JP4751181B2 - Sand-capping method - Google Patents
Sand-capping method Download PDFInfo
- Publication number
- JP4751181B2 JP4751181B2 JP2005318767A JP2005318767A JP4751181B2 JP 4751181 B2 JP4751181 B2 JP 4751181B2 JP 2005318767 A JP2005318767 A JP 2005318767A JP 2005318767 A JP2005318767 A JP 2005318767A JP 4751181 B2 JP4751181 B2 JP 4751181B2
- Authority
- JP
- Japan
- Prior art keywords
- slag
- sand
- blast furnace
- mass
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Treatment Of Sludge (AREA)
Description
本発明は、高炉水砕スラグと製鋼スラグとにより水域の底質を覆い、更にこれらを固結させることにより、底質に含有されている汚染物質を封じ込めて水域への汚染拡散を防止する覆砂工法に関する。 The present invention covers the bottom sediment of the water area with blast furnace granulated slag and steelmaking slag, and further consolidates these so as to contain the pollutants contained in the bottom sediment and prevent the pollution from spreading into the water area. It relates to the sand method.
河川、湖沼及び海域等の公共水域の水底に存在する原地盤及び堆積物等の底質中には、例えば、リン及び硫化水素等のように赤潮・青潮の発生の原因となる富栄養化物質、有害重金属、ダイオキシン類等の汚染物質が含まれていることがある。 Eutrophication that causes red tide and blue tide, such as phosphorus and hydrogen sulfide, in sediments such as riverbeds, lakes and marine areas in the bottom of public water bodies and sediments. It may contain contaminants such as substances, toxic heavy metals, dioxins.
このような底質中の汚染物質の拡散による水質汚染を防止する方法の一つとして、海砂及び山砂等の天然砂で底質を覆う方法、いわゆる覆砂工法が知られている。また、従来、天然砂の替わりに鉄鋼副産物である高炉水砕スラグを利用する技術も開発されている(例えば、特許文献1及び2参照。)。 As one method for preventing water pollution caused by the diffusion of pollutants in the bottom sediment, a method of covering the bottom sediment with natural sand such as sea sand and mountain sand, a so-called sand covering method is known. Conventionally, a technology that uses blast furnace granulated slag, which is a steel byproduct, instead of natural sand has also been developed (see, for example, Patent Documents 1 and 2).
高炉スラグは、銑鉄を製造する高炉で溶融された鉄鉱石における鉄以外の成分で、副原料の石灰石及びコークス中の灰分と共に分離回収される副産物であり、銑鉄1tあたり約300kg生成する。高炉から取り出されたスラグは約1500℃程度の溶融状態であるが、冷却の方法によって、高炉水砕スラグと高炉徐冷スラグとに分別される。高炉水砕スラグは、溶融高炉スラグに加圧水を噴射する等して急激に冷却することによって生成されるガラス質(非晶質)の粒状スラグである。一方、高炉徐冷スラグは、溶融高炉スラグを直接ドライピットに放流するか、又は樋から一度トーピードカーに移して遠方の屋外のヤードまで運搬し、そこで放流された後、自然放冷と適度の散水とにより冷却されたものであり、結晶質の岩石状のスラグである。 The blast furnace slag is a component other than iron in the iron ore melted in the blast furnace for producing pig iron, and is a by-product separated and recovered together with the lime in the auxiliary material and the ash in the coke, and generates about 300 kg per ton of pig iron. Although the slag taken out from the blast furnace is in a molten state of about 1500 ° C., it is separated into blast furnace granulated slag and blast furnace gradually cooled slag by the cooling method. The granulated blast furnace slag is a vitreous (amorphous) granular slag that is generated by cooling rapidly by, for example, injecting pressurized water into the molten blast furnace slag. On the other hand, blast furnace slow cooling slag is either discharged directly into the dry pit, or transferred to a torpedo car from the dredging and transported to a distant outdoor yard where it is discharged and then naturally cooled and moderately sprinkled. This is a crystalline rock-like slag.
特許文献1には、ダイオキシン類を含有する底質を、高炉水砕スラグに製鋼スラグ及び/又は天然砂を添加した混合物で被覆する水質汚染の防止方法が開示されている。この特許文献1に記載の方法では、製鋼スラグは高炉水砕スラグの水硬性を向上させるアルカリ刺激材として使用しているが、製鋼スラグを混合してpHを上げ過ぎると周辺水域に白濁が生じることがある。そこで、特許文献1には、白濁を避けるには高炉徐冷スラグを使用すればよいことが記載されている。 Patent Document 1 discloses a method for preventing water pollution, in which a sediment containing dioxins is coated with a mixture obtained by adding steelmaking slag and / or natural sand to blast furnace granulated slag. In the method described in Patent Document 1, steelmaking slag is used as an alkali stimulating material that improves the hydraulic properties of blast furnace granulated slag, but when steelmaking slag is mixed and the pH is raised excessively, white turbidity occurs in the surrounding water area. Sometimes. Therefore, Patent Document 1 describes that blast furnace slow cooling slag may be used to avoid cloudiness.
また、特許文献2には、高炉水砕スラグの潜在水硬性をアルカリ刺激によって発現させて固結させ、透水係数が低い固結層で底質を覆う技術が提案されている。なお、潜在水硬性とは、セメントのように水と混合するだけで固結する自硬性は有していないが、アルカリ、硫酸塩等の存在下では水和反応を起こして硬化する性質をいう。 Patent Document 2 proposes a technique in which the latent hydraulic properties of granulated blast furnace slag are expressed by alkali stimulation and consolidated, and the sediment is covered with a consolidated layer having a low water permeability coefficient. In addition, latent hydraulic property refers to the property of hardening by causing a hydration reaction in the presence of alkali, sulfate, etc., although it does not have the self-hardening property that is solidified only by mixing with water like cement. .
しかしながら、特許文献1に記載の方法の場合、前述したように高炉徐冷スラグを使用することで、水中投入時及びその後に発生する白濁を回避することはできるが、高炉徐冷スラグを使用すると固結促進作用が不十分となり、固結力が弱くなるという問題点がある。 However, in the case of the method described in Patent Document 1, by using the blast furnace slow cooling slag as described above, it is possible to avoid white turbidity that occurs at the time of charging into the water and thereafter, but when using the blast furnace slow cooling slag, There is a problem that the consolidation promoting action becomes insufficient and the consolidation force becomes weak.
また、特許文献2に記載の方法の場合、高炉水砕スラグは自己のアルカリ性による固結力が不十分であるため、高炉水砕スラグを単独で使用すると固結力が弱くなるという問題点がある。また、特許文献2では、水中投入時の白濁防止に関しては何ら検討されていない。 In addition, in the case of the method described in Patent Document 2, since the granulated blast furnace slag has insufficient caking strength due to its own alkalinity, the caustic force is weakened when the blast furnace granulated slag is used alone. is there. Moreover, in patent document 2, nothing is examined about the white turbidity prevention at the time of throwing in water.
更に、前述のいずれの技術においても、高炉水砕スラグのアルカリ刺激材として製鋼スラグを使用した場合、水中投入時のpH上昇に伴う白濁を回避し、更に高炉水砕スラグを確実に固結させることは困難である。即ち、従来、水中投入時に白濁することがなく、且つ高炉水砕スラグを確実に固結させることができる覆砂工法は実現されていない。 Furthermore, in any of the above-described techniques, when steelmaking slag is used as an alkali stimulating material for blast furnace granulated slag, white turbidity due to pH increase during charging into water is avoided, and blast furnace granulated slag is firmly consolidated. It is difficult. That is, conventionally, there has not been realized a sand-capping method that does not become cloudy when thrown into water and can reliably solidify blast furnace granulated slag.
そこで、本発明は、上述した問題点に鑑みて案出されたものであり、その目的とするところは、周辺水域に白濁を生じることなく、覆砂を確実に固結させることができる覆砂工法を提供することにある。 Therefore, the present invention has been devised in view of the above-described problems, and the object of the present invention is to provide sand-covering sand that can solidify sand-covering without causing white turbidity in the surrounding water area. To provide a construction method.
本発明に係る覆砂工法は、底質を覆砂材で覆って前記底質中に含まれる汚染物質の拡散を防止する覆砂工法において、前記覆砂材として、最大粒径5mm以下、かつ、粒径75μm以下の微粒子の含有率が1.5質量%以下の高炉水砕スラグと、予め造粒処理又は炭酸化処理が施された最大粒径5mm以下、かつ、粒径75μm以下の微粒子の含有率が1.5質量%以下の製鋼スラグとを、前記高炉スラグと前記製鋼スラグとの質量比(高炉水砕スラグ/製鋼スラグ)が(3/7)〜(7/3)となるように混合したものを使用し、前記覆砂材を底質上に投入することにより該底質を該覆砂材で覆うことを特徴とする。
The sand-capping method according to the present invention is a sand-capping method in which the bottom material is covered with a sand-capping material to prevent the diffusion of contaminants contained in the bottom material. A granulated blast furnace slag having a particle content of 1.5% by mass or less, and a fine particle having a maximum particle size of 5 mm or less and granulated or carbonated in advance and having a particle size of 75 μm or less. The steel slag having a content of 1.5% by mass or less, and the mass ratio of the blast furnace slag to the steel slag (blast furnace granulated slag / steel slag) is (3/7) to (7/3). What is mixed is used , and the bottom sediment is covered with the sand covering material by introducing the sand covering material onto the bottom sediment .
本発明においては、高炉水砕スラグのアルカリ刺激材として、造粒処理又は炭酸化処理により、表面が安定化されると共に大粒化された製鋼スラグを添加しているため、pHの急激な上昇及び微粉末による懸濁の発生が抑制される。 In the present invention, as an alkali stimulating material for granulated blast furnace slag, since steelmaking slag whose surface is stabilized and granulated is added by granulation treatment or carbonation treatment, a rapid increase in pH and Suspension caused by fine powder is suppressed.
この覆砂工法では、前記炭酸化処理として、未処理の製鋼スラグを自転式ミキサーに投入し、前記自転式ミキサーを0.5〜24時間回転させながらその内部に炭酸ガスを吹き込む処理を行うことができる。 In this sand-capping method, as the carbonation treatment, untreated steelmaking slag is put into a rotating mixer, and carbon dioxide gas is blown into the inside while rotating the rotating mixer for 0.5 to 24 hours. Can do.
また、前記造粒処理として、未処理の製鋼スラグ:10質量部、高炉水砕スラグ、高炉スラグ微粉末、フライアッシュ、建設汚泥、粘土及びシリカヒュームからなる群から選択された少なくとも1種のポラゾン物質:2〜5質量部及び水:0.5〜2質量部を自転式ミキサーに投入し、これらを前記自転式ミキサーにより3〜10分間攪拌混合した後、1週間以上養生する処理を行うことができる。 In addition, as the granulation treatment, untreated steelmaking slag: 10 parts by mass, blast furnace granulated slag, blast furnace slag fine powder, fly ash, construction sludge, clay and silica fume Substance: 2 to 5 parts by mass and water: 0.5 to 2 parts by mass are charged into a rotating mixer, and these are stirred and mixed for 3 to 10 minutes by the rotating mixer, followed by curing for 1 week or more. Can do.
本発明の覆砂工法によれば、高炉水砕スラグに造粒スラグ又は炭酸化スラグを混合した覆砂材を使用しているため、周辺水域の白濁を回避することができると共に、覆砂を所望の固結状態とすることが可能となる。 According to the sand-capping method of the present invention, since sand-clad material in which granulated slag or carbonated slag is mixed with granulated blast furnace slag is used, white turbidity in surrounding water areas can be avoided and A desired consolidated state can be obtained.
以下、本発明を実施するための最良の形態について説明する。 Hereinafter, the best mode for carrying out the present invention will be described.
本発明の覆砂工法は、鋼副産物である高炉水砕スラグと製鋼スラグとの混合物である覆砂材を底質上に投入し、製鋼スラグのアルカリ刺激によって高炉水砕スラグを固結させることにより、底質を透水係数が低い固結層により覆う方法である。そして、本発明の覆砂工法においては、製鋼スラグとして、造粒処理した造粒製鋼スラグ及び/又は炭酸化処理した炭酸化製鋼スラグを使用しており、これらの製鋼スラグの覆砂材中の含有量を30〜70質量%としている。 In the sand-capping method of the present invention, a sand-capping material, which is a mixture of steel by-product blast furnace granulated slag and steel slag, is put on the bottom sediment, and blast furnace granulated slag is consolidated by alkali stimulation of the steel slag. Thus, the bottom material is covered with a consolidated layer having a low water permeability coefficient. And in the sand-capping method of the present invention, the granulated steel granulated slag and / or carbonated carbonated steel slag is used as the steel slag, and in the sand-clad material of these steel slags The content is 30 to 70% by mass.
本発明の覆砂工法において使用する高炉水砕スラグは、水と反応して固結する自硬性は弱いが、アルカリ性の高い製鋼スラグ等の存在下では水和反応を起こして硬化する潜在水硬性を有しており、高炉の溶融状態で銑鉄と分離された溶融スラグを分離直後に急冷処理することにより製造される炉前水砕スラグ及び屋外まで運搬して急冷することにより製造される炉外水砕スラグのいずれでもよい。 The ground granulated blast furnace slag used in the sand-capping method of the present invention is weak in its self-hardness that reacts with water and solidifies, but in the presence of highly alkaline steelmaking slag, etc. The pre-furnace granulated slag produced by quenching the molten slag separated from pig iron in the molten state of the blast furnace immediately after the separation and the outside of the furnace produced by carrying it to the outside and quenching it Any of granulated slag may be used.
また、高炉水砕スラグの水砕処理後の処理方法については、水砕製造後に未加工のものでもよく、又は破砕による粒度調整したものでもよい。なお、エージング期間については特段の定めはない。更に、水中投入時に海底の浮泥へのめり込みを防止するため、高炉水砕スラグの最大粒径は5mm以下とすることが好ましく、また、微粉末による水中投入時の懸濁を防止するため、粒径が75μm以下の微粒子の含有率を全体の1.5質量%以下とすることが望ましい。 Moreover, about the processing method after the granulation process of blast furnace granulated slag, an unprocessed thing may be used after granulation manufacture, or what adjusted the particle size by crushing may be used. There is no special provision for the aging period. Furthermore, the maximum particle size of the granulated blast furnace slag is preferably 5 mm or less in order to prevent sinking into the floating mud at the time of injecting into the water, and in order to prevent suspension when injecting into the water with fine powder, The content of fine particles having a diameter of 75 μm or less is desirably 1.5% by mass or less of the whole.
一方、本発明の覆砂工法において高炉水砕スラグと混合して使用される製鋼スラグは、高炉で製造された銑鉄から不用な成分を除去し、靭性及び加工性がある鋼とする製鋼工程において生成される転炉スラグ、溶銑予備処理スラグ及び転炉2次精錬スラグ、又はスクラップを電気炉で直接溶解して鋼を製造する際に生成する電気炉酸化スラグ及び電気炉還元スラグがあり、このような製鋼スラグは高炉水砕スラグの固結を促進するためのアルカリ刺激材としての機能を有する。 On the other hand, steelmaking slag used by mixing with granulated blast furnace slag in the sand-capping method of the present invention is a steelmaking process in which unnecessary components are removed from pig iron produced in a blast furnace and steel having toughness and workability is obtained. There are converter slag to be produced, hot metal pretreatment slag and converter secondary refining slag, or electric furnace oxidation slag and electric furnace reduction slag produced when steel is produced by directly melting scrap in an electric furnace. Such a steelmaking slag has a function as an alkali stimulating material for promoting consolidation of blast furnace granulated slag.
これらの製鋼スラグは、一般に、ふるいによる分級を行った状態のままでは粒径が75μm以下の微粒子の含有率が高く、水中投入時に懸濁を生じることがある。例えば、このような微粒子を含む製鋼スラグを海水に投入した場合、投入時にpHが急上昇し、海水中に大量に存在するマグネシウムイオンが水酸化マグネシウムとして沈殿して周辺水域が白濁する。そこで、本発明の覆砂工法においては、製鋼スラグとして、表面を安定化させると共に微粒子成分を大粒化させる安定処理を実施したものを使用する。具体的には、安定化処理として造粒処理又は炭酸化処理を行った製鋼スラグを使用する。これにより、海中投入時における周辺水域のpHの急激な上昇を抑制することができる。なお、本発明において使用する製鋼スラグは、前述の高炉水砕スラグと同様に、その最大粒径を5mm以下とすることが望ましい。 These steelmaking slags generally have a high content of fine particles having a particle size of 75 μm or less in a state where they are classified by sieving, and may be suspended when thrown into water. For example, when steelmaking slag containing such fine particles is thrown into seawater, the pH rapidly rises when thrown, magnesium ions present in large quantities in the seawater precipitate as magnesium hydroxide, and the surrounding water area becomes cloudy. Therefore, in the sand-capping method of the present invention, a steelmaking slag that has been subjected to stabilization treatment that stabilizes the surface and enlarges the fine particle component is used. Specifically, steelmaking slag subjected to granulation treatment or carbonation treatment is used as the stabilization treatment. Thereby, the rapid raise of pH of the surrounding water area at the time of submerged injection can be suppressed. In addition, as for the steelmaking slag used in this invention, it is desirable to make the maximum particle diameter into 5 mm or less similarly to the above-mentioned blast furnace granulated slag.
