JP3867976B2 - セラミックハニカムフィルタ及び排気ガス浄化方法 - Google Patents

セラミックハニカムフィルタ及び排気ガス浄化方法 Download PDF

Info

Publication number
JP3867976B2
JP3867976B2 JP2003093677A JP2003093677A JP3867976B2 JP 3867976 B2 JP3867976 B2 JP 3867976B2 JP 2003093677 A JP2003093677 A JP 2003093677A JP 2003093677 A JP2003093677 A JP 2003093677A JP 3867976 B2 JP3867976 B2 JP 3867976B2
Authority
JP
Japan
Prior art keywords
exhaust gas
inflow side
honeycomb filter
ceramic honeycomb
plugging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003093677A
Other languages
English (en)
Other versions
JP2004251266A (ja
Inventor
博久 諏訪部
隆 高倉
哲 牧田
博 舟橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Hitachi Metals Ltd
Original Assignee
Hino Motors Ltd
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd, Hitachi Metals Ltd filed Critical Hino Motors Ltd
Priority to JP2003093677A priority Critical patent/JP3867976B2/ja
Publication of JP2004251266A publication Critical patent/JP2004251266A/ja
Application granted granted Critical
Publication of JP3867976B2 publication Critical patent/JP3867976B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、自動車エンジンの排気ガス浄化装置、特にディーゼルエンジンからの排気ガス中の微粒子を除去するための浄化装置に使用するに適したセラミックハニカムフィルタ及び排気ガス浄化方法に関する。
【0002】
【従来技術】
近年、ディーゼルエンジンの排気ガス中から炭素を主成分とする微粒子を除去するため、セラミックハニカム構造体の複数の流路を両端部で交互に目封止したセラミックハニカムフィルタ(以下、「セラミックハニカムフィルタ」を略して「ハニカムフィルタ」という)が使用されるようになってきた。
【0003】
図3は、ハニカムフィルタ11の模式斜視図であり、図4は、図3に示すハニカムフィルタ11の模式断面図の一部である。図3及び図4に示すように、通常、ハニカムフィルタ11は、流路方向に垂直な断面が略円状又は略楕円状で、外周壁20と、この外周壁20の内周側で隔壁30により囲まれた多数の流路を有する多孔質セラミックハニカム構造体(以下、「多孔質セラミックハニカム構造体」を略して「ハニカム構造体」という)10の流入側端面12、及び流出側端面13において流路を目封止部50、52で交互に目封止している。
【0004】
ハニカムフィルタ11での排気ガス浄化の仕組みについて図4でさらに詳しく説明する。図4において、ハニカムフィルタ11の流入側端面12で開口している流路41に流入した排気ガス(矢印90で示す)は、この流路41の流出側端面に目封止部52が形成されていることから、隔壁30に形成された細孔(図示せず)を通過した上で、隣接する流出側端面13で開口している流路43から排出される(矢印92で示す)。このとき、排気ガス中に含まれる微粒子などは、隔壁30に形成された細孔に捕集され、排気ガスが浄化される。この細孔に捕集された微粒子が一定量以上になると細孔の目詰まりが発生し、ハニカムフィルタの圧力損失が上昇するため、エンジンの出力低下につながり好ましくない。このため、ハニカムフィルタとしての機能を停止させて、バーナーや電気ヒーターにより捕集された微粒子を燃焼させ、ハニカムフィルタの再生が行われる。この、バーナーや電気ヒーターにより微粒子を燃焼除去する際には、捕集された微粒子が多い程、ハニカムフィルタ内の温度を均一に制御することが困難であり、特に高濃度に微粒子が堆積した箇所の温度が上昇し易く、燃焼に伴い発生する熱応力によりハニカムフィルタが破損することがあった。また、場合によっては隔壁を構成するセラミック材料の溶融温度以上にハニカムフィルタの温度が上昇し、隔壁に溶損が発生するという問題もあった。一方、ハニカムフィルタの最高温度を、破損や、溶損が起きないように抑えようとすると、微粒子の燃え残りが発生し、燃え残り微粒子により、再生処理を行ってもハニカムフィルタの圧力損失を低減することができないという問題があった。
【0005】
上記問題を解決し、ハニカムフィルタの再生を容易に行うため、例えば特許文献1に記載の発明では、ハニカム構造体のセルの流入側に加熱手段を設け、排気ガスの流入側に位置した閉塞部(目封止部)とセルの排気ガス流入側端面との間に空間を設けた排気ガス浄化用構造物が開示されている。この従来技術によれば、閉塞部とセルの排気ガス流入側端面に設けられた空間に付着する微粒子の量が多くなることから、流入側に設けられた加熱手段による熱量を下流側まで有効に伝えられ、特に下流域の微粒子の燃焼、再生が容易になるとしている。
また、特許文献2に記載の発明には、隔壁表面に担持した白金族金属及びアルカリ土類金属酸化物を含んでなる触媒の作用により微粒子の燃焼が始まる温度を低下させ、この微粒子を連続的に除去するフィルタが開示されている。この従来技術によれば、ディーゼルエンジンの作動条件下で得られる排気ガス温度程度の低い温度条件であってもフィルタの連続的再生が達成でき、微粒子による目詰まりが避けられるとしている。
【0006】
【特許文献1】
特公平3−68210号公報
【特許文献2】
特公平7−106290号公報
【特許文献3】
特開2002−122015号公報
【0007】
【発明が解決しようとする課題】
しかしながら、上記従来技術には以下のような問題があった。
特許文献1に記載のハニカムフィルタは、ハニカム構造体のセルの流入側に加熱手段を設け、微粒子の燃焼が容易になるようにしているが、加熱手段はセルの流入側のみに配置されており、流路方向に長いハニカムフィルタ内部の温度を流入側から流出側まで均一に制御することは難しかった。このため、微粒子の捕集量が多くなると、微粒子の自己発熱により、局所的な温度上昇箇所が発生し、破損や溶損に至ることもあった。また、配置した加熱手段の制御を精密に行う必要があり、エネルギー費も必要となることから、排気ガス浄化装置全体がコスト高になるという欠点も有していた。
一方、特許文献2に記載の白金族金属及びアルカリ土類金属酸化物を含んでなる触媒等が担持されたフィルタでは、触媒物質の作用により排気ガス中の微粒子を連続的に低温で燃焼除去させているが、微粒子の目詰まりによるフィルタの圧力損失の上昇を防止出来ない場合もあった。これは、フィルタに担持される触媒物質には活性温度領域があり、特に大都市の渋滞領域での走行を中心とした使用環境では、触媒活性下限温度である約300℃を下まわるような排気温度での運転状態が続くようになる場合があることから、触媒物質による微粒子の燃焼除去が良好に行われないためである。
このような問題を解決するため特許文献3に記載の発明では、ディーゼルエンジンの運転状態に応じて、触媒物質を担持させたフィルタ上への微粒子の堆積量を推定した上で、フィルタの上流側に燃料を未燃のまま噴射して、前記触媒物質上で、燃料の酸化反応を促し、その反応熱によりフィルタの内部温度を前記触媒物質の活性下限温度以上に維持し、堆積した微粒子を燃焼させる排気浄化方法が開示されている。また、このフィルタの上流側に燃料を未燃のまま噴射する以外に、同じく未燃の炭化水素ガスを噴射する方法も知られている。このため、ディーゼルエンジンの運転状態に係わらず、常に触媒物質が安定した活性状態に維持されて、フィルタに捕集された微粒子が滞りなく良好に燃焼除去できるとされている。しかしながら、この特許文献3に記載されている排気浄化方法を採用しても、微粒子の目詰まりにより、圧力損失が早期に上昇し、使用できなくなると言う問題の発生することがあった。
【0008】
本発明は、上記問題に鑑みてなされたもので、ハニカムフィルタに担持した触媒物質の作用により排気ガス中の微粒子を連続的に燃焼、再生させるセラミックハニカムフィルタにおいて、微粒子のハニカムフィルタへの堆積による圧力損失の上昇を確実に回避しうるようにして、フィルタの破損や溶損の問題を回避し、長期に亘り安定して使用できるセラミックハニカムフィルタ及びその排気ガスの浄化方法を得ることにある。
【0009】
【課題を解決するための手段】
本発明者らは、特許文献3に記載の排気浄化方法における、触媒物質が担持されたハニカムフィルタの圧力損失上昇の原因について、詳細な調査を行ったところ、図5に示すように、微粒子70が流入側目封止部50の端部を中心に多く堆積することにより、流路40の開口端部を閉塞させ、ハニカムフィルタの圧力損失を上昇させていることを突きとめた。更に、この微粒子のハニカムフィルタの排気ガス流入側への堆積について、詳細な調査を行ったところ、ディーゼルエンジンの運転状態に応じて、触媒物質を担持させたフィルタ上への微粒子の堆積量を推定した上で、フィルタの上流側に適宜に燃料及び/又は炭化水素ガスを未燃のまま噴射させた際の、ハニカムフィルタ内に生じる流路方向温度分布が原因であることを突き止めた。この場合のハニカムフィルタ内の流路方向温度分布は、図6に示すように、排気ガス流入側端面の温度が最も低く、フィルタ内部に入るに従い上昇し、ある位置より排気ガス流出側では、ほぼ一定となり流出側端面の温度に収束していた。従って、ハニカムフィルタの排気ガス流入側に担持された触媒物質は触媒活性温度まで昇温されていないことから触媒の活性度が低くなり、この部分での微粒子の燃焼が容易に行われないこと、また流入側目封止部端面51が排気ガス流入方向に対して垂直に配置されているため、排気ガス中の微粒子が目封止部端面51に強固に凝着、堆積し易い構造になっていることにより、この部分に堆積した微粒子が時間の経過と共に徐々に大きくなり、流入側目封止部端面51の周囲の流路40開口端部を閉塞させたことが、ハニカムフィルタの圧力損失を上昇させた原因であった。
この時、本来フィルタ内部温度を上昇させることを目的として行われる未燃の燃料及び/又は炭化水素ガス噴射時に、図6に示すような流路方向の温度分布が発生するのは、噴射された未燃の燃料及び/又は炭化水素ガスの酸化反応はフィルタ表面に担持された触媒物質により促進されるが、未燃の燃料及び/又は炭化水素ガスの酸化反応が触媒物質により促進されていないためフィルタの流入側端部の温度は排気ガス温度以上にはなり得ないからである。即ち、排気ガスがフィルタの流路内を進行することによって初めて、排気ガス中の未燃の燃料及び/又は炭化水素ガスがフィルタ表面に担持された触媒物質との作用により酸化燃焼による反応熱を生成し、排気ガス温度を上昇させるとともにハニカムフィルタの温度を上昇させ、温度上昇した排気ガスにより更にその下流側のハニカムフィルタ温度を上昇させることによる。さらにハニカムフィルタの温度上昇は、触媒物質と作用反応する排気ガス中の未燃燃料及び/又は炭化水素ガスの減少と共に起こりにくくなるため、ハニカムフィルタの排気ガス流入側端面からの或る位置より排気ガス流出側では、略一定温度に収束する。
【0010】
そこで、本発明者は鋭意検討を行った結果、ディーゼルエンジンの運転状態に応じて、触媒物質を担持させたフィルタ上への微粒子の堆積量を推定した上で、フィルタの上流側に燃料及び/又は炭化水素ガスを未燃のまま噴射して、前記触媒物質上で、未燃の燃料及び/又は炭化水素ガスの酸化反応を促し、その反応熱によりフィルタの内部温度を前記触媒物質の活性下限温度以上に維持し、堆積した微粒子を燃焼させる際に、フィルタ中で最も微粒子が堆積しやすい流入側目封止部端面を触媒物質の活性下限温度近くまで昇温できる部位に配置すれば、流入側目封止部端面に堆積する微粒子を容易に燃焼除去することが出来ると考え、本発明に想到した。
すなわち、本発明のセラミックハニカムフィルタは、多孔質セラミックハニカム構造体の流路を目封止することによりハニカム構造体の隔壁に形成された細孔に排気ガスを通過させる構造のセラミックハニカムフィルタにおいて、前記隔壁及び/または目封止部の少なくとも一部に触媒物質が担持されているとともに、少なくとも一つの排気ガス流入側目封止部が排気ガス流入側端面より離れて配置され、排気ガス流入側目封止部端面が、セラミックハニカムフィルタの流入側端面から該セラミックハニカムフィルタ全長の0.32倍以上0.7倍以下の長さの区間に配置されていることを特徴とする。
また本発明のセラミックハニカムフィルタは、多孔質セラミックハニカム構造体の流路を目封止することによりハニカム構造体の隔壁に形成された細孔に排気ガスを通過させる構造のセラミックハニカムフィルタにおいて、前記隔壁及び/または目封止部の少なくとも一部に触媒物質が担持されているとともに、少なくとも一つの排気ガス流入側目封止部が排気ガス流入側端面より離れて配置され、前記流入側目封止部より排気ガス流入側の隔壁に担持された触媒物質の活性度が、排気ガス流出側の隔壁に担持された触媒物質の活性度に比べ高いことを特徴とする。
また本発明のセラミックハニカムフィルタは、多孔質セラミックハニカム構造体の流路を目封止することによりハニカム構造体の隔壁に形成された細孔に排気ガスを通過させる構造のセラミックハニカムフィルタにおいて、前記隔壁及び/または目封止部の少なくとも一部に触媒物質が担持されているとともに、少なくとも一つの排気ガス流入側目封止部が排気ガス流入側端面より離れて配置され、前記セラミックハニカム構造体の気孔率が50〜80%、前記セラミックハニカム構造体の隔壁厚が0.1〜0.5mm、隔壁ピッチが1.3mm以上で、前記排気ガス流入側端面より離れて配置された排気ガス流入側目封止部の気孔率は隔壁の気孔率よりも高く、排気ガスが前記排気ガス流入側端面より離れて配置された排気ガス流入側目封止部より排気ガス流入側に存在する隔壁中の細孔内を少なくとも通過することを特徴とする。
【0011】
本発明に関わるセラミックハニカムフィルタは図1及び図7〜図11に示すような構造からなる。
図1はハニカムフィルタ11の一例の模式断面図である。ハニカムフィルタ11は、流路方向垂直断面が略円状又は略楕円状で、外周壁20と、この外周壁20の内周側で隔壁30により囲まれた多数の流路40を有する多孔質セラミックハニカム構造体10の流路40の所望部位に目封止部50、52により交互に目封止している。そして、少なくとも一つの排気ガス流入側の目封止部端面51は、セラミックハニカムフィルタの流入側端面12に対して、排気ガス流出側に離れて配置されており、隔壁及び/または目封止部の少なくとも一部には触媒物質60が担持されている。
このような構造を有するハニカムフィルタにおいて排気ガスは、流入側端面12で開口している流路41、及び42から流入する。このうち流路42から流入した排気ガス91は、流入側目封止部50があることから、隔壁31中に形成された細孔(図示せず)を通過して隣接する流路41に排出され、この流路41に流入側端面12から流入した排気ガス90と合流後、流路41を流出側端面13に向かって進行し、隔壁32に形成された細孔(図示せず)を通過して隣接する流路である流出側端面13で開口している流路43から排出(矢印92で示す)される。この間、排気ガス中の微粒子は、流路41〜43、及び隔壁31〜32を通過する際に、触媒物質の作用により燃焼、無害化され、浄化された排気ガスが排出される。
【0012】
次に、本発明における作用効果につき説明する。
本発明のセラミックハニカムフィルタは、図1、図7〜図11に示すように、多孔質セラミックハニカム構造体の流路を目封止することによりハニカム構造体の隔壁に形成された細孔に排気ガスを通過させる構造のセラミックハニカムフィルタにおいて、前記隔壁及び/または目封止部の少なくとも一部に触媒物質が担持されているとともに、少なくとも一つの排気ガス流入側目封止部50が排気ガス流入側端面12より離れて配置されている。このため、内燃機関運転中にハニカムフィルタ上への微粒子の堆積量がある一定値以上になったと推定された場合に、ハニカムフィルタの温度を上昇させる目的で行う、フィルタ上流への未燃の燃料及び/又は炭化水素ガス噴射時においては、フィルタ内で未燃の燃料及び/又は炭化水素ガスが触媒物質による酸化反応により反応熱を生成することから、フィルタ内の温度分布は、図7の模式図のようになり、微粒子70が凝着、堆積しやすい流入側目封止部端面51がハニカムフィルタ内の温度の高い部位に配置される。従って、当該部位に担持された触媒物質の活性度が高められているため、流入側目封止部端面51での微粒子の燃焼が容易に行われ、流入側目封止部端面51への微粒子70堆積を防ぐことができる。
一方、流入側目封止部50より排気ガス流出側の隔壁32は、図7の模式図に示すように、流入側目封止部と同様、ハニカムフィルタ内の温度の高い部位に配置されるため、当該部位に担持された触媒物質の活性度は高い状態にあり、微粒子の酸化燃焼が容易に行われるため、流入側に開口した流路41から流入した排気ガスが隔壁32に形成された細孔内を通過して隣接した流路43に排出される際に、排気ガス中の微粒子が燃焼、浄化される。
以上述べたように、内燃機関運転中にハニカムフィルタへの微粒子の堆積量がある一定値以上になったと推定された場合に、ハニカムフィルタの温度を上昇させる目的で行う、フィルタ上流への未燃の燃料及び/又は炭化水素ガス噴射時において、微粒子の浄化作用がハニカムフィルタ内各所、即ち、流入側目封止部50、流入側目封止部より排気ガス流入側の隔壁31、及び流入側目封止部より排気ガス流出側の隔壁32を含む箇所、で行われることから、本発明のセラミックハニカムフィルタによれば、従来のハニカムフィルタで認められた図5に示すような、流路40の開口端部での微粒子堆積による流路閉塞により、圧力損失が上昇する現象は発生しにくく、微粒子が触媒物質の作用により有効に燃焼され、フィルタの破損や溶損の問題を回避すると共に、長期に亘り圧力損失を上昇させることなく使用することができる。
更に、内燃機関運転中にハニカムフィルタへの微粒子の堆積量がある一定値以上になったと推定された場合に、ハニカムフィルタの温度を上昇させる目的で行う、フィルタ上流への未燃の燃料及び/又は炭化水素ガス噴射の際には、セラミックハニカムフィルタ内の温度は図7に示すような分布となる。このような温度分布が発生すると、時間の経過と共に、流入側目封止部50及び流入側目封止部50より排気ガス流出側の隔壁32から、流入側目封止部50より排気ガス流入側の隔壁31への熱伝導により、隔壁31の温度が上昇し、セラミックハニカムフィルタの流入側端面12の温度も上昇して、流入側目封止部50より排気ガス流入側の隔壁31に担持された触媒物質の活性度が上昇し、より確実に微粒子の燃焼が容易に行われ、流入側目封止部端面51への微粒子70堆積を防ぐことができる。
以上は、内燃機関運転中にハニカムフィルタへの微粒子の堆積量がある一定値以上になったと推定された場合に、ハニカムフィルタの温度を上昇させる目的で行う、フィルタ上流への未燃の燃料及び/又は炭化水素ガス噴射時において、ハニカムフィルタ内の流入側目封止部50を含む、その下流側の領域の温度を触媒の活性度が高まるようにする例を用いて説明したが、噴射する未燃の燃料及び/又は炭化水素ガスの量を調整することにより、ハニカムフィルタ内の流入側目封止部50を含む、その下流側の領域の温度を微粒子の自己燃焼が起こる600℃以上の温度に加熱し、触媒の力を借りずに微粒子を燃焼させても同様に、微粒子70が凝着、堆積しやすい流入側目封止部端面51での微粒子の燃焼が容易に行われ、流入側目封止部端面51への微粒子70の堆積を防ぐことができる。
また、内燃機関運転中にハニカムフィルタ上への微粒子の堆積量がある一定値以下の場合で、ハニカムフィルタ上流側に未燃の燃料及び/又は炭化水素ガスを噴射する必要のない、内燃機関からの排気ガス温度が、触媒活性下限温度以上に高い場合は、ハニカムフィルタ各所に担持された触媒物質が活性となることにより、排気ガス中の微粒子は触媒物質により燃焼反応が促進されるため、ハニカムフィルタに流入する排気ガス90、91は、ハニカムフィルタの流路及び隔壁を通過される際に浄化され、排気ガス92として排出される。
ここで、図1に示すように排気ガス流入側目封止部50すべてが、ハニカムフィルタの排気ガス流入側端面12より離れて配置される必要はなく、図10に示すように、本発明の目的を達成できる程度に配置すれば良い。即ち、少なくとも70%以上の排気ガス流入側目封止部50が排気ガス流入側端面12より離れていれば、微粒子の堆積による圧力損失上昇を防ぐ効果が大きくなる。排気ガス流入側目封止部50のうちハニカムフィルタの排気ガス流入側端面12より離れて配置されている目封止部が70%未満である場合は、セラミックハニカムフィルタ内の温度の高い部位に配置される排気ガス流入側目封止部50の割合が少なくなるため、即ちセラミックハニカムフィルタ内の温度の低い部位に配置される目封止部の割合が増えるため、低温の目封止部端面に微粒子が堆積しやすくなり、本発明のハニカムフィルタの圧力損失の上昇を防ぐ効果が小さくなるからである。
本発明において、排気ガス流入側目封止部50がセラミックハニカムフィルタ内の温度の高い部位に配置されれば微粒子の燃焼が容易に行われ、微粒子の堆積による圧力損失の上昇が起こりにくくなることを考慮すると、排気ガス流入側目封止部50は、図8に示すように排気ガス流入側目封止部端面51が流入側端面12から同一の位置に配置されなくても良く、また、図9に示すように、排気ガス流入側目封止部50及び流出側目封止部50の長さは全て同一でなくても良いのである。また、本発明の効果が得られるのであれば、排気ガス流出側目封止部50は、同一の位置に配置されなくても良い。
また、図11に示すように、外周壁周辺の流路両端を目封止するような構造のセラミックハニカムフィルタの場合には、外周壁周辺の両端が目封止された流路には、排気ガスが流入しないことから、この流路が断熱空間として作用し、セラミックハニカムフィルタ内で排気ガスと触媒により発生した熱が、外周壁を経由して、ハニカムフィルタを把持している把持部材、更には金属容器を経由して、外気へ放出されることを防ぐことができるため、セラミックハニカムフィルタ内の温度を均一にできることから好ましい。
また、排気ガス流出側の目封止部が、排気ガス流入側の目封止部と同様にセラミックハニカムフィルタ流出側端面より離れて配置されている場合、或いは流出側端面より突出して配置されている場合でも、同様の効果が得られる。
【0013】
本発明のセラミックハニカムフィルタにおいて、前記排気ガスは、前記排気ガス流入側端面より離れて配置された排気ガス流入側目封止部50より排気ガス流入側に存在する隔壁31中の細孔内を少なくとも通過することが好ましいのは、流入側目封止部50より排気ガス流入側の隔壁31は、図7の模式図に示すように、流入側目封止部に比べて温度の低い部位に配置されるものの、当該部位に担持された触媒物質は流入側端部に比べ温度が高く、触媒物質の活性度は流入側端部に比べて高められていることから、流路42に流入した排気ガスが隔壁31に形成された細孔内を通過して隣接する流路41に排出される際に、排気ガス中の微粒子が燃焼、浄化される。
本発明のハニカムフィルタの排気ガス流入側目封止部端面は、内燃機関運転中の少なくともある期間、即ちハニカムフィルタ上への微粒子の堆積量がある一定値以上になったと推定された場合に、ハニカムフィルタの温度を上昇させる目的で行う、フィルタ上流への未燃の燃料及び/又は炭化水素ガス噴射時において、前記隔壁に担持された触媒物質の活性化下限温度以上に維持される位置に配置されていることが好ましいのは、本発明の目的が排気ガス流入側目封止部端面に、微粒子が凝着、堆積して、排気ガス流入側通路を閉塞させることを防ぐことにあることから、排気ガス流入側目封止部端面51が、前記隔壁に担持された触媒物質の活性下限温度以上に維持される位置に配置された場合、触媒物質の作用により微粒子を確実に燃焼除去できるためである。また排気ガス流入側目封止部端面51を触媒物質の活性下限温度以上に維持される位置に配置するとは、排気ガス流入側目封止部端面51を必ずしも触媒物質の活性下限温度以上に維持される位置のみではなく、その活性下限温度近傍の温度以上の位置に配置すれば良い。
ここで、触媒物質の活性下限温度とは触媒が活性化する温度をいう。
本発明のセラミックハニカムフィルタの流入側目封止部端面51は、セラミックハニカムフィルタ流入側端面12から該セラミックハニカムフィルタ全長の0.7倍の長さの区間に配置されていると好ましいのは、流入側端面12から該セラミックハニカムフィルタ全長の0.7倍の長さの区間を越えて配置すると、セラミックハニカムフィルタの全体の長さには制約があるため、排気ガス流入側目封止部より流出側の隔壁32の面積が、隔壁31に比べて少なくなるため、ハニカムフィルタ全体の初期圧力損失が上昇することもあるからである。また、ハニカムフィルタ上流に未燃の燃料及び/又は炭化水素ガスを噴射した際の、触媒物質によるフィルタ温度上昇効果を十分得るためには、流入側目封止部50は流入側端面12から1mm以上に離れて配置されていることがさらに好ましい。また、更に好ましい流入側目封止部端面51の配置区間は、セラミックハニカムフィルタ流入側端面12から該セラミックハニカムフィルタ全長の0.1〜0.4倍の長さの区間である。
【0014】
次に、本発明のセラミックハニカムフィルタに担持される触媒物質が、白金族金属を含んでなることが好ましいのは、白金族金属を含む触媒物質が、ハニカムフィルタの上流に噴射された未燃燃料及び/又は炭化水素ガスのハニカムフィルタ上での燃焼反応を促進し、反応熱の生成が促進されることにより、フィルタ内の温度が上昇し易くなり、触媒物質の活性度が上昇するのと共に、排気ガス中に含まれる微粒子の浄化反応とりわけ酸化反応を促進するからである。ここで、白金族金属を含む触媒物質による排気ガス中に含まれる微粒子の除去反応は以下のように行われる。排気ガス中の微粒子は、活性状態にある白金族金属を含む触媒物質と接触すると、例えば排気ガス中の微粒子の主成分である炭素Cが酸素Oとの反応により酸化され二酸化炭素COに変換燃焼され、無害化されため、長期に亘り圧力損失を上昇させることなく使用することができる。尚、白金族金属を含む触媒物質は、たとえば、Pt、Pd、Ru、Rh又はその組合せ、白金族金属酸化物等が含まれるが、アルカリ土類金属酸化物や希土類酸化物、或いはベース金属触媒、典型的にはランタン、セシウム、バナジウム(La/Cs/V)類等を含んでも良い。また、触媒物質には、公知のγアルミナ等の活性アルミナからなる高比表面積材料が含まれると、触媒物質と排気ガスとの接触面積を大きくすることができ、排気ガスの浄化効率を高めることができることから好ましい。
【0015】
また、セラミックハニカムフィルタの流入側目封止部より排気ガス流入側の隔壁31に担持された触媒物質の活性度が、排気ガス流出側の隔壁32に担持された触媒物質の活性度に比べて高いことが好ましいのは、隔壁31において、ハニカムフィルタの上流に噴射された未燃の燃料及び/または炭化水素ガスのハニカムフィルタ上での燃焼反応が促進され、反応熱の生成がより促進されることにより、隔壁31の領域において、フィルタ内の温度が上昇し易くなるため、流入側目封止部端面51に担持された触媒物質の活性度が上昇し、この部分への微粒子の堆積を防ぐことができ、フィルタの圧力損失の上昇を防ぐことができるのと共に、流入側目封止部50より排気ガス流入側の隔壁31に担持された触媒物質による、例えば排気ガス中の微粒子の主成分である炭素CのCO2への変換率が高くなり、流路42での排気ガス中の微粒子の酸化燃焼反応が効率よく行われるため、長期に亘り圧力損失を上昇させることなく使用することができるからである。ここで、排気ガス流入側の隔壁31に担持された触媒物質の活性度が、排気ガス流出側の隔壁32に担持された触媒物質の活性度に比べて高いというのは、例えば流入側目封止部50より排気ガス流入側である隔壁31に担持された触媒物質中の白金族金属を含む触媒物質の含有量や、助触媒物質であるアルカリ土類金属酸化物、希土類酸化物、或いはベース金属触媒の含有量を、排気ガス流出側の隔壁32に担持された触媒物質に比べて多く担持させ、担持された触媒全体として見た時に、触媒の性能が高いことを意味する。
例えば、流入側目封止部50より排気ガス流入側の隔壁31に担持された触媒物質中の白金属金属含有量を、排気ガス流出側の隔壁32に担持された触媒物質中の白金属金属含有量を多くすることにより、長期に亘り圧力損失が上昇しないセラミックハニカムフィルタが得られる。
また、流入側目封止部50より排気ガス流入側である隔壁31には、酸化触媒である、Pt、Pd、Ru、Rh等の白金族金属を含む触媒物質の含有量を多く担持し、排気ガス流出側の隔壁32には、助触媒であるベース金属触媒、典型的にはランタン、セシウム、バナジウム(La/Cs/V2O3)類よりなる触媒物質及び白金族金属を含む触媒物質を多く担持させることにより、微粒子の燃焼が効率よく行われるため、長期に亘り圧力損失が上昇しにくいセラミックハニカムフィルタが得られる。
本発明の排気ガス浄化方法は、多孔質セラミックハニカム構造体の流路を目封止することによりハニカム構造体の隔壁に形成された細孔に排気ガスを通過させる構造であって、少なくとも前記隔壁に触媒物質が担持されているとともに、少なくとも一つの排気ガス流入側目封止部が排気ガス流入側端面より離れて配置されているセラミックハニカムフィルタの上流側に、適宜に燃料及び/または炭化水素ガスを未燃のまま噴射して、前記触媒物質上で燃料及び/または炭化水素ガスの酸化反応を促進し、その反応熱によりセラミックハニカムフィルタの少なくとも排気ガス流入側目封止部から流出側の領域の温度を前記触媒物質の活性下限温度以上に維持していることから、内燃機関からの排気ガス温度が低い状態にあっても、ハニカムフィルタの上流側に燃料及び/または炭化水素ガスを未燃のまま噴射して、該燃料及び/または炭化水素ガスをハニカムフィルタの隔壁及び目封止部に担持された触媒物質の作用により燃焼させ、ハニカムフィルタ内で排気ガスが高温化されて、ハニカムフィルタに担持された触媒物質の活性下限温度以上まで強制的に維持されるため、排気ガス中の微粒子が滞りなく良好に除去される。しかも、排気ガス流入側目封止部がハニカムフィルタの排気ガス流入側端面に形成されている従来構造のハニカムフィルタに比べ、微粒子が堆積して流路を塞ぐ問題の発生し易い排気ガス流入側目封止部50が排気ガス流入側端面より離れて配置されているため、担持されている触媒物質が活性下限温度以上に維持され、排気ガス中の微粒子の燃焼除去が効率よく行われ、微粒子の堆積することを防ぐことができ、長期に亘り圧力損失を上昇させることがない。
【0016】
次に本発明に用いられる多孔質セラミックハニカム構造体について説明する。本発明に用いられる多孔質セラミックハニカム構造体の隔壁及び目封止材を構成する材料としては、本発明が主にディーゼルエンジンの排気ガス中の微粒子を除去するためのフィルタとして使用されるため、耐熱性に優れた材料を使用することが好ましく、コージェライト、アルミナ、ムライト、窒化珪素、炭化珪素及びLASからなる群から選ばれた少なくとも1種を主結晶とするセラミック材料を用いることが好ましい。中でも、コージェライトを主結晶とするセラミックハニカムフィルタは、安価で耐熱性、耐食性に優れ、また低熱膨張であることから最も好ましい。
前記ハニカム構造体の隔壁の気孔率は50〜80%であることが好ましい。排気ガスが隔壁に形成された細孔を通過することから、隔壁の気孔率が50%未満であると、ハニカムフィルタの圧力損失が上昇し、エンジンの出力低下につながるからであり、隔壁の気孔率が80%を超えると、隔壁の強度が低下するため、使用時の熱衝撃や機械的振動により破損することがあるからである。また、前記ハニカム構造体の目封止材の気孔率は、隔壁の気孔率に比べて、低い場合、同程度の場合、或いは高い場合いずれの場合でも良いが、隔壁の気孔率より高い場合は、排気ガスが目封止材中の細孔内部を通過することも可能となるため、排気ガス流入側目封止部の排気ガス流入側端面51への微粒子の堆積が起こりにくくなることから好ましい。
本発明に係るセラミックハニカムフィルタの隔壁厚は0.1〜0.5mmが好ましく、隔壁のピッチは1.2mm以上が好ましい。隔壁厚が0.1mm未満では、隔壁が細孔を有する高気孔率の多孔質体であることからハニカム構造体の強度が低下し、好ましくない。一方、隔壁厚が0.5mmを超えると、如何に隔壁が高気孔率であっても、排気ガスに対する隔壁の通気抵抗が大きくなるため、フィルタの圧力損失が大きくなるからである。より好ましい隔壁厚さは、0.2〜0.4mmである。また、隔壁のピッチが1.3mm未満であると、ハニカム構造体の入口の開口面積が小さくなることから、フィルタ入口の圧力損失が大きくなるためである。
【0017】
次に本発明のセラミックハニカムフィルタの製造方法一例を図2を用いて説明する。ハニカム構造体の排気ガス流入側端面に図2に示すように市松模様に樹脂製スラリー導入通路81を設けた樹脂製のマスク80を装着し、図2のA部拡大図の矢印で示すようにスラリー導入通路81を通してスラリー状の目封止材53を導入、ハニカム構造体の流路の一部に充填する。その後、スラリー状の目封止材53中に含まれる水分はハニカム構造体の隔壁に吸水され目封止材が隔壁に着肉して行き保形性が得られるようになると、固化していないスラリーを排出し、樹脂製マスクを除去後、固化した目封止材の乾燥を行う。このとき樹脂製スラリー導入通路81内に存在するスラリー状の目封止材は隔壁からの吸水が無いことから固化しないため、スラリ−導入通路の長さを調整することにより、排気ガス流入側目封止部のハニカム構造体流入側端面からの形成位置を決定することができる。一方、流出側の端面は、公知の技術により端部に目封止部を形成し、その後、目封止材の焼成を行い、隔壁と目封止材を一体化せしめる。
なお、その他の方法としては、注射針状の管をハニカム構造体の端部から流路の所定位置まで挿入し、この管を通して所定位置に所定量のペースト状の目封止材を導入後、乾燥、焼成させる方法や、セラミックチップをハニカム構造体の内部に埋め込み、焼成させる方法等を採用し、隔壁と目封止材を一体化することができる。
【0018】
【発明の実施の形態】
以下、発明の実施の形態を詳細に説明する。
(実施例1)
カオリン、タルク、シリカ、水酸化アルミ、アルミナなどの粉末を調整して、質量比で、SiO2 :47〜53%、Al23:32〜38%、MgO:12〜16%及びCaO、Na2O 、K2O、TiO2 Fe23、PbO、P25などの不可避的に混入する成分を全体で2.5%以下を含むようなコージェライト生成原料粉末に、成形助剤と造孔剤を添加し、規定量の水を注入して更に十分な混合を行い、ハニカム構造に押出成形可能な坏土を調整した。
そして、公知の押出成形用金型を用い押出成形し、外周壁と、この外周壁の内周側で隔壁により囲まれた断面が四角形状の流路を有するハニカム構造の成形体を作製し、乾燥後焼成を行い、直径267mm、全長L300mm、隔壁のピッチ1.5mmで、隔壁厚さ0.3mmの隔壁構造を有し、隔壁の気孔率が65%のハニカム構造体を作製した。
【0019】
次に、図2に示すようにハニカム構造体の排気ガス流入側端面に市松模様にスラリー導入通路81を設けた樹脂製のマスク80を装着し、スラリー導入通路を通してスラリー状の目封止材を導入、ハニカム構造体の流路の一部に充填した。その後、目封止材が隔壁に着肉し保形性が得られた後、樹脂製マスクを除去し、目封止材53の乾燥を行った。ここで、排気ガス流入側目封止部がハニカムフィルタ端面から5通りの位置に形成されるようにスラリー導入通路81の長さを調整した。一方、ハニカム構造体の排気ガス流出側端面の目封止部は、端面にマスキングフィルムを接着剤で貼り付けた後、市松模様となるように穿孔し、続いて、スラリー状の目封止材を端面より導入して目封止部を形成した。次いで、バッチ式焼成炉を用いて温度制御しつつ目封止材の焼成を行い、図1に模式図を示すような試験NO.1〜6のハニカムフィルタ11を得た。
得られたハニカムフィルタに対して排気ガス流入側目封止部の排気ガス流入側端面51とハニカムフィルタ端面12の間の距離X(mm)を測定した。Xの測定は、排気ガス流入側端面から直径約0.8mm長さ200mmの金属棒を差込、ハニカムフィルタからでた金属棒の長さを読みとることで測定した。測定は、1ケのハニカムフィルタにつき任意の20箇所の目封止部について行い、平均値を算出した。これら試験NO.1〜6のハニカムフィルタの排気ガス流入側目封止部の排気ガス流入側端面51とハニカムフィルタ端面12の間の距離X(mm)及びX/(ハニカムフィルタの全長L)の値を表1に示す。
【0020】
前記のハニカムフィルタに対して、Pt、酸化セリウム、及び活性アルミナからなる触媒物質を隔壁表面及び隔壁中の細孔内部、更には目封止部表面及び目封止部中の細孔内部に担持させた。担持量はPt量で2g/L(ハニカムフィルタ容積1Lに対して2g担持の意味)とした。
【0021】
上記のように作製した試験NO.1〜6のセラミックハニカムフィルタを圧力損失試験装置(図示せず)に設置し、空気流量7.5Nm3/minの条件で空気を流入し、流入側端面と流出側端面の差圧を測定し、各セラミックハニカムフィルタの初期圧力損失を評価した。このとき、排気ガス流入側目封止部の端面がハニカムフィルタと同一面に配置されている試験NO.1のセラミックハニカムフィルタの初期圧力損失を1として、試験NO.2〜6の初期圧力損失を表1に示した。上記のように形成したセラミックハニカムフィルタの圧力損失を以下のように測定した。更に、ディーゼルエンジンの排気管に上記試験NO.1〜6のハニカムフィルタを配置し、市街地走行を模したパターン走行条件で耐久試験を行った。この際、排気ガス温度が触媒物質の活性下限温度を下まわるような運転状態が続くような場合も発生させ、微粒子がフィルタ上に僅かに堆積するような条件を作り出した上で、この運転状態に応じて、触媒物質を担持させたフィルタ上への微粒子の堆積量を推定し、堆積量が一定値以上なったと判断された時点で、フィルタの上流側に燃料を未燃のまま噴射して、フィルタの強制的再生を行った。そして、10,000km走行に相当する時間経過まで試験が継続できたものを判定合格(○)とし、継続できなかったものを判定不合格(×)とし、判定合格だったものについては、10,000km走行に相当する時間経過後のハニカムフィルタの圧力損失を初期圧力損失と同様に測定し、初期圧力損失と比較して、圧力損失比:(試験後の圧力損失)/(初期圧力損失)を算出した。
【0022】
【表1】
Figure 0003867976
【0023】
排気ガス流入側目封止部の端面がハニカムフィルタ端面と同一面に配置されている比較例である試験NO.1のセラミックハニカムフィルタは、約5,000km走行後に排圧が急上昇し、再生不能になったため試験を中断したため、判定は不合格(×)であった。これに対して、本発明例である試験NO.2〜6のセラミックハニカムフィルタは排気ガス流入側目封止部端面がセラミックハニカムフィルタ排気ガス流入側端面より流出側に離れて配置され、隔壁及び目封止部に触媒物質が担持されていることから、フィルタ上流に未燃燃料を噴射した際であっても、微粒子がハニカムフィルタの排気ガス流入側に堆積し、流路を閉塞させにくいため、10,000km走行に相当する時間の耐久試験においても問題なく判定合格(○)が得られた。このうち試験NO.2〜5のセラミックハニカムフィルタはハニカムフィルタ流入側端面と排気ガス流入側目封止部の排気ガス流入側端面との距離Xがハニカムフィルタ全長Lの0.7以下であることから、試験NO.1のセラミックハニカムフィルタに対する初期圧力損失の上昇は僅かであり、エンジンの出力低下につながらないことからより好ましいことがわかる。特に、試験NO.2〜3のセラミックハニカムフィルタは、ハニカムフィルタ流入側端面と排気ガス流入側目封止部の排気ガス流入側端面との距離Xがハニカムフィルタ全長Lの0.1〜0.4であることから、初期圧力損失は試験NO.1のセラミックハニカムフィルタと同様であり、且つ10,000km走行に相当する時間の耐久試験後においても圧力損失の上昇は小さく、圧力損失比は1.2未満であり、より長期間の使用に耐えうることが判った。
【0024】
(実施例2)
実施例と同様の方法により直径267mm、長さ300mm、隔壁のピッチ1.5mmで、隔壁厚さ0.3mmの隔壁構造を有し、隔壁の気孔率が65%のハニカム構造体を作製した後、目封止を行い、ハニカムフィルタ流入側端面からの排気ガス流入側目封止部形成位置Xが49.8mm及び96.3mmである図1に模式図を示す試験NO.7〜8のハニカムフィルタ50を得た。
【0025】
前記のハニカムフィルタに対して、Pt、酸化セリウム、及び活性アルミナからなる触媒物質を排気ガス流入側目封止部よりも排気ガス流出側の隔壁表面及び隔壁中の細孔内部、更には目封止部表面及び目封止部中の細孔内部に担持させた。このときの触媒物質中の担持量はPtで1g/Lとした。一方、前記触媒物質よりPt濃度を高めた触媒物質を排気ガス流入側目封止部より排気ガス流入側である隔壁表面及び隔壁中の細孔内部に担持させた。このときの触媒物質の担持量はPtで4g/Lとした。
【0026】
上記のように形成したセラミックハニカムフィルタの耐久試験を実施例1と同様に測定し、10,000km走行に相当する時間経過後の判定を行い、10、000km走行に相当する時間経過後のハニカムフィルタの圧力損失を測定し、初期圧力損失と比較して、圧力損失比:(試験後の圧力損失)/(初期圧力損失)を算出した。
【0027】
【表2】
Figure 0003867976
【0028】
試験NO.7〜8のセラミックハニカムフィルタは排気ガス流入側目封止部端面がセラミックハニカムフィルタ排気ガス流入側端面より流出側に配置され、隔壁及び目封止部に触媒物質が担持され、更には流入側目封止部よりも排気ガス流入側のPt担持量が高く、排気ガス流入側の触媒物質の活性度が排気ガス流出側に比べて高くなっていることから、10,000km走行に相当する時間の耐久試験においても問題なく判定合格(○)が得られ、また、実施例1に示す試験NO.2〜3のセラミックハニカムフィルタに対して10,000km走行に相当する時間の耐久試験後においても圧力損失の上昇は小さく、圧力損失比が小さくなっていることから、より長期間に亘って使用が可能である。
【0029】
(実施例3)
実施例と同様の方法により直径267mm、長さ300mm、隔壁のピッチ1.5mmで、隔壁11bの厚さ0.3mmの隔壁構造を有し、隔壁の気孔率が65%のハニカム構造体を作製した後、目封止を行い、ハニカムフィルタ流入側端面からの排気ガス流入側目封止部形成位置Xが49.8mm及び96.3mmである図1に示すような試験NO.9〜10のハニカムフィルタ50を得た。
【0030】
前記のハニカムフィルタに対して、Pt、酸化セリウム、及び活性アルミナからなる触媒物質1を流入側目封止部より排気ガス流入側である隔壁及び隔壁内の細孔中にに担持させた。その後、ランタン、セシウム、バナジウム類よりなる触媒物質を加えた触媒物質3を排気ガス流入側目封止部よりも排気ガス流出側の隔壁表面及び隔壁中の細孔内部、更には目封止部表面及び目封止部中の細孔内部に担持させた。これにより、流入側目封止部より排気ガス流入側の隔壁に担持された触媒物質を排気ガス流出側の隔壁に担持した触媒物質よりも活性度を高くした。
【0031】
上記のように形成したセラミックハニカムフィルタの耐久試験を実施例1と同様に測定し、10,000km走行に相当する時間経過後の判定を行い、10,000km走行に相当する時間経過後のハニカムフィルタの圧力損失を測定し、試験前の圧力損失と比較して、圧力損失比:(試験後の圧力損失)/(試験前の圧力損失比)を算出した。
【0032】
【表3】
Figure 0003867976
【0033】
試験NO.9〜10のセラミックハニカムフィルタは排気ガス流入側目封止部端面がセラミックハニカムフィルタ排気ガス流入側端面より流出側に配置され、隔壁及び目封止部にPt、酸化セリウム、及び活性アルミナからなる触媒物質が担持されると共に、流入側目封止部よりも排気ガス流入側にランタン、セシウム、バナジウム類よりなる触媒物質が担持されており、排気ガス流入側の触媒物質の活性度が排気ガス流出側に比べて高くなっていることから、10,000km走行に相当する時間の耐久試験においても問題なく判定合格(○)が得られ、また、実施例1に示す試験NO.2〜3のセラミックハニカムフィルタに対して耐久試験後の10,000km走行に相当する時間の耐久試験後においても圧力損失の上昇は小さく、圧力損失比が小さくなっていることから、より長期間に亘って使用が可能である。
【0034】
【発明の効果】
以上詳細に説明のとおり、ハニカムフィルタに担持した触媒物質により微粒子を連続的に燃焼させるセラミックハニカムフィルタにおいて、排気ガス流入側目封止部端面がセラミックハニカムフィルタの排気ガス流入側端面より流出側に配置されていることから、ディーゼルエンジンの運転状態に応じて、触媒物質を担持させたフィルタ上への微粒子の堆積量を推定した上で、フィルタの上流側に適宜に燃料及び/または炭化水素ガスを未燃のまま噴射させた際であっても、微粒子の触媒物質による燃焼が起こりやすく、かつ微粒子のハニカムフィルタへの堆積による流路の閉塞が起こりにくく、フィルタの破損や溶損の問題を回避すると共に、長期に亘り安定して圧力損失の増加の少ないハニカムフィルタ及び排気ガス浄化方法を得ることができる。
【図面の簡単な説明】
【図1】実施の形態でのハニカムフィルタの模式断面図である。
【図2】ハニカム構造体に目封止材を導入している状況を示す模式断面図である。
【図3】従来のハニカムフィルタの斜視図である。
【図4】図3のハニカムフィルタの模式断面図である。
【図5】ハニカムフィルタに堆積する微粒子を模式的に示したハニカムフィルタの断面図である。
【図6】従来のセラミックハニカムフィルタの模式断面図と長手方向の温度変化を示した図である。
【図7】本発明のセラミックハニカムフィルタの模式断面図と長手方向の温度変化を示した図である。
【図8】本発明のセラミックハニカムフィルタの模式断面図である。
【図9】本発明のセラミックハニカムフィルタの模式断面図である。
【図10】本発明のセラミックハニカムフィルタの模式断面図である。
【図11】本発明のセラミックハニカムフィルタの模式断面図である。
【符号の説明】
10:ハニカム構造体
11:ハニカムフィルタ
12:流入側端面
13:流出側端面
20:外周壁
30:隔壁
31:流入側目封止部より流入側の隔壁
32:流入側目封止部より流出側の隔壁
40:流路
41:流入側端面で開口している流路
42:流入側端面で開口している流路
43:排気ガス流出側に開口した流路
50:流入側目封止部
51:流入側目封止部端面
52:流出側目封止部
53:目封止材
60:触媒物質
70:微粒子
80:マスク
81:スラリー導入通路
90:排気ガスの流入
91:排気ガスの流入
92:排気ガスの流出
X:目封止部形成位置

Claims (3)

  1. 多孔質セラミックハニカム構造体の流路を目封止することによりハニカム構造体の隔壁に形成された細孔に排気ガスを通過させる構造のセラミックハニカムフィルタにおいて、前記隔壁及び/または目封止部の少なくとも一部に触媒物質が担持されているとともに、少なくとも一つの排気ガス流入側目封止部が排気ガス流入側端面より離れて配置され、排気ガス流入側目封止部端面がセラミックハニカムフィルタの流入側端面から該セラミックハニカムフィルタ全長の0.32倍以上0.7倍以下の長さの区間に配置されていることを特徴とするセラミックハニカムフィルタ。
  2. 多孔質セラミックハニカム構造体の流路を目封止することによりハニカム構造体の隔壁に形成された細孔に排気ガスを通過させる構造のセラミックハニカムフィルタにおいて、前記隔壁及び/または目封止部の少なくとも一部に触媒物質が担持されているとともに、少なくとも一つの排気ガス流入側目封止部が排気ガス流入側端面より離れて配置され、前記流入側目封止部より排気ガス流入側の隔壁に担持された触媒物質の活性度が、排気ガス流出側の隔壁に担持された触媒物質の活性度に比べ高いことを特徴とするセラミックハニカムフィルタ。
  3. 多孔質セラミックハニカム構造体の流路を目封止することによりハニカム構造体の隔壁に形成された細孔に排気ガスを通過させる構造のセラミックハニカムフィルタにおいて、前記隔壁及び/または目封止部の少なくとも一部に触媒物質が担持されているとともに、少なくとも一つの排気ガス流入側目封止部が排気ガス流入側端面より離れて配置され、前記セラミックハニカム構造体の気孔率が50〜80%、前記セラミックハニカム構造体の隔壁厚が0.1〜0.5mm、隔壁ピッチが1.3mm以上で、前記排気ガス流入側端面より離れて配置された排気ガス流入側目封止部の気孔率は隔壁の気孔率よりも高く、排気ガスが前記排気ガス流入側端面より離れて配置された排気ガス流入側目封止部より排気ガス流入側に存在する隔壁中の細孔内を少なくとも通過することを特徴とするセラミックハニカムフィルタ。
JP2003093677A 2002-03-29 2003-03-31 セラミックハニカムフィルタ及び排気ガス浄化方法 Expired - Fee Related JP3867976B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003093677A JP3867976B2 (ja) 2002-03-29 2003-03-31 セラミックハニカムフィルタ及び排気ガス浄化方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002093980 2002-03-29
JP2002372031 2002-12-24
JP2003093677A JP3867976B2 (ja) 2002-03-29 2003-03-31 セラミックハニカムフィルタ及び排気ガス浄化方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006162859A Division JP2006326586A (ja) 2002-03-29 2006-06-12 セラミックハニカムフィルタ及び排気ガス浄化方法

Publications (2)

Publication Number Publication Date
JP2004251266A JP2004251266A (ja) 2004-09-09
JP3867976B2 true JP3867976B2 (ja) 2007-01-17

Family

ID=33033005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003093677A Expired - Fee Related JP3867976B2 (ja) 2002-03-29 2003-03-31 セラミックハニカムフィルタ及び排気ガス浄化方法

Country Status (1)

Country Link
JP (1) JP3867976B2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1669123B1 (en) * 2003-08-12 2010-10-06 NGK Insulators, Ltd. Ceramic filter
JP2006125206A (ja) 2004-10-26 2006-05-18 Ict:Kk 内燃機関排気ガスの浄化方法およびその装置
WO2006068256A1 (ja) * 2004-12-22 2006-06-29 Hitachi Metals, Ltd. ハニカムフィルタの製造方法及びハニカムフィルタ
JP4895154B2 (ja) * 2004-12-22 2012-03-14 日立金属株式会社 ハニカムフィルタの製造方法及びハニカムフィルタ
JP2006233935A (ja) * 2005-02-28 2006-09-07 Hitachi Metals Ltd 排気ガス浄化装置
JP4803480B2 (ja) * 2005-03-30 2011-10-26 日立金属株式会社 セラミックハニカムフィルタ
JP2006334452A (ja) * 2005-05-31 2006-12-14 Hitachi Metals Ltd セラミックハニカムフィルタ
JP2007222858A (ja) * 2006-01-27 2007-09-06 Hitachi Metals Ltd セラミックハニカムフィルタ
KR101382511B1 (ko) * 2006-01-27 2014-04-07 히타치 긴조쿠 가부시키가이샤 세라믹 허니콤 필터의 제조 방법
EP1997556A4 (en) * 2006-03-13 2012-12-19 Ngk Insulators Ltd A CATALYST STRUCTURE OF A HONEYCOMB
EP2130573B2 (en) * 2007-03-28 2018-06-27 NGK Insulators, Ltd. Plugged honeycomb structure
WO2008129691A1 (ja) * 2007-03-30 2008-10-30 Ibiden Co., Ltd. ハニカムフィルタ
US20100083642A1 (en) * 2008-10-02 2010-04-08 Hyundai Motor Company Exhaust gas purification device, manufacturing method thereof, and manufacturing device thereof

Also Published As

Publication number Publication date
JP2004251266A (ja) 2004-09-09

Similar Documents

Publication Publication Date Title
US7107763B2 (en) Ceramic honeycomb filter and exhaust gas-cleaning method
KR100605005B1 (ko) 희박한 배기가스 처리용 촉매적 매연 필터
JP4725177B2 (ja) 排ガス浄化方法及び排ガス浄化装置
KR101110649B1 (ko) 디젤 엔진 및 이를 위한 촉매 필터
JP4355506B2 (ja) 触媒担持フィルタ及びこれを用いた排ガス浄化システム
US7384612B2 (en) Diesel exhaust gas purifying filter
JP2007192055A (ja) 排ガス浄化装置と排ガス浄化方法
JP5193437B2 (ja) 排ガス浄化用触媒
JP3867976B2 (ja) セラミックハニカムフィルタ及び排気ガス浄化方法
JPH0994434A (ja) 排ガス浄化用フィルター
JPWO2005045207A1 (ja) セラミックハニカムフィルタ、排気ガス浄化装置及び排気ガス浄化方法
JP2006272157A (ja) セラミックハニカムフィルタ及び排気ガス浄化装置
JP4006645B2 (ja) 排ガス浄化装置
JP2006233935A (ja) 排気ガス浄化装置
JP4412641B2 (ja) 排気ガス浄化装置及び排気ガス浄化方法
JP2008151100A (ja) 排ガス浄化装置
JP2006231116A (ja) 排ガス浄化フィルタ触媒
JP4239864B2 (ja) ディーゼル排ガス浄化装置
JP2006305503A (ja) セラミックハニカムフィルタ
JP2007117954A (ja) ディーゼル排ガス浄化用触媒
JP2006334459A (ja) セラミックハニカムフィルタ
JP2006326586A (ja) セラミックハニカムフィルタ及び排気ガス浄化方法
JP4567968B2 (ja) 排ガス浄化装置及び排ガス浄化方法
JP4218559B2 (ja) ディーゼル排ガス浄化装置
JP3827157B2 (ja) 排ガス浄化装置及び排ガス浄化方法

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20060222

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061006

R150 Certificate of patent or registration of utility model

Ref document number: 3867976

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees