JP3868418B2 - Method for preventing water pollution by bottom sediment containing dioxins and covering material for prevention - Google Patents

Method for preventing water pollution by bottom sediment containing dioxins and covering material for prevention Download PDF

Info

Publication number
JP3868418B2
JP3868418B2 JP2003403286A JP2003403286A JP3868418B2 JP 3868418 B2 JP3868418 B2 JP 3868418B2 JP 2003403286 A JP2003403286 A JP 2003403286A JP 2003403286 A JP2003403286 A JP 2003403286A JP 3868418 B2 JP3868418 B2 JP 3868418B2
Authority
JP
Japan
Prior art keywords
slag
blast furnace
granulated
sand
coarse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003403286A
Other languages
Japanese (ja)
Other versions
JP2004195456A (en
Inventor
直樹 平井
和久 福永
理 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003403286A priority Critical patent/JP3868418B2/en
Publication of JP2004195456A publication Critical patent/JP2004195456A/en
Application granted granted Critical
Publication of JP3868418B2 publication Critical patent/JP3868418B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

本発明は、港湾や河川、湖沼のダイオキシン類を含有する底質から、ダイオキシン類が飛散や拡散して水質が汚染されることを防止する方法および被覆材に関する。   The present invention relates to a method and a covering material for preventing water quality from being polluted by scattering or diffusing dioxins from the bottom sediment containing dioxins in harbors, rivers, and lakes.

港湾や河川、湖沼の底質からの汚染物質の飛散や拡散による水質の汚染を防止する方法としては、従来から、土砂等による覆砂等の方法が知られている。しかし、従来から知られている土砂等による覆砂等の方法では、十分に汚染防止ができない場合があった。   As a method for preventing water pollution due to scattering and diffusion of pollutants from the sediments of harbors, rivers, and lakes, a method such as covering with sand or the like is conventionally known. However, conventionally known methods such as covering with sand or the like cannot sufficiently prevent pollution.

その改善案として、特許文献1には、底質の表層を砂で覆い、更に水砕スラグなどの吸着性無機物質で覆い、底質からの溶出等で生じる汚染成分を吸着によって除去する方法が開示されている。この方法では、吸着性無機物質の一つとして水砕スラグを用い、この形状は、好ましくは粉末状であるとしている。しかし、水砕スラグが特に高炉水砕スラグである場合、その水硬性により強固に固結してしまい、更に粉末状にすればその傾向は激しく、水底の構造としては好ましくない。   As an improvement plan, Patent Document 1 discloses a method in which the surface layer of the bottom sediment is covered with sand, further covered with an adsorptive inorganic substance such as granulated slag, and contaminants generated by elution from the bottom sediment are removed by adsorption. It is disclosed. In this method, granulated slag is used as one of the adsorptive inorganic substances, and this shape is preferably powdery. However, when the granulated slag is particularly a blast furnace granulated slag, it is strongly consolidated due to its hydraulic properties, and if it is made into a powder, the tendency is so severe that the structure of the bottom of the water is not preferable.

前記問題の解決策として、特許文献2には、水底を製鋼スラグで覆い、更にその上に高炉水砕スラグの上部層を形成する方法が開示されている。この方法では、製鋼スラグによって、底質からの溶出等で生じる汚染成分の浄化を行うとしており、製鋼スラグの固結を軽減するため粗大粒のものを使用することが好ましいとしている。更に、製鋼スラグの上部層を高炉水砕スラグで覆う構造とすることによって、高炉水砕スラグの浄化効果を利用しつつ、下部層の製鋼スラグによって高炉水砕スラグの固結を軽減するとしている。   As a solution to the above problem, Patent Document 2 discloses a method of covering a water bottom with steelmaking slag and further forming an upper layer of granulated blast furnace slag thereon. In this method, it is said that the contaminants generated by elution from the bottom sediment are purified by the steelmaking slag, and it is preferable to use coarse particles to reduce the solidification of the steelmaking slag. Furthermore, by making the upper layer of steelmaking slag covered with blast furnace granulated slag, it is said that consolidation of blast furnace granulated slag will be reduced by steelmaking slag of the lower layer while utilizing the purification effect of blast furnace granulated slag .

以上のごとく、高炉水砕スラグは、底質からの汚染物質による水質汚染防止に効果的ではあるものの、その水硬性により、底質を強固に固結させるという好ましくない性質を有する。   As described above, although the granulated blast furnace slag is effective in preventing water pollution due to contaminants from the bottom, it has an undesirable property of firmly solidifying the bottom due to its hydraulic properties.

港湾や河川、湖沼の底質や水中に存在するダイオキシン類は、その多くが懸濁物質に付着していると思われる。例えば、非特許文献1では、河川水中のダイオキシン類については、多くが水中の懸濁物質に存在していることが示唆されたと記載されている。
特開平4−215900号公報 特開2001−252693号公報 国土交通省「平成12年全国一級河川におけるダイオキシン類に関する実態調査の結果について」
Most of the dioxins present in the bottom sediments and water of harbors, rivers and lakes are thought to adhere to suspended solids. For example, in Non-Patent Document 1, it is described that many dioxins in river water are suggested to exist in suspended substances in water.
JP-A-4-215900 JP 2001-252893 A Ministry of Land, Infrastructure, Transport and Tourism “Results of Survey on Dioxins in First Class Rivers in 2000”

本発明は、高炉水砕スラグの水硬性を制御し、積極的に利用することによって、特にダイオキシン類含有底質による水質汚染を効果的に防止する方法を提供することを目的とする。   It is an object of the present invention to provide a method for effectively preventing water pollution due to dioxin-containing bottom sediments by controlling and actively utilizing the hydraulic properties of granulated blast furnace slag.

上述のように、河川中のダイオキシン類については、多くが水中の懸濁物質に存在していることが示唆されているので、本発明者らは、ダイオキシン類の飛散や拡散の防止には、懸濁物質の飛散や拡散を防止すればよいと考えた。しかし、従来法である底質を土砂等で覆砂する方法では、土砂粒子間の間隔は覆砂後殆ど変化しないので、前記間隔よりも小さな粒径の微粒子が、覆砂層を通過して水中に拡散する懸念がある。
そこで本発明者らは、高炉水砕スラグの水硬性に着目し、高炉水砕スラグを用いて底質を被覆する方法について検討を行った。
As mentioned above, since it is suggested that many dioxins in rivers are present in suspended matter in water, the present inventors are able to prevent the scattering and diffusion of dioxins. We thought that it would be sufficient to prevent the suspended matter from scattering and spreading. However, in the conventional method of covering the bottom sediment with sand or the like, the distance between the sand particles hardly changes after the sand is covered, so fine particles having a particle size smaller than the distance pass through the sand covering layer and There are concerns that spread.
Therefore, the present inventors have focused on the hydraulic properties of blast furnace granulated slag, and have studied a method for coating bottom sediment using blast furnace granulated slag.

