JP2004195456A - Method for preventing water from being polluted by dioxins-containing bottom sediment, and covering material for the prevention - Google Patents
Method for preventing water from being polluted by dioxins-containing bottom sediment, and covering material for the prevention Download PDFInfo
- Publication number
- JP2004195456A JP2004195456A JP2003403286A JP2003403286A JP2004195456A JP 2004195456 A JP2004195456 A JP 2004195456A JP 2003403286 A JP2003403286 A JP 2003403286A JP 2003403286 A JP2003403286 A JP 2003403286A JP 2004195456 A JP2004195456 A JP 2004195456A
- Authority
- JP
- Japan
- Prior art keywords
- slag
- blast furnace
- granulated blast
- furnace slag
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 43
- 239000013049 sediment Substances 0.000 title claims abstract description 43
- 238000000034 method Methods 0.000 title claims abstract description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title abstract description 40
- 150000002013 dioxins Chemical class 0.000 title abstract description 18
- 230000002265 prevention Effects 0.000 title abstract description 5
- 239000002893 slag Substances 0.000 claims abstract description 176
- 239000004576 sand Substances 0.000 claims abstract description 53
- 239000002245 particle Substances 0.000 claims abstract description 47
- 239000000203 mixture Substances 0.000 claims abstract description 14
- 238000009628 steelmaking Methods 0.000 claims description 55
- 239000011248 coating agent Substances 0.000 claims description 28
- 238000000576 coating method Methods 0.000 claims description 28
- 238000003911 water pollution Methods 0.000 claims description 14
- 238000002156 mixing Methods 0.000 claims description 11
- 238000010583 slow cooling Methods 0.000 claims description 10
- HGUFODBRKLSHSI-UHFFFAOYSA-N 2,3,7,8-tetrachloro-dibenzo-p-dioxin Chemical compound O1C2=CC(Cl)=C(Cl)C=C2OC2=C1C=C(Cl)C(Cl)=C2 HGUFODBRKLSHSI-UHFFFAOYSA-N 0.000 claims 4
- 238000009792 diffusion process Methods 0.000 abstract description 5
- 229910000831 Steel Inorganic materials 0.000 abstract description 3
- 239000010959 steel Substances 0.000 abstract description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 48
- 239000011247 coating layer Substances 0.000 description 29
- KVGZZAHHUNAVKZ-UHFFFAOYSA-N 1,4-Dioxin Chemical compound O1C=COC=C1 KVGZZAHHUNAVKZ-UHFFFAOYSA-N 0.000 description 22
- 230000007613 environmental effect Effects 0.000 description 21
- 239000011362 coarse particle Substances 0.000 description 19
- 239000007787 solid Substances 0.000 description 19
- 238000005070 sampling Methods 0.000 description 18
- 230000000694 effects Effects 0.000 description 15
- 239000000126 substance Substances 0.000 description 12
- AMINHOCKWMGIQS-UHFFFAOYSA-N 1,4-dioxine;hydrate Chemical compound O.O1C=COC=C1 AMINHOCKWMGIQS-UHFFFAOYSA-N 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 4
- 238000005469 granulation Methods 0.000 description 4
- 230000003179 granulation Effects 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 238000011109 contamination Methods 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- 230000000274 adsorptive effect Effects 0.000 description 2
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 2
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- 239000000292 calcium oxide Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- -1 silicate ions Chemical class 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Landscapes
- Underground Or Underwater Handling Of Building Materials (AREA)
- Treatment Of Sludge (AREA)
Abstract
Description
本発明は、港湾や河川、湖沼のダイオキシン類を含有する底質から、ダイオキシン類が飛散や拡散して水質が汚染されることを防止する方法および被覆材に関する。 The present invention relates to a method and a covering material for preventing dioxins from scattering or dispersing from dioxin-containing sediment of a harbor, river, lake, or marsh to contaminate water quality.
港湾や河川、湖沼の底質からの汚染物質の飛散や拡散による水質の汚染を防止する方法としては、従来から、土砂等による覆砂等の方法が知られている。しかし、従来から知られている土砂等による覆砂等の方法では、十分に汚染防止ができない場合があった。 2. Description of the Related Art As a method for preventing water pollution due to scattering and diffusion of pollutants from the bottom of harbors, rivers, lakes and marshes, a method such as sand covering with earth and sand is conventionally known. However, conventionally known methods such as sand covering with earth and sand may not sufficiently prevent contamination.
その改善案として、特許文献1には、底質の表層を砂で覆い、更に水砕スラグなどの吸着性無機物質で覆い、底質からの溶出等で生じる汚染成分を吸着によって除去する方法が開示されている。この方法では、吸着性無機物質の一つとして水砕スラグを用い、この形状は、好ましくは粉末状であるとしている。しかし、水砕スラグが特に高炉水砕スラグである場合、その水硬性により強固に固結してしまい、更に粉末状にすればその傾向は激しく、水底の構造としては好ましくない。 As an improvement plan, Patent Literature 1 discloses a method of covering the surface layer of the sediment with sand, further covering the surface layer with an adsorptive inorganic substance such as granulated slag, and removing contaminants generated by elution from the sediment by adsorption. It has been disclosed. In this method, granulated slag is used as one of the adsorptive inorganic substances, and the shape is preferably in the form of powder. However, when the granulated slag is a granulated blast furnace slag, the granulated slag is firmly consolidated due to its hydraulic property, and if the granulated slag is further powdered, the tendency is remarkable, which is not preferable as the structure of the water bottom.
前記問題の解決策として、特許文献2には、水底を製鋼スラグで覆い、更にその上に高炉水砕スラグの上部層を形成する方法が開示されている。この方法では、製鋼スラグによって、底質からの溶出等で生じる汚染成分の浄化を行うとしており、製鋼スラグの固結を軽減するため粗大粒のものを使用することが好ましいとしている。更に、製鋼スラグの上部層を高炉水砕スラグで覆う構造とすることによって、高炉水砕スラグの浄化効果を利用しつつ、下部層の製鋼スラグによって高炉水砕スラグの固結を軽減するとしている。 As a solution to the above problem, Patent Literature 2 discloses a method in which a water bottom is covered with steelmaking slag, and an upper layer of granulated blast furnace slag is further formed thereon. In this method, the steelmaking slag purifies polluting components generated by elution from the sediment and the like, and it is preferable to use coarse slag in order to reduce the solidification of the steelmaking slag. Furthermore, by using a structure in which the upper layer of the steelmaking slag is covered with the granulated blast furnace slag, the solidification of the granulated blast furnace slag is reduced by the steelmaking slag of the lower layer while utilizing the purification effect of the granulated blast furnace slag. .
以上のごとく、高炉水砕スラグは、底質からの汚染物質による水質汚染防止に効果的ではあるものの、その水硬性により、底質を強固に固結させるという好ましくない性質を有する。 As described above, the granulated blast furnace slag is effective in preventing water pollution by pollutants from the sediment, but has an unfavorable property of firmly consolidating the sediment due to its hydraulic property.
港湾や河川、湖沼の底質や水中に存在するダイオキシン類は、その多くが懸濁物質に付着していると思われる。例えば、非特許文献1では、河川水中のダイオキシン類については、多くが水中の懸濁物質に存在していることが示唆されたと記載されている。
本発明は、高炉水砕スラグの水硬性を制御し、積極的に利用することによって、特にダイオキシン類含有底質による水質汚染を効果的に防止する方法を提供することを目的とする。 An object of the present invention is to provide a method for effectively preventing water pollution particularly by dioxin-containing sediment by controlling and actively utilizing the hydraulic property of granulated blast furnace slag.
上述のように、河川中のダイオキシン類については、多くが水中の懸濁物質に存在していることが示唆されているので、本発明者らは、ダイオキシン類の飛散や拡散の防止には、懸濁物質の飛散や拡散を防止すればよいと考えた。しかし、従来法である底質を土砂等で覆砂する方法では、土砂粒子間の間隔は覆砂後殆ど変化しないので、前記間隔よりも小さな粒径の微粒子が、覆砂層を通過して水中に拡散する懸念がある。
そこで本発明者らは、高炉水砕スラグの水硬性に着目し、高炉水砕スラグを用いて底質を被覆する方法について検討を行った。
As described above, it has been suggested that many dioxins in rivers are present in suspended matter in water, so the present inventors have proposed that dioxins be prevented from scattering and spreading. We thought that it was only necessary to prevent scattering and diffusion of the suspended matter. However, in the conventional method in which sediment is covered with sediment or the like, the interval between the sediment particles hardly changes after the sand is covered. There is concern that it will spread to.
Therefore, the present inventors paid attention to the hydraulic property of the granulated blast furnace slag, and studied a method of coating sediment using the granulated blast furnace slag.
高炉水砕スラグは、水環境下におかれると、カルシウムイオンや珪酸イオン等を溶出し、スラグ粒子表面にこれらの水和反応生成物が沈積して、スラグ粒子間隙が閉塞されていく性質である水硬性を有する。本発明者らは、高炉水砕スラグで底質を被覆したところ、懸濁物質の飛散や拡散の防止効果は、被覆初期においては従来の土砂覆砂とほぼ同等程度か若干劣る場合もあったが、スラグの水硬性により徐々に向上し、長期的には従来の土砂覆砂以上の効果が得られることを確認した。懸濁物質としては、土粒子や有機物質等があるが、ダイオキシン類の付着している懸濁物質が、特にシリカ質である場合には、より飛散や拡散の防止効果が見られた。しかし、高炉水砕スラグ単独で被覆すると、被覆層が殆ど固結・閉塞して盤状になったり、長期的に土砂と殆ど変わらない効果しか得られない場合もあった。 When granulated blast furnace slag is placed in a water environment, calcium ions and silicate ions are eluted, these hydration products are deposited on the surface of slag particles, and the gap between slag particles is closed. Has a certain hydraulic property. The present inventors coated sediment with granulated blast furnace slag, and the effect of preventing suspended matter from scattering and diffusing was, in the initial stage of the coating, almost equal to or slightly inferior to conventional sediment-covered sand. However, it was confirmed that the hydraulic properties of the slag gradually improved, and in the long term, an effect higher than that of the conventional sand covering sand was obtained. Examples of the suspended substance include soil particles and organic substances. When the suspended substance to which dioxins are adhered is particularly siliceous, the effect of preventing scattering and diffusion was more observed. However, when the granulated blast furnace slag is coated alone, there are cases where the coating layer is almost solidified and clogged to form a disk-like shape, or the effect is almost the same as that of earth and sand in the long term.
そこで本発明者らは、高炉水砕スラグの水硬性が制御できれば、ダイオキシン類含有底質による水質汚染を防止するとともに、好ましい水底の構造が得られるのではないかと考え、種々の検討を行った。 Therefore, the present inventors considered that if the hydraulic property of the granulated blast furnace slag could be controlled, water pollution by dioxin-containing sediment could be prevented, and a preferable structure of the water bottom could be obtained, and various studies were conducted. .
本発明者は、水域で使用する高炉水砕スラグの水硬性に影響を及ぼす要因について調査した結果、スラグの粒度分布が最も大きな要因であることがわかった。そして、使用する水域にもよるが、粗粒率が2.0〜2.7程度以下で細粒が多いほど固結し易く、逆に、粗粒率が2.0〜2.7程度よりも大きく粗粒が多いほど固結し難いことがわかった。なお、粗粒率はJISA0203の定義に従うものであり、本発明ではこの定義に従って測定を行った。具体的には、80mm、40mm、20mm、10mm、5mm、2.5mm、1.2mm、0.6mm、0.3mm及び0.15mmの網ふるいの一組を用いてふるい分けを行い、各ふるいを通らない全部の試料の百分率の和を100で除して求めた。 As a result of investigating the factors affecting the hydraulic properties of the granulated blast furnace slag used in the water area, the inventors have found that the particle size distribution of the slag is the largest factor. And, depending on the water area to be used, the coarse grain ratio is about 2.0 to 2.7 or less, and the more fine grains there are, the easier it is to consolidate. Conversely, the coarse grain rate is about 2.0 to 2.7. It was also found that the larger the coarse particles, the harder it was to consolidate. In addition, the coarse particle ratio complies with the definition of JISA0203, and in the present invention, the measurement was performed according to this definition. Specifically, sieving is performed using a set of 80 mm, 40 mm, 20 mm, 10 mm, 5 mm, 2.5 mm, 1.2 mm, 0.6 mm, 0.3 mm, and 0.15 mm mesh sieves. The sum of the percentages of all samples that did not pass was determined by dividing by 100.
以上の知見に基づき、本発明者らは、高炉水砕スラグに細粒が多く固結し易い場合には、高炉水砕スラグに天然砂を混合することにより水硬性を低下できると考えた。一方、粗粒が多く固結し難い場合には、製鋼スラグや高炉徐冷スラグを混合することにより水硬性を向上できると考えた。 Based on the above findings, the present inventors considered that, when fine granules are easily formed in granulated blast furnace slag, the hydraulic property can be reduced by mixing natural sand with granulated blast furnace slag. On the other hand, when it was difficult to solidify a large amount of coarse particles, it was considered that hydraulic properties could be improved by mixing steelmaking slag and blast furnace slag.
本発明は、上記知見によりなし得たものであり、その要旨とするところは以下の通りである。 The present invention has been achieved based on the above findings, and the gist thereof is as follows.
(1) ダイオキシン類含有底質を、高炉水砕スラグに製鋼スラグおよび/または天然砂を添加した混合物で、被覆することを特徴とする、ダイオキシン類含有底質による水質汚染の防止方法。 (1) A method for preventing water pollution by dioxin-containing sediment, wherein the dioxin-containing sediment is coated with a mixture of granulated blast furnace slag and steelmaking slag and / or natural sand.
(2) 前記混合物中の前記高炉水砕スラグの配合量が5〜95質量%であることを特徴とする、(1)に記載の方法。 (2) The method according to (1), wherein the blended amount of the granulated blast furnace slag in the mixture is 5 to 95% by mass.
(3) 前記製鋼スラグの粒径が前記高炉水砕スラグの平均粒径以上25mm以下であることを特徴とする、(1)または(2)に記載の方法。 (3) The method according to (1) or (2), wherein a particle size of the steelmaking slag is not less than an average particle size of the granulated blast furnace slag and not more than 25 mm.
(4) 高炉水砕スラグと製鋼スラグおよび/または天然砂を混合したことを特徴とする、ダイオキシン類含有底質による水質汚染の防止用被覆材。 (4) A coating material for preventing water pollution by dioxin-containing sediment, wherein granulated blast furnace slag and steelmaking slag and / or natural sand are mixed.
(5) 製鋼スラグおよび/または天然砂の替わりに、製鋼スラグ、天然砂、高炉徐冷スラグのうち1種または2種以上を添加することを特徴とする(1)〜(3)のいずれかに記載のダイオキシン類含有底質による水質汚染の防止方法。 (5) Instead of steelmaking slag and / or natural sand, one or more of steelmaking slag, natural sand, and blast furnace slow-cooling slag are added, and any one of (1) to (3) is characterized. 3. The method for preventing water pollution by dioxin-containing sediments described in 1. above.
(6) 高炉水砕スラグと、製鋼スラグ、天然砂、高炉徐冷スラグのうち1種または2種以上を混合したことを特徴とする、ダイオキシン類含有底質による水質汚染の防止用被覆材。 (6) A coating material for preventing water pollution by dioxin-containing sediment, characterized by mixing one or more of granulated blast furnace slag, steelmaking slag, natural sand, and slowly cooled blast furnace slag.
本発明により、港湾や河川、湖沼の底質に含まれるダイオキシン類の飛散や拡散による水質汚染を、従来法の土砂等による覆砂よりも効果的に防止することができる。また、製鉄所から発生する副生成物であるスラグを利用できるため、天然資源である土砂の使用量を減らし、資源利用上好ましい効果も得られる。 Advantageous Effects of Invention According to the present invention, water pollution due to scattering and diffusion of dioxins contained in sediment of a port, river, lake or marsh can be more effectively prevented than sand covering by conventional methods such as earth and sand. In addition, since slag, which is a by-product generated from a steel mill, can be used, the amount of use of natural resources, such as earth and sand, can be reduced, and a favorable effect on resource utilization can be obtained.
本発明のダイオキシン類含有底質による水質汚染の防止方法は、港湾や河川、湖沼のダイオキシン類を含有する底質から、ダイオキシン類が飛散や拡散して水質が汚染されることを防止するために、高炉水砕スラグに、製鋼スラグ、天然砂、高炉徐冷スラグのうち少なくとも1種または2種以上を混合した物で底質を覆う方法である。 The method for preventing water pollution by dioxin-containing sediments of the present invention is intended to prevent dioxins from scattering or dispersing from dioxin-containing sediments of harbors, rivers, and lakes to prevent water pollution. And a method in which sediment is covered with a mixture of at least one or more of granulated blast furnace slag, steelmaking slag, natural sand, and slowly cooled blast furnace slag.
なお、高炉水砕スラグは粒度分布をもっており、本発明における高炉水砕スラグの粒径または平均粒径とは、JISA1102の定義に基づいて、篩を通過する累積百分率が50%となる篩目寸法相当とする。 The granulated blast furnace slag has a particle size distribution, and the particle size or average particle size of the granulated blast furnace slag in the present invention refers to the sieve size at which the cumulative percentage passing through the sieve is 50% based on the definition of JISA1102. Equivalent.
本発明に用いる高炉水砕スラグとしては、水砕処理後そのままのものを用いることができるが、加工によって形状や粒径を調整してもよい。水砕処理後のスラグ粒子は角張っており、砂に比較して粒子の充填性はよくないが、本発明に係る製鋼スラグ、天然砂、高炉徐冷スラグのうち1種または2種以上を混合することにより、高炉水砕スラグの水硬性を制御するだけでなく、高炉水砕スラグの粒子間隔を充填することも可能となり、隙間を充填することで、被覆初期から従来の土砂覆砂と同程度の効果が得られる。 As the granulated blast furnace slag used in the present invention, the granulated blast furnace slag can be used as it is after the granulation treatment, but the shape and particle size may be adjusted by processing. The slag particles after granulation are angular and have less good filling of particles than sand, but one or more of the steelmaking slag, natural sand, and blast furnace slowly cooled slag according to the present invention are mixed. In addition to controlling the hydraulic properties of the granulated blast furnace slag, it is also possible to fill the particle spacing of the granulated blast furnace slag, and by filling the gaps, the same as conventional sand and sand covering from the beginning of coating. Some degree of effect can be obtained.
また、高炉水砕スラグに加工を施して形状や粒径を調整すれば、高炉水砕スラグの充填性を向上させることが可能であるが、通常は加工によって粒径が小さくなるので、水硬性を向上させる作用も生じる。この時には、製鋼スラグ、天然砂、高炉徐冷スラグのうち1種または2種以上を混合して、高炉水砕スラグの水硬性を制御すればよい。通常、水砕処理後そのままでは、粗粒率約4〜2.5程度の高炉水砕スラグが得られる。これに加工を行った場合には、水砕処理後そのままの粗粒率以下から0まで調整可能ではあるが、本発明では、粗粒率の下限が約1程度のスラグを用いる。 If the granulated blast furnace slag is processed to adjust its shape and particle size, the filling properties of the granulated blast furnace slag can be improved. Is also improved. At this time, one or more of steelmaking slag, natural sand, and blast furnace slow cooling slag may be mixed to control the hydraulicity of the granulated blast furnace slag. Normally, granulated blast furnace slag having a coarse particle ratio of about 4 to 2.5 is obtained as it is after the granulation treatment. When this is processed, it can be adjusted from the coarse particle ratio as it is after the water granulation treatment to 0, but in the present invention, a slag having a lower limit of the coarse particle ratio of about 1 is used.
本発明では、底質の被覆に、高炉水砕スラグと、製鋼スラグ、天然砂、高炉徐冷スラグのうち少なくとも1種または2種以上との混合物を使用する。該混合物中の高炉水砕スラグの配合量は5〜95質量%が好ましい。前述のように、使用する水域にもよるが、高炉水砕スラグの粗粒率が2.0〜2.7程度以下で細粒である場合など、高炉水砕スラグの水硬性が非常に強い場合には、高炉水砕スラグの少量の配合で十分な水硬性が得られるが、その占める割合が5質量%未満では、高炉水砕スラグの水硬性が十分に発揮されない。一方、高炉水砕スラグの配合量が95質量%より多いと、混合する製鋼スラグ、天然砂、高炉徐冷スラグの混合物全体に占める割合が少なくなるため、製鋼スラグ、天然砂、及び高炉徐冷スラグによる水硬性制御効果があまり発揮されない。 In the present invention, a mixture of granulated blast furnace slag and at least one or more of steelmaking slag, natural sand, and slowly cooled blast furnace slag is used for coating the sediment. The blending amount of the granulated blast furnace slag in the mixture is preferably from 5 to 95% by mass. As described above, depending on the water area to be used, the granulated blast furnace slag has a very high hydraulicity, such as a case where the granulated blast furnace slag has a coarse particle ratio of about 2.0 to 2.7 or less and is fine. In this case, sufficient hydraulic properties can be obtained with a small amount of the granulated blast furnace slag, but if the proportion occupies less than 5% by mass, the hydraulic properties of the granulated blast furnace slag are not sufficiently exhibited. On the other hand, if the blending amount of the granulated blast furnace slag is more than 95% by mass, the ratio of the steelmaking slag, natural sand, and blast furnace slowly cooled slag to the entire mixture becomes small. Hydraulic control effect of slag is not so much exhibited.
本発明に用いる天然砂としては、山砂、川砂、海砂などを用いることができる。また化学成分的に天然性のものであれば、岩石からの砕砂を用いることも可能である。用いる天然砂の平均粒径は、好ましくは0.3〜1.2mmであるが、高炉水砕スラグの粒径との組み合わせによって、必ずしも該平均粒径に限定されるものではない。 As natural sand used in the present invention, mountain sand, river sand, sea sand and the like can be used. If the chemical component is natural, it is also possible to use crushed sand from rock. The average particle size of the natural sand used is preferably 0.3 to 1.2 mm, but the average particle size is not necessarily limited by the combination with the particle size of the granulated blast furnace slag.
本発明に用いる製鋼スラグとしては、転炉スラグや溶銑予備処理スラグなどが挙げられるが、水中に浸漬したときのpHが高いほど、少量の混合で高炉水砕スラグの水硬性を向上させる効果があるため好ましい。例えば、高炉水砕スラグと製鋼スラグを含む混合物を水中に浸漬したとき、粒子間隙水のpHが、全量製鋼スラグであった場合の12程度もあれば十分であるが、9以上、より好ましくは10以上になるよう、製鋼スラグの材質や配合量を決めればよい。 Examples of the steelmaking slag used in the present invention include converter slag and hot metal pretreatment slag, and the higher the pH when immersed in water, the smaller the amount of mixing, the more the effect of improving the hydraulic properties of the granulated blast furnace slag is improved. It is preferable because there is. For example, when a mixture containing granulated blast furnace slag and steelmaking slag is immersed in water, the pH of the particle interstitial water is sufficient if it is about 12 when the total amount is steelmaking slag, but 9 or more, more preferably 9 or more. The material and the amount of the steelmaking slag may be determined so as to be 10 or more.
本発明に用いる高炉徐冷スラグとしては、製鋼スラグと同様に水中に浸漬したときのpHを高め、高炉水砕スラグの水硬性を向上させるものである。化学成分は高炉水砕スラグとほぼ同じであるが、高炉水砕スラグよりpHが高いものを用いる。また海域の底質を被覆する場合に、製鋼スラグを混合してpHを上げ過ぎると白濁を生じる場合がある。高炉徐冷スラグでは製鋼スラグに比べ急激なpH上昇がないので、白濁を抑制する場合には、高炉徐冷スラグを用いることができる。 The blast furnace slow cooling slag used in the present invention increases the pH when immersed in water in the same manner as steelmaking slag, and improves the hydraulic properties of the granulated blast furnace slag. Chemical components are almost the same as granulated blast furnace slag, but those having a higher pH than granulated blast furnace slag are used. In addition, when covering the sediment of the sea area, if the pH is excessively increased by mixing steelmaking slag, white turbidity may occur. Since the blast furnace slow cooling slag does not have a sharp increase in pH as compared with the steelmaking slag, the blast furnace slow cooling slag can be used when suppressing cloudiness.
本発明に用いる製鋼スラグは、溶融スラグの凝固した塊を破砕し、分級によって粒度調整して得たものである。そして製鋼スラグの粒径は、分級したときのふるい寸法の大きい方を上限、小さい方を下限で表すものとする。本発明に用いる製鋼スラグの粒径は、その上限値および下限値が、高炉水砕スラグの平均粒径以上25mm以下であるとより効果が高い。すなわち、製鋼スラグが遊離の酸化カルシウムを含有していた場合に、製鋼スラグの粒径が高炉水砕スラグの平均粒径未満であると表面活性が高く、遊離の酸化カルシウムと水との反応で崩壊する製鋼スラグの量が多くなるため、被覆材の粒子隙間が増加したり、一部被覆層が破断する場合があるため、比較的粗粒であるとより効果が高くなる。また、製鋼スラグの最大粒径は25mm以下であることが好ましい。25mmより大きくなると、高炉水砕スラグとの混合物で底質を被覆する際に、比重差や粒径差によって分離が起こり均一な被覆層を形成できなくなってくる。本発明に用いる高炉徐冷スラグは、粒径の制限が無い。高炉徐冷スラグの化学成分は高炉水砕スラグとほぼ同じであり、製鋼スラグのような崩壊の懸念はない。また、高炉水砕スラグとの比重差が製鋼スラグに比べ殆どなく、被覆の際の分離を回避するためには好ましい。 The steelmaking slag used in the present invention is obtained by crushing a solidified mass of molten slag and adjusting the particle size by classification. The particle size of the steelmaking slag is expressed by the upper limit of the size of the sieve when classified and the lower limit of the size. The grain size of the steelmaking slag used in the present invention is more effective when the upper limit value and the lower limit value are not less than the average particle size of the granulated blast furnace slag and not more than 25 mm. That is, if the steelmaking slag contained free calcium oxide, the surface activity is high if the particle size of the steelmaking slag is less than the average particle size of the granulated blast furnace slag, and the reaction between free calcium oxide and water Since the amount of collapsing steelmaking slag increases, the particle gap of the coating material may increase or the coating layer may be partially broken. The maximum particle size of the steelmaking slag is preferably 25 mm or less. When it is larger than 25 mm, when the sediment is coated with the mixture with the granulated blast furnace slag, separation occurs due to a difference in specific gravity and a difference in particle size, and a uniform coating layer cannot be formed. The blast furnace slow cooling slag used in the present invention has no restriction on the particle size. The chemical composition of the blast furnace slowly cooled slag is almost the same as that of the granulated blast furnace slag, and there is no fear of collapse like steelmaking slag. Further, there is almost no difference in specific gravity from the granulated blast furnace slag as compared with the steelmaking slag, which is preferable for avoiding separation at the time of coating.
以下、本発明の実施例を示すが、本発明はこの実施例に限定されるものではない。
実施例1〜16:
水質のダイオキシン類濃度が環境基準1pg−TEQ/Lを超えている河川および港で、本発明法に関する高炉水砕スラグと、山砂、製鋼スラグ、高炉除冷スラグの1種または2種以上の混合物による底質の被覆試験を行った。河川では、底質ダイオキシン類濃度が26pg−TEQ/g、水質ダイオキシン類濃度が4pg−TEQ/L、懸濁物質が20mg/Lであった。港では、底質ダイオキシン類濃度が28pg−TEQ/g、水質ダイオキシン類濃度が1.2pg−TEQ/L、懸濁物質が10mg/Lであった。
Hereinafter, although an example of the present invention is shown, the present invention is not limited to this example.
Examples 1 to 16:
In rivers and harbors where the concentration of dioxins in water quality exceeds the environmental standard of 1 pg-TEQ / L, one or more of blast furnace granulated slag, mountain sand, steelmaking slag, and blast furnace decooled slag according to the present invention are used. A test of coating the sediment with the mixture was performed. In the river, the sediment dioxin concentration was 26 pg-TEQ / g, the water dioxin concentration was 4 pg-TEQ / L, and the suspended solids were 20 mg / L. At the port, the sediment dioxins concentration was 28 pg-TEQ / g, the water dioxins concentration was 1.2 pg-TEQ / L, and the suspended solids were 10 mg / L.
標記水域の底質を被覆材で被覆し、約1年後に、水質や被覆層の調査を行って汚染防止効果を評価した。被覆層の硬化状況の評価は、被覆層の一部をコアサンプリングし、サンプル材が崩壊することなく自立して形状を保っている場合に、硬化しているものとみなした。水質の測定は、底質上または覆砂上の約500mmの水を採取して行った。 The sediment of the designated water area was covered with a covering material, and about one year later, the quality of the water and the covering layer were investigated to evaluate the pollution prevention effect. In the evaluation of the curing state of the coating layer, a part of the coating layer was core-sampled, and it was considered that the sample material had cured when the sample material maintained its shape independently without collapsing. The water quality was measured by sampling about 500 mm of water on the sediment or on the sand.
表1および表2に結果を示す。 Tables 1 and 2 show the results.
実施例1では、高炉水砕スラグの粗粒率が2.5の若干細粒であったため、山砂を5質量%配合して被覆材とした。水質ダイオキシン類濃度は、実施後0.1pg−TEQ/Lであり、環境基準を満足した。懸濁物質濃度は、実施後5mg/Lに低下した。また被覆層の硬化状況を見るため、被覆層の一部をコアサンプリングしたところ、サンプリング材は崩壊することなく自立して形状を保っていたことから、硬化していることが確認された。被覆層に亀裂などは見られなかった。 In Example 1, since the granulated blast furnace slag was slightly fine with a coarse particle ratio of 2.5, mountain sand was blended at 5% by mass to form a coating material. The water quality dioxin concentration was 0.1 pg-TEQ / L after the implementation, which satisfied the environmental standards. The suspended solids concentration dropped to 5 mg / L after the run. In addition, when a part of the coating layer was subjected to core sampling in order to check the curing state of the coating layer, it was confirmed that the sampled material had maintained its shape independently without collapsing, and was thus cured. No cracks or the like were found in the coating layer.
実施例2では、高炉水砕スラグの粗粒率が2.2の細粒であったため、山砂を20質量%配合して被覆材とした。水質ダイオキシン類濃度は、実施後0.08pg−TEQ/Lになり、環境基準を満足した。また懸濁物質濃度は、実施後4mg/Lに低下した。サンプリング材は自立して形状を保っており、硬化していることが確認された。被覆層に亀裂などは見られなかった。 In Example 2, the granulated blast furnace slag was a fine particle having a coarse particle ratio of 2.2, and therefore, 20 mass% of mountain sand was blended to obtain a coating material. The water quality dioxin concentration was 0.08 pg-TEQ / L after the implementation, which satisfied the environmental standards. Further, the concentration of the suspended substance was reduced to 4 mg / L after the operation. It was confirmed that the sampling material maintained its shape by itself and was hardened. No cracks or the like were found in the coating layer.
実施例3では、高炉水砕スラグの粗粒率が2の細粒であったため、山砂を70質量%配合して被覆材とした。水質ダイオキシン類濃度は、実施後に0.07pg−TEQ/Lとなり、環境基準を満足した。また懸濁物質濃度は、実施後4mg/Lに低下した。サンプリング材は自立して形状を保っており、硬化していることが確認された。被覆層に亀裂などは見られなかった。 In Example 3, since the granulated blast-furnace slag had a fine grain ratio of 2, the sand was blended at 70% by mass to form a coating material. The water dioxin concentration was 0.07 pg-TEQ / L after the implementation, which satisfied the environmental standards. Further, the concentration of the suspended substance was reduced to 4 mg / L after the operation. It was confirmed that the sampling material maintained its shape by itself and was hardened. No cracks or the like were found in the coating layer.
実施例4では、高炉水砕スラグの粗粒率が3で若干粗粒であったため、水硬性を高めるため、製鋼スラグを7質量%配合して被覆材とした。用いた製鋼スラグの粒径範囲は1〜5mmとした。なお高炉水砕スラグの平均粒径は0.9mmであった。水質ダイオキシン類濃度は、実施後は0.07pg−TEQ/Lであり、環境基準を十分満足した。懸濁物質濃度は、実施後は4mg/Lに低下した。サンプリング材は自立して形状を保っており、硬化していることが確認された。被覆層に亀裂などは見られなかった。 In Example 4, the granulated blast furnace slag had a coarse particle ratio of 3 and was slightly coarse, so that 7% by mass of steelmaking slag was blended as a coating material to increase hydraulicity. The particle size range of the steelmaking slag used was 1 to 5 mm. The average particle size of the granulated blast furnace slag was 0.9 mm. The water quality dioxin concentration was 0.07 pg-TEQ / L after the implementation, which sufficiently satisfied the environmental standards. The suspended solids concentration dropped to 4 mg / L after the run. It was confirmed that the sampling material maintained its shape by itself and was hardened. No cracks or the like were found in the coating layer.
実施例5では、粗粒率2.5、平均粒径0.7mmのやや細粒な高炉水砕スラグに、粒径1〜25mmの製鋼スラグを90質量%配合して被覆材とした。水質ダイオキシン類濃度は、実施後は0.08pg−TEQ/Lであり、環境基準を満足し、懸濁物質濃度も実施後は5mg/Lに低下した。サンプリング材は自立して形状を保っており、硬化していることが確認された。被覆層に亀裂などは見られなかった。 In Example 5, a coating material was prepared by mixing 90 mass% of a steelmaking slag having a particle size of 1 to 25 mm with a slightly fine-grained granulated blast furnace slag having a coarse particle ratio of 2.5 and an average particle size of 0.7 mm. The water dioxin concentration was 0.08 pg-TEQ / L after the operation, which satisfied the environmental standards, and the suspended solid concentration was reduced to 5 mg / L after the operation. It was confirmed that the sampling material maintained its shape by itself and was hardened. No cracks or the like were found in the coating layer.
実施例6では、粗粒率が3.5の比較的粗粒な高炉水砕スラグに、粒径1mm未満の製鋼スラグを3質量%配合して被覆材とした。製鋼スラグは、高炉水砕スラグの平均粒径より小さいく、崩壊の懸念があったので、配合量は少なくした。水質ダイオキシン類濃度は、実施後に0.2pg−TEQ/Lとなり、環境基準を満足した。懸濁物質濃度も実施後は5mg/Lに低下した。サンプリング材は自立して形状を保っており、被覆層に崩壊の兆候は見られなかった。 In Example 6, 3 mass% of steelmaking slag having a particle size of less than 1 mm was blended with a relatively coarse-grained granulated blast furnace slag having a coarseness ratio of 3.5 to obtain a coating material. Since the steelmaking slag was smaller than the average particle size of the granulated blast furnace slag and there was a fear of collapse, the blending amount was reduced. The water quality dioxin concentration was 0.2 pg-TEQ / L after the implementation, which satisfied the environmental standards. The suspension concentration also dropped to 5 mg / L after the run. The sampling material maintained its shape independently, and no signs of collapse were seen in the coating layer.
実施例7では、高炉水砕スラグは粗粒率が3.5、平均粒径1mmで比較的粗粒であったが、山砂を50質量%配合で加え、製鋼スラグを5質量%配合とした被覆材として、製鋼スラグの固化促進作用を確認した。製鋼スラグの粒径範囲は1〜5mmとした。水質ダイオキシン類濃度は、実施後は0.07pg−TEQ/Lであり、環境基準を十分満足し、懸濁物質濃度も実施後は4mg/Lと低下した。サンプリング材は自立して形状を保っており、硬化していることが確認された。被覆層に亀裂などは見られなかった。 In Example 7, the granulated blast furnace slag had a coarse particle ratio of 3.5 and an average particle diameter of 1 mm, and was relatively coarse. However, mountain sand was added in an amount of 50% by mass, and steelmaking slag was added in an amount of 5% by mass. The effect of promoting the solidification of steelmaking slag was confirmed as the coating material thus obtained. The particle size range of the steelmaking slag was 1 to 5 mm. The water dioxin concentration was 0.07 pg-TEQ / L after the operation, sufficiently satisfying the environmental standards, and the suspended solid concentration was reduced to 4 mg / L after the operation. It was confirmed that the sampling material maintained its shape by itself and was hardened. No cracks or the like were found in the coating layer.
実施例8では、粗粒率3の高炉水砕スラグに、水硬性を高めるため、高炉徐冷スラグを10質量%配合して被覆材とした。用いた高炉徐冷スラグの粒径は5mm以下である。水質ダイオキシン類濃度は、実施後は0.07pg−TEQ/Lであり、環境基準を十分満足した。懸濁物質濃度は、実施後は4mg/Lに低下した。サンプリング材は自立して形状を保っており、硬化していることが確認された。被覆層に亀裂などは見られなかった。 In Example 8, in order to enhance hydraulicity, 10% by mass of blast furnace slowly cooled slag was blended with granulated blast furnace slag having a coarse particle ratio of 3 to obtain a coating material. The particle size of the blast furnace slow cooling slag used is 5 mm or less. The water quality dioxin concentration was 0.07 pg-TEQ / L after the implementation, which sufficiently satisfied the environmental standards. The suspended solids concentration dropped to 4 mg / L after the run. It was confirmed that the sampling material maintained its shape by itself and was hardened. No cracks or the like were found in the coating layer.
実施例9では、実施例8と同様、高炉水砕スラグに高炉徐冷スラグを10質量%配合して被覆材とした。用いた高炉徐冷スラグの粒径は25mm以下で、実施例7より粗粒が多い。水質ダイオキシン類濃度は、実施後は0.08pg−TEQ/Lであり、環境基準を十分満足した。懸濁物質濃度は、実施後は4mg/Lに低下した。サンプリング材は自立して形状を保っており、硬化していることが確認された。被覆層に亀裂などは見られなかった。 In Example 9, similarly to Example 8, a blast furnace granulated slag was blended with 10% by mass of blast furnace slowly cooled slag to obtain a coating material. The particle size of the blast-furnace slow cooling slag used was 25 mm or less, and there were more coarse particles than in Example 7. The water quality dioxin concentration was 0.08 pg-TEQ / L after the implementation, which sufficiently satisfied the environmental standards. The suspended solids concentration dropped to 4 mg / L after the run. It was confirmed that the sampling material maintained its shape by itself and was hardened. No cracks or the like were found in the coating layer.
実施例10では、港の底質に対して処理を行った例であり、粗粒率2.5の高炉水砕スラグに山砂を10質量%配合して被覆材とした。水質ダイオキシン類濃度は、実施後は0.02pg−TEQ/Lであり、環境基準を十分満足し、懸濁物質濃度も実施後は3mg/Lに低下した。サンプリング材は崩壊することなく自立して形状を保っていたことから、硬化していることを確認した。被覆層に亀裂などは見られなかった。 Example 10 is an example in which treatment was performed on the sediment of a port, and 10 mass% of mountain sand was mixed with granulated blast furnace slag having a coarse particle ratio of 2.5 to obtain a coating material. The water dioxin concentration was 0.02 pg-TEQ / L after the operation, sufficiently satisfying the environmental standards, and the suspended solid concentration was reduced to 3 mg / L after the operation. Since the sampling material maintained its shape independently without collapsing, it was confirmed that it was cured. No cracks or the like were found in the coating layer.
実施例11では、粗粒率2.2の細粒な高炉水砕スラグに山砂を70質量%配合して被覆材とした。水質ダイオキシン類濃度は、実施後は0.03pg−TEQ/Lであり、環境基準を満足し、懸濁物質濃度も実施後は3mg/Lに低下した。サンプリング材は自立して形状を保っており、硬化していることが確認された。被覆層に亀裂などは見られなかった。 In Example 11, 70 mass% of mountain sand was mixed with fine-grained granulated blast furnace slag having a coarse particle ratio of 2.2 to obtain a coating material. The water dioxin concentration was 0.03 pg-TEQ / L after the operation, which satisfies the environmental standards, and the suspended solid concentration was reduced to 3 mg / L after the operation. It was confirmed that the sampling material maintained its shape by itself and was hardened. No cracks or the like were found in the coating layer.
実施例12では、高炉水砕スラグが粗粒率3.2、平均粒径0.9mmの比較的粗粒であったので、粒径範囲1〜5mmの製鋼スラグを5質量%配合して被覆材とした。実施後の水質ダイオキシン類濃度は、0.02pg−TEQ/Lであり、環境基準を十分満足し、懸濁物質濃度も3mg/Lに低下した。サンプリング材は自立して形状を保っており、硬化していることが確認された。被覆層に亀裂などは見られなかった。 In Example 12, the granulated blast furnace slag was a relatively coarse particle having a coarse particle ratio of 3.2 and an average particle size of 0.9 mm. Therefore, 5 mass% of steelmaking slag having a particle size range of 1 to 5 mm was blended and coated. Material. The water quality dioxin concentration after the implementation was 0.02 pg-TEQ / L, which sufficiently satisfied the environmental standards, and the suspended solid concentration was reduced to 3 mg / L. It was confirmed that the sampling material maintained its shape by itself and was hardened. No cracks or the like were found in the coating layer.
実施例13では、粗粒率2.7、平均粒径0.7mmの高炉水砕スラグに、粒径範囲1〜25mmの粗大粒を含む製鋼スラグを70重量%配合して被覆材とした。実施後の水質ダイオキシン類濃度は、0.02pg−TEQ/Lであり、環境基準を十分満足し、懸濁物質濃度も3mg/Lに低下した。被覆層の硬化状況も、コアサンプル材は自立し、健全であった。被覆層に亀裂などは見られなかった。 In Example 13, 70% by weight of steelmaking slag containing coarse grains having a grain size range of 1 to 25 mm was blended with granulated blast furnace slag having a coarse grain rate of 2.7 and an average grain size of 0.7 mm to obtain a coating material. The water quality dioxin concentration after the implementation was 0.02 pg-TEQ / L, which sufficiently satisfied the environmental standards, and the suspended solid concentration was reduced to 3 mg / L. Regarding the curing state of the coating layer, the core sample material was independent and sound. No cracks or the like were found in the coating layer.
実施例14では、高炉水砕スラグの粒度が実施例6とほぼ同一であり、山砂50質量%と製鋼スラグ4質量%を配合して被覆材とした。製鋼スラグの粒径は1〜5mmとした。水質ダイオキシン類濃度は、実施後に0.03pg−TEQ/Lとなり、環境基準を十分満足し、懸濁物質濃度も3mg/Lになった。サンプリング材は自立して形状を保っており、硬化していることが確認された。被覆層に亀裂などは見られなかった。 In Example 14, the particle size of the granulated blast furnace slag was almost the same as in Example 6, and 50% by mass of mountain sand and 4% by mass of steelmaking slag were blended to form a coating material. The particle size of the steelmaking slag was 1 to 5 mm. The water-based dioxin concentration was 0.03 pg-TEQ / L after the implementation, sufficiently satisfying the environmental standards, and the suspended solid concentration was also 3 mg / L. It was confirmed that the sampling material maintained its shape by itself and was hardened. No cracks or the like were found in the coating layer.
実施例15では、実施例11で用いた製鋼スラグの代わりに、粒径5mm以下の高炉徐冷スラグを30質量%配合して被覆材とした。実施後の水質ダイオキシン類濃度は、0.02pg−TEQ/Lであり、環境基準を十分満足し、懸濁物質濃度も3mg/Lに低下した。サンプリング材は自立して形状を保っており、硬化していることが確認された。被覆層に亀裂などは見られなかった。 In Example 15, in place of the steelmaking slag used in Example 11, 30% by mass of blast furnace slow cooling slag having a particle size of 5 mm or less was blended to form a coating material. The water quality dioxin concentration after the implementation was 0.02 pg-TEQ / L, which sufficiently satisfied the environmental standards, and the suspended solid concentration was reduced to 3 mg / L. It was confirmed that the sampling material maintained its shape by itself and was hardened. No cracks or the like were found in the coating layer.
実施例16は、粗粒率が3.5の高炉水砕スラグに、5mm以下の山砂5質量%、1〜5mmの製鋼スラグ5質量%、5mm以下の高炉徐冷スラグ10質量%を配合して被覆材とした。水質ダイオキシン類濃度は、実施後は0.03pg−TEQ/Lであり、環境基準を十分満足し、懸濁物質濃度も実施後は3mg/Lに低下した。被覆層に亀裂などはなく、サンプリング材は自立して形状を保った。 In Example 16, the granulated blast furnace slag having a coarse particle ratio of 3.5 was mixed with 5% by mass of mountain sand of 5 mm or less, 5% by mass of steelmaking slag of 1 to 5 mm, and 10% by mass of slowly cooled slag of 5 mm or less. To obtain a coating material. The water dioxin concentration was 0.03 pg-TEQ / L after the operation, sufficiently satisfying the environmental standards, and the suspended solid concentration was reduced to 3 mg / L after the operation. There were no cracks in the coating layer, and the sampling material maintained its shape by itself.
比較例1〜3:
実施例1〜16と同域の、水質のダイオキシン類濃度が環境基準を超えている河川および港で、天然砂、高炉水砕スラグ、高炉水砕スラグと天然砂または製鋼スラグの混合物を用いて、実施例と同様に底質の被覆試験を行い、約1年後に、実施例と同様の方法で水質や被覆層の調査を行って汚染防止効果を評価した。
Comparative Examples 1-3:
In the same region as in Examples 1 to 16, in rivers and ports where the dioxin concentration of water quality exceeds environmental standards, using natural sand, blast furnace granulated slag, a mixture of blast furnace granulated slag and natural sand or steelmaking slag. A coating test on the sediment was performed in the same manner as in the examples, and after about one year, the water quality and the coating layer were investigated in the same manner as in the examples to evaluate the effect of preventing contamination.
表3にその結果を示す。 Table 3 shows the results.
比較例1は、河川の底質を山砂で被覆した例である。水質ダイオキシン類濃度は、実施後0.8pg−TEQ/Lで環境基準満足し、懸濁物質濃度も実施後に10mg/Lと低下したが、実施例1〜6のような高い汚染物質防止効果は得られなかった。被覆層の一部をコアサンプリングすると、山砂であるため、サンプリング材は形状を保つことなく崩壊した。 Comparative Example 1 is an example in which the sediment of a river was covered with mountain sand. The water dioxins concentration was 0.8 pg-TEQ / L after the implementation, which satisfied the environmental standards, and the suspended solids concentration was also reduced to 10 mg / L after the implementation. Could not be obtained. When core sampling was performed on a part of the coating layer, the sampled material collapsed without maintaining its shape due to mountain sand.
比較例2は、河川の底質を高炉水砕スラグのみで被覆した例であるが、被覆層は一部が盤状に固結して、そのコアサンプリング材は形状を保って自立してはいるが、被覆層には亀裂が入っていた。その結果、懸濁物質濃度は10mg/Lに低下したものの、ダイオキシン類濃度は1pg−TEQ/Lと、環境基準程度であった。また被覆層に亀裂が観察されたことから、長期的な防止効果に懸念が生じた。 Comparative Example 2 is an example in which the sediment of a river was covered only with granulated blast furnace slag, but the coating layer was partially solidified in a disc shape, and its core sampling material was free standing while maintaining its shape. However, the coating layer had cracks. As a result, the concentration of suspended solids was reduced to 10 mg / L, but the concentration of dioxins was 1 pg-TEQ / L, which was about environmental standards. In addition, since cracks were observed in the coating layer, there was concern about the long-term prevention effect.
比較例3は、港の底質を山砂で被覆した例である。水質ダイオキシン類濃度は、実施後は0.5pg−TEQ/Lであり環境基準を満足し、懸濁物質濃度も実施後は5mg/Lと低下したが、実施例7〜11のような高い汚染物質防止効果は得られなかった。 Comparative Example 3 is an example in which the sediment of the port was covered with mountain sand. The water dioxin concentration was 0.5 pg-TEQ / L after the implementation, which satisfies environmental standards, and the suspended solids concentration also decreased to 5 mg / L after the implementation. However, high contamination as in Examples 7 to 11 was observed. No substance prevention effect was obtained.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003403286A JP3868418B2 (en) | 2002-12-05 | 2003-12-02 | Method for preventing water pollution by bottom sediment containing dioxins and covering material for prevention |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002353861 | 2002-12-05 | ||
JP2003403286A JP3868418B2 (en) | 2002-12-05 | 2003-12-02 | Method for preventing water pollution by bottom sediment containing dioxins and covering material for prevention |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004195456A true JP2004195456A (en) | 2004-07-15 |
JP3868418B2 JP3868418B2 (en) | 2007-01-17 |
Family
ID=32775072
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003403286A Expired - Fee Related JP3868418B2 (en) | 2002-12-05 | 2003-12-02 | Method for preventing water pollution by bottom sediment containing dioxins and covering material for prevention |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3868418B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006336354A (en) * | 2005-06-03 | 2006-12-14 | Nippon Steel Corp | Underwater charging method and underwater charging device for granular material |
JP2007061054A (en) * | 2005-09-01 | 2007-03-15 | Jfe Steel Kk | Sand cover structure and sand cover method at water bottom |
JP2007126838A (en) * | 2005-11-01 | 2007-05-24 | Nippon Steel Corp | Construction method using covering sand |
WO2015009162A2 (en) | 2013-07-17 | 2015-01-22 | Ecopros As | Process and structure for rehabilitation of sea floor |
-
2003
- 2003-12-02 JP JP2003403286A patent/JP3868418B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006336354A (en) * | 2005-06-03 | 2006-12-14 | Nippon Steel Corp | Underwater charging method and underwater charging device for granular material |
JP4690778B2 (en) * | 2005-06-03 | 2011-06-01 | 新日本製鐵株式会社 | Method and apparatus for injecting granular material into water |
JP2007061054A (en) * | 2005-09-01 | 2007-03-15 | Jfe Steel Kk | Sand cover structure and sand cover method at water bottom |
JP2007126838A (en) * | 2005-11-01 | 2007-05-24 | Nippon Steel Corp | Construction method using covering sand |
WO2015009162A2 (en) | 2013-07-17 | 2015-01-22 | Ecopros As | Process and structure for rehabilitation of sea floor |
Also Published As
Publication number | Publication date |
---|---|
JP3868418B2 (en) | 2007-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Choi et al. | Utilization of tailings from tungsten mine waste as a substitution material for cement | |
JP5268867B2 (en) | Purification material | |
JP2009112970A (en) | Mixture for preventing diffusion of contaminating component and method of preventing diffusion of contaminating component | |
JP2014047121A (en) | Coal ash granulated body and granulated body mixture | |
CN107759174A (en) | It is a kind of to utilize method of the precuring prepared from steel slag for Artificial fish reef concrete that be carbonated | |
Jeong et al. | Evaluation of foam-glass media in a high-rate filtration process for the removal of particulate matter containing phosphorus in municipal wastewater | |
JP6779069B2 (en) | Method for solidifying modified materials such as soft soil and residual soil | |
JP3868418B2 (en) | Method for preventing water pollution by bottom sediment containing dioxins and covering material for prevention | |
TW200918193A (en) | Treatment material with reduced heavy metal and treatment method for reducing heavy metal and manufacturing method and foundation material of granulated treatment material | |
JP5242332B2 (en) | Sand substitute and manufacturing method thereof | |
JP2009183907A (en) | Decontaminating material and decontamination facility | |
JP4150283B2 (en) | Bottom coating material | |
JP6688576B2 (en) | Decontamination method for contaminated soil | |
JPH07157761A (en) | Soil stabilization treating material and method for soil stabilization treatment | |
JP5540286B2 (en) | Roadbed material and method for manufacturing the same | |
JP4751181B2 (en) | Sand-capping method | |
JP2001252694A (en) | Underwater structure and bottom material/water quality cleaning method | |
JP2010005624A (en) | Mixture for preventing diffusion of contaminating components and method of preventing diffusion of contaminating components | |
JP6365329B2 (en) | Manufacturing method for civil engineering materials for land use | |
JP2006265098A (en) | Fine powder for cement admixture | |
JP4084681B2 (en) | Sand-capping structure and sand-capping method | |
CN104275346A (en) | Insolubilization agent for harmful substances and insolubilization method | |
JP6177528B2 (en) | Insolubilizing material and insolubilizing method for arsenic-containing heavy metal contaminated soil | |
JP2018065070A (en) | Water pollution prevention method | |
JP2011079951A (en) | Recycled ground material and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050913 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060620 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060821 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060912 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061010 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3868418 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313122 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101020 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111020 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121020 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121020 Year of fee payment: 6 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121020 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121020 Year of fee payment: 6 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121020 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121020 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131020 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131020 Year of fee payment: 7 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131020 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |