JP6692136B2 - Decontamination method for contaminated soil - Google Patents

Decontamination method for contaminated soil Download PDF

Info

Publication number
JP6692136B2
JP6692136B2 JP2015172075A JP2015172075A JP6692136B2 JP 6692136 B2 JP6692136 B2 JP 6692136B2 JP 2015172075 A JP2015172075 A JP 2015172075A JP 2015172075 A JP2015172075 A JP 2015172075A JP 6692136 B2 JP6692136 B2 JP 6692136B2
Authority
JP
Japan
Prior art keywords
contaminated soil
mass
water
soil
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015172075A
Other languages
Japanese (ja)
Other versions
JP2017047363A (en
Inventor
勝 友口
勝 友口
順兵 野崎
順兵 野崎
雅也 神▲崎▼
雅也 神▲崎▼
雅美 鎌田
雅美 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Eco Systems Co Ltd
Original Assignee
Dowa Eco Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Eco Systems Co Ltd filed Critical Dowa Eco Systems Co Ltd
Priority to JP2015172075A priority Critical patent/JP6692136B2/en
Publication of JP2017047363A publication Critical patent/JP2017047363A/en
Application granted granted Critical
Publication of JP6692136B2 publication Critical patent/JP6692136B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Description

本発明は、汚染土壌の無害化処理方法に関する。   The present invention relates to a method for detoxifying contaminated soil.

近年、景気浮揚等に伴いトンネル工事や再開発工事の着手が多くなってきている。これに伴って発生する残土の捨て場の確保が問題となっている。前記残土中には砒素をはじめとする自然由来の汚染物質による汚染土壌も含まれ、その対応方法が課題となっている。前記汚染土壌の特徴として、汚染物質の含有量が土壌汚染対策法に規定されている含有量基準に比較して、比較的微量である一方、溶出量基準を数倍〜数10倍程度超過するという傾向がある。   In recent years, the start of tunnel construction and redevelopment construction has been increasing with the economic buoyancy. Along with this, securing a dump site for the remaining soil has become a problem. The remaining soil also contains polluted soil due to naturally-derived pollutants such as arsenic, and a method of coping with it is an issue. As a characteristic of the contaminated soil, the content of pollutants is relatively small compared with the content standard stipulated in the Soil Contamination Countermeasures Law, while the elution standard exceeds several times to several tens of times. There is a tendency.

そこで、本出願人は、汚染土壌に対して鉄粉を添加する鉄粉添加工程と、磁選前の汚染土壌の水分含有量を36質量%以下に調整する水分含有量調整工程と、水分含有量が36質量%以下である汚染土壌から鉄粉を乾式磁選により回収除去する乾式磁選工程とを含む汚染土壌の無害化処理方法を提案している(特許文献1参照)。この提案によれば、乾式処理により汚染土壌を浄化土壌として簡便かつ有効に利用することができる。   Therefore, the applicant has adopted an iron powder addition step of adding iron powder to the contaminated soil, a water content adjustment step of adjusting the water content of the contaminated soil before magnetic separation to 36 mass% or less, and a water content. The method for detoxifying contaminated soil, which comprises a dry magnetic separation step of collecting and removing iron powder from the contaminated soil whose content is 36% by mass or less (see Patent Document 1). According to this proposal, the contaminated soil can be simply and effectively used as the purified soil by the dry treatment.

しかしながら、この提案では、前記水分含有量調整工程において、土質に応じて適宜選定して、中性固化材などの吸湿材(吸水剤)を混合して前記汚染土壌の水分含有量を調整しており、特にシルト分及び粘土分が多い前記汚染土壌には、前記中性固化材を、前記汚染土壌に対して10質量%以上30質量%以下と、多量に添加をしなければ、乾式磁選を行うことができなかった。このため、処理後土壌の重量が多くなり、供給設備の過大化、利用場所までの運搬費の増加が問題となっていた。また、前記中性固化材を添加した後の汚染土壌は、土の塊(団粒)が大きくなる傾向があり、前記団粒が大きいままの状態で前記乾式磁選すると、汚染物質の除去効果が低下するという問題があり、前記乾式磁選をより効果的に行うために、前記団粒をより小さい状態にする方法が求められていた。   However, in this proposal, in the water content adjusting step, the water content of the contaminated soil is adjusted by appropriately selecting it depending on the soil quality and mixing a hygroscopic material (water absorbing agent) such as a neutral solidifying material. In particular, for the contaminated soil containing a large amount of silt and clay, the neutral solidifying material is added to the contaminated soil in an amount of 10% by mass or more and 30% by mass or less. Could not be done. For this reason, the weight of the soil after the treatment becomes large, and there are problems that the supply equipment becomes excessively large and the transportation cost to the use place increases. Further, the contaminated soil after adding the neutral solidifying material tends to have large lumps (aggregates) of soil, and when the dry magnetic separation is performed in a state where the aggregates remain large, the effect of removing pollutants is increased. There is a problem of decrease in the size, and in order to carry out the dry magnetic separation more effectively, there has been a demand for a method of making the aggregates into a smaller state.

更に、汚染土壌の無害化処理方法によって得られた浄化土壌については、安全性だけでなく、埋戻しの場所が制限されないように、浄化土壌に必要とされる性状(例えば、体積膨張率が低いことなど)としてから埋戻しをすることが求められていた。   Furthermore, regarding the purified soil obtained by the method of detoxifying contaminated soil, not only the safety but also the properties required for the purified soil (for example, the volume expansion coefficient is low so that the place of backfilling is not limited). It was required to backfill.

したがって、前記乾式磁選を行うときの汚染土壌の団粒を小さくすることができ、更に、処理後土壌の重量が多くなることがなく、水分を含んだときの体積膨張率が低くなるために前記浄化土壌の埋戻し場所が制限されることがない汚染土壌の無害化処理方法の提供が望まれている。   Therefore, it is possible to reduce the aggregate size of the contaminated soil when performing the dry magnetic separation, and further, the weight of the soil after the treatment does not increase, and the volume expansion coefficient when water is contained becomes low. It is desired to provide a method for detoxifying contaminated soil in which the backfilling place of purified soil is not restricted.

特許第5647371号公報Japanese Patent No. 5647371

本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、前記乾式磁選を行うときの汚染土壌の団粒を小さくすることができ、更に、処理後土壌の重量が多くなることがなく、水分を含んだときの体積膨張率が低くなるために前記浄化土壌の埋戻し場所が制限されることがない汚染土壌の無害化処理方法を提供することを目的とする。   An object of the present invention is to solve the above-mentioned problems in the related art and achieve the following object. That is, the present invention can reduce the aggregate of contaminated soil when performing the dry magnetic separation, and further, the weight of the soil after treatment does not increase, and the volume expansion coefficient when water is contained is low. Therefore, it is an object of the present invention to provide a method for detoxifying contaminated soil, in which the backfilling place of the purified soil is not restricted.

前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 砒素、鉛、六価クロム、カドミウム、セレン、水銀、シアン、フッ素及びほう素から選択される少なくとも1種の汚染物質を含む汚染土壌に対して鉄粉を添加する鉄粉添加工程と、
磁選前の汚染土壌に吸水性ポリマーを添加する吸水性ポリマー添加工程と、
前記吸水性ポリマーが添加された汚染土壌から鉄粉を乾式磁選により回収除去する乾式磁選工程と、
前記乾式磁選工程で得られた非磁着物に無機化合物を添加する無機化合物添加工程とを含むことを特徴とする汚染土壌の無害化処理方法である。
<2> 前記汚染土壌に対して0.1質量%以上1.0質量%以下の前記吸水性ポリマーを添加する前記<1>に記載の汚染土壌の無害化処理方法である。
<3> 前記無機化合物の添加量が、前記非磁着物100質量部に対して、0.5質量部以上10質量部以下である前記<1>又は<2>に記載の汚染土壌の無害化処理方法である。
<4> 前記無機化合物が、半水石膏、無水石膏、硫酸カルシウム、塩化カルシウム、炭酸カルシウム、硫酸鉄、塩化鉄、硫酸アルミニウム、塩化アルミニウム、硫酸マグネシウム、及び焼却灰の少なくともいずれかである前記<1>から<3>のいずれかに記載の汚染土壌の無害化処理方法である。
<5> 前記汚染土壌に対して前記吸水性ポリマーが0.1質量%以上添加されたときに、前記無機化合物が添加される前記<1>から<4>のいずれかに記載の汚染土壌の無害化処理方法である。
<6> 前記吸水性ポリマーを添加した前記乾式磁選前の前記汚染土壌を、予め9.5mmの篩で篩分けして得られた9.5mm以下の区分の質量基準の累積50%粒子径D50が、4mm以下である前記<1>から<5>のいずれかに記載の汚染土壌の無害化処理方法である。
<7> 鉄粉添加前の汚染土壌の水分含有量が、60質量%以下である前記<1>から<6>のいずれかに記載の汚染土壌の無害化処理方法である。
<8> 無機化合物が添加された非磁着物の体積膨張率が、130%以下である前記<1>から<7>に記載の汚染土壌の無害化処理方法である。
The means for solving the above problems are as follows. That is,
<1> Iron powder addition step of adding iron powder to contaminated soil containing at least one pollutant selected from arsenic, lead, hexavalent chromium, cadmium, selenium, mercury, cyan, fluorine and boron ,
A water-absorbent polymer addition step of adding a water-absorbent polymer to the contaminated soil before magnetic separation,
A dry magnetic separation step of collecting and removing iron powder from the contaminated soil to which the water-absorbing polymer has been added by dry magnetic separation,
A method for detoxifying contaminated soil, comprising the step of adding an inorganic compound to the non-magnetic substance obtained in the dry magnetic separation step.
<2> The method for detoxifying contaminated soil according to <1>, wherein 0.1% by mass or more and 1.0% by mass or less of the water-absorbent polymer is added to the contaminated soil.
<3> Detoxification of the contaminated soil according to <1> or <2>, wherein the addition amount of the inorganic compound is 0.5 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the non-magnetic substance. It is a processing method.
<4> The inorganic compound is at least one of hemihydrate gypsum, anhydrous gypsum, calcium sulfate, calcium chloride, calcium carbonate, iron sulfate, iron chloride, aluminum sulfate, aluminum chloride, magnesium sulfate, and incinerated ash. The method for detoxifying contaminated soil according to any one of 1> to <3>.
<5> The contaminated soil according to any one of <1> to <4>, wherein the inorganic compound is added when the water-absorbent polymer is added to the contaminated soil in an amount of 0.1% by mass or more. It is a detoxification method.
<6> Cumulative 50% particle size D on a mass basis of 9.5 mm or less obtained by sieving the contaminated soil before the dry magnetic separation to which the water-absorbing polymer was added with a 9.5 mm sieve in advance. 50 is the method for detoxifying contaminated soil according to any one of <1> to <5>, which is 4 mm or less.
<7> The method for detoxifying contaminated soil according to any one of <1> to <6>, wherein the water content of the contaminated soil before addition of iron powder is 60% by mass or less.
<8> The method for detoxifying contaminated soil according to <1> to <7>, wherein the nonmagnetic material added with the inorganic compound has a volume expansion coefficient of 130% or less.

本発明によると、従来における問題を解決することができ、前記乾式磁選を行うときの汚染土壌の団粒を小さくすることができ、更に、処理後土壌の重量が多くなることがなく、水分を含んだときの体積膨張率が低くなるために前記浄化土壌の埋戻し場所が制限されることがない汚染土壌の無害化処理方法を提供することができる。   According to the present invention, it is possible to solve the problems in the prior art, it is possible to reduce the aggregate of contaminated soil when performing the dry magnetic separation, further, without increasing the weight of the soil after treatment, moisture It is possible to provide a method for detoxifying contaminated soil in which the backfilling place of the purified soil is not limited because the volume expansion coefficient when it is included is low.

図1は、本発明の汚染土壌の無害化処理方法のフロー図である。FIG. 1 is a flow chart of a method for detoxifying contaminated soil according to the present invention. 図2は、質量基準の累積50%粒子径D50と磁着物回収率との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the mass-based cumulative 50% particle diameter D 50 and the magnetic substance recovery rate. 図3は、比較例1の吸水性ポリマーの添加量と体積膨張率との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the added amount of the water-absorbing polymer of Comparative Example 1 and the volume expansion coefficient.

(汚染土壌の無害化処理方法)
本発明の汚染土壌の無害化処理方法は、鉄粉添加工程と、吸水性ポリマー添加工程と、乾式磁選工程と、無機化合物添加工程とを含み、更に必要に応じてその他の工程を含んでなる。
なお、汚染土壌の無害化とは、汚染土壌に含まれる汚染物質を、土壌汚染対策法施行規則(平成14年環境省令第29号)第5条第3項第4号の規定に基づき、環境大臣が定める土壌溶出量調査に係る基準(環境省告示第18号)を下回る数値にすることである。
(Method of detoxifying contaminated soil)
The method for detoxifying contaminated soil according to the present invention includes an iron powder addition step, a water-absorbing polymer addition step, a dry magnetic separation step, and an inorganic compound addition step, and further includes other steps as necessary. ..
In addition, detoxification of contaminated soil means that the pollutants contained in the contaminated soil are treated in accordance with the provisions of the Enforcement Regulations of the Soil Contamination Countermeasures Act (Ministry of the Environment Ordinance No. 29 of 2002) Article 5 Paragraph 3 Item 4 The value should be below the standard (Ministry of the Environment Notification No. 18) related to the soil elution amount survey established by the Minister.

<鉄粉添加工程>
前記鉄粉添加工程は、砒素、鉛、六価クロム、カドミウム、セレン、水銀、シアン、フッ素及びほう素から選択される少なくとも1種の汚染物質を含む汚染土壌に対して鉄粉を添加する工程である。
<Iron powder addition process>
The iron powder adding step is a step of adding iron powder to a contaminated soil containing at least one pollutant selected from arsenic, lead, hexavalent chromium, cadmium, selenium, mercury, cyan, fluorine and boron. Is.

前記汚染土壌とは、例えば、道路工事、トンネル建設工事、再開発工事等の各種建設工事に伴って発生する残土であり、自然由来の前記汚染物質を含有する土壌を意味する。
前記汚染物質としては、例えば、砒素(As)、鉛(Pb)、六価クロム(Cr(VI))、カドミウム(Cd)、セレン(Se)、水銀(Hg)、シアン(CN)、フッ素(F)、ほう素(B)などが挙げられる。これらの汚染物質は、土壌の汚染に係る環境基準の対象物質のうち、自然由来で岩石や土壌に存在する物質である。
The contaminated soil is, for example, residual soil generated by various construction works such as road construction, tunnel construction work, redevelopment work, etc., and means soil containing the pollutant derived from nature.
Examples of the pollutants include arsenic (As), lead (Pb), hexavalent chromium (Cr (VI)), cadmium (Cd), selenium (Se), mercury (Hg), cyanide (CN), fluorine ( F), boron (B) and the like. These pollutants are substances that are of natural origin and are present in rocks and soil among the substances that are subject to environmental standards for soil pollution.

鉄粉添加前の汚染土壌の水分含有量は、60質量%以下が好ましく、0質量%以上45質量%以下がより好ましく、10質量%以上35質量%以下が更に好ましい。前記汚染土壌の水分含有量が60質量%以下の範囲であれば、後述する吸水性ポリマー添加工程での吸水性ポリマーの添加量を少なくできる点で、有利である。更に、工事現場等から処理施設にトラックなどの運搬手段により運搬できるため、有利である。   The water content of the contaminated soil before the addition of iron powder is preferably 60% by mass or less, more preferably 0% by mass or more and 45% by mass or less, still more preferably 10% by mass or more and 35% by mass or less. When the water content of the contaminated soil is in the range of 60% by mass or less, it is advantageous in that the amount of the water-absorbent polymer added in the water-absorbent polymer addition step described later can be reduced. Further, it is advantageous because it can be transported from the construction site to the treatment facility by a transportation means such as a truck.

前記鉄粉の添加量は、前記汚染土壌に対して、0.05質量%以上10質量%以下が好ましく、0.05質量%以上1質量%以下がより好ましい。前記鉄粉の添加量が0.05質量%以上10質量%以下であると、乾式磁選により効率よく汚染物質を回収除去することができる。
前記鉄粉の種類としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、還元鉄粉、ダライコ鉄粉(屑鉄を原料とする)、アトマイズ鉄粉などが挙げられる。これらの中でも、還元鉄粉が好ましい。
The amount of the iron powder added is preferably 0.05% by mass or more and 10% by mass or less, and more preferably 0.05% by mass or more and 1% by mass or less, with respect to the contaminated soil. When the amount of the iron powder added is 0.05% by mass or more and 10% by mass or less, contaminants can be efficiently collected and removed by dry magnetic separation.
The type of the iron powder is not particularly limited and may be appropriately selected depending on the purpose, and examples thereof include reduced iron powder, Daliko iron powder (using scrap iron as a raw material), atomized iron powder and the like. Among these, reduced iron powder is preferable.

前記鉄粉の汚染土壌への添加に併せて酸を添加することが好ましい。前記酸は、前記汚染物質の移動を促進するために添加される。
前記酸としては、塩酸及び硫酸のいずれかが好ましい。
前記酸の添加量は、特に制限はなく、目的に応じて適宜選択することができるが、前記汚染土壌に対して、0質量%以上1質量%以下が好ましい。
前記酸処理後の汚染土壌のpHは、4.0〜9.0が好ましく、6.0〜8.0がより好ましい。前記pHが上記範囲であると、汚染物質が溶出性に変化することがなく、安全である。また、処理後土壌を浄化土として利用する場合にも、通常の土壌は中性域にあるため、前記pH範囲であることが好ましい。
また、前記酸の使用にあたっては、後に吸水性ポリマー添加工程を行うため、水での希釈は行わないことが好ましい。前記吸水性ポリマー添加工程における前記吸水性ポリマーの添加量を多くする必要が生じるためである。
It is preferable to add an acid together with the addition of the iron powder to the contaminated soil. The acid is added to facilitate migration of the contaminant.
The acid is preferably hydrochloric acid or sulfuric acid.
The amount of the acid added is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0% by mass or more and 1% by mass or less based on the contaminated soil.
The pH of the contaminated soil after the acid treatment is preferably 4.0 to 9.0, more preferably 6.0 to 8.0. When the pH is within the above range, contaminants are not changed in dissolution property, which is safe. Further, when the treated soil is used as the purified soil, the normal pH of the soil is in the neutral range, so that the pH is preferably within the above range.
In addition, when the above-mentioned acid is used, it is preferable not to dilute it with water, because a water-absorbing polymer addition step is performed later. This is because it is necessary to increase the addition amount of the water absorbing polymer in the water absorbing polymer adding step.

前記鉄粉添加前の水分含有量の掘削した汚染土壌に対して、前記鉄粉及び前記酸の少なくともいずれかを混合機に投入してよく混練する。この場合、前記汚染土壌中に粗大な礫等が入っている場合は、前記混練に支障をきたすため、事前に篩分け及び破砕するなどの前処理を行うことが好ましい。   At least one of the iron powder and the acid is put into a mixer and kneaded well with respect to the excavated contaminated soil having the water content before the addition of the iron powder. In this case, if coarse gravel or the like is contained in the contaminated soil, it hinders the kneading, and thus it is preferable to perform pretreatment such as sieving and crushing in advance.

前記混練方法としては、特に制限はなく、目的に応じて適宜選択することができるが、団粒の細分効果を勘案すると、打撃式混合機よりも、せん断式混合機が好ましい。前記せん断式混合機としては、例えば、二軸式パドル混合機などが挙げられる。   The kneading method is not particularly limited and may be appropriately selected depending on the intended purpose. However, in consideration of the effect of subdividing the aggregates, the shear mixer is preferable to the impact mixer. Examples of the shear mixer include a twin-screw paddle mixer.

<吸水性ポリマー添加工程>
前記吸水性ポリマー添加工程は、磁選前の前記汚染土壌に、吸水性ポリマーを添加する工程である。前記吸水性ポリマーが添加された磁選前の前記汚染土壌について、予め9.5mmの篩で篩分けして得られた9.5mm以下の区分における質量基準の累積50%粒子径D50が4mm以下であることが好ましい。前記D50が4mmを超えると、汚染物質の除去効果が低下することがある。
<Water absorbing polymer addition step>
The water absorbent polymer adding step is a step of adding a water absorbent polymer to the contaminated soil before magnetic separation. Regarding the contaminated soil to which the water-absorbing polymer has been added before the magnetic separation, a mass-based cumulative 50% particle diameter D 50 in a 9.5 mm or less classification obtained by sieving with a 9.5 mm sieve in advance is 4 mm or less. Is preferred. If the D 50 exceeds 4 mm, the effect of removing contaminants may be reduced.

ここで、前記質量基準の累積50%粒子径D50とは、以下で求めることができる。
予め目開き9.5mmの標準篩で篩分けした9.5mm以下の土壌100gに添加剤(例えば、前記鉄粉、前記吸水性ポリマーなど)を所定量添加し、混合する。次に、前記混合した前記土壌を、前記土壌の団粒を保持させたままで、標準篩を用いて質量基準での粒度分布を測定し、質量基準の累積50%の粒子径(D50)を求める。
Here, the mass-based cumulative 50% particle diameter D 50 can be calculated as follows.
A predetermined amount of an additive (for example, the iron powder, the water-absorbent polymer, etc.) is added to 100 g of soil having a size of 9.5 mm or less, which has been sieved in advance with a standard sieve having an opening of 9.5 mm, and mixed. Next, the mixed soil is measured for a particle size distribution on a mass basis using a standard sieve while keeping the aggregated particles of the soil, and a cumulative particle diameter (D 50 ) of 50% on a mass basis is obtained. Ask.

前記吸水性ポリマーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリアクリル酸塩(例えば、ポリアクリル酸ナトリウム)、ポリスルホン酸塩、無水マレイン酸塩、ポリアクリルアミド、ポリビニルアルコール、ポリエチレンオキシド、ポリアスパラギン酸塩、ポリグルタミン酸塩、ポリアルギン酸塩、デンプン系、セルロースの吸水性ポリマー、又はこれらの誘導体などが挙げられる。これらの中でも、工業的に生産性が優位である、ポリアクリル酸塩が好ましく、ポリアクリル酸ナトリウムがより好ましい。
前記吸水性ポリマーの平均粒径としては、特に制限はなく、目的に応じて適宜選択することができるが、前記平均粒径は、小さいほうが好ましい。吸水性ポリマーの水分吸収過程で比表面積が大きい点、及び土壌に満遍なく混合しやすい点などが挙げられるためである。
前記吸水性ポリマーの添加量としては、特に制限はなく、前記汚染土壌の水分含有量に応じて適宜選択することができ、例えば、前記汚染土壌に対して0.1質量%以上1.0質量%以下が好ましい。前記添加量が0.1質量%未満であると、前記吸水性ポリマーを添加した効果が得られないことがあり、1.0質量%を超えると、効果が飽和することがある。
また、前記吸水性ポリマーの添加量は、前記汚染土壌の水分含有量に応じて決定してもよい。
なお、前記吸水性ポリマー添加工程は、前記乾式磁選工程前であれば、前記汚染土壌にいつ添加してもよく、例えば、前記鉄粉添加工程と同時に行ってもよい。
また、前記吸水性ポリマーを添加することにより、磁選前の前記汚染土壌の前記D50が小さくなり、前記乾式磁選工程において、磁着物の回収率が向上する点で有利である。
The water-absorbent polymer is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include polyacrylate (for example, sodium polyacrylate), polysulfonate, maleic anhydride, polyacrylamide, Examples thereof include polyvinyl alcohol, polyethylene oxide, polyaspartate, polyglutamate, polyalginate, starch-based, cellulose water-absorbing polymers, and derivatives thereof. Among these, polyacrylic acid salts, which are industrially superior in productivity, are preferable, and sodium polyacrylate is more preferable.
The average particle size of the water-absorbent polymer is not particularly limited and may be appropriately selected depending on the purpose, but the average particle size is preferably small. This is because the water absorbing polymer has a large specific surface area in the process of absorbing water, and is easily mixed evenly with soil.
The amount of the water-absorbent polymer added is not particularly limited and can be appropriately selected according to the water content of the contaminated soil. For example, 0.1% by mass or more and 1.0% by mass relative to the contaminated soil. % Or less is preferable. If the addition amount is less than 0.1% by mass, the effect of adding the water-absorbing polymer may not be obtained, and if it exceeds 1.0% by mass, the effect may be saturated.
Further, the amount of the water-absorbent polymer added may be determined according to the water content of the contaminated soil.
The water absorbing polymer adding step may be added to the contaminated soil at any time before the dry magnetic separation step, and may be performed at the same time as the iron powder adding step.
Further, the addition of the water-absorbent polymer is advantageous in that the D 50 of the contaminated soil before magnetic separation is reduced, and the recovery rate of magnetic substances is improved in the dry magnetic separation process.

なお、前記磁選前の前記汚染土壌の水分含有量は、36質量%以下が好ましく、22質量%以下がより好ましく、14質量%以下が特に好ましい。前記磁選前の前記汚染土壌の水分含有量が、36質量%以下であると、団粒が概ね土壌粒子単体となり、磁性分離しやすくなり、乾式磁選を効率よく行うことができる。
前記汚染土壌の水分含有量は、例えば、汚染土壌の質量(湿潤土壌質量w1)を測定の後、乾燥炉などを用いて汚染土壌を乾燥させた上で、あらためて土壌質量(乾燥土壌質量w2)を測定し、次式により算出することができる。
水分含有量(%)=[1−(乾燥土壌質量w2/湿潤土壌質量w1)]×100
The water content of the contaminated soil before the magnetic separation is preferably 36% by mass or less, more preferably 22% by mass or less, and particularly preferably 14% by mass or less. When the water content of the contaminated soil before the magnetic separation is 36% by mass or less, the aggregates become the soil particles alone, and the magnetic separation is facilitated, and the dry magnetic separation can be efficiently performed.
For the water content of the contaminated soil, for example, after measuring the mass of the contaminated soil (wet soil mass w1), the contaminated soil is dried using a drying oven or the like, and then the soil mass is regenerated (dry soil mass w2). Can be measured and calculated by the following formula.
Water content (%) = [1- (dry soil mass w2 / wet soil mass w1)] x 100

<乾式磁選工程>
前記乾式磁選工程は、前記吸水性ポリマーが添加された前記汚染土壌から前記鉄粉を乾式磁選により回収除去する工程である。
<Dry magnetic separation process>
The dry magnetic separation step is a step of collecting and removing the iron powder from the contaminated soil to which the water-absorbing polymer has been added by dry magnetic separation.

なお、本発明では、前記磁選前の前記汚染土壌に前記吸水性ポリマーを添加しているため、前記汚染土壌の前記水分含有量が比較的多くても、前記乾式磁選を可能としている。   In the present invention, since the water-absorbing polymer is added to the contaminated soil before the magnetic separation, the dry magnetic separation can be performed even if the water content of the contaminated soil is relatively large.

前記乾式磁選としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記吸水性ポリマーが添加された磁選前の汚染土壌を磁力選別機に投入し、磁石により磁着物と非磁着物とに分離する。前記磁力選別機の磁力としては、特に制限はなく、目的に応じて適宜選択することができるが、1,500G以上12,000G以下が好ましく、1,500G以上7,000G以下がより好ましい。
前記磁石としては、特に制限はなく、目的に応じて適宜選択することができる。
前記乾式磁選工程は、汚染物質を吸着した鉄粉を分離除去することにより、非磁着物の有害物溶出量を低減することが目的であり、1,500G以上7,000G以下の磁力で十分に分離回収できる。これよりも高い磁力であると、予め汚染土壌中に存在した弱磁性の土壌粒子も回収されてしまい、磁着物の量が多くなってしまう。前記磁着物は別途汚染濃縮土壌として処分が必要なため、不必要にこれを多く回収することは経済的ではない。
The dry magnetic separation is not particularly limited and may be appropriately selected depending on the purpose.For example, the contaminated soil before the magnetic separation to which the water-absorbing polymer is added is put into a magnetic separator, and a magnetic substance is attached by a magnet. Separated from non-magnetic material. The magnetic force of the magnetic force sorter is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1,500 G or more and 12,000 G or less, more preferably 1,500 G or more and 7,000 G or less.
The magnet is appropriately selected depending on the intended purpose without any limitation.
The dry magnetic separation process is intended to reduce the amount of harmful substances elution of non-magnetic substances by separating and removing iron powder that has adsorbed contaminants, and a magnetic force of 1,500 G or more and 7,000 G or less is sufficient. Can be separated and collected. If the magnetic force is higher than this, weakly magnetic soil particles that were previously present in the contaminated soil will also be collected, and the amount of magnetic material will increase. Since the magnetic substance needs to be separately disposed as contaminated concentrated soil, it is not economical to recover a large amount of it.

<無機化合物添加工程>
前記無機化合物添加工程は、前記乾式磁選工程で得られた非磁着物に前記無機化合物を添加する工程である。
前記無機化合物の添加量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記非磁着物100質量部に対して、0.5質量部以上10質量部以下が好ましく、1.0質量部以上5.0質量部以下がより好ましい。
前記無機化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、半水石膏、無水石膏、硫酸カルシウム、塩化カルシウム、炭酸カルシウム、硫酸鉄、塩化鉄、硫酸アルミニウム、塩化アルミニウム、硫酸マグネシウム、焼却灰などが挙げられる。前記焼却灰としては、中性であり、例えば、下水汚泥の焼却灰などが挙げられる。これらの中でも、体積膨張率を低減させる観点から、前記半水石膏、前記無水石膏、前記焼却灰が好ましい。
前記無機化合物は、前記汚染土壌に対して前記吸水性ポリマーの吸水能力が飽和するよりも多く添加されたときに、前記無機化合物が添加されることが好ましく、効果の点から、前記汚染土壌に対して前記吸水性ポリマーが0.1質量%以上添加されたときに、前記無機化合物が添加させることがより好ましい。
<Inorganic compound addition step>
The inorganic compound adding step is a step of adding the inorganic compound to the non-magnetic substance obtained in the dry magnetic separation step.
The addition amount of the inorganic compound is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.5 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the non-magnetic substance. It is more preferably 1.0 part by mass or more and 5.0 parts by mass or less.
The inorganic compound is not particularly limited and may be appropriately selected depending on the purpose, for example, hemihydrate gypsum, anhydrous gypsum, calcium sulfate, calcium chloride, calcium carbonate, iron sulfate, iron chloride, aluminum sulfate, chloride. Aluminum, magnesium sulfate, incineration ash, etc. may be mentioned. The incineration ash is neutral, and examples thereof include incineration ash of sewage sludge. Among these, the hemihydrate gypsum, the anhydrous gypsum, and the incinerated ash are preferable from the viewpoint of reducing the volume expansion coefficient.
The inorganic compound is preferably added when the water absorption capacity of the water-absorbent polymer is added to the contaminated soil more than saturated, the inorganic compound is preferably added to the contaminated soil from the viewpoint of the effect. On the other hand, it is more preferable to add the inorganic compound when the water-absorbent polymer is added in an amount of 0.1% by mass or more.

従来、前記吸水性ポリマーを含む、前記汚染土壌及び前記非磁着物を処理して、浄化土壌を得たときに、前記吸水性ポリマーを含むことにより、前記土壌を埋戻しに利用した後に、雨水や地下水などが前記浄化土壌に浸透することで、前記吸水性ポリマーに吸水され、前記浄化土壌全体が膨張するとともにゲル状となってしまうという問題があった。そのため、埋戻しをする場所が限られてしまうという問題があった。しかし、前記吸水性ポリマーを含む、前記汚染土壌及び前記非磁着物に対して、前記無機化合物を混合させることにより、埋戻しをするときの浄化土壌に前記吸水性ポリマーが含まれていた場合でも、前記雨水や前記地下水などが前記浄化土壌に浸透しても、浸透圧の原理により、前記吸水性ポリマーに不要な水分が吸水されず、前記浄化土壌が、前記膨張及びゲル状化をすることを防ぐことができる程度に体積膨張率を小さくすることができる。そのため、前記浄化土壌の埋戻し場所の制限がなくなるという有利な効果がある。なお、処理後の土壌は溶出量が低減された状態であるが、依然、難溶性の低濃度な重金属を含有した状態である。これが長期的な時間の経過に伴い溶出してくるおそれがあると判断される場合は、硫酸鉄、塩化鉄、硫酸アルミニウム、塩化アルミニウム、又は硫酸マグネシウムなどを混合して土壌中に各水酸化物を生成させ、これら重金属の吸着体となすことも可能である。また、土壌が酸性雨等に曝され、pHが酸性化することによりこれら重金属が溶出するといったおそれがある場合には、酸緩衝能を有する炭酸カルシウム、焼却灰などを添加することが最適である。場合によっては、これらを複数組み合わせて混合することによっても有利な効果を奏すると考えられる。
なお、前記体積膨張率としては、130%以下が好ましく、100%に可能な限り近いことが好ましい。130%以下であれば、上述したように、前記浄化土壌の前記膨張及び前記ゲル状化を防止することができる。
前記体積膨張率の測定としては、例えば、前記浄化土壌(非磁着物)について、200mLのビーカーに前記浄化土壌を転圧しながら50mL充填し、その体積容量(V)を量りとる。次に、水を50mL注入し、24時間静置させ、その体積容量(V)を量り、以下の式から土壌の体積膨張率を求めることができる。
体積膨張率(%)=(V/V)×100
Conventionally, when the contaminated soil and the non-magnetic substance containing the water-absorbent polymer are treated to obtain purified soil, by using the water-absorbent polymer to utilize the soil for backfilling, rainwater When water or groundwater penetrates the purified soil, the water-absorbent polymer absorbs water, and the purified soil as a whole expands into a gel. Therefore, there is a problem that the place for backfilling is limited. However, including the water-absorbent polymer, with respect to the contaminated soil and the non-magnetic substance, by mixing the inorganic compound, even when the water-absorbent polymer was contained in the purified soil when backfilling , Even if the rainwater or the groundwater penetrates the purified soil, due to the principle of osmotic pressure, unnecessary water is not absorbed by the water-absorbent polymer, and the purified soil undergoes the expansion and gelation. The volume expansion coefficient can be reduced to such an extent that the above can be prevented. Therefore, there is an advantageous effect that there is no limitation on the backfilling place of the purified soil. Although the soil after treatment is in a state where the elution amount is reduced, it is still in a state where it contains a poorly soluble low-concentration heavy metal. If it is determined that this may elute over time, mix iron sulfate, iron chloride, aluminum sulfate, aluminum chloride, or magnesium sulfate with each hydroxide in the soil. It is also possible to form the adsorbent for these heavy metals. In addition, when there is a risk that these heavy metals will elute due to acidification of the soil due to acid rain, etc., it is optimal to add calcium carbonate having acid buffering capacity, incineration ash, etc. .. In some cases, it is considered that advantageous effects can be obtained by combining a plurality of these materials and mixing them.
The volume expansion coefficient is preferably 130% or less, and is preferably as close to 100% as possible. If it is 130% or less, as described above, the expansion and gelation of the purified soil can be prevented.
As the measurement of the volume expansion coefficient, for example, with respect to the purified soil (non-magnetic substance), a beaker of 200 mL is filled with 50 mL of the purified soil while compacting the purified soil, and the volume capacity (V 1 ) thereof is measured. Next, 50 mL of water is injected, the mixture is allowed to stand for 24 hours, its volume capacity (V 2 ) is measured, and the volume expansion coefficient of soil can be obtained from the following formula.
Volume expansion rate (%) = (V 2 / V 1 ) × 100

<その他の工程>
前記その他の工程としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、運搬工程などが挙げられ、運搬手段により実施することができる。
前記運搬工程としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記磁選後の前記磁着物を処理施設に運搬する工程、前記磁選後の前記非磁着物を埋戻し場所などに運搬する工程などが挙げられる。
前記運搬手段としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、トラックなどの自動車による運搬などが挙げられる。
<Other processes>
The other steps are appropriately selected depending on the intended purpose without any limitation, and examples thereof include a transportation step, which can be performed by a transportation means.
The carrying step is not particularly limited and may be appropriately selected depending on the purpose. For example, the step of carrying the magnetically-adsorbed material after the magnetic separation to a treatment facility, the non-magnetically-adhered material after the magnetic separation is backfilled. Examples include the process of transporting to a place.
The transportation means is not particularly limited and may be appropriately selected depending on the purpose, and examples thereof include transportation by an automobile such as a truck.

ここで、図1は、本発明の汚染土壌の無害化処理方法のフロー図である。
まず、掘削した汚染土壌に鉄粉及び必要に応じて酸を混合機に投入してよく混合する。このとき、汚染土壌中に粗大な礫等が入っている場合は、混合に支障をきたすため、事前に篩分け及び破砕するなどの前処理を行うことが好ましい。
次に、鉄粉を所定量汚染土壌に添加する(鉄粉添加工程)。鉄粉及び必要に応じて酸を添加混合した汚染土壌を0分間以上、好ましくは10分間程度養生した後、前記吸水性ポリマーを添加する(吸水性ポリマー添加工程)。
次に、1,500G以上7,000G以下の磁力で乾式磁選により、汚染物質を吸着した鉄粉を回収除去する(乾式磁選工程)。
次に、無機化合物を、前記乾式磁選後の非磁着物に添加する(無機化合物添加工程)。
Here, FIG. 1 is a flow chart of the method for detoxifying contaminated soil according to the present invention.
First, iron powder and, if necessary, acid are put into the excavated contaminated soil in a mixer and mixed well. At this time, if coarse gravel or the like is contained in the contaminated soil, mixing is hindered, and therefore pretreatment such as sieving and crushing is preferably performed in advance.
Next, a predetermined amount of iron powder is added to the contaminated soil (iron powder addition step). The contaminated soil, to which iron powder and, if necessary, an acid have been added and mixed, is cured for 0 minutes or more, preferably for 10 minutes, and then the water-absorbing polymer is added (water-absorbing polymer adding step).
Next, the iron powder that has adsorbed the contaminants is recovered and removed by dry magnetic separation with a magnetic force of 1,500 G or more and 7,000 G or less (dry magnetic separation process).
Next, an inorganic compound is added to the non-magnetic substance after the dry magnetic separation (inorganic compound adding step).

以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。また、本実施例は、砒素(As)を含有している汚染土壌の実験データであるが、その他の物質による汚染土壌に関しても同様に測定することができる。   Examples of the present invention will be described below, but the present invention is not limited to these examples. In addition, although the present example is the experimental data of the contaminated soil containing arsenic (As), it can be similarly measured for the contaminated soil by other substances.

(磁着物回収量とD50の関係)
予め目開き9.5mm以下に篩分けした、水分含有量が23.4質量%の土壌A(シルト混じり砂)100gに鉄粉を1質量%添加し、10質量%硫酸0.1mL混合した後、吸水剤として、吸水性ポリマーの代わりに半水石膏(ジプサンダーC、石原産業株式会社)を、表1に示す所定量を添加し、混合した。その後、1,500Gの磁石で磁着物を回収した後の非磁着物について、有姿(土壌団粒を保持させたまま)で標準篩を用いて粒度分布を測定し、質量基準の累積50%の粒子径(D50)を求めた。前記D50と磁着物回収率の関係を表1及び図2に示す。
また、予め目開き9.5mm以下に篩分けした、水分含有量が21.5質量%の土壌B(粘土混じり砂)100gに鉄粉を1質量%添加し、10質量%硫酸0.1mL混合した後、吸水性ポリマー(ポリアクリル酸ナトリウム、高吸水性樹脂CP−1、ケミカルテクノス株式会社製)を、表2に示す所定量を添加し、混合した。その後、1,500Gの磁石で磁着物を回収した後の非磁着物について、有姿(土壌団粒を保持させたまま)で標準篩を用いて粒度分布を測定し、質量基準の累積50%の粒子径(D50)を求めた。前記D50と磁着物回収率の関係を、同様に表2及び図2に示す。
(Relationship between the amount of collected magnetic substances and D 50 )
After adding 1% by mass of iron powder to 100 g of soil A (silt mixed sand) having a water content of 23.4% by mass, which has been sieved in advance to a mesh size of 9.5 mm or less, and mixing 0.1 mL of 10% by mass sulfuric acid. As the water absorbing agent, hemihydrate gypsum (Gypsander C, Ishihara Sangyo Co., Ltd.) was added and mixed in place of the water absorbing polymer in the predetermined amounts shown in Table 1. Then, the particle size distribution of the non-magnetic material after collecting the magnetic material with a 1,500 G magnet was measured using a standard sieve in a tangible state (while keeping the soil aggregates), and a cumulative mass-based 50% was obtained. The particle size (D 50 ) of was determined. Table 1 and FIG. 2 show the relationship between the D 50 and the recovery rate of magnetic substances.
Further, 1 mass% of iron powder was added to 100 g of soil B (sand mixed with clay) having a water content of 21.5 mass% and sieved to an opening of 9.5 mm or less, and 10 mass% of sulfuric acid was mixed with 0.1 mL. After that, water-absorbent polymer (sodium polyacrylate, super water-absorbent resin CP-1, manufactured by Chemical Technos Co., Ltd.) was added in a predetermined amount shown in Table 2 and mixed. Then, the particle size distribution of the non-magnetic material after collecting the magnetic material with a 1,500 G magnet was measured using a standard sieve in a tangible state (while keeping the soil aggregates), and a cumulative mass-based 50% was obtained. The particle size (D 50 ) of was determined. The relationship between the D 50 and the recovery rate of magnetic substances is similarly shown in Table 2 and FIG.

図2、表1及び表2に示すように、磁着物の回収率は前記D50が小さくなるほど増加する傾向が示され、効率的に磁着物が回収できることが示された。なお、添加した鉄粉量よりも磁着物回収率が多いのは、土壌中にも磁性鉱物が存在するためである。 As shown in FIG. 2, Table 1 and Table 2, the recovery rate of the magnetic deposits tended to increase as the D 50 decreased, indicating that the magnetic deposits could be efficiently recovered. The magnetic substance recovery rate is higher than the amount of the iron powder added, because magnetic minerals are also present in the soil.

(実施例1)
−乾式磁選前の汚染土壌の粒子径D50の測定−
予め目開き9.5mm以下に篩分けした、水分含有量が23.4質量%の土壌100gに、鉄粉を1質量%添加し、吸水性ポリマー(ポリアクリル酸ナトリウム、高吸水性樹脂CP−1、ケミカルテクノス株式会社製)を、表3に示す所定量添加し、混合した。その後、1,500Gの磁石で磁着物を回収した後、非磁着物について、有姿(土壌の団粒を保持させたまま)で標準篩を用いて、粒度分布を測定し、質量基準の累積50%の粒子径(D50)を求めた。結果を表3に示す。
(Example 1)
- Dry magnetic separation measurement of the particle diameter D 50 of the previous contaminated soil -
1 mass% of iron powder was added to 100 g of soil having a water content of 23.4 mass%, which had been sieved in advance to a mesh size of 9.5 mm or less, and a water-absorbing polymer (sodium polyacrylate, superabsorbent resin CP- 1, manufactured by Chemical Technos Co., Ltd.) was added and mixed in a predetermined amount shown in Table 3. Then, after collecting the magnetic substance with a 1,500 G magnet, the particle size distribution of the non-magnetic substance was measured using a standard sieve in the tangible state (while keeping the aggregates of the soil), and the mass-based accumulation The 50% particle size (D 50 ) was determined. The results are shown in Table 3.

−体積膨張率の測定−
前記D50の測定で用いた非磁着物について、半水石膏(ジプサンダー、石原産業株式会社製)を表1に示す所定量添加し、混合した。その後、以下のとおり吸水による体積膨張率を測定した。
200mLのビーカーに前記非磁着物を転圧しながら50mL充填し、その体積容量(V)を量りとった。次に、水を50mL注入し、24時間静置させ、その体積容量(V)を量り、以下の式から土壌の体積膨張率を求めた。結果を表3に示す。
体積膨張率(%)=(V/V)×100
-Measurement of volume expansion coefficient-
Hemihydrate gypsum (Gypsander, manufactured by Ishihara Sangyo Co., Ltd.) was added to and mixed with the non-magnetic substance used in the measurement of D 50 . Then, the volume expansion coefficient due to water absorption was measured as follows.
Into a 200 mL beaker, 50 mL of the non-magnetic substance was compacted while being compressed, and the volume capacity (V 1 ) was measured. Next, 50 mL of water was injected, the mixture was allowed to stand for 24 hours, its volume capacity (V 2 ) was measured, and the volume expansion coefficient of soil was determined from the following formula. The results are shown in Table 3.
Volume expansion rate (%) = (V 2 / V 1 ) × 100

−実施例1の汚染土壌の無害化処理方法−
砒素汚染土壌100gに、鉄粉1.0g、10質量%硫酸0.1mLをそれぞれ混合した後、表3のNo.1〜No.12に示す吸水性ポリマーと、半水石膏を混合した。
次に、1,500Gの磁石で磁選し、磁着物と非磁着物とに分離した。各産物について、As含有量、非磁着物についてAsの溶出量の分析を実施した。
-Method for detoxifying contaminated soil of Example 1-
After mixing 1.0 g of iron powder and 0.1 mL of 10 mass% sulfuric acid with 100 g of arsenic-contaminated soil, No. 3 in Table 3 was used. 1-No. The water-absorbing polymer shown in 12 and hemihydrate gypsum were mixed.
Next, magnetic separation was carried out with a 1,500 G magnet to separate into a magnetic substance and a non-magnetic substance. The As content of each product and the elution amount of As of the non-magnetic substance were analyzed.

得られた非磁着物及び磁着物は、底質調査方法に基づく含有量分析及び環境省告示第18号に基づく溶出量分析を行った。   The obtained non-magnetized material and magnetic material were subjected to content analysis based on the bottom sediment investigation method and elution amount analysis based on Ministry of the Environment Notification No. 18.

なお、下記表4〜15、及び表17〜21中の「処理前土壌のAs含有量」及び「磁着物中のAs収支」は、下記式から求めたものである。   In addition, "As content of untreated soil" and "As balance in magnetic material" in Tables 4 to 15 and Tables 17 to 21 below are obtained from the following equations.

・処理前土壌のAs含有量(mg/kg)=(処理後土壌のAs含有量×処理後土壌の乾燥質量分布+磁着物のAs含有量×磁着物の乾燥質量分布)/(処理後土壌の乾燥質量分布+磁着物の乾燥質量分布) -As content (mg / kg) of soil before treatment = (As content of soil after treatment x dry mass distribution of soil after treatment + As content of magnetic substance x dry mass distribution of magnetic substance) / (soil after treatment) (Dry mass distribution + magnetic material dry mass distribution)

・磁着物中のAs収支(%)=(磁着物のAs含有量×磁着物の乾燥質量分布)/(処理前土壌のAs含有量×処理前土壌の乾燥質量分布)×100 -As balance (%) in magnetic material = (As content of magnetic material x dry mass distribution of magnetic material) / (As content of untreated soil x dry mass distribution of untreated soil) x 100

実施例1のNo.1〜No.12の結果を表4〜15に示した。   No. 1 of the first embodiment. 1-No. The results of No. 12 are shown in Tables 4 to 15.

<No.1>
<No. 1>

<No.2>
<No. 2>

<No.3>
<No. 3>

<No.4>
<No. 4>

<No.5>
<No. 5>

<No.6>
<No. 6>

<No.7>
<No. 7>

<No.8>
<No. 8>

<No.9>
<No. 9>

<No.10>
<No. 10>

<No.11>
<No. 11>

<No.12>
<No. 12>

(比較例1)
−乾式磁選前の汚染土壌の粒子径D50の測定−
実施例1のときに用いた土壌100gに、鉄粉を1質量%添加し、実施例1と同様の吸水性ポリマーを、表16に示す所定量添加し、混合した。その後、1,500Gの磁石で磁着物を回収した後、非磁着物について、有姿(土壌の団粒を保持させたまま)で標準篩を用いて、粒度分布を測定し、質量基準の累積50%の粒子径(D50)を測定し、実施例1と同様にして、前記D50を求めた。結果を表16に示す。
(Comparative Example 1)
- Dry magnetic separation measurement of the particle diameter D 50 of the previous contaminated soil -
To 100 g of the soil used in Example 1, 1% by mass of iron powder was added, and the same water-absorbing polymer as in Example 1 was added in a predetermined amount shown in Table 16 and mixed. Then, after collecting the magnetic substance with a 1,500 G magnet, the particle size distribution of the non-magnetic substance was measured using a standard sieve in the tangible state (while keeping the aggregates of the soil), and the mass-based accumulation The particle diameter (D 50 ) of 50% was measured, and the D 50 was obtained in the same manner as in Example 1. The results are shown in Table 16.

−体積膨張率の測定−
実施例1と同じ土壌100gに、鉄粉を1質量%添加し、10質量%硫酸0.1mL混合した後、吸水性ポリマーを、表16に示す所定量添加し、混合した。その後、1,500Gの磁石で磁着物を回収した後の非磁着物について、実施例1と同様にして、体積膨張率を求めた。結果を表16と図3に示す。
-Measurement of volume expansion coefficient-
To 100 g of the same soil as in Example 1, 1% by mass of iron powder was added and 0.1 mL of 10% by mass sulfuric acid was mixed, and then a predetermined amount of a water-absorbent polymer shown in Table 16 was added and mixed. Thereafter, the volume expansion coefficient of the non-magnetized material after the magnetic material was collected with a 1,500 G magnet was determined in the same manner as in Example 1. The results are shown in Table 16 and FIG.

−比較例1の汚染土壌の無害化処理方法−
半水石膏を添加せず、表16のNo.13〜No.17に示す吸水性ポリマーを混合したこと以外は、実施例と同様にして、各産物について、As含有量、非磁着物についてAsの溶出量の分析を実施した。
-Method for detoxifying contaminated soil in Comparative Example 1-
No hemihydrate gypsum was added, and no. 13-No. The As content of each product and the elution amount of As of the non-magnetic substance were analyzed in the same manner as in Example except that the water-absorbing polymer shown in 17 was mixed.

比較例1のNo.13〜No.17の結果を表17〜21に示した。   Comparative Example 1 No. 13-No. The results of No. 17 are shown in Tables 17-21.

<No.13>
<No. 13>

<No.14>
<No. 14>

<No.15>
<No. 15>

<No.16>
<No. 16>

<No.17>
<No. 17>

実施例1では表3に示すとおり、吸水性ポリマーの添加量の増加に伴い、体積膨張率も増加する傾向であるが、半水石膏の添加量を増やすことにより、体積膨張率を下げることができた。これに対し、比較例1では、表16及び図3に示すとおり、半水石膏を添加しなかったため、吸水性ポリマーの添加量の増加に伴い、体積膨張率も増加してしまった。   In Example 1, as shown in Table 3, the volume expansion coefficient tends to increase as the addition amount of the water-absorbing polymer increases, but the volume expansion coefficient can be decreased by increasing the addition amount of hemihydrate gypsum. did it. On the other hand, in Comparative Example 1, as shown in Table 16 and FIG. 3, since hemihydrate gypsum was not added, the volume expansion coefficient also increased as the amount of the water-absorbent polymer added increased.

また、表4〜表15、及び表17〜表21に示すとおり、実施例1及び比較例1の処理後土壌(非磁着物)は、同程度に汚染物質(As)が低下していた。汚染物質の除去効果を示す磁着物へのAs分布率は試験した範囲では吸水性ポリマーの添加量が多くなるに従い、若干増加した。一方、As溶出量の変化はいずれも処理後土壌で定量下限未満となり、半水石膏添加後も同様に定量下限未満を保つ結果であった。   Further, as shown in Tables 4 to 15 and Tables 17 to 21, the treated soils (non-magnetic substances) of Example 1 and Comparative Example 1 had pollutants (As) reduced to the same extent. The As distribution ratio to the magnetic substance showing the effect of removing contaminants increased slightly as the amount of the water-absorbent polymer added increased in the range tested. On the other hand, the changes in the amount of As eluted were all below the lower limit of quantification in the treated soil, and the results were also below the lower limit of quantification even after the addition of hemihydrate gypsum.

(実施例2)
実施例2において、半水石膏を表22に示す無機化合物にした以外は、実施例1と同様にして、体積膨張率を求めた。また、処理後土壌について溶出量分析を実施した。結果を表22に示す。
(Example 2)
The volume expansion coefficient was obtained in the same manner as in Example 2 except that hemihydrate gypsum was changed to the inorganic compound shown in Table 22. In addition, the elution amount analysis was performed on the treated soil. The results are shown in Table 22.

*なお、表中の下水汚泥焼却灰は、主要成分がP、SiO、Al、CaO、Fe、MgO、及びKOで概ね90質量%以上構成される無機性粉体である。
(参照:「下水汚泥焼却灰を原料とした熔成リン酸質肥料製造における各種成分比と溶融条件の影響」廃棄物資源循環学会論文誌 岩井良博 Vol.20,No.3,2009)
* Note that sewage sludge incineration ash in the table is constituted major component P 2 O 5, SiO 2, Al 2 O 3, CaO, Fe 2 O 3, MgO, and K 2 O in approximately 90 wt% or more It is an inorganic powder.
(Reference: "Effects of various component ratios and melting conditions in the production of molten phosphate fertilizer using sewage sludge incineration ash as a raw material" Yoshihiro Iwai Vol. 20, No. 3, 2009)

実施例2では表22に示すとおり、無機化合物の種類に応じて体積膨張率が変化しているが、概ね膨張は抑制されており、良好な結果となった。これに対し、比較例1では、表16に示すとおり、無機化合物を添加しなかったため、吸水性ポリマーの添加量の増加に伴い、体積膨張率も増加してしまった。   In Example 2, as shown in Table 22, the volume expansion coefficient varied depending on the type of the inorganic compound, but the expansion was substantially suppressed, which was a good result. On the other hand, in Comparative Example 1, as shown in Table 16, since no inorganic compound was added, the volume expansion rate also increased as the amount of the water-absorbent polymer added increased.

また、表22に示すとおり、処理後土壌(非磁着物)の砒素溶出量は、実施例2及び比較例1の結果と同程度に低下しており、種々の無機化合物を添加してもその値にほとんど影響しないことが分かった。なお、土壌pHについては、無水石膏及び下水汚泥焼却灰については添加量が増加するにつれ若干上昇傾向、その他はいずれも低下傾向であり、汚染物質によっては大幅なpH変化によって安定であった形態の重金属の溶出を促すことも考えられる。これらの添加量については土壌pHが中性域を保つように、適宜決定することが肝要である。   Further, as shown in Table 22, the arsenic elution amount of the treated soil (non-magnetic substance) decreased to the same extent as the results of Example 2 and Comparative Example 1, and even when various inorganic compounds were added, It turns out that it has little effect on the value. Regarding the soil pH, anhydrous gypsum and sewage sludge incineration ash tended to increase slightly as the addition amount increased, and others tended to decrease. It may be possible to promote the elution of heavy metals. It is important to appropriately determine the addition amount of these so that the soil pH is maintained in the neutral range.

Claims (6)

砒素、鉛、六価クロム、カドミウム、セレン、水銀、シアン、フッ素及びほう素から選択される少なくとも1種の汚染物質を含む汚染土壌に対して鉄粉を添加する鉄粉添加工程と、
磁選前の汚染土壌に吸水性ポリマーを、前記汚染土壌に対して0.1質量%以上1.0質量%以下添加する吸水性ポリマー添加工程と、
前記吸水性ポリマーが添加された汚染土壌から鉄粉を乾式磁選により回収除去する乾式磁選工程と、
前記乾式磁選工程で得られた非磁着物に無機化合物を添加する無機化合物添加工程とを含み、
前記無機化合物が、半水石膏、無水石膏、硫酸カルシウム、塩化カルシウム、炭酸カルシウム、硫酸鉄、塩化鉄、硫酸アルミニウム、塩化アルミニウム、硫酸マグネシウム、及び焼却灰の少なくともいずれかであることを特徴とする汚染土壌の無害化処理方法。
An iron powder addition step of adding iron powder to a contaminated soil containing at least one contaminant selected from arsenic, lead, hexavalent chromium, cadmium, selenium, mercury, cyan, fluorine and boron;
A water-absorbing polymer addition step of adding a water-absorbing polymer to the contaminated soil before magnetic separation in an amount of 0.1% by mass or more and 1.0% by mass or less with respect to the contaminated soil,
A dry magnetic separation step of collecting and removing iron powder from the contaminated soil to which the water-absorbing polymer has been added by dry magnetic separation,
See contains an inorganic compound addition step of adding an inorganic compound to a non-magnetically attracted material obtained in the dry magnetic separation step,
The inorganic compound is characterized by being at least one of hemihydrate gypsum, anhydrous gypsum, calcium sulfate, calcium chloride, calcium carbonate, iron sulfate, iron chloride, aluminum sulfate, aluminum chloride, magnesium sulfate, and incineration ash. Method for detoxifying contaminated soil.
前記無機化合物の添加量が、前記非磁着物100質量部に対して、0.5質量部以上10質量部以下である請求項1に記載の汚染土壌の無害化処理方法。   The method for detoxifying contaminated soil according to claim 1, wherein the addition amount of the inorganic compound is 0.5 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the non-magnetic substance. 前記汚染土壌に対して前記吸水性ポリマーが0.1質量%以上1.0質量%以下添加されたときに、前記無機化合物が添加される請求項1から2のいずれかに記載の汚染土壌の無害化処理方法。The contaminated soil according to claim 1, wherein the inorganic compound is added when the water-absorbent polymer is added to the contaminated soil in an amount of 0.1% by mass or more and 1.0% by mass or less. Detoxification treatment method. 前記吸水性ポリマーを添加した前記乾式磁選前の前記汚染土壌を、予め9.5mmの篩で篩分けして得られた9.5mm以下の区分の質量基準の累積50%粒子径DThe contaminated soil before the dry magnetic separation to which the water-absorbing polymer was added was previously sieved with a 9.5 mm sieve to obtain a mass-based cumulative 50% particle diameter D of 9.5 mm or less. 50Fifty が、4mm以下である請求項1から3のいずれかに記載の汚染土壌の無害化処理方法。Is 4 mm or less, and the method for detoxifying contaminated soil according to any one of claims 1 to 3. 鉄粉添加前の汚染土壌の水分含有量が、60質量%以下である請求項1から4のいずれかに記載の汚染土壌の無害化処理方法。The method for detoxifying contaminated soil according to any one of claims 1 to 4, wherein the water content of the contaminated soil before the addition of iron powder is 60% by mass or less. 無機化合物が添加された非磁着物の下記の測定方法により求められた体積膨張率が、130%以下である請求項1から5のいずれかに記載の汚染土壌の無害化処理方法。The method of detoxifying contaminated soil according to any one of claims 1 to 5, wherein the volume expansion coefficient of the non-magnetic substance to which the inorganic compound is added is 130% or less as determined by the following method.
<測定方法><Measurement method>
200mLのビーカーに前記非磁着物を転圧しながら50mL充填し、その体積容量(VInto a 200 mL beaker, 50 mL of the non-magnetic substance was compressed while being compressed, and the volume capacity (V 1 )を量りとる。次に、水を50mL注入し、24時間静置させ、その体積容量(V). Next, 50 mL of water was injected, and the mixture was allowed to stand for 24 hours, and its volume capacity (V Two )を量り、以下の式から算出する。) Is measured and calculated from the following formula.
体積膨張率(%)=(VVolume expansion rate (%) = (V Two /V/ V 1 )×100) X 100
JP2015172075A 2015-09-01 2015-09-01 Decontamination method for contaminated soil Active JP6692136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015172075A JP6692136B2 (en) 2015-09-01 2015-09-01 Decontamination method for contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015172075A JP6692136B2 (en) 2015-09-01 2015-09-01 Decontamination method for contaminated soil

Publications (2)

Publication Number Publication Date
JP2017047363A JP2017047363A (en) 2017-03-09
JP6692136B2 true JP6692136B2 (en) 2020-05-13

Family

ID=58278341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015172075A Active JP6692136B2 (en) 2015-09-01 2015-09-01 Decontamination method for contaminated soil

Country Status (1)

Country Link
JP (1) JP6692136B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6578257B2 (en) * 2016-07-15 2019-09-18 Dowaエコシステム株式会社 Detoxification method for contaminated soil
CN107470350B (en) * 2017-10-12 2018-08-17 大连地拓环境科技有限公司 A kind of heavy-metal contaminated soil purification method
JP6839643B2 (en) * 2017-11-21 2021-03-10 鹿島建設株式会社 How to treat pH adjustment materials, pH adjustment sheets, and soil generated from construction
KR102484752B1 (en) * 2021-12-27 2023-01-06 (주)한국환경복원기술 Composition for stabilizing of soil contaminated with heavy metal

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3343436B2 (en) * 1994-04-20 2002-11-11 ダイセル化学工業株式会社 Excavation residual soil treatment method
JP3343710B2 (en) * 1995-09-01 2002-11-11 ライト工業株式会社 Vegetation base spraying method
JP2005008705A (en) * 2003-06-17 2005-01-13 Nippon Shokubai Co Ltd Method for producing water-absorbing resin
JP4694810B2 (en) * 2004-09-08 2011-06-08 株式会社日本触媒 Water-retaining material for plant growth mainly composed of water-absorbent resin
JPWO2010103819A1 (en) * 2009-03-10 2012-09-13 出雲 諭明 Filter material for water purification of eutrophication polluted water by nitrogen and phosphorus using activated coal particulate material, water purification facility using the same, sludge treatment method using activated coal fine powder as ion exchange material, and method Recycled materials manufactured through
JP5534597B2 (en) * 2010-07-21 2014-07-02 株式会社大林組 Excavation soil treatment method in bubble shield construction
JP6250304B2 (en) * 2013-05-21 2017-12-20 株式会社奥村組 Method for treating solid containing pollutant and solid treating agent containing pollutant
JP5647371B1 (en) * 2014-06-03 2014-12-24 Dowaエコシステム株式会社 Detoxification method for contaminated soil

Also Published As

Publication number Publication date
JP2017047363A (en) 2017-03-09

Similar Documents

Publication Publication Date Title
JP5647371B1 (en) Detoxification method for contaminated soil
JP6692136B2 (en) Decontamination method for contaminated soil
Cetin et al. Leaching of trace metals from high carbon fly ash stabilized highway base layers
JP4235688B2 (en) Purification method for contaminated soil
JP5049453B2 (en) How to deactivate sludge
KR100956593B1 (en) Manufacturing method of artificial soil by solidifying organic or inorganic sludge
JP6779069B2 (en) Method for solidifying modified materials such as soft soil and residual soil
JP6688576B2 (en) Decontamination method for contaminated soil
JP2004330018A (en) Solidification/insolubilization agents and solidification/insolubilization method for soil, incineration ash, coal ash and plaster board waste
Akinwumi et al. Sawdust stabilization of lateritic clay as a landfill liner to retain heavy metals
EP2982450A1 (en) In-situ process for stabilization and solidification of contaminated soil into composite material - building material
JP4209224B2 (en) Method for producing calcium sulfide heavy metal fixing agent
JP2011079951A (en) Recycled ground material and method for producing the same
Penn et al. Phosphorus sorption materials (psms): The heart of the phosphorus removal structure
JP5792974B2 (en) Soil-modifying composition and soil-modifying method
JP6578257B2 (en) Detoxification method for contaminated soil
JP2019143030A (en) Modifier of soft weak soil or the like, and solidification treatment method of remaining soil
Falciglia et al. Development of a performance threshold approach for identifying the management options for stabilisation/solidification of lead polluted soils
KR100590392B1 (en) Preparing method of soil solidifier and solidifying soil thereof
JP3839642B2 (en) Method for producing fluidized soil
KR100881149B1 (en) High water content dredging mud solidification stabilizer and it&#39;s improved soil production method
Yang et al. In-situ Stability and Remediation of Typical Antimony (Sb) Tailings by Combined Solid Waste in Southwest China.
JP7147661B2 (en) Contaminated Soil Remediation Method and Contaminated Soil Remediation Equipment
Stjepanović et al. Usage of steel slag as a construction material and in environmental applications
Zhu et al. Cement Stabilization/Solidification of Heavy Metal-Contaminated Sediments Aided by Coal Fly Ash

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200317

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200414

R150 Certificate of patent or registration of utility model

Ref document number: 6692136

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250