高炉水砕スラグは、水環境下におかれると、カルシウムイオンや珪酸イオン等を溶出し、スラグ粒子表面にこれらの水和反応生成物が沈積して、スラグ粒子間隙が閉塞されていく性質である水硬性を有する。本発明者らは、高炉水砕スラグで底質を被覆したところ、懸濁物質の飛散や拡散の防止効果は、被覆初期においては従来の土砂覆砂とほぼ同等程度か若干劣る場合もあったが、スラグの水硬性により徐々に向上し、長期的には従来の土砂覆砂以上の効果が得られることを確認した。懸濁物質としては、土粒子や有機物質等があるが、ダイオキシン類の付着している懸濁物質が、特にシリカ質である場合には、より飛散や拡散の防止効果が見られた。しかし、高炉水砕スラグ単独で被覆すると、被覆層が殆ど固結・閉塞して盤状になったり、長期的に土砂と殆ど変わらない効果しか得られない場合もあった。   When granulated blast furnace slag is placed in an aqueous environment, calcium ions and silicate ions are eluted, and these hydration reaction products are deposited on the surface of the slag particles, and the gap between the slag particles is blocked. Has a certain hydraulic property. When the present inventors coated the bottom sediment with blast furnace granulated slag, the effect of preventing the dispersion and diffusion of suspended solids may be approximately the same as or slightly inferior to conventional sand-capped sand in the initial coating. However, it was confirmed that the slag was gradually improved by the hydraulic properties of the slag, and that the effect over the conventional sediment-carrying sand was obtained in the long term. Suspended substances include soil particles and organic substances. However, when the suspended substance to which dioxins are attached is particularly siliceous, the effect of preventing scattering and diffusion was further observed. However, when coated with granulated blast furnace slag alone, the coating layer is almost solidified and closed to form a disk shape, or there is a case where only an effect almost the same as that of earth and sand can be obtained for a long time.

そこで本発明者らは、高炉水砕スラグの水硬性が制御できれば、ダイオキシン類含有底質による水質汚染を防止するとともに、好ましい水底の構造が得られるのではないかと考え、種々の検討を行った。   Therefore, the present inventors considered that if the hydraulic properties of the granulated blast furnace slag can be controlled, water pollution due to dioxin-containing bottom sediment may be prevented, and a preferable bottom structure may be obtained, and various studies were performed. .

本発明者は、水域で使用する高炉水砕スラグの水硬性に影響を及ぼす要因について調査した結果、スラグの粒度分布が最も大きな要因であることがわかった。そして、使用する水域にもよるが、粗粒率が2.0〜2.7程度以下で細粒が多いほど固結し易く、逆に、粗粒率が2.0〜2.7程度よりも大きく粗粒が多いほど固結し難いことがわかった。なお、粗粒率はJISA0203の定義に従うものであり、本発明ではこの定義に従って測定を行った。具体的には、80mm、40mm、20mm、10mm、5mm、2.5mm、1.2mm、0.6mm、0.3mm及び0.15mmの網ふるいの一組を用いてふるい分けを行い、各ふるいを通らない全部の試料の百分率の和を100で除して求めた。   As a result of investigating factors affecting the hydraulic properties of granulated blast furnace slag used in water areas, the present inventor has found that the particle size distribution of slag is the largest factor. And although it depends on the water area to be used, the coarser particle ratio is about 2.0 to 2.7 or less, and the more fine particles are, the easier it is to consolidate. The larger the coarse grains, the harder it was to set. Note that the coarse grain ratio is in accordance with the definition of JISA0203, and in the present invention, the measurement was performed according to this definition. Specifically, screening is performed using a set of mesh screens of 80 mm, 40 mm, 20 mm, 10 mm, 5 mm, 2.5 mm, 1.2 mm, 0.6 mm, 0.3 mm, and 0.15 mm. The sum of the percentages of all samples that did not pass was divided by 100.

以上の知見に基づき、本発明者らは、高炉水砕スラグに細粒が多く固結し易い場合には、高炉水砕スラグに天然砂を混合することにより水硬性を低下できると考えた。一方、粗粒が多く固結し難い場合には、製鋼スラグや高炉徐冷スラグを混合することにより水硬性を向上できると考えた。   Based on the above knowledge, the present inventors considered that when the granulated blast furnace slag has many fine particles and is easily consolidated, the hydraulic property can be lowered by mixing natural sand with the granulated blast furnace slag. On the other hand, when many coarse grains were hard to consolidate, it was thought that hydraulic property could be improved by mixing steelmaking slag and blast furnace slow cooling slag.

本発明は、上記知見によりなし得たものであり、その要旨とするところは以下の通りである。   The present invention has been made based on the above findings, and the gist thereof is as follows.

(1)高炉水砕スラグの粗粒率を測定し、粗粒率が2.5超の場合は前記高炉水砕スラグに製鋼スラグ、高炉徐冷スラグの少なくともいずれかを加えた混合物で、ダイオキシン類含有底質を被覆し、粗粒率が2.5以下の場合は前記高炉水砕スラグに天然砂を加えた混合物で、ダイオキシン類含有底質を被覆することを特徴とする、ダイオキシン類含有底質による水質汚染の防止方法。 (1) The coarse particle ratio of granulated blast furnace slag is measured. When the coarse particle ratio exceeds 2.5, dioxin is a mixture obtained by adding at least one of steelmaking slag and blast furnace slow-cooled slag to the granulated blast furnace slag. Dioxins containing , characterized by covering dioxins containing sediment with a mixture of blast furnace granulated slag and natural sand if the coarse particle ratio is 2.5 or less. How to prevent water pollution from bottom sediment.

(2) 前記混合物中の前記高炉水砕スラグの配合量が5〜95質量%であることを特徴とする、(1)に記載の方法。 (2) The method according to (1), wherein the amount of the granulated blast furnace slag in the mixture is 5 to 95% by mass.

(3) 前記製鋼スラグの粒径が前記高炉水砕スラグの平均粒径以上25mm以下であることを特徴とする、(1)または(2)に記載の方法。 (3) The method according to (1) or (2), wherein a particle diameter of the steelmaking slag is not less than an average particle diameter of the blast furnace granulated slag and not more than 25 mm.