造粒処理は、製鋼スラグに、ポゾラン物質及び少量の水を加えて撹拌混合した後、この混合物を所望の期間養生する処理であり、このような処理を施したものを造粒製鋼スラグという。その際、使用するポラゾン物質としては、例えば、高炉水砕スラグ、高炉スラグ微粉末、フライアッシュ、建設汚泥、粘土及びシリカヒューム等が挙げられる。この造粒処理を行うと、製鋼スラグとポゾラン物質とが反応して水和物が生成し、この水和物により製鋼スラグの表面が部分的に被覆されて安定化すると共に、水和物によるバインダー効果によって主に製鋼スラグに含まれる微粒が大粒化又は大粒の粒子表面に結合する。これにより、覆砂材に添加しても、周辺水域との反応による急激なpHの上昇及び微粉末による懸濁の発生を防止することができる。 The granulation treatment is a treatment in which a pozzolanic substance and a small amount of water are added to steelmaking slag, and the mixture is stirred and mixed, and then the mixture is cured for a desired period of time, and this treatment is referred to as granulated steelmaking slag. At that time, examples of the polyazone substance used include blast furnace granulated slag, blast furnace slag fine powder, fly ash, construction sludge, clay, and silica fume. When this granulation process is performed, the steelmaking slag reacts with the pozzolanic substance to form a hydrate, and the surface of the steelmaking slag is partially covered and stabilized by the hydrate, and also due to the hydrate. Due to the binder effect, the fine particles mainly contained in the steelmaking slag are enlarged or bonded to the surface of the large particles. Thereby, even if added to the sand-capping material, it is possible to prevent a sudden increase in pH due to reaction with the surrounding water area and the occurrence of suspension due to fine powder.
造粒処理の具体的な方法としては、例えば、攪拌翼のついたミキサー又はコンクリートミキサー等の自転式のミキサーに、最大粒径が5mm以下になるように分級した製鋼スラグ10質量部に対して、高炉水砕スラグ、高炉スラグ微粉末、フライアッシュ、建設汚泥、粘土及びシリカヒュームからなる群から選択された少なくとも1種のポゾラン物質を2〜5質量部、水を0.5〜2質量部を投入し、3〜10分間攪拌混合した後、これらの混合物を1週間以上養生させる方法等がある。 As a specific method of the granulation treatment, for example, with respect to 10 parts by mass of steelmaking slag classified into a self-rotating mixer such as a mixer with a stirring blade or a concrete mixer so that the maximum particle size is 5 mm or less. Blast furnace granulated slag, ground granulated blast furnace slag, fly ash, construction sludge, 2-5 parts by mass of pozzolanic material selected from the group consisting of clay and silica fume, 0.5-2 parts by mass of water And then stirring and mixing for 3 to 10 minutes, and then curing these mixtures for one week or more.
このとき、製鋼スラグ10質量部に対して添加されるポゾラン物質が2質量部未満、又は水が0.5質量部未満の場合、反応が未成熟となり、製鋼スラグが水和物により十分に被覆されないことがある。よって、製鋼スラグ10質量部に対するポゾラン物質の添加量は2質量部以上で、且つ水の添加量は0.5質量部以上とすることが好ましい。また、製鋼スラグ10質量部に対して、ポゾラン物質の添加量が5質量部を超えるか、又は水の添加量が2質量部を超えると、反応が飽和してしまうことがある。よって、製鋼スラグ10質量部に対するポゾラン物質の添加量は5質量部以下で、且つ水の添加量は2質量部以下とすることが好ましい。更に、攪拌時間が3分間未満の場合、十分に攪拌されないことがあり、また、攪拌時間が10分間を超えると、反応が飽和してしまうことがある。よって、攪拌時間は3〜10分間とすることが望ましい。そして、この混合物の養生期間は、1週間以上であることが望ましく、これにより、十分な水和反応による被覆効果を得ることができる。 At this time, when the pozzolanic material added to 10 parts by mass of the steelmaking slag is less than 2 parts by mass or the water is less than 0.5 parts by mass, the reaction becomes immature and the steelmaking slag is sufficiently covered with the hydrate. It may not be done. Therefore, it is preferable that the addition amount of the pozzolanic material with respect to 10 parts by mass of the steelmaking slag is 2 parts by mass or more and the addition amount of water is 0.5 parts by mass or more. Moreover, reaction may be saturated when the addition amount of a pozzolanic substance exceeds 5 mass parts with respect to 10 mass parts of steelmaking slag, or when the addition amount of water exceeds 2 mass parts. Therefore, it is preferable that the addition amount of the pozzolanic material with respect to 10 parts by mass of the steelmaking slag is 5 parts by mass or less and the addition amount of water is 2 parts by mass or less. Furthermore, when stirring time is less than 3 minutes, it may not fully stir, and when stirring time exceeds 10 minutes, reaction may be saturated. Therefore, the stirring time is desirably 3 to 10 minutes. The curing period of the mixture is desirably 1 week or longer, and thereby, a coating effect by a sufficient hydration reaction can be obtained.
なお、造粒処理を行った後の製鋼スラグ、即ち、造粒製鋼スラグは、前述の高炉水砕スラグと同様に、75μm以下である粒子の含有量が全体の1.5質量%以下であることが望ましい。 In addition, the steelmaking slag after performing the granulation treatment, that is, the granulated steelmaking slag has a particle content of 75 μm or less, which is 1.5% by mass or less of the whole, like the blast furnace granulated slag. It is desirable.
一方、炭酸化処理は、所望の含水比に調整した製鋼スラグを、静置又は攪拌した状態に保持して炭酸ガスを吹き込む処理であり、このような処理を施したものを炭酸化製鋼スラグという。炭酸化処理を行うと、製鋼スラグから溶出する水酸化カルシウムと、炭酸ガスが水に溶解することにより生じた炭酸イオンとが反応して安定な炭酸カルシウムが生成し、この炭酸カルシウムによって製鋼スラグの表面が部分的に安定化される共に製鋼スラグに含まれる微粉末が団粒化される。これにより、覆砂材に添加しても、周辺水域との反応による急激なpHの上昇及び微粉末による懸濁の発生を防止することができる。 On the other hand, the carbonation treatment is a treatment in which a steelmaking slag adjusted to a desired water content ratio is kept stationary or stirred and blown with carbon dioxide, and what is subjected to such treatment is called carbonated steelmaking slag. . When carbonation treatment is performed, calcium hydroxide eluted from steelmaking slag reacts with carbonate ions generated by the dissolution of carbon dioxide in water to produce stable calcium carbonate. This calcium carbonate produces steelmaking slag. The surface is partially stabilized and the fine powder contained in the steelmaking slag is aggregated. Thereby, even if added to the sand-capping material, it is possible to prevent a sudden increase in pH due to reaction with the surrounding water area and the occurrence of suspension due to fine powder.
炭酸化処理の具体的な方法としては、例えば、製鋼スラグを回転式コンクリートミキサー等の自転式ミキサーに投入し、0.5〜24時間程度の間、ミキサーを回転させながらその内部に炭酸ガスを吹き込むか、又は、含水比が5〜15質量%となるように調整した製鋼スラグを回転式コンクリートミキサー等の自転式ミキサーに投入し、0.5〜24時間程度の間、ミキサーを回転させながらその内部に炭酸ガスを吹き込む方法等がある。 As a specific method of carbonation treatment, for example, steelmaking slag is put into a rotating mixer such as a rotary concrete mixer, and carbon dioxide gas is introduced into the inside while rotating the mixer for about 0.5 to 24 hours. Steelmaking slag that has been blown or adjusted so that the water content ratio is 5 to 15% by mass is put into a rotating mixer such as a rotary concrete mixer, and the mixer is rotated for about 0.5 to 24 hours. There is a method of blowing carbon dioxide into the inside.
このとき、処理時間(回転時間)が0.5時間未満の場合、製鋼スラグの表面を部分的に安定化させることができなかったり、製鋼スラグに含まれる微粉末を団粒化させることができなかったりすることがある。よって、処理時間は0.5時間以上とすることが望ましい。なお、処理時間が24時間を超えると、製鋼スラグ表面の安定化は状態が飽和し、コスト的にも見合わないため、処理時間の上限は24時間とすることが望ましい。 At this time, when the treatment time (rotation time) is less than 0.5 hours, the surface of the steelmaking slag cannot be partially stabilized, or the fine powder contained in the steelmaking slag can be aggregated. There may be no. Therefore, the processing time is desirably 0.5 hours or longer. If the treatment time exceeds 24 hours, the stabilization of the steelmaking slag surface is saturated and the cost is not appropriate, so the upper limit of the treatment time is preferably 24 hours.
そして、本発明の覆砂工法においては、前述した高炉水砕スラグと、造粒製鋼スラグ及び/又は炭酸化製鋼スラグとを混合した覆砂材を使用する。その際、覆砂材中の高炉水砕スラグ量と製鋼スラグ量との比(高炉水砕スラグ/製鋼スラグ)が(3/7)〜(7/3)の範囲内になるようにする。即ち、覆砂材中の製鋼スラグ含有量(造粒製鋼スラグ及び炭酸化製鋼スラグの両方を含む場合はその総含有量)が30〜70質量%になるようにする。覆砂材の製鋼スラグ含有量が70質量%を超えるか、又は30質量%未満である場合、投入初期における固結前の段階での締固めが不良となり、製鋼スラグ粒子間の間隙が大きくなるため、透水係数が大きくなる。その結果、投入初期における封じ込め効果が低下する。なお、覆砂材の製鋼スラグ含有量が上述の範囲から外れていても、固結することにより天然砂よりも高い封じ込め効果が得られることがあるが、その場合でも投入初期における封じ込め効果が劣っているため、本発明の範囲外とする。 And in the sand covering method of this invention, the sand covering material which mixed the blast furnace granulated slag mentioned above, granulated steelmaking slag, and / or carbonation steelmaking slag is used. At that time, the ratio (blast furnace granulated slag / steel slag) between the amount of blast furnace granulated slag and the amount of steel slag in the sand-capping material is set within the range of (3/7) to (7/3). That is, the steelmaking slag content in the sand-capping material (the total content in the case where both the granulated steelmaking slag and the carbonated steelmaking slag are included) is adjusted to 30 to 70% by mass. When the steelmaking slag content of the sand-capping material exceeds 70% by mass or less than 30% by mass, the compaction at the stage before consolidation at the initial stage of charging becomes poor, and the gap between the steelmaking slag particles becomes large. For this reason, the water permeability coefficient increases. As a result, the containment effect at the initial stage of charging is lowered. Even if the steelmaking slag content of the sand-capping material is out of the above-mentioned range, a higher containment effect than natural sand may be obtained by consolidation, but even in that case, the containment effect at the initial stage of charging is inferior. Therefore, it is out of the scope of the present invention.
なお、この覆砂材を海底中への投入する際は、予め本発明の範囲内の比率で高炉水砕スラグと造粒製鋼スラグ及び/又は炭酸化製鋼スラグとを混合しておき、底開式の船又はトレミー管により水中に投入することができる。 When throwing this sand-capping material into the seabed, blast furnace granulated slag and granulated steel slag and / or carbonated steel slag are mixed in advance at a ratio within the range of the present invention. It can be thrown into the water by a ship of the type or a tremy pipe.
本発明の覆砂工法においては、未処理の製鋼スラグよりも表面が安定で、微粒子成分が少ない造粒製鋼スラグ及び/又は炭酸化製鋼スラグを使用しているため、水中投入時の周辺水域のpH上昇速度を低下させることができると共に、微粒子成分による懸濁を防止することができる。また、水中投入後はpHが徐々に上昇するため、覆砂を所望の固結状態とすることができる。その結果、周辺水域に白濁を生じさせずに、覆砂を確実に固結させることができる。 In the sand-capping method of the present invention, granulated steel slag and / or carbonated steel slag having a surface that is more stable than that of untreated steel slag and containing less particulate components is used. While being able to reduce the rate of pH increase, suspension by fine particle components can be prevented. Moreover, since pH rises gradually after throwing in water, sand covering sand can be made into a desired solidified state. As a result, the sand covering can be solidified without causing white turbidity in the surrounding water area.
特に、ダイオキシン類は、存在形態がイオンとして溶存しているのではなく、主に懸濁粒子に吸着して存在しているため、その汚染経路はダイオキシンが吸着している底質の巻上げ及び魚介類による摂取から始まり、食物連鎖により伝播していくことが考えられる。その対策工法としての覆砂は、原位置で封じ込める安価な工法として位置づけられるが、本発明の覆砂工法は、更に、低質を覆う覆砂材を確実に固結させることができるため、従来の覆砂工法に比べて、より安全性を高めることができる。 In particular, dioxins are not dissolved in the form of ions, but are mainly adsorbed on suspended particles, so the contamination route is the raising of sediment and fishery products on which dioxins are adsorbed. It is thought that it begins with ingestion by species and propagates through the food chain. The sand cover as the countermeasure method is positioned as an inexpensive method for confining in-situ, but the sand cover method of the present invention can further solidify the sand covering material covering the low quality. Compared to the sand-capping method, safety can be further improved.
以下、本発明の実施例について説明する。なお、本発明は下記実施例に限定されるものではない。 Examples of the present invention will be described below. In addition, this invention is not limited to the following Example.
本発明の第1実施例として、高炉水砕スラグに、アルカリ刺激材として造粒製鋼スラグ(実施例1)、炭酸化製鋼スラグ(実施例2)又は未処理の製鋼スラグ(比較例1)を混合した覆砂材及び高炉スラグを添加していない覆砂材(比較例2)を用意し、海水中で高炉水砕スラグを固結させる際のpH上昇及び白濁現象について確認した。図1は横軸に投入後の時間をとり、縦軸に海水のpHをとって、覆砂材投入後のpHの経時変化を示すグラフ図であり、図2は横軸に養生日数をとり、縦軸に一軸圧縮強さをとって、覆砂層の固結強度及び透水係数の経時変化を示すグラフ図である。なお、実施例1、実施例2及び比較例1の覆砂材における高炉水砕スラグと各製鋼スラグとの質量比(高炉水砕スラグ:各製鋼スラグ)は7:3とした。 As a first example of the present invention, granulated steelmaking slag (Example 1), carbonized steelmaking slag (Example 2) or untreated steelmaking slag (Comparative Example 1) is used as an alkali stimulating material for granulated blast furnace slag. A mixed sand-capping material and a sand-capping material to which blast furnace slag was not added (Comparative Example 2) were prepared, and the pH increase and white turbidity phenomenon were confirmed when solidifying blast furnace granulated slag in seawater. Fig. 1 is a graph showing the time after the addition on the horizontal axis and the pH of the seawater on the vertical axis, showing the change over time of the pH after the sand-capping material was added. Fig. 2 shows the number of days of curing. It is a graph which shows the time-dependent change of the consolidation strength of a sand cover layer, and a water permeability coefficient, taking uniaxial compressive strength on the vertical axis. In addition, the mass ratio (blast furnace granulated slag: each steelmaking slag) of blast furnace granulated slag and each steelmaking slag in the sand covering material of Example 1, Example 2, and Comparative Example 1 was 7: 3.
海水の白濁はpHが9.5〜9.6以上となったときに発生するが、図1に示すように、高炉水砕スラグを単独で使用した比較例2の覆砂材は、pHの上昇はほとんど見られず、白濁は発生しなかった。一方、未処理の製鋼スラグと高炉水砕スラグとを混合した比較例1の覆砂材は、投入直後に海水中のpHが急上昇し、海水中のマグネシウムイオンが沈殿析出して白濁が発生した。これに対して、高炉水砕スラグに造粒製鋼スラグを混合した実施例1の覆砂材、炭酸化製鋼スラグを混合した実施例2の覆砂材は、投入後の海水のpH上昇は緩慢で、施工後24時間後にも白濁を生じていなかった。即ち、実施例1及び2の覆砂材では、投入後24時間以内に覆砂層が形成され、投入直後の白濁は防止されていた。 The white turbidity of seawater occurs when the pH becomes 9.5 to 9.6 or more. As shown in FIG. 1, the sand covering material of Comparative Example 2 using blast furnace granulated slag alone has a pH of Almost no increase was observed, and no cloudiness occurred. On the other hand, in the sand-capping material of Comparative Example 1 in which untreated steelmaking slag and blast furnace granulated slag were mixed, the pH in seawater increased rapidly immediately after the addition, and magnesium ions in the seawater precipitated and white turbidity occurred. . In contrast, the sand covering material of Example 1 in which granulated steel slag was mixed with granulated blast furnace slag and the sand covering material of Example 2 in which carbonated steel slag was mixed had a slow increase in pH of seawater after charging. Thus, no cloudiness was generated even 24 hours after the construction. That is, in the sand covering materials of Examples 1 and 2, a sand covering layer was formed within 24 hours after charging, and white turbidity immediately after charging was prevented.
また、図2に示すように、高炉水砕スラグに製鋼スラグを添加した実施例1、実施例2及び比較例1の覆砂材により形成された覆砂層は、養生日数が経過するに従い一軸圧縮強さが増加し、十分固結が進んでいたが、高炉水砕スラグ単独で使用した比較例2の覆砂材により形成した覆砂層は、28日経過した後でも固結が不十分であった。 Moreover, as shown in FIG. 2, the sand covering layer formed with the sand covering material of Example 1, Example 2 and Comparative Example 1 in which steelmaking slag is added to the granulated blast furnace slag is uniaxially compressed as the curing days elapse. Although the strength increased and the solidification proceeded sufficiently, the sand-capping layer formed by the sand-capping material of Comparative Example 2 used alone with the blast furnace granulated slag was insufficiently consolidated even after 28 days. It was.
次に、本発明の第2実施例として、高炉水砕スラグと造粒製鋼スラグ又は炭酸化製鋼スラグとを、本発明の範囲内で混合比を変えて混合した実施例11〜16の覆砂材、山砂単独の比較例1の覆砂材、高炉スラグ単独の比較例12の覆砂材、高炉スラグと未処理の製鋼スラグとを5:5で混合した比較例13の覆砂材、造粒製鋼スラグ又は炭酸化製鋼スラグの含有量が30質量%未満の比較例14の覆砂材、造粒製鋼スラグ又は炭酸化製鋼スラグの含有量が70質量%を超えている比較例15の覆砂材を作製し、ダイオキシンにより汚染された底質(ダイオキシン濃度:100pg−TEQ/kg)上に施工し、白濁現象、固結状態及び28日経過後の水質について調査した。その結果を下記表1に示す。 Next, as a second embodiment of the present invention, blast furnace granulated slag and granulated steelmaking slag or carbonated steelmaking slag were mixed at different mixing ratios within the scope of the present invention, and the sand-clad sand of Examples 11-16. The sand-covered material of Comparative Example 13 in which the sand-covered material of Comparative Example 1 alone, mountain sand alone, the sand-covered material of Comparative Example 12 of blast furnace slag alone, and blast furnace slag and untreated steelmaking slag mixed at 5: 5, The content of granulated steel slag or carbonated steel slag in Comparative Example 15 with a content of less than 30% by mass, of Comparative Example 15 with a content of granulated steel slag or carbonated steel slag in excess of 70% by mass A sand-capping material was prepared and applied to the bottom sediment (dioxin concentration: 100 pg-TEQ / kg) contaminated with dioxin, and the white turbidity phenomenon, the consolidated state, and the water quality after 28 days were investigated. The results are shown in Table 1 below.
上記表1に示すように、実施例11〜16の覆砂材は、山砂を使用した比較例11の覆砂材、高炉水砕スラグを単独で使用した比較例12の覆砂材に比べて高い封じ込め性能が得られた。また、実施例11〜16の覆砂材は、高炉水砕スラグと未処理の製鋼スラグとの混合物である比較例13の覆砂材と比べても遜色のない封じ込め性能が確認され、更に、この比較例13の覆砂材のように投入直後に白濁が発生することはなかった。更にまた、高炉水砕スラグと造粒製鋼スラグ又は炭酸化製鋼スラグとの配合比が本発明の範囲から外れる比較例14,15の覆砂材は、投入直後の白濁発生はなく、28日後の固結も確認されたが、投入初期における締固めが不良であったため、封じ込め効果が低く、実施例11〜16の覆砂材を使用した場合に比べて、周辺水域のSS、溶存ダイオキシン濃度及び懸濁性ダイオキシン濃度が高かった。よって、投入直後の白濁防止及び投入から28日後の固結を共に達成し、更に汚染物質の封じ込め効果が優れていた覆砂材は、本発明の範囲内の実施例11〜16のみであった。 As shown in Table 1 above, the sand covering materials of Examples 11 to 16 were compared with the sand covering material of Comparative Example 11 using mountain sand and the sand covering material of Comparative Example 12 using blast furnace granulated slag alone. High containment performance. Moreover, the sand-covering material of Examples 11 to 16 was confirmed to have a confining performance comparable to the sand-covering material of Comparative Example 13, which is a mixture of blast furnace granulated slag and untreated steelmaking slag, Like the sand covering material of Comparative Example 13, white turbidity did not occur immediately after charging. Furthermore, the sand-capping material of Comparative Examples 14 and 15 in which the blending ratio of the granulated blast furnace slag and granulated steel slag or carbonated steel slag deviates from the scope of the present invention does not cause white turbidity immediately after charging, and after 28 days. Consolidation was also confirmed, but because the compaction at the initial stage of injection was poor, the containment effect was low, and compared to the case of using the sand-capping material of Examples 11 to 16, the SS in the surrounding water area, the dissolved dioxin concentration and Suspended dioxin concentration was high. Therefore, only the Examples 11 to 16 within the scope of the present invention were the sand-capping materials that achieved both white turbidity prevention immediately after the addition and consolidation of the product after 28 days from the addition, and further had an excellent effect of containing the pollutants. .
Claims (3)
前記覆砂材として、最大粒径5mm以下、かつ、粒径75μm以下の微粒子の含有率が1.5質量%以下の高炉水砕スラグと、予め造粒処理又は炭酸化処理が施された最大粒径5mm以下、かつ、粒径75μm以下の微粒子の含有率が1.5質量%以下の製鋼スラグとを、前記高炉水砕スラグと前記製鋼スラグとの質量比(高炉水砕スラグ/製鋼スラグ)が(3/7)〜(7/3)となるように混合したものを使用し、前記覆砂材を底質上に投入することにより該底質を該覆砂材で覆うことを特徴とする覆砂工法。 In the sand-capping method for covering the bottom with a sand-capping material and preventing the diffusion of contaminants contained in the bottom,
As the sand-capping material, a granulated or carbonized maximum blast furnace granulated slag having a maximum particle size of 5 mm or less and a content of fine particles having a particle size of 75 μm or less and 1.5% by mass or less is previously applied. Steelmaking slag having a particle size of 5 mm or less and a particle content of 75 μm or less is 1.5 mass% or less, and a mass ratio of the blast furnace granulated slag to the steelmaking slag (blast furnace granulated slag / steel slag). ) Is used so that it becomes (3/7) to (7/3), and the bottom sand material is covered with the sand covering material by introducing the sand covering material onto the bottom material. The sand cover method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005318767A JP4751181B2 (en) | 2005-11-01 | 2005-11-01 | Sand-capping method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005318767A JP4751181B2 (en) | 2005-11-01 | 2005-11-01 | Sand-capping method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007126838A JP2007126838A (en) | 2007-05-24 |
JP4751181B2 true JP4751181B2 (en) | 2011-08-17 |
Family
ID=38149699
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005318767A Active JP4751181B2 (en) | 2005-11-01 | 2005-11-01 | Sand-capping method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4751181B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5242332B2 (en) * | 2008-10-17 | 2013-07-24 | 日新製鋼株式会社 | Sand substitute and manufacturing method thereof |
BRPI1014832B1 (en) * | 2009-03-30 | 2020-03-31 | Nippon Steel Corporation | LANDING AREAS METHOD OF LOAN |
JP6752586B2 (en) * | 2016-02-22 | 2020-09-09 | 日本製鉄株式会社 | Slag pile construction method Slag and slag pile construction method |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3847531B2 (en) * | 2000-06-28 | 2006-11-22 | 日新製鋼株式会社 | Steelmaking slag aggregate processing method |
JP3729160B2 (en) * | 2002-06-28 | 2005-12-21 | Jfeスチール株式会社 | Environmental improvement method and environmental improvement materials for underwater or beach |
JP3868418B2 (en) * | 2002-12-05 | 2007-01-17 | 新日本製鐵株式会社 | Method for preventing water pollution by bottom sediment containing dioxins and covering material for prevention |
JP3828897B2 (en) * | 2003-06-09 | 2006-10-04 | 新日本製鐵株式会社 | Method for stabilizing steelmaking slag and stabilized steelmaking slag |
JP4328215B2 (en) * | 2004-01-13 | 2009-09-09 | 新日本製鐵株式会社 | Steelmaking slag treatment method |
-
2005
- 2005-11-01 JP JP2005318767A patent/JP4751181B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007126838A (en) | 2007-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fisher et al. | The recycling and reuse of steelmaking slags—A review | |
CN108218272B (en) | Environment-friendly artificial aggregate (aggregate) derived from waste | |
US7883626B2 (en) | Method for the treatment of acid mine drainage | |
KR102633480B1 (en) | Improved slag from non-ferrous metal manufacturing | |
JP4751181B2 (en) | Sand-capping method | |
JP3175694B2 (en) | Submerged stone and method of manufacturing the same | |
JP5818469B2 (en) | Treatment method of bottom sediment | |
WO2019244856A1 (en) | Heavy metal-insolubilized solidification material and technique for improving contaminated soil | |
JP4150283B2 (en) | Bottom coating material | |
JP7376244B2 (en) | Water quality improvement material and its manufacturing method | |
JP3782376B2 (en) | Method for suppressing fluorine elution from smelting slag containing fluorine | |
JP2010120987A (en) | Solidifying agent | |
JP5002368B2 (en) | Backfilling and backfilling material for underwater construction using granulated blast furnace slag and its manufacturing method | |
WO2015086350A1 (en) | Method for producing a water barrier material as landfill cover, capping or landfill liner underneath and/or aside a landfill and water barrier material produced thereby | |
JP5135552B2 (en) | Method for producing steelmaking slag for water injection | |
JP4928401B2 (en) | Hydrated solidified body, method for producing the same, and offshore structure | |
EP2903756B1 (en) | Method for producing a water barrier material as landfill cover, capping or landfill liner underneath and/or aside a landfill and water barrier material produced thereby | |
JP2005133309A (en) | Waters environmental recovery material for tidal marsh and shallow place | |
Pribulová et al. | Utilization of slags from foundry process | |
KR101977744B1 (en) | A Processing method of improvement for effective utilization of high water -level fine soil and System using it | |
JP2000143303A (en) | Building stone to be sunk in water and production of the same stone | |
RU2824636C2 (en) | Use of improved slag from production of non-ferrous metals | |
JP6803584B2 (en) | Method for manufacturing coal ash granules and method for improving water bottom | |
TWI399355B (en) | Method for manufacturing secondary aluminum slag | |
JP4431765B2 (en) | Manufacturing method of concrete and concrete products mainly using industrial waste |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080306 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091201 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100201 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101130 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110131 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110510 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110520 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4751181 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140527 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140527 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140527 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |