JP6412691B2 - Soil improvement material for improving soil quality of sedimentary soil containing salt and moisture, and soil improvement method - Google Patents
Soil improvement material for improving soil quality of sedimentary soil containing salt and moisture, and soil improvement method Download PDFInfo
- Publication number
- JP6412691B2 JP6412691B2 JP2013259225A JP2013259225A JP6412691B2 JP 6412691 B2 JP6412691 B2 JP 6412691B2 JP 2013259225 A JP2013259225 A JP 2013259225A JP 2013259225 A JP2013259225 A JP 2013259225A JP 6412691 B2 JP6412691 B2 JP 6412691B2
- Authority
- JP
- Japan
- Prior art keywords
- soil
- test
- improved
- water
- ash
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Processing Of Solid Wastes (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
Description
本発明は、塩分及び水分を含有する堆積土の土質を改良する土質改良材、及び、土質改良方法に関する。 The present invention relates to a soil quality improving material for improving the soil quality of sedimentary soil containing salt and moisture, and a soil quality improving method.
津波が発生すると沿岸部には、海水混じりの土砂が堆積されて津波堆積土となる。この津波堆積土は、塩分及び水分を含んだ粘土状をしており、ゴミを含むことも少なからずある。水分を含んだ粘土状であることから、津波堆積土を盛土材料等に再資源化しようとしても、水が染み出して自立しなかったり、締固めができなかったりして、再資源化が困難であった。特に、ゴミに付着した津波堆積土は、ゴミからの分離が困難であり、再資源化を一層困難にしていた。 When a tsunami occurs, sediments mixed with seawater are deposited on the coast and become tsunami deposits. This tsunami deposit is in the form of a clay containing salt and moisture, and it often contains garbage. Because it contains clay, it is difficult to recycle tsunami deposits because they ooze out due to water leaching and cannot be compacted even if they try to recycle them into embankment materials. Met. In particular, the tsunami deposit soil adhering to the garbage is difficult to separate from the garbage, making recycling more difficult.
津波堆積土の再資源化に関しては、生石灰やセメントを混合して土中の水分を減少させ、土の強度を高めることや、礫や砂を混合することで土の粒度を変えて締固めができる性状にすることが一般的に行われていた。しかしながら、生石灰やセメントを混合すると土がアルカリ性を呈し、特定有害物質の溶出を促進してしまう可能性がある。特に、含水量が多い土の場合、生石灰等の混合量を増やさざるを得ず、高アルカリとなって溶出が一層促進される虞がある。加えて、生石灰やセメントは粉体であるので作業中に飛散する可能性があり、脱水反応や固化反応のための仮置き期間が必要であった。一方、礫や砂を混合する方法では、礫や砂の必要量が多くなり、専用の土質改良機が必要となることが懸念される。 Regarding the recycling of tsunami-deposited soil, quick lime and cement can be mixed to reduce moisture in the soil, increasing the strength of the soil, and mixing gravel and sand can change the soil particle size and compact the soil. It was generally done to make it possible. However, when quicklime and cement are mixed, the soil becomes alkaline and may promote the elution of specific harmful substances. In particular, in the case of soil with a high water content, the mixing amount of quick lime or the like must be increased, which may increase the alkalinity and further promote the elution. In addition, since quicklime and cement are powders, they may be scattered during work, and a temporary storage period for dehydration and solidification reactions is required. On the other hand, in the method of mixing gravel and sand, there is a concern that the required amount of gravel and sand increases and a dedicated soil improvement machine is required.
ここで、特許文献1には、PS灰(ペーパースラッジ焼却灰)と各種の薬剤とを、水底の土砂である底質に混合することで、盛土材料等の土工材量を製造する技術が記載されている。また、特許文献2には、PS灰を含む造粒固化体を土壌表面や土壌中に敷設することで、雑草の生長を抑制する技術が記載されている。 Here, Patent Document 1 describes a technique for manufacturing an amount of earthwork material such as embankment material by mixing PS ash (paper sludge incineration ash) and various chemicals into the bottom sediment which is the bottom sediment. Has been. Patent Document 2 describes a technique for suppressing the growth of weeds by laying a granulated solid body containing PS ash on the soil surface or in the soil.
特許文献1の技術ではPS灰を混合していることから水分をPS灰に吸収させることで土の強度を高められるものの、粉体であることから作業中に飛散してしまう虞がある。また、特許文献2の技術は、PS灰の造粒固化体であることから飛散の問題は生じ難いものの、雑草の生長抑制材であることから堆積土の土質改良に用いるための動機付けが得られない。 In the technique of Patent Document 1, since PS ash is mixed, the strength of the soil can be increased by absorbing moisture into the PS ash. However, since it is a powder, there is a risk of scattering during work. Moreover, although the technique of patent document 2 is a granulated solidified body of PS ash, the problem of scattering is less likely to occur, but it is a weed growth suppressing material, so it is motivated to be used for soil quality improvement of sedimentary soil. I can't.
さらに、津波堆積土には、塩分が洗い流されて塩濃度が低下すると、土粒子が分散してしまう性質がある。このため、生石灰やPS灰等を混合して盛土に利用したとしても、雨水等で盛土の塩濃度が低下し、濁水として土粒子が流出してしまう虞がある。土粒子の流出については、前述の一般的な技術や各特許文献の記載技術において特に考慮されていない。 Furthermore, the tsunami deposit soil has the property that when the salt content is washed away and the salt concentration is lowered, the soil particles are dispersed. For this reason, even if quick lime, PS ash, etc. are mixed and used for embankment, the salt concentration of embankment falls with rainwater etc., and there exists a possibility that soil particles may flow out as muddy water. The outflow of the soil particles is not particularly considered in the above-described general technique and the technology described in each patent document.
本発明は、このような事情に鑑みてなされたものであり、その目的は、塩分及び水分を含有する堆積土の土質を改良するに際して、作業中における土質改良材の飛散を抑制するとともに強度を早期に発現させ、かつ、土粒子の流出を抑制することにある。 The present invention has been made in view of such circumstances. The purpose of the present invention is to improve the soil quality of sedimentary soil containing salinity and moisture, while suppressing the scattering of the soil quality improving material during work and increasing the strength. It is to make it appear early and to suppress the outflow of soil particles.
前述の目的を達成するため、本発明は、塩分及び水分を含有する堆積土の土質を改良する土質改良材であって、カルシウムイオン及び硫酸イオンの供給源となる水溶性成分が、吸水性を有する多孔質粒状体に保持されてなり、前記多孔質粒状体は、PS灰造粒物、又は珪藻土を焼成して得られた多孔質粒子であることを特徴とする。 In order to achieve the above-mentioned object, the present invention provides a soil conditioner for improving the soil quality of sedimentary soil containing salt and moisture, wherein a water-soluble component serving as a source of calcium ions and sulfate ions has a water absorption property. The porous granular material is a porous particle obtained by firing PS ash granulated material or diatomaceous earth .
また、本発明は、塩分及び水分を含有する堆積土の土質を改良する土質改良方法であって、カルシウムイオン及び硫酸イオンの供給源となる水溶性成分が吸水性を有する多孔質粒状体に保持されてなり、前記多孔質粒状体は、PS灰造粒物、又は珪藻土を焼成して得られた多孔質粒子である土質改良材を、前記堆積土に混合することを特徴とする。 Further, the present invention provides a soil improvement method of improving the soil of sediment containing salt and water, holding the water-soluble component as a source of calcium ions and sulfate ions in a porous granular material having a water absorption is made by said porous granulate, PS Haizotsubu thereof, or a soil improvement agent is porous particles obtained by firing diatomaceous earth, characterized by mixing the sediment.
これらの発明によれば、多孔質粒状体が吸水性を有しているので、堆積土に含まれる水分が速やかに吸収される。そして、多孔質粒状体の周囲には水の通り道が生じ易くなり、改良後の土壌における水はけ性が良好になる。これらによって、強度を早期に発現させることができる。また、粒状体であることから、粉体よりも作業中に飛散し難くなって作業性が向上する。加えて、土壌(モンモリロナイト)に保持されている塩分(ナトリウムイオン)が、水溶性成分由来のカルシウムイオンに置換されるので、土壌の膨潤を抑制できる。さらに、堆積土の水分における硫酸イオン濃度が上昇されるので、ナトリウムイオンからカルシウムイオンへの置換を促進できる。これらによって、土粒子の流出を抑制することができる。 According to these inventions, since the porous granular material has water absorption, moisture contained in the sedimentary soil is quickly absorbed. And it becomes easy to produce the passage of water around a porous granular material, and the drainage property in the soil after improvement becomes favorable. By these, intensity | strength can be expressed early. Moreover, since it is a granular body, it becomes difficult to disperse | distribute during work rather than powder, and workability | operativity improves. In addition, since the salt content (sodium ion) retained in the soil (montmorillonite) is replaced with calcium ions derived from water-soluble components, the swelling of the soil can be suppressed. Furthermore, since the sulfate ion concentration in the moisture of the sedimentary soil is increased, the replacement of sodium ions with calcium ions can be promoted. By these, the outflow of soil particles can be suppressed.
前述の土質改良材において、前記多孔質粒状体が、PS灰に固化材と水を添加及び混合して造粒されたPS灰造粒物であることが好ましい。この構成では、PS灰の有効活用が図れる。 In the above-described soil improving material, the porous granular material is preferably a PS ash granulated product obtained by granulating PS ash by adding and mixing a solidifying material and water . With this configuration, PS ash can be effectively used.
前述の土質改良方法において、前記土質改良材の前記堆積土への混合量を、重量比1の乾燥混合土に対して重量比5の純水を添加した際の液中硫酸イオン濃度が124mg/L以上となり、かつ、カルシウムイオン濃度が52mg/L以上となるように定めることが好ましい。また、前記土質改良材を前記堆積土に対し、曝気しつつ混合することが好ましい。 In the soil improvement method described above, the mixing amount of the soil improvement material to the sedimentary soil is such that the concentration of sulfate ion in the liquid when 124 parts by weight of pure water with a weight ratio of 5 is added to the dry mixed soil with a weight ratio of 1 is 124 mg / It is preferable to set it to be L or more and the calcium ion concentration to be 52 mg / L or more . Moreover, it is preferable to mix the soil quality improving material with aeration with respect to the deposited soil.
本発明によれば、塩分及び水分を含有する堆積土の土質を改良するに際して、作業中における土質改良材の飛散を抑制するとともに強度を早期に発現させ、かつ、土粒子の流出を抑制することができる。 According to the present invention, when improving the soil quality of sedimentary soil containing salt and moisture, it is possible to suppress scattering of the soil quality improving material during work, to express the strength early, and to suppress the outflow of soil particles. Can do.
以下、本発明の実施形態について説明する。まず、土質改良材について説明する。図1(a)に示すように、本実施形態では2種類の土質改良材を試験した。1つは生石灰(CaO)であり、他の1つはPS灰資材である。 Hereinafter, embodiments of the present invention will be described. First, the soil improvement material will be described. As shown in FIG. 1A, in this embodiment, two types of soil improvement materials were tested. One is quick lime (CaO) and the other is PS ash material.
生石灰は比較例の土質改良材であり、水分を含有する土壌の土質改良材として汎用されていることから選定した。生石灰は水に可溶であり、水と化学反応して水酸化カルシウムを生成する。このため、土質改良に使用すると改良後の土壌がアルカリ性に大きく振れることとなる。 Quicklime was selected because it is a soil quality improving material of a comparative example and is widely used as a soil quality improving material for soil containing moisture. Quicklime is soluble in water and chemically reacts with water to produce calcium hydroxide. For this reason, if it uses for soil quality improvement, the soil after improvement will shake largely to alkalinity.
なお、予備試験により、含水比20〜50%の対象土壌であれば、対象土壌の1.2〜5重量%となる量の生石灰を添加することで土質改良が行えることを確認した。そして、生石灰を用いる場合には、改良対象となる土壌の水分量に応じて添加量を調整する必要がある。 In addition, it was confirmed by a preliminary test that the soil quality could be improved by adding quick lime in an amount that would be 1.2 to 5% by weight of the target soil if the water content was 20 to 50%. And when using quicklime, it is necessary to adjust the addition amount according to the moisture content of the soil used as improvement object.
PS灰資材は本発明の実施例であり、吸水性を有する多孔質粒状体によって構成されている。このPS灰資材は、PS灰に固化材と水を添加及び混合し、粒径が1mm〜5cm程度となるように造粒されたものである。このため、PS灰資材を堆積土に混合すると、PS灰資材の周囲には水の通り道が生じ易くなり、改良後の土壌における水はけ性が良好になる。また、粒状体であることから、粉体よりも作業中に飛散し難い。 The PS ash material is an embodiment of the present invention, and is constituted by a porous granular material having water absorption. This PS ash material is obtained by adding and mixing a solidifying material and water to PS ash and granulating the particle size to be about 1 mm to 5 cm. For this reason, when PS ash material is mixed with sedimentary soil, the passage of water tends to occur around the PS ash material, and drainage in the improved soil is improved. Moreover, since it is a granular material, it is hard to disperse during work rather than powder.
後述するように、このPS灰資材には、カルシウムイオン及び硫酸イオンの供給源となる水溶性成分が含まれている。このようなPS灰資材として、例えば日本製紙株式会社の商品名「雑草とめるくん」(登録商標,以下同じ)や株式会社予州興業の商品名「アッシュストーン」がある。 As will be described later, the PS ash material contains a water-soluble component that serves as a supply source of calcium ions and sulfate ions. Examples of such PS ash materials include Nippon Paper Industries' trade name “Weed Tome-kun” (registered trademark, the same shall apply hereinafter) and Yoshu Kogyo's trade name “Ash Stone”.
これらの土質改良材を評価すべく、本実施形態では、ポータブルコーン貫入試験、ふるい分け試験、及び、懸濁分散試験からなる3つの試験を行った。 In this embodiment, three tests including a portable cone penetration test, a sieving test, and a suspension dispersion test were performed in order to evaluate these soil improvement materials.
ポータブルコーン貫入試験は、盛土のコーン貫入抵抗を測定するものであり、土質改良材による改良堆積土の強度を確認する目的で行った。ふるい分け試験は、供試土に土質改良材を添加及び混合し、ふるい分けを行うものであり、改良堆積土のハンドリング性を確認する目的で行った。懸濁分散試験は、土質改良材を添加及び混合した改良土を水中に分散させ、静置観察するものであり、改良堆積土における土粒子の保持力を確認する目的で行った。以下、各試験について詳細に説明する。 The portable cone penetration test measures the cone penetration resistance of the embankment and was conducted for the purpose of confirming the strength of the improved sedimentary soil with the soil conditioner. The sieving test was performed by adding and mixing a soil conditioner to the test soil and performing sieving, and was conducted for the purpose of confirming the handling properties of the improved sedimentary soil. The suspension dispersion test was to disperse the improved soil added and mixed with the soil quality improver in water and observe it statically, and was conducted for the purpose of confirming the retention force of the soil particles in the improved sedimentary soil. Hereinafter, each test will be described in detail.
まず、ポータブルコーン貫入試験について説明する。ポータブルコーン貫入試験では、まず供試土に土質改良材を混合して混合土を作製した。次に、供試土及び混合土を盛り立てて盛土を形成した。6ヶ月経過後、盛土に対してコーン貫入抵抗を測定した。 First, the portable cone penetration test will be described. In the portable cone penetration test, a soil mixture was first prepared by mixing soil conditioner with the test soil. Next, the test soil and mixed soil were raised to form a fill. After 6 months, cone penetration resistance was measured for the embankment.
図1(b)は、供試土の粒度分布を表形式で示した図である。この試験では、津波を受けた水田から堆積土を採取して供試土とした。この供試土は粘性土質砂であり、扱い難いものであった。具体的には、粘性土分(粒径0.075mm未満の細粒分)が48.4%と50%弱を占めていた。また、砂分(粒径0.075mm以上2mm未満)が47.8%、礫分(粒径2mm以上75mm未満)が3.8%であった。 FIG. 1B is a diagram showing the particle size distribution of the test soil in a tabular form. In this test, sedimentary soil was sampled from paddy fields that were subjected to tsunami and used as test soil. This sample soil was clayey sand and was difficult to handle. Specifically, the viscous soil (fine particles having a particle size of less than 0.075 mm) accounted for 48.4%, which was less than 50%. The sand content (particle size: 0.075 mm or more and less than 2 mm) was 47.8%, and gravel content (particle size: 2 mm or more and less than 75 mm) was 3.8%.
このポータブルコーン貫入試験では、PS灰資材として前述の「雑草とめるくん」を使用した。そして、予備試験により、通常含水比の対象土壌であれば、PS灰資材を対象土壌の15重量%となる量を添加することで土質改良が行えることを確認した。 In this portable corn penetration test, the above-mentioned “weed and mekkun” was used as a PS ash material. And by the preliminary test, if it was the target soil of normal water content ratio, it was confirmed that the soil quality can be improved by adding PS ash material in an amount of 15% by weight of the target soil.
試験ケースに関し、この試験では、供試土をそのまま用いたケース、土質改良材として生石灰を混合した比較例のケース、及び、土質改良材としてPS灰資材を混合した実施例のケースを設定した。生石灰は供試土1m3あたり20kgとなる量を混合した。なお、供試土の土粒子の密度が2.693g/cm3であるため、生石灰と供試土の重量比は、2693:20=1:0.00743である。また、PS灰資材は供試土1m3あたり200kgとなる量を混合した。この場合におけるPS灰資材と供試土の重量比は2693:200=1:0.0743である。 Regarding the test case, in this test, a case using the test soil as it was, a case of a comparative example in which quick lime was mixed as a soil improvement material, and a case of an example in which PS ash material was mixed as a soil improvement material were set. Quick lime was mixed in an amount of 20 kg per 1 m 3 of the test soil. In addition, since the density of the soil particle of a test soil is 2.693 g / cm < 3 >, the weight ratio of quicklime and a test soil is 2693: 20 = 1: 0.00743. The PS ash material was mixed in an amount of 200 kg per 1 m 3 of the test soil. In this case, the weight ratio of the PS ash material to the test soil is 2893: 200 = 1: 0.0743.
土質改良材の供試土への混合は、バックホウを用いて行った。具体的には、地面に敷き均した供試土に対し、バケットを用いて土質改良材を供試土の表面に散布した。そして、バケットで供試土を土質改良材とともにすくい取って高所から落下させた。供試土及び土質改良材のすくい取りと落下とを繰り返し行うことで、土質改良材を供試土へ混合した。 The soil improvement material was mixed with the test soil using a backhoe. Specifically, soil improvement material was spread on the surface of the test soil using buckets on the test soil spread on the ground. Then, the soil sample was scooped up with a soil conditioner with a bucket and dropped from a high place. The soil improvement material was mixed with the test soil by repeatedly scooping and dropping the test soil and the soil improvement material.
土質改良材の供試土への混合時において、PS灰資材は生石灰よりも早期に供試土がほぐれる傾向が見られた。すなわち、PS灰資材では、混合直後から供試土の水分量低下が確認できた。これに対し、生石灰では、水分量低下が確認されるまでの時間がPS灰資材を用いた場合よりも長くなることが確認できた。これは、PS灰資材が水を吸収することで物理的に脱水を行っているのに対し、生石灰が水と化学反応をすることで脱水を行っているためと考えられる。 At the time of mixing the soil improvement material with the test soil, the PS ash material tended to loosen the test soil earlier than quick lime. That is, in the PS ash material, a decrease in the moisture content of the test soil was confirmed immediately after mixing. On the other hand, in quicklime, it has confirmed that time until a moisture content fall was confirmed became longer than the case where PS ash material was used. This is probably because PS ash material is physically dehydrated by absorbing water, whereas quick lime is dehydrated by chemically reacting with water.
また、PS灰資材に含まれる水溶性成分により、供試土にはカルシウムイオンが溶け出すが、前述のすくい取りと落下とを繰り返し行うことで曝気と混合が行われ、カルシウムイオンの炭酸化が促進される。これにより、pHの過度な低下に起因する植生への悪影響を抑制できる。さらに、土の表面が乾くことから、混合土の性状を砂のようなさらさらした状態にすることができる。一方、生石灰を同じように混合しても、このような乾いた状態にはならなかった。 In addition, calcium ions dissolve into the test soil due to the water-soluble components contained in the PS ash material, but aeration and mixing are performed by repeating the above-mentioned scooping and dropping, and the calcium ions are carbonated. Promoted. Thereby, the bad influence to the vegetation resulting from the excessive fall of pH can be suppressed. Furthermore, since the surface of the soil dries, the properties of the mixed soil can be brought into a dry state like sand. On the other hand, even when quicklime was mixed in the same manner, it did not become such a dry state.
混合土の作製後、図2(a)に示すように、この混合土を縦長の四角錐台状に盛り立てて盛土1を形成した。盛土1の高さHは約1mであり、長さLは底の部分で約7mである。そして、図2(a)における左側部分が生石灰による混合土で盛り立てた生石灰改良区2であり、右側部分がPS灰資材による混合土で盛り立てたPS灰資材改良区3である。さらに、中央部分は供試土で盛り立てた未改良区4である。このため、中央部分が供試土をそのまま用いたケース、左側部分が生石灰を混合したケース、右側部分がPS灰資材を混合したケースに相当する。なお、右側部分及び左側部分の長さを約3mとし、中央部分の長さを約1mとした。 After preparation of the mixed soil, as shown in FIG. 2A, the mixed soil was raised in the shape of a vertically long quadrangular pyramid to form the embankment 1. The height 1 of the embankment 1 is about 1 m, and the length L is about 7 m at the bottom. And the left side in FIG. 2A is the quick lime improvement district 2 raised by the mixed soil by quick lime, and the right side is the PS ash material improvement zone 3 raised by the mixed soil by the PS ash material. Furthermore, the central part is the unmodified zone 4 that was raised with the test soil. For this reason, the center portion corresponds to a case using the test soil as it is, the left portion corresponds to a case where quick lime is mixed, and the right portion corresponds to a case where PS ash material is mixed. In addition, the length of the right side part and the left side part was about 3 m, and the length of the center part was about 1 m.
盛り立て直後(締固め直後)の混合土と6ヶ月を経過した混合土のそれぞれについて性状を分析した。以下、性状分析の結果について説明する。 Properties were analyzed for each of the mixed soil immediately after raising (immediately after compaction) and the mixed soil after 6 months. Hereinafter, the result of property analysis will be described.
図3(a)には盛り立て直後の混合土の分析結果を、図3(b)には6ヶ月経過後の混合土の分析結果をそれぞれ示す。なお、これらの図において、未改良土とは、供試土をそのまま用いた試験ケースに相当し、土質改良材が混合されていない供試土を意味する。生石灰改良土とは、生石灰を混合した比較例の試験ケースに相当し、PS灰資材改良土とは、PS灰資材を混合した実施例の試験ケースに相当する。 FIG. 3 (a) shows the analysis result of the mixed soil immediately after swelling, and FIG. 3 (b) shows the analysis result of the mixed soil after 6 months. In these figures, the unmodified soil corresponds to a test case using the test soil as it is, and means a test soil in which the soil quality improving material is not mixed. The quick lime improved soil corresponds to a test case of a comparative example in which quick lime is mixed, and the PS ash material improved soil corresponds to a test case of an example in which PS ash material is mixed.
なお、盛り立て直後の混合土に関し、コーン指数の測定は乱した土を締め固めることで実施した。その際、締固め回数は25回とした。また、6ヶ月経過後の混合土に関し、図2(b)に示す表層土5を分析の対象とした。 The corn index was measured by compacting the disturbed soil for the mixed soil immediately after swelling. At that time, the number of compactions was 25. Regarding the mixed soil after 6 months, the surface soil 5 shown in FIG.
まず、図3(a)を参照し、盛り立て直後における各試験ケースの性状について説明する。盛り立て直後において、各試験ケースの試料は塑性状態であった。すなわち、未改良土の含水比が35.3%であり、生石灰改良土の含水比が37.4%であり、PS灰資材改良土の含水比が40.8%であった。いずれの試料も液性限界より低く、塑性限界よりも高い含水比であった。 First, with reference to Fig.3 (a), the property of each test case immediately after raising is demonstrated. Immediately after swelling, the samples in each test case were in a plastic state. That is, the moisture content of the unmodified soil was 35.3%, the moisture content of the quicklime improved soil was 37.4%, and the moisture content of the PS ash material modified soil was 40.8%. All samples had a water content lower than the liquid limit and higher than the plastic limit.
ここで、未改良土とPS灰資材改良土とを比較すると、液性限界に関し、未改良土は44.6%であったのに対し、PS灰資材改良土は57.7%であった。このことから、PS灰資材改良土では、含水比が未改良土より13%程度高くなっても塑性状態を維持できるといえる。また、塑性限界に関し、未改良土は25.3%であったのに対し、PS灰資材改良土は32.4%であった。そして、液性限界と塑性限界の差を求めると、未改良土は19.3%であったのに対し、PS灰資材改良土は25.3%であった。このことから、PS灰資材改良土では、塑性状態を維持可能な含水比の幅が未改良土よりも広いといえる。 Here, when the unmodified soil and the PS ash material modified soil were compared, regarding the liquid limit, the unmodified soil was 44.6%, whereas the PS ash material modified soil was 57.7%. . From this, it can be said that the PS ash material improved soil can maintain the plastic state even if the moisture content is about 13% higher than that of the unmodified soil. Regarding the plastic limit, the unmodified soil was 25.3%, while the PS ash material modified soil was 32.4%. When the difference between the liquid limit and the plastic limit was calculated, the unmodified soil was 19.3%, while the PS ash material modified soil was 25.3%. From this, it can be said that the PS ash material improved soil has a wider water content ratio that can maintain the plastic state than the unmodified soil.
同様に、生石灰改良土とPS灰資材改良土とを対比すると、液性限界に関して生石灰改良土は49.0%であった。すなわち、PS灰資材改良土は、含水比が生石灰改良土より9%程度高くなっても塑性状態を維持できるといえる。また、塑性限界に関して生石灰改良土は28.5%であり、液性限界と塑性限界の差は20.5%であった。PS灰資材改良土では25.3%であったことから、PS灰資材改良土は塑性状態を維持可能な含水比の幅が生石灰改良土よりも広いといえる Similarly, when quicklime improved soil and PS ash material improved soil were compared, quicklime improved soil was 49.0% with respect to the liquid limit. That is, it can be said that PS ash material improved soil can maintain a plastic state even if the moisture content is about 9% higher than quick lime improved soil. Moreover, quick-lime improved soil was 28.5% regarding the plastic limit, and the difference between the liquid limit and the plastic limit was 20.5%. Since the PS ash material improved soil was 25.3%, it can be said that the PS ash material improved soil has a wider moisture content range than the quick lime improved soil to maintain the plastic state.
コーン指数に関し、未改良土は155kN/m2,生石灰改良土は185kN/m2であったのに対し、PS灰資材改良土は565kN/m2であった。この結果から、PS灰資材改良土では盛り立て直後から高い強度が得られることが確認された。また、pHに関し、未改良土はpH6〜7で弱酸性から中性を示し、生石灰改良土はpH12で強アルカリ性を示し、PS灰資材改良土はpH8〜9で弱アルカリ性を示した。電気伝導率に関し、未改良土は70mS/m,生石灰改良土は90mS/m,PS灰資材改良土は80mS/mであった。 Regarding the cone index, the unmodified soil was 155 kN / m 2 and the quicklime improved soil was 185 kN / m 2 , while the PS ash material modified soil was 565 kN / m 2 . From this result, it was confirmed that the PS ash material improved soil can obtain high strength immediately after being laid. Moreover, regarding pH, unmodified soil showed weak alkalinity from pH 6-7 to weak acidity, quick lime improved soil showed strong alkalinity at pH 12, and PS ash material improved soil showed weak alkalinity at pH 8-9. Regarding electrical conductivity, unmodified soil was 70 mS / m, quicklime improved soil was 90 mS / m, and PS ash material improved soil was 80 mS / m.
次に、図3(b)を参照し、6ヶ月経過後における各試料の性状について説明する。6ヶ月経過後の密度に関し、各試料に大きな違いは見られなかった。すなわち、湿潤密度に関し、未改良土は1.691g/cm3,生石灰改良土は1.608g/cm3,PS灰資材改良土は1.597g/cm3であった。乾燥密度に関し、未改良土は1.285g/cm3,生石灰改良土は1.230g/cm3,PS灰資材改良土は1.212g/cm3であった。 Next, with reference to FIG. 3B, the properties of each sample after 6 months have been described. There was no significant difference between the samples with respect to the density after 6 months. That is, regarding the wet density, the unmodified soil was 1.691 g / cm 3 , the quicklime improved soil was 1.608 g / cm 3 , and the PS ash material modified soil was 1.597 g / cm 3 . Regarding the dry density, the unmodified soil was 1.285 g / cm 3 , the quicklime improved soil was 1.230 g / cm 3 , and the PS ash material modified soil was 1.212 g / cm 3 .
また、含水比及びpHに関しても、各試料に大きな違いは見られなかった。すなわち、含水比に関し、未改良土は31.6%,生石灰改良土は30.7%,PS灰資材改良土は31.8%であった。pHに関し、未改良土はpH7.7,生石灰改良土はpH8.3,PS灰資材改良土はpH7.8であり、生石灰改良土のpHが他の試料にくらべて若干高い程度であった。 In addition, regarding the water content ratio and pH, there was no significant difference between the samples. That is, regarding the moisture content, unmodified soil was 31.6%, quicklime improved soil was 30.7%, and PS ash material improved soil was 31.8%. Regarding the pH, the unmodified soil had a pH of 7.7, the quicklime improved soil had a pH of 8.3, the PS ash material improved soil had a pH of 7.8, and the quicklime improved soil had a slightly higher pH than the other samples.
一方、電気伝導率に関しては、各試料の間で有意の差が見られた。すなわち、電気伝導率に関し、未改良土は17mS/m,生石灰改良土は31mS/m,PS灰資材改良土は51mS/mであった。ここで、電気伝導率は土壌中に含まれるイオンの量に比例し、土粒子の表面は負に帯電していることから、電気伝導率が低いということは、土粒子が雨水等によって流出したと考えられる。 On the other hand, regarding electrical conductivity, a significant difference was observed between the samples. That is, regarding electrical conductivity, unmodified soil was 17 mS / m, quicklime improved soil was 31 mS / m, and PS ash material improved soil was 51 mS / m. Here, the electrical conductivity is proportional to the amount of ions contained in the soil, and since the surface of the soil particles is negatively charged, the low electrical conductivity means that the soil particles flowed out due to rainwater etc. it is conceivable that.
そして、盛り立て直後の各試料と、6ヶ月経過後の各試料とで電気伝導率を比較すると、未改良土は70mS/mから17mS/mへと最も大きく低下し、生石灰改良土は90mS/mから31mS/mまで大きく低下している。一方、PS灰資材改良土は80mS/mから51mS/mと低下度合いが最も小さい。このことから、PS灰資材改良土は、生石灰改良土や未改良土に比べて土粒子の保持力が強いといえる。 When the electrical conductivity was compared between each sample immediately after the swelling and each sample after 6 months, the unmodified soil decreased most significantly from 70 mS / m to 17 mS / m, and the quicklime improved soil was 90 mS / m. It is greatly reduced from m to 31 mS / m. On the other hand, PS ash material improved soil has the smallest decrease from 80 mS / m to 51 mS / m. From this, it can be said that PS ash material improved soil has stronger retention of soil particles than quick lime improved soil and unmodified soil.
次に、盛土に対するポータブルコーン貫入試験の結果について説明する。この試験は、地盤工学会基準JGS1431に従い、前述したように6ヶ月経過後の盛土に対して行った。 Next, the result of the portable cone penetration test for the embankment will be described. This test was performed on the embankment after the elapse of 6 months as described above in accordance with the Geotechnical Society Standard JGS1431.
図4は、各試験区(未改良区4,生石灰改良区2,PS灰資材改良区3)のコーン貫入抵抗を深さ毎に示したグラフである。同図において、記号×は未改良区4のコーン貫入抵抗を示し、記号□は生石灰改良区2のコーン貫入抵抗を示し、記号○はPS灰資材改良区3のコーン貫入抵抗を示す。同図に示すように、PS灰資材改良区3の貫入最大深が0.35mであったのに対し、未改良区4及び生石灰改良区2については0.95mまで貫入できた。 FIG. 4 is a graph showing the cone penetration resistance of each test zone (unmodified zone 4, quicklime improved zone 2, PS ash material improved zone 3) for each depth. In the same figure, the symbol x indicates the cone penetration resistance of the unmodified zone 4, the symbol □ indicates the cone penetration resistance of the quicklime improved zone 2, and the symbol O indicates the cone penetration resistance of the PS ash material improved zone 3. As shown in the figure, the maximum penetration depth of PS ash material improvement zone 3 was 0.35 m, while unimproved zone 4 and quicklime improvement zone 2 could penetrate up to 0.95 m.
この結果から、PS灰資材改良区3は他の試験区2,4よりも高い強度の盛土であることが確認された。これは、土質改良材としてPS灰資材を用いると、粘性土質砂の供試土(水田から採取した堆積土)から速やかに水分が吸収されるためと考えられる。 From this result, it was confirmed that the PS ash material improvement zone 3 is a bank with higher strength than the other test zones 2 and 4. This is presumably because when PS ash material is used as the soil improvement material, moisture is quickly absorbed from the soil sampled by the clay soil (deposited soil collected from paddy fields).
すなわち、過剰な水分を含む粘性土質砂では締固めが困難であり、盛土の強度を高めることができない。また、土質改良材として生石灰を用いると、化学反応であることから脱水に時間を要し、締固め時点では過剰な水分を含んでいると考えられる。これに対し、PS灰資材は、過剰な水分を多孔質粒状体へ物理的に吸収することから、締固め時点における粘性土質砂の水分を締固めに適した量に調整できると考えられる。その結果、盛土の強度を高めることができたと解される。 That is, it is difficult to compact with viscous soil sand containing excessive moisture, and the strength of the embankment cannot be increased. Moreover, when quick lime is used as a soil improvement material, since it is a chemical reaction, it takes time for dehydration, and it is considered that excessive moisture is contained at the time of compaction. On the other hand, PS ash material physically absorbs excess moisture into the porous granular material, so it is considered that the moisture of the viscous soil sand at the time of compaction can be adjusted to an amount suitable for compaction. As a result, it is understood that the strength of the embankment could be increased.
また、PS灰資材が多孔質粒状体であることから、粒状体同士の間に隙間が形成されて水はけを良好にすることができる。これにより、盛土内に過剰な水分が滞留せず、盛土の軟弱化を抑制していると考えられる。 Moreover, since PS ash material is a porous granule, a clearance gap is formed between granules and it can make drainage favorable. Thereby, it is thought that excessive moisture does not stay in the embankment and suppresses the softening of the embankment.
次に、ふるい分け試験について説明する。前述したように、このふるい分け試験では、がれき混じりの供試土に対して、土質改良材を添加及び混合して改良土を得た。その後、改良土と未改良土のそれぞれに対してふるい分けを行った。 Next, the screening test will be described. As described above, in this sieving test, an improved soil was obtained by adding and mixing a soil condition improver to the soil mixed with debris. After that, screening was performed for each of the improved soil and the unmodified soil.
図5(a)は、ふるい分け試験に用いた供試土の初期性状の分析結果を説明する図である。この試験では2種類の供試土A,Bを用いた。これらの供試土A,Bは、農地の表土を剥いで仮置きした砂質土(細粒分質土)であり、含水比の高いものであった。 Fig.5 (a) is a figure explaining the analysis result of the initial property of the sample soil used for the screening test. In this test, two types of test soils A and B were used. These test soils A and B were sandy soils (fine-grained soils) that had been temporarily placed by peeling off the topsoil of the farmland, and had a high water content.
供試土Aは、密度が2.546g/cm3、自然含水比が46.3%、強熱減量が9.4であった。粒度分布に関し、礫分が1.2%、砂分が53.1%、シルト分が29.1%、粘土分が16.6%であった。そして、最大乾燥密度が1.347g/cm3、最適含水比が30.3%であった。一方、供試土Bは、密度が2.631g/cm3、自然含水比が38.1%、強熱減量が7.9であった。粒度分布に関し、礫分が0.6%、砂分が70.8%、シルト分が16.4%、粘土分が12.2%であった。そして、最大乾燥密度が1.586g/cm3、最適含水比が20.4%であった。 The test soil A had a density of 2.546 g / cm 3 , a natural water content ratio of 46.3%, and a loss on ignition of 9.4. Regarding the particle size distribution, the gravel content was 1.2%, the sand content was 53.1%, the silt content was 29.1%, and the clay content was 16.6%. The maximum dry density was 1.347 g / cm 3 and the optimum water content ratio was 30.3%. On the other hand, the sample soil B had a density of 2.631 g / cm 3 , a natural water content ratio of 38.1%, and a loss on ignition of 7.9. Regarding the particle size distribution, the gravel content was 0.6%, the sand content was 70.8%, the silt content was 16.4%, and the clay content was 12.2%. The maximum dry density was 1.586 g / cm 3 and the optimum water content ratio was 20.4%.
各供試土A,Bに対して生石灰とPS灰資材とを混合した。図5(b)に示すように、生石灰に関し、供試土Aに対しては重量比で1.25%(21kg/m3)、供試土Bに対しては重量比で4.75%(81kg/m3)を添加した。混合後のpHは供試土AがpH11.5、供試土BがpH12.5であった。また、PS灰資材に関し、各供試土A,Bに対して重量比で15%(255kg/m3)を添加した。混合後のpHは供試土AがpH9.1、供試土BがpH10.6であった。 Quick lime and PS ash material were mixed with each of the test soils A and B. As shown in FIG. 5 (b), with respect to quick lime, 1.25% (21 kg / m 3 ) by weight for the test soil A, and 4.75% by weight for the test soil B. (81 kg / m 3 ) was added. Regarding the pH after mixing, the test soil A had a pH of 11.5, and the test soil B had a pH of 12.5. Further, with respect to the PS ash material, 15% (255 kg / m 3 ) was added by weight to each of the test soils A and B. The pH after mixing was pH 9.1 for test soil A and pH 10.6 for test soil B.
また、図5(c)に示すように、締固め土のコーン指数(突固め回数25回)に関し、供試土Aでは、未改良土が123kN/m2、生石灰改良土が191kN/m2、PS灰資材改良土が290kN/m2であった。また、供試土Bでは、未改良土が40kN/m2、生石灰改良土が157kN/m2、PS灰資材改良土が173kN/m2であった。 Further, as shown in FIG. 5 (c), regarding the cone index of the compacted soil (25 times of compaction), in the test soil A, the unmodified soil is 123 kN / m 2 , and the quick lime modified soil is 191 kN / m 2. The PS ash material improved soil was 290 kN / m 2 . Further, the test試土B, Unfinished soil 40 kN / m 2, quicklime modified soil is 157kN / m 2, PS ash materials modified soil was 173kN / m 2.
これらの結果より、PS灰資材改良土は、生石灰改良土よりも高い強度が得られ、pHの上昇も抑えられることが確認された。なお、その理由については、ポータブルコーン貫入試験で説明した理由と同様であると考えられる。 From these results, it was confirmed that the PS ash material improved soil has higher strength than the quick lime improved soil and can suppress the increase in pH. In addition, it is thought that the reason is the same as the reason demonstrated in the portable cone penetration test.
図6に示すように、このふるい分け試験では、がれき混じりの各供試土A,Bに対して、土質改良材として生石灰(比較例)とPS灰資材(実施例)のそれぞれを添加及び混合し、土質の改良を行った。その後、各改良土と未改良土のそれぞれに対して、ふるいと往復振とう機を用いてふるい分けを行った。ふるいは、19mmと9.5mmの2種類使用した。 As shown in FIG. 6, in this screening test, quick lime (comparative example) and PS ash material (examples) were added and mixed as soil conditioners to each sample soil A and B mixed with debris. The soil quality was improved. After that, each improved soil and unmodified soil was screened using a sieve and a reciprocating shaker. Two types of sieves, 19 mm and 9.5 mm, were used.
図7に示すように、供試土Aのふるい透過率に関し、未改良土は19mmで62%、9.5mmで11%であった。そして、生石灰改良土は19mmで88%、9.5mmで47%であり、PS灰資材改良土は19mmで84%、9.5mmで46%であった。一方、供試土Bのふるい透過率に関し、未改良土は19mmで22%、9.5mmで5%であり、生石灰改良土は19mmで35%、9.5mmで8%であり、PS灰資材改良土は19mmで63%、9.5mmで15%であった。 As shown in FIG. 7, regarding the sieve transmittance of the test soil A, the unmodified soil was 62% at 19 mm and 11% at 9.5 mm. And the quick lime improved soil was 88% at 19 mm and 47% at 9.5 mm, and the PS ash material improved soil was 84% at 19 mm and 46% at 9.5 mm. On the other hand, regarding the sieve permeability of the test soil B, unmodified soil is 22% at 19 mm, 5% at 9.5 mm, quicklime improved soil is 35% at 19 mm, and 8% at 9.5 mm. Material improvement soil was 63% at 19 mm and 15% at 9.5 mm.
これらの結果より、土質改良材としてPS灰資材を用いると、生石灰を用いた場合と同等かそれ以上の分級効率が得られることが確認できた。この差が生じた理由についても、PS灰資材が物理的に脱水しているのに対し、生石灰が化学反応で脱水しているためと解される。 From these results, it was confirmed that when PS ash material was used as the soil improvement material, classification efficiency equal to or higher than that when quick lime was used was obtained. The reason why this difference has occurred is that PS ash material is physically dehydrated, whereas quick lime is dehydrated by a chemical reaction.
次に、懸濁分散試験について説明する。前述したように、懸濁分散試験は、土質改良材を添加及び混合した改良土を水中に分散させ、静置観察するものであり、改良堆積土における土粒子の保持力を確認する目的で行った。 Next, the suspension dispersion test will be described. As described above, the suspension dispersion test is to disperse the improved soil added and mixed with the soil conditioner in water and to observe the soil, and to confirm the retention of soil particles in the improved sedimentary soil. It was.
図8に示すように、この試験では、供試土の作製(S1)、処理土分取(S2)、純水添加(S3)、水平振とう(S4)、静置(S5)、凝集・沈殿の確認(S6)、上水分取(S7)を行った。 As shown in FIG. 8, in this test, preparation of test soil (S1), treated soil sorting (S2), pure water addition (S3), horizontal shaking (S4), standing (S5), agglomeration / Precipitation was confirmed (S6) and water was removed (S7).
供試土の作製(S1)では、採取した土に適宜土質改良材を混合し初期土を作製した。そして、初期土を盛り立てて畦畔盛土を作製した。そして、初期土を供試土Cとし、盛り立てから約4ヶ月半を経過した畦畔盛土から採取した表層土を供試土Dとした。これらの供試土C,Dは、未改良土、生石灰を20kg/m3の比率で混合した生石灰改良土、PS灰資材を200kg/m3の比率で混合したPS灰資材改良土の3種類からなっている。そして、各供試土C,Dについては、採取後に湿潤密度、乾燥密度、及び含水比を測定した。 In the preparation of the test soil (S1), a soil improvement material was appropriately mixed with the collected soil to prepare an initial soil. Then, the shore bank embankment was made by raising the initial soil. Then, the initial soil was used as test soil C, and the surface soil collected from the bank bank after about 4 and a half months from the preparation was used as test soil D. These test soils C and D are three types: unmodified soil, quicklime improved soil mixed with quick lime at a rate of 20 kg / m 3 , and PS ash material improved soil mixed with PS ash material at a rate of 200 kg / m 3. It is made up of. And about each test soil C and D, the wet density, the dry density, and the water content ratio were measured after extraction.
処理土分取(S2)では、規定量(乾土相当20g)の各供試土C,Dを200mLの有栓シリンダーに分取し、純水添加(S3)では純水を目盛り200mLまで添加した。水平振とう(S4)では1時間に亘って有栓シリンダーを振とうさせ、供試土を純水に分散させた。静置(S5)では24時間静置させ、凝集・沈殿の確認(S6)では沈定容積(スラッジの読み値)を確認した。上水分取(S7)では、上水を規定量(50mL,100mL)分取して成分分析、電気伝導度、pH等を測定した。 In treated soil sorting (S2), each test soil C, D in a specified amount (20g equivalent to dry soil) is dispensed into a 200mL plugged cylinder, and in pure water addition (S3), pure water is added to a scale of 200mL. did. In horizontal shaking (S4), the plugged cylinder was shaken for 1 hour, and the test soil was dispersed in pure water. In the standing (S5), it was allowed to stand for 24 hours, and in the confirmation of aggregation / precipitation (S6), the settling volume (sludge reading) was confirmed. In the upper water removal (S7), the specified amount (50 mL, 100 mL) of the upper water was collected, and component analysis, electrical conductivity, pH and the like were measured.
図9は供試土Cの性状試験の結果を、図10は供試土Dの性状試験の結果をそれぞれ示す。また、図11は静置後の有栓シリンダーの様子を説明する写真である。便宜上、未改良土での試験結果を未改良区といい、生石灰改良土での試験結果を生石灰改良区といい、PS灰資材改良土での試験結果をPS灰資材改良区という。また、各図に記載されたイオン濃度は、重量比1の乾燥混合土に対して重量比5の純水を添加した場合の値である。 FIG. 9 shows the result of the property test of the test soil C, and FIG. 10 shows the result of the property test of the test soil D. FIG. 11 is a photograph explaining the state of the plugged cylinder after standing. For convenience, the test result in the unmodified soil is referred to as an unmodified zone, the test result in the quick lime improved soil is referred to as a quick lime improved zone, and the test result in the PS ash material improved soil is referred to as a PS ash material improved zone. Moreover, the ion concentration described in each figure is a value at the time of adding the pure water of 5 weight ratio with respect to the dry mixed soil of 1 weight ratio.
湿潤密度、及び乾燥密度に関しては、各試験区で大きな違いはみられなかった。一方、含水比に関しては、PS灰資材改良区の保水力が、未改良区及び生石灰改良区の保水力よりも高くなる傾向が確認できた。 Regarding the wet density and the dry density, there was no significant difference between the test sections. On the other hand, regarding the water content ratio, it was confirmed that the water retention capacity of the PS ash material improvement district was higher than that of the unimproved district and the quick lime improvement district.
すなわち、図9に示すように、供試土Cに関しては、未改良区の湿潤密度が1.640〜1.734g/cm3、生石灰改良区の湿潤密度が1.751〜1.772g/cm3、PS灰資材改良区の湿潤密度が1.680〜1.837g/cm3であった。そして、未改良区の乾燥密度が1.225〜1.264g/cm3、生石灰改良区の乾燥密度が1.282〜1.298g/cm3、PS灰資材改良区の乾燥密度が1.214〜1.388g/cm3であった。また、未改良区の含水比が33.9〜38.9%、生石灰改良区の含水比が36.3〜36.6%、PS灰資材改良区の含水比が32.4〜40.0%であった。 That is, as shown in FIG. 9, with respect to the test soil C, the wet density of the unmodified zone is 1.640 to 1.734 g / cm 3 , and the wet density of the quicklime improved zone is 1.751 to 1.772 g / cm 3 . 3 , the wet density of the PS ash material improvement zone was 1.680 to 1.837 g / cm 3 . The dry density of the unmodified zone is 1.225 to 1.264 g / cm 3 , the dry density of the quicklime improved zone is 1.282 to 1.298 g / cm 3 , and the dry density of the PS ash material improved zone is 1.214. It was ˜1.388 g / cm 3 . In addition, the moisture content of the unmodified zone is 33.9 to 38.9%, the moisture content of the quicklime improved zone is 36.3 to 36.6%, and the moisture content of the PS ash material improved zone is 32.4 to 40.0. %Met.
一方、図10に示すように、供試土Dに関しては、未改良区の湿潤密度が1.693〜1.722g/cm3、生石灰改良区の湿潤密度が1.622〜1.757g/cm3、PS灰資材改良区の湿潤密度が1.503〜1.692g/cm3であった。そして、未改良区の乾燥密度が1.297〜1.317g/cm3、生石灰改良区の乾燥密度が1.238〜1.348g/cm3、PS灰資材改良区の乾燥密度が1.133〜1.244g/cm3であった。また、未改良区の含水比が28.5〜32.8%、生石灰改良区の含水比が29.2〜31.0%、PS灰資材改良区の含水比が32.7〜36.0%であった。 On the other hand, as shown in FIG. 10, for the test soil D, the wet density of the unmodified zone is 1.673 to 1.722 g / cm 3 , and the wet density of the quicklime improved zone is 1.622 to 1.757 g / cm 3 . 3 , the wet density of the PS ash material improvement zone was 1.503 to 1.682 g / cm 3 . The dry density of the unmodified zone is 1.297 to 1.317 g / cm 3 , the dry density of the quicklime improved zone is 1.238 to 1.348 g / cm 3 , and the dry density of the PS ash material improved zone is 1.133. ˜1.244 g / cm 3 . In addition, the moisture content of the unmodified zone is 28.5 to 32.8%, the moisture content of the quicklime improved zone is 29.2 to 31.0%, and the moisture content of the PS ash material improved zone is 32.7 to 36.0. %Met.
供試土Cの分散状態に関し、図11(a)に示すように、供試土Cの未改良区及び生石灰改良区では全体的に土粒子(スラッジ)が分散された状態になっていた。これに対し、PS灰資材改良区では、土粒子がシリンダー底部に沈殿した状態になっていた。供試土Dについても同様の分散状態が確認された。すなわち、図11(b)に示すように、未改良区及び生石灰改良区では全体的に土粒子が分散され、PS灰資材改良区では土粒子がシリンダー底部に沈殿していた。 Regarding the dispersed state of the test soil C, as shown in FIG. 11A, the soil particles (sludge) were dispersed in the unmodified zone and the quicklime improved zone of the test soil C as a whole. On the other hand, in the PS ash material improvement district, the soil particles were in a state of sedimenting at the bottom of the cylinder. A similar dispersion state was confirmed for the test soil D. That is, as shown in FIG. 11 (b), the soil particles were dispersed as a whole in the unmodified zone and the quicklime improved zone, and the soil particles were precipitated at the bottom of the cylinder in the PS ash material improved zone.
このように、未改良区及び生石灰改良区とPS灰資材改良区との間で土粒子の分散状態に大きな違いが確認されたことから、水溶液に含まれている成分を比較した。図9及び図10を参照すると、PS灰資材改良区では、水溶性カルシウムイオンと硫酸イオンの含有量が、未改良区及び生石灰改良区よりも特に高いことが確認できた。 Thus, since the big difference was confirmed in the dispersion state of the soil particle between the unimproved area and the quick lime improved area and the PS ash material improved area, the components contained in the aqueous solution were compared. Referring to FIGS. 9 and 10, it was confirmed that the content of water-soluble calcium ions and sulfate ions was particularly higher in the PS ash material improved area than in the unimproved area and the quick lime improved area.
例えば供試土Cの水溶性カルシウムイオンは、PS灰資材改良区で220mg/Lであるが、未改良区で4.0mg/L、生石灰改良区で73mg/Lであった。供試土Cの硫酸イオンは、PS灰資材改良区で440mg/Lであるが、未改良区で21mg/L、生石灰改良区で26mg/Lであった。同様に、供試土Dの水溶性カルシウムイオンは、PS灰資材改良区で120mg/Lであるが、未改良区で5.2mg/L、生石灰改良区で44mg/Lであった。供試土Dの硫酸イオンは、PS灰資材改良区で270mg/Lであるが、未改良区で20mg/L、生石灰改良区で21mg/Lであった。 For example, the water-soluble calcium ion of the test soil C was 220 mg / L in the PS ash material improved area, but 4.0 mg / L in the unimproved area and 73 mg / L in the quicklime improved area. The sulfate ion of the test soil C was 440 mg / L in the PS ash material improved district, but was 21 mg / L in the unmodified district and 26 mg / L in the quicklime improved district. Similarly, the water-soluble calcium ion of the test soil D was 120 mg / L in the PS ash material improved district, but was 5.2 mg / L in the unmodified district and 44 mg / L in the quicklime improved district. The sulfate ion of the test soil D was 270 mg / L in the PS ash material improved district, but was 20 mg / L in the unmodified district and 21 mg / L in the quicklime improved district.
また、PS灰資材改良区は、電気伝導率に関しても、未改良区及び生石灰改良区よりも高いことが確認できた。供試土Cの電気伝導率に関し、PS灰資材改良区で56mS/mであるが、未改良区で11mS/m、生石灰改良区で32mS/mであった。同様に、供試土Dの電気伝導率に関し、PS灰資材改良区で56mS/mであるが、未改良区で10mS/m、生石灰改良区で38mS/mであった。 In addition, it was confirmed that the PS ash material improved district was higher in electrical conductivity than the unimproved district and the quicklime improved district. Regarding the electric conductivity of the test soil C, it was 56 mS / m in the PS ash material improved district, but was 11 mS / m in the unmodified district and 32 mS / m in the quicklime improved district. Similarly, regarding the electric conductivity of the test soil D, it was 56 mS / m in the PS ash material improved district, but 10 mS / m in the unmodified district and 38 mS / m in the quicklime improved district.
以上の結果より、水溶性カルシウムイオンと硫酸イオンが土粒子の分散抑制(凝集促進)に寄与していると考えられた。例えば、図12(a)に示すように、粘土の主成分であるモンモリロナイトMは多層構造をしている。そして、図12(b)に示すように、ナトリウム型のものは層間にナトリウムイオンと水分子とが入り込んでいる。層間に多くの水分子が入り込むことで層同士の間隔が開き、土粒子が膨潤して盛土表層から流出すると考えられる。ここで、図12(c)に示すように、水溶性カルシウムイオンが存在すると、ナトリウムイオンがカルシウムイオンに置き換わり、カルシウム型のモンモリロナイトとなる。カルシウム型は、ナトリウム型よりも層間に保持する水分子の量が少ない。これにより、土粒子の膨潤が抑制され、盛土表層からの流出量も低減される。 From the above results, it was considered that water-soluble calcium ions and sulfate ions contributed to the dispersion suppression (acceleration of aggregation) of the soil particles. For example, as shown in FIG. 12A, montmorillonite M, which is a main component of clay, has a multilayer structure. And as shown in FIG.12 (b), in the sodium type thing, a sodium ion and a water molecule have entered between layers. It is thought that when many water molecules enter between the layers, the space between the layers opens, and the soil particles swell and flow out from the embankment surface layer. Here, as shown in FIG. 12C, when water-soluble calcium ions are present, sodium ions are replaced with calcium ions to form calcium-type montmorillonite. The calcium type has a smaller amount of water molecules held between the layers than the sodium type. Thereby, swelling of soil particles is suppressed and the outflow amount from the embankment surface layer is also reduced.
このことを確認すべく、PS灰資材を混合したPS灰資材改良土と二水石膏を混合した石膏改良土について、懸濁分散試験を行った。二水石膏を選定した理由は、水溶性カルシウムイオンと硫酸イオンとを含有しているからである。この試験において、PS灰資材資材や二水石膏の堆積土への混合比率は0.2g/kg,0.5g/kg,1g/kg,2g/kg,5g/kg,10g/kg,20g/kgとした。 In order to confirm this, a suspension dispersion test was performed on PS ash material improved soil mixed with PS ash material and gypsum improved soil mixed with dihydrate gypsum. The reason for selecting dihydrate gypsum is that it contains water-soluble calcium ions and sulfate ions. In this test, the mixing ratio of PS ash material and dihydrate gypsum to the sedimentary soil is 0.2 g / kg, 0.5 g / kg, 1 g / kg, 2 g / kg, 5 g / kg, 10 g / kg, 20 g / kg. kg.
図13(a)に示すように、PS灰資材改良土によるPS灰資材改良区では、混合比率を20g/kgとした試験ケースでシリンダー底部への土粒子の沈殿が確認された。一方、図13(b)に示すように、石膏改良土による石膏改良区では、混合比率を2g/kgとした試験ケースでシリンダー底部への土粒子の沈殿が確認された。同様に、混合比率を5〜20g/kgとした試験ケースでも沈殿が確認された。すなわち、PS灰資材には、二水石膏相当成分(カルシウムイオン及び硫酸イオンの供給源となる水溶性成分)が担持されていると解され、その担持量は二水石膏の0.1重量%と解される。 As shown in FIG. 13 (a), in the PS ash material modified section using the PS ash material modified soil, sedimentation of soil particles at the bottom of the cylinder was confirmed in a test case with a mixing ratio of 20 g / kg. On the other hand, as shown in FIG. 13 (b), in the gypsum improved section with gypsum improved soil, sedimentation of soil particles at the bottom of the cylinder was confirmed in a test case with a mixing ratio of 2 g / kg. Similarly, precipitation was confirmed even in a test case where the mixing ratio was 5 to 20 g / kg. That is, it is understood that the PS ash material carries a component equivalent to dihydrate gypsum (a water-soluble component serving as a supply source of calcium ions and sulfate ions), and the amount supported is 0.1% by weight of dihydrate gypsum. It is understood.
ここで、二水石膏2g/kgの試験ケースにおける硫酸イオン濃度は124mg/Lであり、水溶性カルシウムイオン濃度は52mg/Lである。また、二水石膏20g/kgの試験ケースにおける硫酸イオン濃度は1240mg/Lであり、水溶性カルシウムイオン濃度は520mg/Lである。そして、図13(b)並びに図9及び図10の結果を考慮すると、20g/kgよりも高い比率で二水石膏を堆積土に混合しても、土粒子の沈殿が生じると解される。従って、硫酸イオンが124mg/L以上,水溶性カルシウムイオン濃度は52mg/L以上の濃度で存在すれば、土粒子の沈殿が生じると解される。 Here, the sulfate ion concentration in the test case of 2 g / kg dihydrate gypsum is 124 mg / L, and the water-soluble calcium ion concentration is 52 mg / L. The sulfate ion concentration in the test case of dihydrate gypsum 20 g / kg is 1240 mg / L, and the water-soluble calcium ion concentration is 520 mg / L. Then, considering the results of FIG. 13 (b) and FIGS. 9 and 10, it is understood that sedimentation of soil particles occurs even when dihydrate gypsum is mixed with sedimentary soil at a rate higher than 20 g / kg. Therefore, it is understood that sedimentation of soil particles occurs when sulfate ions are present at a concentration of 124 mg / L or more and a water-soluble calcium ion concentration of 52 mg / L or more.
以上説明した各実験を総括すると、次のことがいえる。 Summarizing the experiments described above, the following can be said.
まず、土質改良材としてPS灰資材を用いることにより、一般的な土質改良材である生石灰を用いた場合に比べ、堆積土中の水分量を早期に低減させることができ、締固め強度を高めることができる。そして、PS灰資材を用いると、速やかに堆積土を粒子状にほぐすことができ、ハンドリング性を高めることができる。これは、生石灰が化学反応によって脱水しているのに対し、PS灰資材では多孔質粒状体の内部に水分を物理的に吸着及び保持しているためと解される。また、PS灰資材の粒径が1mm〜5cm程度であるので、粉体よりも飛散し難く作業性を向上させることができる。 First, by using PS ash material as a soil improvement material, it is possible to reduce the amount of moisture in the sedimentary soil earlier and to increase the compaction strength compared to the case of using quick lime, which is a general soil improvement material. be able to. And if PS ash material is used, sedimentary soil can be loosened rapidly and a handling property can be improved. This is because quick lime is dehydrated by a chemical reaction, whereas PS ash material physically adsorbs and retains moisture inside the porous granular material. Moreover, since the particle size of PS ash material is about 1 mm-5 cm, it is hard to be scattered rather than powder and workability | operativity can be improved.
さらに、PS灰資材は、硫酸イオンと水溶性カルシウムイオンの供給源となる水溶性成分を含有しているので、ナトリウムイオンをカルシウムイオンに効率よく置換でき、雨水等による土粒子の流出、すなわち盛土からの濁り水の発生を抑制することができる。 Furthermore, since PS ash materials contain water-soluble components that serve as a source of sulfate ions and water-soluble calcium ions, sodium ions can be efficiently replaced with calcium ions, and the outflow of soil particles due to rain water or the like, that is, embankment The generation of turbid water from can be suppressed.
以上の実施形態の説明は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明はその趣旨を逸脱することなく、変更、改良され得ると共に本発明にはその等価物が含まれる。例えば、次のように構成してもよい。 The above description of the embodiment is for facilitating the understanding of the present invention, and does not limit the present invention. The present invention can be changed and improved without departing from the gist thereof, and the present invention includes equivalents thereof. For example, you may comprise as follows.
前述の実施形態では、土質改良材としてPS灰資材を例示したが、これに限定されるものではない。すなわち、カルシウムイオン及び硫酸イオンの供給源となる水溶性成分を、吸水性を有する多孔質粒状体に保持させたものであれば、PS灰資材と同様な作用効果が得られると解される。例えば、珪藻土を焼成して得られた多孔質粒子(商品名「イソライト」〔登録商標〕)に、カルシウムイオン及び硫酸イオンの供給源となる水溶性成分として石膏を保持させたものであってもよい。 In the above-described embodiment, the PS ash material is exemplified as the soil improvement material, but the present invention is not limited to this. That is, it is understood that the same effect as the PS ash material can be obtained if a water-soluble component serving as a supply source of calcium ions and sulfate ions is held in a porous granular material having water absorption. For example, porous particles obtained by firing diatomaceous earth (trade name “Isolite” [registered trademark]) may have gypsum held as a water-soluble component serving as a source of calcium ions and sulfate ions. Good.
1…盛土,2…生石灰改良区,3…PS灰資材改良区,4…未改良区,5…盛土の表層土,H…盛土の高さ,L…盛土の長さ,M…モンモリロナイト DESCRIPTION OF SYMBOLS 1 ... Filling, 2 ... Quick lime improvement zone, 3 ... PS ash material improvement zone, 4 ... Non-improvement zone, 5 ... Surface soil of embankment, H ... Height of embankment, L ... Length of embankment, M ... Montmorillonite
Claims (5)
カルシウムイオン及び硫酸イオンの供給源となる水溶性成分が、吸水性を有する多孔質粒状体に保持されてなり、前記多孔質粒状体は、PS灰造粒物、又は珪藻土を焼成して得られた多孔質粒子であることを特徴とする土質改良材。 A soil improvement material that improves the soil quality of sedimentary soil containing salt and moisture,
Water-soluble component as a source of calcium ions and sulfate ions, becomes held in the porous granules having a water absorption, the porous granules are obtained by sintering PS Haizotsubu thereof, or diatomaceous earth A soil improvement material characterized by being porous particles .
カルシウムイオン及び硫酸イオンの供給源となる水溶性成分が吸水性を有する多孔質粒状体に保持されてなり、前記多孔質粒状体は、PS灰造粒物、又は珪藻土を焼成して得られた多孔質粒子である土質改良材を、前記堆積土に混合することを特徴とする土質改良方法。 A soil improvement method for improving the soil quality of sedimentary soil containing salt and moisture,
Water-soluble component as a source of calcium ions and sulfate ions is held in the porous granules having a water absorption, the porous granules are obtained by sintering PS Haizotsubu thereof, or diatomaceous earth A soil improvement method comprising mixing a soil improvement material which is a porous particle into the sedimentary soil.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013259225A JP6412691B2 (en) | 2013-12-16 | 2013-12-16 | Soil improvement material for improving soil quality of sedimentary soil containing salt and moisture, and soil improvement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013259225A JP6412691B2 (en) | 2013-12-16 | 2013-12-16 | Soil improvement material for improving soil quality of sedimentary soil containing salt and moisture, and soil improvement method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015113459A JP2015113459A (en) | 2015-06-22 |
JP6412691B2 true JP6412691B2 (en) | 2018-10-24 |
Family
ID=53527566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013259225A Expired - Fee Related JP6412691B2 (en) | 2013-12-16 | 2013-12-16 | Soil improvement material for improving soil quality of sedimentary soil containing salt and moisture, and soil improvement method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6412691B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6773409B2 (en) * | 2015-12-01 | 2020-10-21 | 五洋建設株式会社 | Desalination and improvement methods for cohesive soil |
JP2022090386A (en) * | 2020-12-07 | 2022-06-17 | 鹿島建設株式会社 | Soil property measuring method and soil property measuring device |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008050522A (en) * | 2006-08-28 | 2008-03-06 | Katayama Chem Works Co Ltd | Soil conditioner, and method for conditioning soil using it |
CN101456778A (en) * | 2008-12-31 | 2009-06-17 | 沈阳农业大学 | Ca<2+> signal transduction type saline soil restoration material |
CN101591543B (en) * | 2009-04-29 | 2012-04-11 | 新疆满疆红农资化肥科技有限公司 | Method for preparing organic synergistic soil conditioner |
KR101232284B1 (en) * | 2012-12-13 | 2013-02-12 | 김정호 | Soil conditioner for salty land and manufacturing method of the same |
KR101317889B1 (en) * | 2012-12-17 | 2013-10-11 | 자연조경 주식회사 | A soil conditioner compound of using a illite for salty land and a forestating method by using a soil conditioner compound |
-
2013
- 2013-12-16 JP JP2013259225A patent/JP6412691B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2015113459A (en) | 2015-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2007253479B2 (en) | Treatment of mineral slurries with improved plant growth rehabilitation | |
Kim et al. | Recycling of arsenic-rich mine tailings in controlled low-strength materials | |
JP2009297622A (en) | Water cleaning material | |
Peng et al. | Heavy metal leachability in soil amended with zeolite-or biochar-modified contaminated sediment | |
US8985901B2 (en) | Overburden/tailings mixtures for engineered tailings deposit control | |
JP6412691B2 (en) | Soil improvement material for improving soil quality of sedimentary soil containing salt and moisture, and soil improvement method | |
JP2024138031A (en) | Soil solidification material, manufacturing method for soil solidification material, and soil solidification method | |
KR100992510B1 (en) | Soil improving agent and method for treatment of sludge using the same | |
CA2913625C (en) | Debris processing composition and debris processing method | |
JP2005013973A (en) | Solidification material of sludge, processing method of sludge using the same and reutilizing method of solidified sludge | |
JP3525084B2 (en) | Soil improvement method and soil improvement material for highly hydrous soil | |
JP2001303540A (en) | Method of treating heaving weak soil in construction method of improving weak ground by driving sand pile | |
Li et al. | Creating soil-like materials for plant growth using tailings sand and fine tails | |
JP6177528B2 (en) | Insolubilizing material and insolubilizing method for arsenic-containing heavy metal contaminated soil | |
JP5563177B1 (en) | Sludge reforming method | |
KR100501926B1 (en) | Method for stabilization and strength improvement of dredged soil using oyster shell | |
JP6238519B2 (en) | Paddy field repair method | |
Santhosh et al. | The suitability of marine clay–zeolite mix as landfill liners | |
JP6818330B1 (en) | Heavy metal adsorbent and its manufacturing method | |
JP6076056B2 (en) | Reuse processing method of sediment | |
AGBO | EFFECT OF FLYASH AND EGGSHELL POWDER ON THE SHEAR STRENGTH OF CLAYEY SOIL | |
Rupakheti | Containment and dewatering of heavy metal contaminated slurries using reactive soil minerals and cellulose materials | |
PT2050517E (en) | Method for processing contaminated mineral water sediment or soil material | |
Tosun | Hazardous Waste Granule Composting by Cycled Retort Using Microwave Radiated Asphalt/Asphaltite Coal Slime Mixing | |
Barclay | Hydration and Permeation Properties of Conventional Bentonite and Polymer Bentonite Composite Geosynthetic Clay Liners |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20161118 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20171127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180109 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180308 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180626 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180809 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180904 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181001 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6412691 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |