルスGpによりスピンのフェーズエンコードが行われる。
【0044】
スピン反転後、図3(c)に示すように、勾配駆動部23により勾配コイル部213a,213bに対してリードアウト勾配パルスGrが印加されて、リフェーズされて、図3(e)に示すように、スピンエコーMRが発生される。
このスピンエコーMRは、データ収集部24によりビューデータとして収集される。
【0045】
制御部25は、このようなパルスシーケンスで、実行プロトコルに応じて、周期TRでたとえば64〜512回繰り返すように、RF駆動部22、勾配駆動部23、およびデータ収集部24を制御する。
また、制御部25は、繰り返しのたびに、フェーズエンコード勾配パルスGpを変更し、毎回異なるフェーズエンコードを行うように、制御を行う。
【0046】
オペレータコンソール2Bは、図2に示すように、データ処理部27、操作部28、および表示部29を有している。
【0047】
データ処理部27は、データ収集部24から取り込んだデータをメモリに記憶する。メモリ内にはデータ空間が形成される。メモリに形成されるデータ空間は、2次元フーリエ空間を構成する。
データ処理部27は、これら2次元フーリエ空間のデータを2次元逆フーリエ変換、すなわちフーリエ周波数空間から実空間への変換を行って、被検体6の画像を生成(再構成)する。
そして、データ処理部27は、再構成画像を信号S2として画像合成装置4に供給する。
なお、2次元フーリエ空間をkスペースともいう。
【0048】
データ処理部27には、制御部25が接続されており、制御部25の上位にあってそれを統括する。
データ処理27には、また、操作部28、および表示部29が接続されている。
【0049】
操作部28は、ポインティングデバイスを備えたキーボードやマウス等により構成され、オペレータOPの操作に応じた操作信号をデータ処理部27に出力する。また。操作部28からは、たとえば上述した実行すべきプロトコルの入力が行われる。データ処理部27は、操作部28から入力されたプロトコルに関する情報(プロトコル番号等)を制御部25に供給する。
【0050】
表示部29は、グラフィックディスプレイ等により構成され、操作部28からの操作信号に応じて、本体装置2Aの動作状態に応じた所定の情報を表示する。
【0051】
超音波撮像装置3は、超音波プローブを被検体の被検部位に当接させて被検体に超音波を送波し、被検体内での非線形効果による高調波エコーに基づいて画像を生成し、生成した画像データを信号S3として画像合成装置4に供給するとともに、表示部に表示する。
【0052】
図4は、本実施形態に係る超音波撮像装置3の構成例を示す図である。
【0053】
超音波撮像装置3は、図4に示すように、超音波プローブ31、送受信部32、Bモード処理部33、ドップラ処理部34、画像処理部35、表示部36、制御部37、および操作部38を有している。
【0054】
超音波プローブ31は、被検体6に当接されて超音波の送受波に使用される。超音波プローブ31は、図示しない超音波トランスデューサアレイ(transducerarray)を有する。超音波トランスデューサアレイは、複数の超音波トランスデューサをアレイ状に配列して構成される。個々の超音波トランスデューサは、たとえばPZT(チタン(Ti)酸ジルコン(Zr)酸鉛)セラミックス(ceramics)等の圧電材料で構成される。
超音波プローブ31は、ケーブル39により送受信部32に接続されている。
【0055】
送受信部32は、超音波ブローブ31に駆動信号を与えて、超音波を送波させ、また、超音波プローブ31が受波したエコーを受信する。
【0056】
図5は、図4の送受信部32の構成例を示す図である。
送受信部32は、図5に示すように、送波タイミング発生回路321、送波ビームフォーマ322、送受切換回路323、および受信ビームフォーマ324を有している。
【0057】
送波タイミング発生回路321は、送波タイミング信号S321を周期的に発生して送波ビームフォーマ322に供給する。
送波ビームフォーマ322は、送波タイミング信号S321に基づいて、送波ビームフォーミング信号、すなわち、超音波トランスデューサアレイ中の送波アパーチャ(aperture)を構成する複数の超音波トランスデューサを時間差をもって駆動する複数の駆動信号S322を発生し、送受切換回路323に出力する。
【0058】
送受切換回路323は、複数の駆動信号S322を超音波プローブ31の超音波トランスデューサアレイにケーブル38を介して送信する。アレイ中の送波アパーチャを構成する複数の超音波トランスデューサは、複数の駆動信号の時間差に対応した位相差を持つ複数の超音波をぞれぞれ発生する。それら超音波の波面合成により超音波ビームが形成される。
超音波ビームの送波は、送波タイミング発生回路321が発生する送波タイミング信号S321により、所定の時間間隔で繰り返し行われる。
そして、超音波ビームの方位(音線の方位)は送波ビームフォーマ322によって所定量ずつ順次変更される。
それにより、被検体6の内部が、超音波ビームが形成する音線によって走査される。すなわち被検体6の内部が音線によって順次で走査される。
【0059】
また、送受切換回路323は、超音波トランスデューサアレイ中の受波アパーチャが受波した複数のエコー信号を受波ビームフォーマ324に入力する。
受波ビームフォーマ324は、複数の受波エコーに時間差を付与して位相を調整し次いでそれら加算して、音線に沿ったエコー受信信号の形成、すなわち、受波のビームフォーミングを行う。受波ビームフォーマ324により、受波の音線も送波に合わせて走査される。
受波ビームフォーマ324は、各音線毎のエコー受信信号をBモード処理部33およびドップラ処理部34に出力する。
【0060】
以上の、送波タイミング発生回路321、送波ビームフォーマ322、送受切換回路323、および受信ビームフォーマ324は、制御部36の制御信号CTLよって制御される。
【0061】
Bモード処理部33は、送受信部32の受波ビームフォーマ324による各音線毎のエコー受信信号を受けて、Bモード画像データを形成する。
【0062】
図6は、図4のBモード処理部33の構成例を示す図である。
Bモード処理部33は、図6に示すように、対数増幅回路331および包絡線検波回路332を有している。
【0063】
対数増幅回路331は、エコー受振信号を対数増幅する。
包絡線検波回路332は、対数増幅回路331で対数増幅された信号の包絡線検波を行って、音線上の個々の反射点でのエコーの強度を表す信号、すなわちAスコープ信号を得て、このAスコープ信号の各瞬時の振幅をそれぞれ輝度値として、Bモード画像データを生成し、画像処理部35に出力する。
【0064】
ドップラ処理部34は、送受信部32の受波ビームフォーマ324による各音線毎のエコー受信信号を受けて、ドップラ画像データを形成し、画像処理部35に出力する。ドップラ画像データには、速度データ、分散データ、およびパワーデータが含まれる。
【0065】
図7は、図4のドップラ処理部34の構成例を示す図である。
ドップラ処理部34は、図7に示すように、直交検波回路341、MTI(moving target indication)フィルタ342、自己相関演算回路343、平均流速演算回路344、分散演算回路345、およびパワー演算回路346を有している。
【0066】
このドップラ処理部34は、直交検波回路341でエコー受信信号を直交検波し、MITフィルタ342でMTI処理してエコー信号のドップラシフトを求める。
また、ドップラ処理部34は、自己相関演算回路343でMITフィルタ342の出力信号について自己相関演算を行い、平均流速演算回路344で自己相関演算結果から平均流速Vを求め、分散演算回路345で自己相関演算結果から流速の分散Tを求め、パワー演算回路346で自己相関演算結果からドップラシフトのパワー信号を求める。
【0067】
これにより、被検体6内で移動するエコー源、たとえば血液等の平均風速Vとその分散Tおよびドップラ信号のパワーPWを表すそれぞれのデータが音線毎に得られる。
これらの画像データは、音線上の各点(ピクセル)の平均流速、分散およびパワーを示す。なお、平均流速は音線方向の成分として得られる。また、超音波プローブ31に近づく方向と遠ざかる方向とが区別される。
なお、エコー源は血液に限るものではなく、たとえば血管等に注入されたマイクロバルーン造影剤等であってもよい。
【0068】
画像処理部35は、Bモード処理部33から入力される複数系統のBモード画像データに基づいて複数のBモード画像をそれぞれ生成し、また、ドップラ処理部34からのデータに基づいてドップラ画像を生成し、生成したBモード画像またはドップラ画像を信号S3として画像処理装置4に出力する。
【0069】
図8は、図4の画像処理部35の構成例を示す図である。
画像処理部35は、図8に示すように、バス351によって接続された音線データメモリ352、ディジタル・スキャンコンバータ353、画像メモリ354、および画像処理プロセッサ355を有している。
【0070】
Bモード処理部33から音線毎に入力されたBモード画像データおよびドップラ処理部34から入力されたドップラ画像データは、音線データメモリ352にそれぞれ記憶される。音線データメモリ352内にはそれぞれの音線デー夕空間が形成される。
【0071】
ディジタル・スキャンコンバータ353は、走査変換により音線データ空間のデータを物理空間のデータに変換する。
ディジタル・スキャンコンバータ353によって変換された画像データは、画像メモリ354に記憶される。すなわち、画像メモリ354は、物理空間の画像データを記憶する。
画像処理プロセッサ355は、音線データメモリ352および画像メモリ354のデータについてそれぞれ所定のデータ処理を施す。
【0072】
また、画像処理部35には、表示部36が接続されている。
表示部36は、画像処理部35から画像信号が与えられ、それに基づいて画像を表示する。表示部36は、たとえばカラー画像が表示可能なグラフィックディスプレイ等によって構成される。
【0073】
制御部37は、送受信部32、Bモード処理部33、ドップラ処理部34、画像処理部35、および表示部36の各部に制御信号CTLを与えてその動作を制御する。
また、制御部37には、被制御の各部から各種の報知信号が入力される。
そして、制御部37による制御の下で、超音波撮像が遂行される。
さらに、制御部37には操作部38が接続されている。
操作部38は操作者によって操作され、制御部37に所望の指令や情報を入力する。操作部38は、たとえばキーボードやその他の操作具を備えた操作パネルで構成される。
【0074】
画像合成装置4は、たとえばワークステーション等により構成され、MRI装置2により事前に取得された、たとえば図9(a)に示すような、血管▲1▼、腫瘍▲2▼、体表▲3▼、並びに検査のために被検体内に挿入された生検針体▲4▼を含む臓器に関する高分解能、高コントラスト分解能のMR画像信号S2を受けて一旦記憶装置等に蓄積しておき、超音波撮像装置3によりリアルタイムに得られるUS画像信号S3を受けて、図9(b)に示すように、US画像から臓器の境界などの特徴点(線)を抽出し、US画像の特徴から、その情報と整合させるように(つじつまがあうように)、事前に取得されメモリに保持したMR画像を、図9(c)に示すように変形させて、MR画像とUS画像の画像情報間に矛盾をなくした補正MR画像を生成し、表示装置5に表示させる。
すなわち、本実施形態のように、同一対象を時間をおいて撮像した場合、それらの複数枚の画像を相互に比較するためには、正確に重ね合せをする必要がある。すなわち、画像整合装置4は、位置合わせという操作を行う。
位置合わせに際しては、MR画像とUS画像のでの対応関係を明らかにしておく必要がある。
たとえばいくつかの基準点が共通に求められる場合には、これらの座標を用いて後述する座標変換方法に従って座標変換を行い、一方の画像を他方の画像に重ね合わせることができる。
【0075】
また、画像合成装置4は、超音波撮像装置3によりリアルタイムに得られるUS画像信号S3を受けて、図10(b)に示すように、US画像から臓器の境界や血管等の特定的な特徴部を抽出し、図10(c)に示すように、磁気共鳴撮像装置で事前に取得された磁気共鳴画像の特定的な特徴部に対してUS画像の対応する特徴部(この例では血管領域)▲5▼を位置合わせし、この特定的な特徴部のUS画像(この場合は、ドップラ画像)を重ね合わせた磁気共鳴画像を生成する。
【0076】
図11は、画像合成装置4の構成例を示す図である。
画像合成装置4は、図9に示すように、事前に取得した高分解能、高コントラスト分解能のMR画像信号S2を記憶するハードディスク装置等からなる記憶装置41、超音波撮像装置3によるUS画像信号S3からUS画像の特徴を抽出する特徴抽出部42、および特徴抽出部42で抽出されたUS画像の特徴から、その情報と整合させるように、記憶装置41に保持したMR画像を変形させて、MR画像とUS画像の画像情報間に矛盾をなくした補正MR画像を生成するMR画像補正部43を有する。
また、本実施形態における特徴抽出部42は、超音波撮像装置3による被検部位の超音波画像データ(ドップラ画像)からUS画像の少なくとも特定的な特徴部、たとえば血流像を含む血管領域を抽出する。
そして、MR画像補正部43は、事前に取得され記憶装置41に保持されたMR画像を読み出し、読み出したMR画像の特定的な特徴部に対してUS画像の対応する特徴部を位置合わせし、特定的な特徴部のUS画像を重ね合わせてMR画像を補正する。
【0077】
なお、臓器の特徴点(線)は、図9(a)に示すような、血管▲1▼、腫瘍▲2▼、体表▲3▼等に基づいて検出する。
特徴抽出部42は、たとえば位置情報および輝度データに基づいて、抽出体対象領域の形状や位置等の特徴を検出する。
なお、腫瘍▲2▼の特徴パラメータは、形状、形態、位置、エコー、およびテクスチャの5つに大別できる。
たとえば腫瘤の形状や形態の特徴パラメータをもとめるためには、輪郭抽出処理を行う。
エコーに関する特徴は、たとえば腫瘤内部、外側、後部、後部外側陰影、および同じ深さの濃度平均値と分散を求め、それらの差や比を一つの特徴パラメータとする。
また、テクスチャは、腫瘤の種類により内部組成が異なることから違いがある。テクスチャの特徴パラメータとしては、一様性、コントラスト、エントロピー、濃度相関が用いられる。テクスチャを定量化するには、たとえばフーリエ変換法、同時共起行列法、フラクタル法などが用いられる。
また、特徴パラメータである位置パラメータは、たとえば皮膚から臓器の体表▲3▼までの距離等が用いられる。
【0078】
MR画像補正部43がMR画像を矛盾がないようにUS画像に整合させる変形処理等においては、以下に示すような位置合わせが行われる。
【0079】
すなわち、上述したように、本実施形態のように、同一対象を時間をおいて撮像したり、あるいは異なる撮像系や波長を用いて撮像した場合、それらの複数枚の画像を相互に比較するためには、正確に重ね合せをする必要がある。
このような操作を位置合わせという。
位置合わせに際しては、画像間での対応関係を明らかにしておく必要がある。いくつかの基準点が共通に求められる場合には、これらの座標を用いて後述する座標変換方法に従って座標変換を行い、一方の画像を他方の画像に重ね合わせることができる。
基準点が明確でない場合には、一方の画像の小領域が他方の画像内のどの領域に最も似ているかを検出することによって2枚の画像間での対応付けを行う。
基本的には、2枚の画像が平行移動で重なる関係にある場合に有効である。若干のひずみがあっても適用可能であるが、たとえば大きさが異なるなどの場合には上述したように、画像の特徴を抽出して特徴記述間のマッチング行う。
領域間での類似度を判定して対応点(領域)の検出を行う方法は、テンプレートマッチングと呼ばれる。
テンプレートマッチング法では 基準とする画像内の小領域をテンプレートとし、他方の画像内でこのテンプレートと最も類似した領域を探し出す(マッチング)ことが行われる。
【0080】
座標変換
幾何学的変換(変形)は、x−y座標系で表現された画像f(x,y)を、別の座標系であるu−v座標系を用いた画像g(u,v)に変換する座標変換の問題として扱うことができる。
すなわち、図10(a),(b)に示すように、画像2中の座標(u,v)にある画素P ’が、画像1中の座標(x,y)にある画素P に対応するとする。このとき、座標変換を表現する関数p(x,y)、q(x,y)を用いて、次のように表現できる。
【0081】
【数1】
u=p(x,y)
v=q(x,y) …(1)
【0082】
関数p,qとしては、次の与え方がある。
(1) 平行移動、回転拡大・縮小などあらかじめ変換式が与えられている場合、 (2) 基準となる画像( たとえば正方格子状のパターン) を撮像し、撮像系におけるひずみ特性を解析的に求める場合、
(3) 互いに位置を合わせようとする画像相互で対応する点を指定し、これらの対応関係から変換式を推定する場合、
である。
【0083】
(3) の場合、変換式としてはたとえば次式で表現される多項式表現が用いられる。
【0084】
【数2】
Figure 0003878462
【0085】
画像1と2とで対応する点の組(xk ,yk ),(uk ,vk )を複数求め、式(2)に代入してaij、bijに関する連立方程式をたてる。これを最小2乗法を用いて解くことにより係数aij、bijの値が求まり変換式が確定する。
【0086】
なお、位置ずれ補正には、特別な付加的な装置は必要とせず、MR画像とUS画像のイメージの特徴的な点・線・面を用いて行うことが可能である。
たとえば上述したように、体表の位置、血管の位置、組織の境界、腫瘍の境界等はどちらの画像においてもコントラストがその境界において大きく変化することが多いため、微分画像などにより自動的に抽出するように構成することが可能である。変形や位置ずれがあまり大きくない場合は、互いの対応する位置同士を自動的に対応させることが可能である。
画像中の部分的な対応がわかっていれば、補間等により特徴点でない位置においても対応する位置同士を判別することが可能である。
【0087】
次に、上記構成による動作を説明する。
【0088】
先ず、クッションを介してクレードル26上に載せられた被検体6が、図示しない搬送部によって、本体装置20のマグネットシステム21のギャップ211内に搬入される。
【0089】
次に、被検体6の被検部位、たとえば腹部をギャップ211内のマグネットセンタに位置させる。このとき、マグネットセンタを含むギャップ211内の所定の領域には、主磁場マグネット部212による静磁場が形成されている。
【0090】
そして、オペレータOPにより、被検部位に対応したプロトコル情報が操作部28から入力される。
操作部28から入力されたプロトコルに関する情報(プロトコル番号等)がデータ処理部31により制御部25に供給される。
【0091】
制御部25では、オペレータコンソール2Bのデータ処理部27により実行すべきプロトコルの指定があると、オペレータコンソール2Bのデータ処理部27から送られてくる被検体6の被検部位に対応した実行すべきプロトコルに即して、あらかじめ決められた繰り返し時間TR内において所定のパルスシーケンスが所定回数繰り返される駆動信号DR1をRFコイル部214に印加するようにRF駆動部22が制御され、実行すべきプロトコルに即して、1TR内に、所定のパターンのパルス信号を勾配コイル213に印加するように勾配駆動部23が制御される。
【0092】
RF駆動部22では、制御部25の指示に基づいたプロトコル対応の駆動信号DR1がRFコイル部214に印加され、勾配駆動部23では、制御部25の指示に基づいたプロトコル対応の駆動信号DR2が勾配コイル部213に印加される。
【0093】
そして、RFコイル部214より発生された高周波磁場に基づき、被検部位のスピンが励起され、励起信号の送信を打ち切った後に外部に放射される電磁波が受信コイルで受信される。
【0094】
これにより、被検体6の被検部位で励起されたスピンが生じる電磁波が磁気共鳴信号として取り出され、これがデータ収集部24で収集され、検査結果のデータとしてオペレータコンソール2Bのデータ処理部27に出力される。
すなわち、被検部位の撮像が行われる。
【0095】
データ処理部27では、データ収集部24から入力したデータがメモリに記憶され、メモリ内にデータ空間が形成される。データ処理部27では、これら2次元フーリエ空間のデータを2次元逆フーリエ変換して被検体6の被検部位の画像が生成(再構成)される。
そして、データ処理部27から再構成画像が信号S2として画像合成装置4に供給される。
【0096】
画像合成装置4では、信号S2として入力したMR画像が記憶装置41に一旦格納される。
【0097】
次に、超音波撮像装置3により、MRI装置2で撮像した被検体の同一被検部位が撮像される。
【0098】
すなわち、超音波プローブ31が被検体6の所望の個所に当接され、操作部37を操作して撮像が行われる。
撮像は、制御部36による制御の下で遂行される。
具体的には、たとえばセクタスキャンにより、各音線ごとに超音波ビームが送波され、そのエコーが送受信部32で受信され、各音線のエコー受信信号に基づき、Bモード処理部33でBモード画像データが形成される。また、ドップラ処理部34でドップラ画像データが形成される。これらのBモード画像データおよびドップラ画像データは、画像処理部35の音線データメモリ352に記憶される。
画像処理部35では、画像処理プロセッサ355により音線データメモリ352の複数系統のBモード画像データまたはドップラ画像データが、ディジタル・スキャンコンバータ353で走査変換されて、それぞれ画像メモリ354に書き込まれる。
ここで、操作部38を操作して、これらのBモード画像およびドップラ画像を表示部36に表示させる。そして、表示された基本波エコー像と第2高調波エコー像とを観察し、両画像の比較対照等により診断(検査)が行われる。第2高調波エコー像は、被検体の体表から始まる画像を含むので、基本波エコー像との比較対照を行うのに都合が良い。
また、画像処理部35からは、生成したBモード画像データおよびドップラ画像データが信号S3として画像処理装置4に出力される。
【0099】
画像合成装置4では、上述したように、MRI装置2により事前に取得された所定の臓器に関する高分解能、高コントラスト分解能のMR画像データが記憶装置41に格納されている。
そして、画像合成装置4では、超音波撮像装置3によりリアルタイムに得られるUS画像信号S3を受けて、特徴抽出部42によりUS画像から臓器の境界などの特徴点(線)が抽出され、MR画像補正部43に出力される。
MR画像補正部43では、US画像の特徴から、その情報と整合させるように記憶装置41に格納されている事前に取得されたMR画像が変形されて、MR画像とUS画像の画像情報間に矛盾をなくした補正MR画像が生成される。
これと並行してさらに、磁気共鳴画像補正部43では、読み出したMR画像の特定的な特徴部、たとえば血管等に対してUS画像の対応する特徴部である血管部を位置合わせし、特定的な特徴部、たとえば血管領域のUS画像(ドップラ画像からなる血流像)が重ね合わされてMR画像が生成される。
この補正され、リアルタイムに生成されたUS画像と整合され、両画像間に矛盾がなく、しかも高分解能、高コントラスト分解能で血流情報がリアルタイムに付加されたMR画像が表示装置5に表示される。
【0100】
そして、被検体6の被検部位のデータ収集が完了すると、図示しない搬送部によって、クレードル26と共に被検体6がギャップ211の外に搬出される。
【0101】
以上説明したように、本実施形態によれば、超音波撮像装置3によりリアルタイムに得られるUS画像信号S3を受けて、特徴抽出部42により超音波撮像装置3による被検部位の超音波画像データ(ドップラ画像)からUS画像の少なくとも特定的な特徴部、たとえば血流像を含む血管領域を抽出し、事前に取得され記憶装置41に保持されたMR画像を読み出し、読み出したMR画像の特定的な特徴部に対してUS画像の対応する特徴部を位置合わせし、特定的な特徴部のUS画像を重ね合わせてMR画像を補正し、補正MR画像を表示装置5に表示する画像合成装置4を設けたので、MRI装置と超音波撮像装置の画像情報から真に有用な高分解能、高コントラスト分解能で血流情報等を含むMR画像をリアルタイムに得ることができる利点がある。
したがって、医師等は有用な情報に基づいてより正確かつ的確な診断を行うことが可能となる。
【0102】
【発明の効果】
以上説明したように、本発明によれば、MRI装置と超音波撮像装置の画像情報から真に有用な合成画像をリアルタイムに得ることができる利点がある。
したがって、医師等は有用な情報に基づいてより正確かつ的確な診断を行うことが可能となる。
【図面の簡単な説明】
【図1】本発明に係る画像診断支援システムの一実施形態を示す構成図である。
【図2】本実施形態に係るMRI装置の構成例を示す図である。
【図3】スピンエコー法のパルスシーケンスについて説明するためのタイミングチャートである。
【図4】本実施形態に係る超音波撮像装置の構成例を示す図である。
【図5】図4の送受信部の構成例を示す図である。
【図6】図4のBモード処理部の構成例を示す図である。
【図7】図4のドップラ処理部の構成例を示す図である。
【図8】図4の画像処理部の構成例を示す図である。
【図9】本発明に係るMRI装置によるMR画像、超音波撮像装置によるUS画像、および補正後のMR画像を示す図である。
【図10】本発明に係るMRI装置によるMR画像、超音波撮像装置によるUS画像、および補正後のMR画像を示す図である。
【図11】本発明に係る画像合成装置の構成例を示す図である。
【図12】座標変換を説明するための図である。
【符号の説明】
1…画像診断支援システム、2…MRI装置、2A…本体装置、21…マグネットシステム、211…ギャップ、212…主磁場マグネット部、213…勾配コイル部、214…RFコイル部、22…RF駆動部、23…勾配駆動部、24…データ収集部、25…制御部、26…クレードル、2B…オペレータコンソール、27…データ処理部、28…操作部、29…表示部、3…超音波撮像装置、31…超音波プローブ、32…送受信部、321…送波タイミング発生回路、322…送波ビームフォーマ、323…送受切換回路、324…受波ビームフォーマ、33…Bモード処理部、331…対数増幅回路、332…包絡線検波回路、34…ドップラ処理部、341…直交検波回路、342…MTIフィルタ、343…自己相関演算回路、344…平均流速演算回路、345…分散演算回路、346…パワー演算回路、35…画像処理部、351…バス、352…音線データメモリ、353…ディジタル・スキャンコンバータ、354…画像メモリ、355…画像プロセッサ、36…表示部、37…制御部、38…操作部、4…画像合成装置、41…記憶装置、42…特徴抽出部、43…MR画像補正部、5…表示装置、6…被検体。

Claims (6)

  1. 異なる撮像装置で撮像された被検体の被検部位の複数の画像データを合成処理する画像診断支援システムであって、
    静磁場空間に被検体を収容し、磁気共鳴信号を得るパルスシーケンスでデータを収集し、収集したデータに基づいて断層画像を生成する磁気共鳴撮像装置と、
    被検体に超音波を送波し断層画像を生成する超音波撮像装置と、
    前記超音波撮像装置による被検部位の超音波断層画像データを用いて、少なくとも前記超音波断層画像における臓器の特定的な特徴部を抽出し、該特徴部の情報と整合させるように、前記磁気共鳴撮像装置で事前に取得された磁気共鳴断層画像における血管、腫瘍、体表及び生検針体のうちの少なくとも1つを参照しながら該磁気共鳴断層画像を変形させることにより補正された磁気共鳴断層画像を得て、該補正された磁気共鳴断層画像の前記特定的な特徴部に対して前記超音波断層画像の対応する特徴部を位置合わせし、超音波断層画像を重ね合わせた磁気共鳴断層画像を生成する画像合成装置とを有する画像診断支援システム。
  2. 前記画像合成装置により補正された磁気共鳴断層画像を表示する表示装置を有する請求項1に記載の画像診断支援システム。
  3. 前記画像合成装置は、前記磁気共鳴撮像装置で事前に取得された磁気共鳴断層画像データを記憶する記憶装置を有し、該記憶装置から読み出した磁気共鳴断層画像に対して前記位置合わせ及び重ね合わせ処理を行う請求項1又は請求項2に記載の画像診断支援システム。
  4. 前記画像合成装置は、前記磁気共鳴撮像装置で事前に取得された磁気共鳴断層画像データを記憶する記憶装置と、前記超音波撮像装置による被検部位の超音波断層画像データから超音波断層画像における少なくとも臓器の特定的な特徴部を抽出する特徴抽出部と、事前に取得され前記記憶装置に保持された磁気共鳴断層画像を読み出し、読み出した磁気共鳴断層画像の対応する特徴部を位置合わせし、該特定的な特徴部の超音波断層画像を重ね合わせて磁気共鳴断層画像を補正する磁気共鳴画像補正部とを有する請求項1又は請求項2に記載の画像診断支援システム。
  5. 前記磁気共鳴撮像装置は、励起パルスで被検体内のスピンを励起することによって生じる磁気共鳴信号を、エコーデータとして2次元フーリエ空間に収集し、収集したエコーデータを2次元逆フーリエ変換することにより、断層画像を再構成して前記画像合成装置に出力する請求項1から請求項4のいずれかに記載の画像診断支援システム。
  6. 前記超音波撮像装置は、超音波プローブを通して得られたエコー受信信号のドップラシフトに基づいた超音波断層画像をリアルタイムに生成して前記画像合成装置に出力する請求項1から請求項5のいずれかに記載の画像診断支援システム。
JP2001358114A 2001-11-22 2001-11-22 画像診断支援システム Expired - Lifetime JP3878462B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001358114A JP3878462B2 (ja) 2001-11-22 2001-11-22 画像診断支援システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001358114A JP3878462B2 (ja) 2001-11-22 2001-11-22 画像診断支援システム

Publications (2)

Publication Number Publication Date
JP2003153877A JP2003153877A (ja) 2003-05-27
JP3878462B2 true JP3878462B2 (ja) 2007-02-07

Family

ID=19169350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001358114A Expired - Lifetime JP3878462B2 (ja) 2001-11-22 2001-11-22 画像診断支援システム

Country Status (1)

Country Link
JP (1) JP3878462B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104602611A (zh) * 2012-09-10 2015-05-06 株式会社东芝 超声波诊断装置、医用图像处理装置以及图像处理程序
US9563949B2 (en) 2012-09-07 2017-02-07 Samsung Electronics Co., Ltd. Method and apparatus for medical image registration
US11571185B2 (en) 2019-11-08 2023-02-07 Samsung Medison Co., Ltd. Medical image displaying apparatus and method of displaying medical image using the same

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4708740B2 (ja) * 2004-06-08 2011-06-22 キヤノン株式会社 画像処理装置及び画像処理方法
JP4684667B2 (ja) * 2005-01-28 2011-05-18 キヤノン株式会社 画像処理装置及びその方法、プログラム
US8111947B2 (en) 2004-06-08 2012-02-07 Canon Kabushiki Kaisha Image processing apparatus and method which match two images based on a shift vector
JP4703161B2 (ja) * 2004-10-14 2011-06-15 株式会社日立メディコ 核磁気共鳴撮像装置
JP4750429B2 (ja) * 2005-02-08 2011-08-17 株式会社日立メディコ 画像表示装置
US7517318B2 (en) * 2005-04-26 2009-04-14 Biosense Webster, Inc. Registration of electro-anatomical map with pre-acquired image using ultrasound
US8376990B2 (en) 2005-05-19 2013-02-19 Biosense Webster, Inc. Steerable catheter with distal tip orientation sheaths
JP4727302B2 (ja) * 2005-06-02 2011-07-20 富士フイルム株式会社 超音波内視鏡システムおよび電子内視鏡システム
JP5523681B2 (ja) 2007-07-05 2014-06-18 株式会社東芝 医用画像処理装置
JP5173303B2 (ja) * 2007-07-27 2013-04-03 株式会社東芝 医用画像処理装置及び医用画像診断装置
JP5835680B2 (ja) * 2007-11-05 2015-12-24 株式会社東芝 画像位置合わせ装置
JP5841335B2 (ja) * 2007-12-18 2016-01-13 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 解剖学的構造の統計モデルに基づく撮像データのマルチモダリティ融合のための方法およびシステム
JP5580030B2 (ja) * 2009-12-16 2014-08-27 株式会社日立製作所 画像処理装置、および画像位置合せ方法
KR101227272B1 (ko) 2011-03-25 2013-01-28 가천대학교 산학협력단 초음파 영상과 자기공명 영상 간의 영상정합 방법
US20120253170A1 (en) * 2011-03-29 2012-10-04 Samsung Electronics Co., Ltd. Method and apparatus for generating medical image of body organ by using 3-d model
JP5498989B2 (ja) * 2011-05-30 2014-05-21 富士フイルム株式会社 画像処理装置、画像処理方法および画像処理プログラム
JP5501292B2 (ja) 2011-05-30 2014-05-21 富士フイルム株式会社 画像処理装置、画像処理方法および画像処理プログラム
KR101768526B1 (ko) 2012-07-27 2017-08-17 삼성전자주식회사 혈관 구조에 기초하여 환자에 특화된 대상 장기의 모델을 생성하는 방법 및 장치
JP6352013B2 (ja) * 2014-03-17 2018-07-04 キヤノンメディカルシステムズ株式会社 超音波診断装置、画像処理装置及び画像処理プログラム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9563949B2 (en) 2012-09-07 2017-02-07 Samsung Electronics Co., Ltd. Method and apparatus for medical image registration
CN104602611A (zh) * 2012-09-10 2015-05-06 株式会社东芝 超声波诊断装置、医用图像处理装置以及图像处理程序
US11571185B2 (en) 2019-11-08 2023-02-07 Samsung Medison Co., Ltd. Medical image displaying apparatus and method of displaying medical image using the same

Also Published As

Publication number Publication date
JP2003153877A (ja) 2003-05-27

Similar Documents

Publication Publication Date Title
JP3878462B2 (ja) 画像診断支援システム
JP3878456B2 (ja) 画像診断支援システム
CN103356189B (zh) 磁共振和超声参数化图像融合的方法
US6290648B1 (en) Ultrasonic diagnostic apparatus
US9282933B2 (en) Magnetic resonance elastography for ultrasound image simulation
US20130345545A1 (en) Ultrasound Enhanced Magnetic Resonance Imaging
EP1720028A1 (en) Magnetic resonance elastography using multiple drivers
US7949160B2 (en) Imaging apparatus and imaging method
CN106137249A (zh) 在窄视场情况下进行配准用于多模态医学成像融合
US9795364B2 (en) Ultrasonic diagnostic apparatus, medical image processing apparatus, and medical image processing method
JP4179596B2 (ja) 超音波診断装置
JP3887774B2 (ja) 変位ベクトル計測装置および歪テンソル計測装置
JP2011182933A (ja) 超音波診断装置及び関心領域設定用制御プログラム
JP4350214B2 (ja) 超音波診断装置
JPH11151240A (ja) 投影画像表示方法、投影画像生成方法および装置並びに医用画像装置
JP2012066027A (ja) 超音波診断装置および方法
Zeng et al. 3D liver shear wave absolute vibro-elastography with an xmatrix array-a healthy volunteer study
JP3744901B2 (ja) 検査装置
KR20220018658A (ko) 초음파 영상에서 3차원상의 노듈 볼륨 추정 장치 및 그 방법
JP4901273B2 (ja) 超音波診断装置およびその画像処理プログラム
JP4125134B2 (ja) 磁気共鳴アコーストグラフィ
CN110934613B (zh) 超声波诊断装置及超声波诊断方法
Zeng et al. In-vivo validation of 3D multi-frequency liver shear wave absolute vibro-elastography with an xMATRIX array
JP3782440B2 (ja) 検査装置
JP4558219B2 (ja) 磁気共鳴イメージング装置

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20040506

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060502

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20060731

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061102

R150 Certificate of patent or registration of utility model

Ref document number: 3878462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term