本発明により、港湾や河川、湖沼の底質に含まれるダイオキシン類の飛散や拡散による水質汚染を、従来法の土砂等による覆砂よりも効果的に防止することができる。また、製鉄所から発生する副生成物であるスラグを利用できるため、天然資源である土砂の使用量を減らし、資源利用上好ましい効果も得られる。   According to the present invention, water pollution due to scattering and diffusion of dioxins contained in the bottom sediments of harbors, rivers, and lakes can be prevented more effectively than the conventional method of covering sand with earth and sand. Moreover, since the slag which is a by-product generated from an ironworks can be used, the amount of earth and sand used as a natural resource can be reduced, and a favorable effect on resource utilization can be obtained.

本発明のダイオキシン類含有底質による水質汚染の防止方法は、港湾や河川、湖沼のダイオキシン類を含有する底質から、ダイオキシン類が飛散や拡散して水質が汚染されることを防止するために、高炉水砕スラグの粗粒率を測定し、粗粒率が2.5超の場合は前記高炉水砕スラグに製鋼スラグ、高炉徐冷スラグの少なくともいずれかを加えた混合物で、ダイオキシン類含有底質を被覆し、粗粒率が2.5以下の場合は前記高炉水砕スラグに天然砂を加えた混合物で、ダイオキシン類含有底質を被覆する方法である。 The method for preventing water pollution due to dioxin-containing bottom sediments of the present invention is to prevent contamination of water quality due to scattering and diffusion of dioxins from bottom sediments containing dioxins in harbors, rivers and lakes. , Measuring the coarse grain ratio of granulated blast furnace slag, and if the coarse grain ratio is more than 2.5, it is a mixture in which at least one of steelmaking slag and blast furnace slow-cooled slag is added to the blast furnace granulated slag, containing dioxins When the bottom sediment is coated and the coarse particle ratio is 2.5 or less, the dioxin-containing bottom sediment is coated with a mixture obtained by adding natural sand to the granulated blast furnace slag .

なお、高炉水砕スラグは粒度分布をもっており、本発明における高炉水砕スラグの粒径または平均粒径とは、JISA1102の定義に基づいて、篩を通過する累積百分率が50%となる篩目寸法相当とする。   The granulated blast furnace slag has a particle size distribution, and the particle size or average particle size of the granulated blast furnace slag in the present invention is based on the definition of JIS A1102, and the cumulative size passing through the sieve is 50%. It is equivalent.

本発明に用いる高炉水砕スラグとしては、水砕処理後そのままのものを用いることができるが、加工によって形状や粒径を調整してもよい。水砕処理後のスラグ粒子は角張っており、砂に比較して粒子の充填性はよくないが、本発明に係る製鋼スラグ、天然砂、高炉徐冷スラグのうち1種または2種以上を混合することにより、高炉水砕スラグの水硬性を制御するだけでなく、高炉水砕スラグの粒子間隔を充填することも可能となり、隙間を充填することで、被覆初期から従来の土砂覆砂と同程度の効果が得られる。   As the blast furnace granulated slag used in the present invention, the blast furnace granulated slag can be used as it is after the water granulation treatment, but the shape and particle size may be adjusted by processing. The slag particles after the water granulation treatment are square, and the packing property of the particles is not good compared to sand, but one or more of steelmaking slag, natural sand, and blast furnace slow-cooled slag according to the present invention are mixed. This makes it possible not only to control the hydraulic properties of granulated blast furnace slag, but also to fill the particle spacing of granulated blast furnace slag. A degree of effect can be obtained.

また、高炉水砕スラグに加工を施して形状や粒径を調整すれば、高炉水砕スラグの充填性を向上させることが可能であるが、通常は加工によって粒径が小さくなるので、水硬性を向上させる作用も生じる。即ち、高炉水砕スラグの粗粒率を測定し、粗粒率が2.5超の場合は高炉水砕スラグに製鋼スラグ、高炉徐冷スラグの少なくともいずれかを加えて混合し、粗粒率が2.5以下の場合は高炉水砕スラグに天然砂を混合して、高炉水砕スラグの水硬性を制御すればよい。通常、水砕処理後そのままでは、粗粒率約4〜2.5程度の高炉水砕スラグが得られる。これに加工を行った場合には、水砕処理後そのままの粗粒率以下から0まで調整可能ではあるが、本発明では、粗粒率の下限が約1程度のスラグを用いる。 In addition, if the shape and particle size are adjusted by processing the blast furnace granulated slag, it is possible to improve the filling property of the blast furnace granulated slag. The effect | action which improves is also produced. That is, the coarse grain ratio of granulated blast furnace slag is measured, and when the coarse grain ratio exceeds 2.5, at least one of steelmaking slag and blast furnace slow-cooled slag is added to and mixed with the blast furnace granulated slag. If it is 2.5 or less, natural sand may be mixed in the blast furnace granulated slag to control the hydraulic properties of the blast furnace granulated slag. Usually, blast furnace granulated slag having a coarse particle ratio of about 4 to 2.5 is obtained as it is after the granulation treatment. When this is processed, it is possible to adjust the coarse grain ratio as it is after the water granulation treatment from 0 to 0, but in the present invention, slag having a coarse grain ratio lower limit of about 1 is used.

本発明では、底質の被覆に、高炉水砕スラグと、製鋼スラグ、天然砂、高炉徐冷スラグのうち少なくとも1種または2種以上との混合物を使用する。該混合物中の高炉水砕スラグの配合量は5〜95質量%が好ましい。前述のように、使用する水域にもよるが、高炉水砕スラグの粗粒率が2.0〜2.7程度以下で細粒である場合など、高炉水砕スラグの水硬性が非常に強い場合には、高炉水砕スラグの少量の配合で十分な水硬性が得られるが、その占める割合が5質量%未満では、高炉水砕スラグの水硬性が十分に発揮されない。一方、高炉水砕スラグの配合量が95質量%より多いと、混合する製鋼スラグ、天然砂、高炉徐冷スラグの混合物全体に占める割合が少なくなるため、製鋼スラグ、天然砂、及び高炉徐冷スラグによる水硬性制御効果があまり発揮されない。   In the present invention, a mixture of blast furnace granulated slag and at least one or more of steelmaking slag, natural sand, and blast furnace slow-cooled slag is used for the coating of the bottom material. The blending amount of granulated blast furnace slag in the mixture is preferably 5 to 95% by mass. As described above, although depending on the water area to be used, the blast furnace granulated slag has very strong hydraulic properties, such as when the coarse granule ratio of the granulated blast furnace slag is about 2.0 to 2.7 or less. In such a case, sufficient hydraulic properties can be obtained by blending a small amount of blast furnace granulated slag, but if its proportion is less than 5% by mass, the hydraulic properties of the blast furnace granulated slag cannot be sufficiently exhibited. On the other hand, when the blending amount of granulated blast furnace slag is more than 95% by mass, the ratio of steelmaking slag to be mixed, natural sand, and blast furnace slow cooling slag to the whole mixture decreases. The hydraulic control effect by slag is not so much demonstrated.

本発明に用いる天然砂としては、山砂、川砂、海砂などを用いることができる。また化学成分的に天然性のものであれば、岩石からの砕砂を用いることも可能である。用いる天然砂の平均粒径は、好ましくは0.3〜1.2mmであるが、高炉水砕スラグの粒径との組み合わせによって、必ずしも該平均粒径に限定されるものではない。   As natural sand used in the present invention, mountain sand, river sand, sea sand and the like can be used. If the chemical component is natural, crushed sand from rocks can be used. The average particle size of the natural sand used is preferably 0.3 to 1.2 mm, but is not necessarily limited to the average particle size depending on the combination with the particle size of the granulated blast furnace slag.

本発明に用いる製鋼スラグとしては、転炉スラグや溶銑予備処理スラグなどが挙げられるが、水中に浸漬したときのpHが高いほど、少量の混合で高炉水砕スラグの水硬性を向上させる効果があるため好ましい。例えば、高炉水砕スラグと製鋼スラグを含む混合物を水中に浸漬したとき、粒子間隙水のpHが、全量製鋼スラグであった場合の12程度もあれば十分であるが、9以上、より好ましくは10以上になるよう、製鋼スラグの材質や配合量を決めればよい。   Steelmaking slag used in the present invention includes converter slag, hot metal pretreatment slag, etc., but the higher the pH when immersed in water, the more effective it is to improve the hydraulic properties of granulated blast furnace slag with a small amount of mixing. This is preferable. For example, when a mixture containing granulated blast furnace slag and steelmaking slag is immersed in water, it is sufficient that the pH of the interstitial water of the particles is about 12 when the total amount is steelmaking slag, but it is 9 or more, more preferably What is necessary is just to determine the material and compounding quantity of steelmaking slag so that it may become 10 or more.

本発明に用いる高炉徐冷スラグとしては、製鋼スラグと同様に水中に浸漬したときのpHを高め、高炉水砕スラグの水硬性を向上させるものである。化学成分は高炉水砕スラグとほぼ同じであるが、高炉水砕スラグよりpHが高いものを用いる。また海域の底質を被覆する場合に、製鋼スラグを混合してpHを上げ過ぎると白濁を生じる場合がある。高炉徐冷スラグでは製鋼スラグに比べ急激なpH上昇がないので、白濁を抑制する場合には、高炉徐冷スラグを用いることができる。   As the blast furnace slow-cooled slag used in the present invention, the pH when immersed in water is increased as in the case of steelmaking slag, and the hydraulic properties of the granulated blast furnace slag are improved. The chemical components are almost the same as blast furnace granulated slag, but those having a higher pH than blast furnace granulated slag are used. Moreover, when coating the bottom sediment of the sea area, if steelmaking slag is mixed and pH is raised too much, white turbidity may be produced. Since the blast furnace slow cooling slag does not have a rapid pH increase compared to steelmaking slag, the blast furnace slow cooling slag can be used to suppress white turbidity.

本発明に用いる製鋼スラグは、溶融スラグの凝固した塊を破砕し、分級によって粒度調整して得たものである。そして製鋼スラグの粒径は、分級したときのふるい寸法の大きい方を上限、小さい方を下限で表すものとする。本発明に用いる製鋼スラグの粒径は、その上限値および下限値が、高炉水砕スラグの平均粒径以上25mm以下であるとより効果が高い。すなわち、製鋼スラグが遊離の酸化カルシウムを含有していた場合に、製鋼スラグの粒径が高炉水砕スラグの平均粒径未満であると表面活性が高く、遊離の酸化カルシウムと水との反応で崩壊する製鋼スラグの量が多くなるため、被覆材の粒子隙間が増加したり、一部被覆層が破断する場合があるため、比較的粗粒であるとより効果が高くなる。また、製鋼スラグの最大粒径は25mm以下であることが好ましい。25mmより大きくなると、高炉水砕スラグとの混合物で底質を被覆する際に、比重差や粒径差によって分離が起こり均一な被覆層を形成できなくなってくる。本発明に用いる高炉徐冷スラグは、粒径の制限が無い。高炉徐冷スラグの化学成分は高炉水砕スラグとほぼ同じであり、製鋼スラグのような崩壊の懸念はない。また、高炉水砕スラグとの比重差が製鋼スラグに比べ殆どなく、被覆の際の分離を回避するためには好ましい。   The steelmaking slag used in the present invention is obtained by crushing a solidified mass of molten slag and adjusting the particle size by classification. And as for the particle size of the steelmaking slag, the larger one of the sieve dimensions when classified is represented by the upper limit, and the smaller one is represented by the lower limit. As for the particle diameter of the steelmaking slag used in the present invention, the upper limit value and the lower limit value are more effective when the average particle diameter of the granulated blast furnace slag is 25 mm or less. That is, when the steelmaking slag contains free calcium oxide, the surface activity is high when the particle size of the steelmaking slag is less than the average particle size of the granulated blast furnace slag, and the reaction between free calcium oxide and water Since the amount of the steelmaking slag that collapses increases, the particle gaps of the coating material may increase or the coating layer may partially break, so that the effect becomes higher when the particle is relatively coarse. Moreover, it is preferable that the maximum particle diameter of steelmaking slag is 25 mm or less. When it becomes larger than 25 mm, when the bottom sediment is coated with a mixture with granulated blast furnace slag, separation occurs due to a difference in specific gravity or a difference in particle diameter, and a uniform coating layer cannot be formed. The blast furnace slow cooling slag used in the present invention is not limited in particle size. The chemical composition of blast furnace slow-cooled slag is almost the same as that of granulated blast furnace slag, and there is no concern of collapse like steelmaking slag. Moreover, there is almost no difference in specific gravity with granulated blast furnace slag compared to steelmaking slag, which is preferable in order to avoid separation during coating.

以下、本発明の実施例を示すが、本発明はこの実施例に限定されるものではない。
実施例1〜16:
水質のダイオキシン類濃度が環境基準1pg−TEQ/Lを超えている河川および港で、本発明法に関する高炉水砕スラグと、山砂、製鋼スラグ、高炉除冷スラグの1種または2種以上の混合物による底質の被覆試験を行った。河川では、底質ダイオキシン類濃度が26pg−TEQ/g、水質ダイオキシン類濃度が4pg−TEQ/L、懸濁物質が20mg/Lであった。港では、底質ダイオキシン類濃度が28pg−TEQ/g、水質ダイオキシン類濃度が1.2pg−TEQ/L、懸濁物質が10mg/Lであった。
Examples of the present invention will be described below, but the present invention is not limited to these examples.
Examples 1-16:
In rivers and ports with dioxins in water quality exceeding the environmental standard of 1 pg-TEQ / L, one or more of granulated blast furnace slag, mountain sand, steelmaking slag, and blast furnace decooled slag The bottoms were coated with the mixture. In the river, the concentration of bottom dioxins was 26 pg-TEQ / g, the concentration of water dioxins was 4 pg-TEQ / L, and the suspended solids were 20 mg / L. At the port, the bottom dioxin concentration was 28 pg-TEQ / g, the water quality dioxin concentration was 1.2 pg-TEQ / L, and the suspended solids were 10 mg / L.

標記水域の底質を被覆材で被覆し、約1年後に、水質や被覆層の調査を行って汚染防止効果を評価した。被覆層の硬化状況の評価は、被覆層の一部をコアサンプリングし、サンプル材が崩壊することなく自立して形状を保っている場合に、硬化しているものとみなした。水質の測定は、底質上または覆砂上の約500mmの水を採取して行った。   The bottom sediment of the title water area was covered with a coating material, and after about one year, the water quality and the coating layer were investigated to evaluate the pollution prevention effect. In the evaluation of the curing state of the coating layer, a part of the coating layer was core-sampled, and the sample material was considered to be cured when it kept its shape independently without collapsing. The water quality was measured by collecting approximately 500 mm of water on the bottom sediment or sand cover.

表1および表2に結果を示す。   Tables 1 and 2 show the results.

Figure 0003868418
Figure 0003868418

Figure 0003868418
Figure 0003868418

実施例1では、高炉水砕スラグの粗粒率が2.5の若干細粒であったため、山砂を5質量%配合して被覆材とした。水質ダイオキシン類濃度は、実施後0.1pg−TEQ/Lであり、環境基準を満足した。懸濁物質濃度は、実施後5mg/Lに低下した。また被覆層の硬化状況を見るため、被覆層の一部をコアサンプリングしたところ、サンプリング材は崩壊することなく自立して形状を保っていたことから、硬化していることが確認された。被覆層に亀裂などは見られなかった。   In Example 1, since the coarse granule ratio of granulated blast furnace slag was slightly fine with 2.5, 5% by mass of mountain sand was blended to prepare a coating material. Water quality dioxin density | concentration was 0.1pg-TEQ / L after implementation, and satisfied the environmental standard. The suspended solids concentration dropped to 5 mg / L after implementation. Further, in order to check the curing state of the coating layer, when a part of the coating layer was subjected to core sampling, it was confirmed that the sampling material was cured because it was self-supporting without collapsing. There were no cracks or the like in the coating layer.

実施例2では、高炉水砕スラグの粗粒率が2.2の細粒であったため、山砂を20質量%配合して被覆材とした。水質ダイオキシン類濃度は、実施後0.08pg−TEQ/Lになり、環境基準を満足した。また懸濁物質濃度は、実施後4mg/Lに低下した。サンプリング材は自立して形状を保っており、硬化していることが確認された。被覆層に亀裂などは見られなかった。   In Example 2, since the coarse granule ratio of the granulated blast furnace slag was 2.2, 20% by mass of mountain sand was used as a coating material. The water quality dioxin concentration was 0.08 pg-TEQ / L after the implementation, satisfying environmental standards. In addition, the suspended substance concentration decreased to 4 mg / L after the implementation. It was confirmed that the sampling material was self-supporting and maintained its shape and was cured. There were no cracks or the like in the coating layer.

実施例3では、高炉水砕スラグの粗粒率が2の細粒であったため、山砂を70質量%配合して被覆材とした。水質ダイオキシン類濃度は、実施後に0.07pg−TEQ/Lとなり、環境基準を満足した。また懸濁物質濃度は、実施後4mg/Lに低下した。サンプリング材は自立して形状を保っており、硬化していることが確認された。被覆層に亀裂などは見られなかった。   In Example 3, since the coarse granule ratio of the granulated blast furnace slag was 2 particles, 70% by mass of mountain sand was blended to prepare a coating material. The water quality dioxins concentration was 0.07 pg-TEQ / L after the implementation, satisfying the environmental standards. In addition, the suspended substance concentration decreased to 4 mg / L after the implementation. It was confirmed that the sampling material was self-supporting and maintained its shape and was cured. There were no cracks or the like in the coating layer.

実施例4では、高炉水砕スラグの粗粒率が3で若干粗粒であったため、水硬性を高めるため、製鋼スラグを7質量%配合して被覆材とした。用いた製鋼スラグの粒径範囲は1〜5mmとした。なお高炉水砕スラグの平均粒径は0.9mmであった。水質ダイオキシン類濃度は、実施後は0.07pg−TEQ/Lであり、環境基準を十分満足した。懸濁物質濃度は、実施後は4mg/Lに低下した。サンプリング材は自立して形状を保っており、硬化していることが確認された。被覆層に亀裂などは見られなかった。   In Example 4, since the coarse granule ratio of the granulated blast furnace slag was 3 and was slightly coarse, 7 mass% of steelmaking slag was blended to improve the hydraulic property to obtain a coating material. The particle size range of the steelmaking slag used was 1 to 5 mm. The average particle size of the granulated blast furnace slag was 0.9 mm. The water quality dioxins concentration was 0.07 pg-TEQ / L after the implementation, sufficiently satisfying the environmental standards. The suspended solids concentration dropped to 4 mg / L after implementation. It was confirmed that the sampling material was self-supporting and maintained its shape and was cured. There were no cracks or the like in the coating layer.

参考例5では、粗粒率2.5、平均粒径0.7mmのやや細粒な高炉水砕スラグに、粒径1〜25mmの製鋼スラグを90質量%配合して被覆材とした。水質ダイオキシン類濃度は、実施後は0.08pg−TEQ/Lであり、環境基準を満足し、懸濁物質濃度も実施後は5mg/Lに低下した。サンプリング材は自立して形状を保っており、硬化していることが確認された。被覆層に亀裂などは見られなかった。 In Reference Example 5, 90% by mass of steelmaking slag having a particle diameter of 1 to 25 mm was blended with a slightly fine blast furnace granulated slag having a coarse particle ratio of 2.5 and an average particle diameter of 0.7 mm to obtain a coating material. The water quality dioxin concentration was 0.08 pg-TEQ / L after the implementation, satisfied the environmental standards, and the suspended solids concentration also decreased to 5 mg / L after the implementation. It was confirmed that the sampling material was self-supporting and maintained its shape and was cured. There were no cracks or the like in the coating layer.

実施例6では、粗粒率が3.5の比較的粗粒な高炉水砕スラグに、粒径1mm未満の製鋼スラグを3質量%配合して被覆材とした。製鋼スラグは、高炉水砕スラグの平均粒径より小さいく、崩壊の懸念があったので、配合量は少なくした。水質ダイオキシン類濃度は、実施後に0.2pg−TEQ/Lとなり、環境基準を満足した。懸濁物質濃度も実施後は5mg/Lに低下した。サンプリング材は自立して形状を保っており、被覆層に崩壊の兆候は見られなかった。   In Example 6, 3% by mass of steelmaking slag having a particle size of less than 1 mm was mixed with a relatively coarse blast furnace granulated slag having a coarse rate of 3.5 to obtain a coating material. Steelmaking slag was smaller than the average particle size of blast furnace granulated slag, and there was concern about collapse, so the blending amount was reduced. Water quality dioxin density | concentration became 0.2pg-TEQ / L after implementation, and satisfied the environmental standard. The suspended solids concentration also decreased to 5 mg / L after the implementation. The sampling material was self-supporting and maintained its shape, and there was no sign of collapse in the coating layer.

実施例7では、高炉水砕スラグは粗粒率が3.5、平均粒径1mmで比較的粗粒であったが、山砂を50質量%配合で加え、製鋼スラグを5質量%配合とした被覆材として、製鋼スラグの固化促進作用を確認した。製鋼スラグの粒径範囲は1〜5mmとした。水質ダイオキシン類濃度は、実施後は0.07pg−TEQ/Lであり、環境基準を十分満足し、懸濁物質濃度も実施後は4mg/Lと低下した。サンプリング材は自立して形状を保っており、硬化していることが確認された。被覆層に亀裂などは見られなかった。   In Example 7, the granulated blast furnace slag was relatively coarse with a coarse particle ratio of 3.5 and an average particle size of 1 mm. However, mountain sand was added at 50% by mass and steelmaking slag was added at 5% by mass. As a covering material, the solidification promoting action of steelmaking slag was confirmed. The particle size range of the steelmaking slag was 1 to 5 mm. The water quality dioxins concentration was 0.07 pg-TEQ / L after the implementation, sufficiently satisfied the environmental standards, and the suspended solids concentration also decreased to 4 mg / L after the implementation. It was confirmed that the sampling material was self-supporting and maintained its shape and was cured. There were no cracks or the like in the coating layer.

実施例8では、粗粒率3の高炉水砕スラグに、水硬性を高めるため、高炉徐冷スラグを10質量%配合して被覆材とした。用いた高炉徐冷スラグの粒径は5mm以下である。水質ダイオキシン類濃度は、実施後は0.07pg−TEQ/Lであり、環境基準を十分満足した。懸濁物質濃度は、実施後は4mg/Lに低下した。サンプリング材は自立して形状を保っており、硬化していることが確認された。被覆層に亀裂などは見られなかった。   In Example 8, a blast furnace granulated slag having a coarse rate of 3 was mixed with 10 mass% of blast furnace slow-cooled slag to obtain a coating material. The particle size of the used blast furnace slow cooling slag is 5 mm or less. The water quality dioxins concentration was 0.07 pg-TEQ / L after the implementation, sufficiently satisfying the environmental standards. The suspended solids concentration dropped to 4 mg / L after implementation. It was confirmed that the sampling material was self-supporting and maintained its shape and was cured. There were no cracks or the like in the coating layer.

実施例9では、実施例8と同様、高炉水砕スラグに高炉徐冷スラグを10質量%配合して被覆材とした。用いた高炉徐冷スラグの粒径は25mm以下で、実施例7より粗粒が多い。水質ダイオキシン類濃度は、実施後は0.08pg−TEQ/Lであり、環境基準を十分満足した。懸濁物質濃度は、実施後は4mg/Lに低下した。サンプリング材は自立して形状を保っており、硬化していることが確認された。被覆層に亀裂などは見られなかった。   In Example 9, as in Example 8, 10% by mass of blast furnace granulated slag and 10% by mass of blast furnace slow-cooled slag were blended to prepare a coating material. The particle size of the blast furnace slow-cooled slag used was 25 mm or less, and there were more coarse particles than Example 7. The water quality dioxins concentration was 0.08 pg-TEQ / L after the implementation, sufficiently satisfying environmental standards. The suspended solids concentration dropped to 4 mg / L after implementation. It was confirmed that the sampling material was self-supporting and maintained its shape and was cured. There were no cracks or the like in the coating layer.

実施例10では、港の底質に対して処理を行った例であり、粗粒率2.5の高炉水砕スラグに山砂を10質量%配合して被覆材とした。水質ダイオキシン類濃度は、実施後は0.02pg−TEQ/Lであり、環境基準を十分満足し、懸濁物質濃度も実施後は3mg/Lに低下した。サンプリング材は崩壊することなく自立して形状を保っていたことから、硬化していることを確認した。被覆層に亀裂などは見られなかった。   In Example 10, the bottom sediment of the harbor was treated, and 10% by mass of mountain sand was blended with blast furnace granulated slag having a coarse rate of 2.5 to obtain a coating material. The water quality dioxin concentration was 0.02 pg-TEQ / L after the implementation, sufficiently satisfied the environmental standards, and the suspended solids concentration was also reduced to 3 mg / L after the implementation. It was confirmed that the sampling material was cured because it kept its shape independently without collapsing. There were no cracks or the like in the coating layer.

実施例11では、粗粒率2.2の細粒な高炉水砕スラグに山砂を70質量%配合して被覆材とした。水質ダイオキシン類濃度は、実施後は0.03pg−TEQ/Lであり、環境基準を満足し、懸濁物質濃度も実施後は3mg/Lに低下した。サンプリング材は自立して形状を保っており、硬化していることが確認された。被覆層に亀裂などは見られなかった。   In Example 11, 70 mass% of mountain sand was blended with fine granulated blast furnace granulated slag having a coarse rate of 2.2 to obtain a coating material. The water quality dioxins concentration was 0.03 pg-TEQ / L after the implementation, satisfied the environmental standard, and the suspended solids concentration was also reduced to 3 mg / L after the implementation. It was confirmed that the sampling material was self-supporting and maintained its shape and was cured. There were no cracks or the like in the coating layer.

実施例12では、高炉水砕スラグが粗粒率3.2、平均粒径0.9mmの比較的粗粒であったので、粒径範囲1〜5mmの製鋼スラグを5質量%配合して被覆材とした。実施後の水質ダイオキシン類濃度は、0.02pg−TEQ/Lであり、環境基準を十分満足し、懸濁物質濃度も3mg/Lに低下した。サンプリング材は自立して形状を保っており、硬化していることが確認された。被覆層に亀裂などは見られなかった。   In Example 12, since the granulated blast furnace slag was a relatively coarse particle having a coarse particle ratio of 3.2 and an average particle size of 0.9 mm, it was coated with 5% by mass of steelmaking slag having a particle size range of 1 to 5 mm. A material was used. The water quality dioxins concentration after the implementation was 0.02 pg-TEQ / L, sufficiently satisfied the environmental standards, and the suspended solids concentration was also reduced to 3 mg / L. It was confirmed that the sampling material was self-supporting and maintained its shape and was cured. There were no cracks or the like in the coating layer.

実施例13では、粗粒率2.7、平均粒径0.7mmの高炉水砕スラグに、粒径範囲1〜25mmの粗大粒を含む製鋼スラグを70重量%配合して被覆材とした。実施後の水質ダイオキシン類濃度は、0.02pg−TEQ/Lであり、環境基準を十分満足し、懸濁物質濃度も3mg/Lに低下した。被覆層の硬化状況も、コアサンプル材は自立し、健全であった。被覆層に亀裂などは見られなかった。   In Example 13, 70% by weight of steelmaking slag containing coarse particles having a particle size range of 1 to 25 mm was blended with blast furnace granulated slag having a coarse particle ratio of 2.7 and an average particle size of 0.7 mm to obtain a coating material. The water quality dioxins concentration after the implementation was 0.02 pg-TEQ / L, sufficiently satisfied the environmental standards, and the suspended solids concentration was also reduced to 3 mg / L. As for the state of curing of the coating layer, the core sample material was self-supporting and sound. There were no cracks or the like in the coating layer.

実施例14では、高炉水砕スラグの粒度が実施例6とほぼ同一であり、山砂50質量%と製鋼スラグ4質量%を配合して被覆材とした。製鋼スラグの粒径は1〜5mmとした。水質ダイオキシン類濃度は、実施後に0.03pg−TEQ/Lとなり、環境基準を十分満足し、懸濁物質濃度も3mg/Lになった。サンプリング材は自立して形状を保っており、硬化していることが確認された。被覆層に亀裂などは見られなかった。   In Example 14, the particle size of granulated blast furnace slag was almost the same as that of Example 6, and 50% by mass of mountain sand and 4% by mass of steelmaking slag were blended to obtain a coating material. The particle size of the steelmaking slag was 1 to 5 mm. The water quality dioxins concentration was 0.03 pg-TEQ / L after the implementation, sufficiently satisfied the environmental standards, and the suspended solids concentration was also 3 mg / L. It was confirmed that the sampling material was self-supporting and maintained its shape and was cured. There were no cracks or the like in the coating layer.

実施例15では、実施例11で用いた製鋼スラグの代わりに、粒径5mm以下の高炉徐冷スラグを30質量%配合して被覆材とした。実施後の水質ダイオキシン類濃度は、0.02pg−TEQ/Lであり、環境基準を十分満足し、懸濁物質濃度も3mg/Lに低下した。サンプリング材は自立して形状を保っており、硬化していることが確認された。被覆層に亀裂などは見られなかった。   In Example 15, instead of the steelmaking slag used in Example 11, 30 mass% of blast furnace slow-cooled slag having a particle size of 5 mm or less was blended to obtain a coating material. The water quality dioxins concentration after the implementation was 0.02 pg-TEQ / L, sufficiently satisfied the environmental standards, and the suspended solids concentration was also reduced to 3 mg / L. It was confirmed that the sampling material was self-supporting and maintained its shape and was cured. There were no cracks or the like in the coating layer.

実施例16は、粗粒率が3.5の高炉水砕スラグに、5mm以下の山砂5質量%、1〜5mmの製鋼スラグ5質量%、5mm以下の高炉徐冷スラグ10質量%を配合して被覆材とした。水質ダイオキシン類濃度は、実施後は0.03pg−TEQ/Lであり、環境基準を十分満足し、懸濁物質濃度も実施後は3mg/Lに低下した。被覆層に亀裂などはなく、サンプリング材は自立して形状を保った。   In Example 16, blast furnace granulated slag having a coarse particle ratio of 3.5 is blended with 5% by mass of sand of 5 mm or less, 5% by mass of steelmaking slag of 1 to 5 mm, and 10% by mass of blast furnace gradually cooled slag of 5 mm or less. Thus, a coating material was obtained. The water quality dioxins concentration was 0.03 pg-TEQ / L after the implementation, sufficiently satisfied the environmental standards, and the suspended solids concentration also decreased to 3 mg / L after the implementation. There was no crack in the coating layer, and the sampling material was independent and kept its shape.

比較例1〜3:
実施例1〜16と同域の、水質のダイオキシン類濃度が環境基準を超えている河川および港で、天然砂、高炉水砕スラグ、高炉水砕スラグと天然砂または製鋼スラグの混合物を用いて、実施例と同様に底質の被覆試験を行い、約1年後に、実施例と同様の方法で水質や被覆層の調査を行って汚染防止効果を評価した。
Comparative Examples 1-3:
In rivers and ports where the dioxin concentration of water quality exceeds the environmental standards in the same area as Examples 1 to 16, using natural sand, blast furnace granulated slag, blast furnace granulated slag and natural sand or steelmaking slag The bottom coating test was conducted in the same manner as in the example, and after about one year, the water quality and the coating layer were investigated in the same manner as in the example to evaluate the pollution prevention effect.

表3にその結果を示す。   Table 3 shows the results.

Figure 0003868418
Figure 0003868418

比較例1は、河川の底質を山砂で被覆した例である。水質ダイオキシン類濃度は、実施後0.8pg−TEQ/Lで環境基準満足し、懸濁物質濃度も実施後に10mg/Lと低下したが、実施例1〜6のような高い汚染物質防止効果は得られなかった。被覆層の一部をコアサンプリングすると、山砂であるため、サンプリング材は形状を保つことなく崩壊した。   Comparative Example 1 is an example in which river sediment is covered with mountain sand. The water quality dioxins concentration was 0.8pg-TEQ / L after the implementation, and the environmental standard was satisfied, and the suspended solids concentration was also reduced to 10 mg / L after the implementation. It was not obtained. When a part of the coating layer was core-sampled, the sampling material collapsed without maintaining the shape because it was mountain sand.

比較例2は、河川の底質を高炉水砕スラグのみで被覆した例であるが、被覆層は一部が盤状に固結して、そのコアサンプリング材は形状を保って自立してはいるが、被覆層には亀裂が入っていた。その結果、懸濁物質濃度は10mg/Lに低下したものの、ダイオキシン類濃度は1pg−TEQ/Lと、環境基準程度であった。また被覆層に亀裂が観察されたことから、長期的な防止効果に懸念が生じた。   Comparative example 2 is an example in which the bottom sediment of the river is covered only with granulated blast furnace slag, but the coating layer is partly consolidated into a disk shape, and the core sampling material should be self-supporting while maintaining its shape. However, the coating layer was cracked. As a result, although the suspended solid concentration was reduced to 10 mg / L, the dioxin concentration was 1 pg-TEQ / L, which was about the environmental standard. Moreover, since cracks were observed in the coating layer, there was concern about the long-term prevention effect.

比較例3は、港の底質を山砂で被覆した例である。水質ダイオキシン類濃度は、実施後は0.5pg−TEQ/Lであり環境基準を満足し、懸濁物質濃度も実施後は5mg/Lと低下したが、実施例7〜11のような高い汚染物質防止効果は得られなかった。   Comparative Example 3 is an example in which the bottom sediment of the harbor is covered with mountain sand. The water quality dioxins concentration was 0.5 pg-TEQ / L after the implementation, satisfying the environmental standards, and the suspended solids concentration also decreased to 5 mg / L after the implementation, but the high contamination as in Examples 7-11 The substance prevention effect was not obtained.

Claims (3)

高炉水砕スラグの粗粒率を測定し、
粗粒率が2.5超の場合は前記高炉水砕スラグに製鋼スラグ、高炉徐冷スラグの少なくともいずれかを加えた混合物で、ダイオキシン類含有底質を被覆し、
粗粒率が2.5以下の場合は前記高炉水砕スラグに天然砂を加えた混合物で、ダイオキシン類含有底質を被覆する
ことを特徴とする、ダイオキシン類含有底質による水質汚染の防止方法。
Measure the coarse grain ratio of granulated blast furnace slag,
When the coarse particle ratio exceeds 2.5, the dioxin-containing bottom sediment is coated with a mixture obtained by adding at least one of steelmaking slag and blast furnace slow-cooled slag to the granulated blast furnace slag,
A method for preventing water pollution by dioxin-containing bottom sediment, characterized by covering dioxin-containing bottom sediment with a mixture obtained by adding natural sand to the blast furnace granulated slag when the coarse particle ratio is 2.5 or less .
前記混合物中の前記高炉水砕スラグの配合量が5〜95質量%であることを特徴とする、請求項1に記載の方法。   The method according to claim 1, wherein a blending amount of the granulated blast furnace slag in the mixture is 5 to 95% by mass. 前記製鋼スラグの粒径が前記高炉水砕スラグの平均粒径以上25mm以下であることを特徴とする、請求項1または請求項2に記載の方法。   The method according to claim 1 or 2, wherein a particle diameter of the steelmaking slag is not less than an average particle diameter of the granulated blast furnace slag and not more than 25 mm.
JP2003403286A 2002-12-05 2003-12-02 Method for preventing water pollution by bottom sediment containing dioxins and covering material for prevention Expired - Lifetime JP3868418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003403286A JP3868418B2 (en) 2002-12-05 2003-12-02 Method for preventing water pollution by bottom sediment containing dioxins and covering material for prevention

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002353861 2002-12-05
JP2003403286A JP3868418B2 (en) 2002-12-05 2003-12-02 Method for preventing water pollution by bottom sediment containing dioxins and covering material for prevention

Publications (2)

Publication Number Publication Date
JP2004195456A JP2004195456A (en) 2004-07-15
JP3868418B2 true JP3868418B2 (en) 2007-01-17

Family

ID=32775072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003403286A Expired - Lifetime JP3868418B2 (en) 2002-12-05 2003-12-02 Method for preventing water pollution by bottom sediment containing dioxins and covering material for prevention

Country Status (1)

Country Link
JP (1) JP3868418B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4690778B2 (en) * 2005-06-03 2011-06-01 新日本製鐵株式会社 Method and apparatus for injecting granular material into water
JP4872275B2 (en) * 2005-09-01 2012-02-08 Jfeスチール株式会社 Covering sand at the bottom of the water
JP4751181B2 (en) * 2005-11-01 2011-08-17 新日本製鐵株式会社 Sand-capping method
NO20130997A1 (en) 2013-07-17 2015-01-19 Ecopros As Procedure for rehabilitation of the seabed

Also Published As

Publication number Publication date
JP2004195456A (en) 2004-07-15

Similar Documents

Publication Publication Date Title
Kim et al. Recycling of arsenic-rich mine tailings in controlled low-strength materials
US20070113756A1 (en) Erosion resistant barrier with varying permeabilities
Dungca et al. Strength and permeability characteristics of road base materials blended with fly ash and bottom ash
Cyr et al. Reduction of ASR-expansion using powders ground from various sources of reactive aggregates
Kushwaha et al. Stabilization of Red mud using eko soil enzyme for highway embankment
Jeong et al. Evaluation of foam-glass media in a high-rate filtration process for the removal of particulate matter containing phosphorus in municipal wastewater
JP3868418B2 (en) Method for preventing water pollution by bottom sediment containing dioxins and covering material for prevention
JP6692136B2 (en) Decontamination method for contaminated soil
TWI434818B (en) Manufacture of artificial stone
JP2009183907A (en) Decontaminating material and decontamination facility
JP6688576B2 (en) Decontamination method for contaminated soil
Akinwumi et al. Sawdust stabilization of lateritic clay as a landfill liner to retain heavy metals
JP2010094619A (en) Sand replacement material and method for manufacturing the same
KR100597706B1 (en) Aspalt-concrete compositions comprising waste of stone industry and their method
JP4084681B2 (en) Sand-capping structure and sand-capping method
JP4751181B2 (en) Sand-capping method
JP2011079951A (en) Recycled ground material and method for producing the same
JP2020200417A (en) Soil modifying composition and soil modification method
JP6177528B2 (en) Insolubilizing material and insolubilizing method for arsenic-containing heavy metal contaminated soil
JP2012102473A (en) Base course material and method of manufacturing the same
JP2018065070A (en) Water pollution prevention method
Jigorel et al. Endogenic development of sediments in a eutrophic lake
KR100501926B1 (en) Method for stabilization and strength improvement of dredged soil using oyster shell
JP4997687B2 (en) How to improve water environment
JP6412691B2 (en) Soil improvement material for improving soil quality of sedimentary soil containing salt and moisture, and soil improvement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061010

R151 Written notification of patent or utility model registration

Ref document number: 3868418

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313122

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350