JP3855306B2 - Heat dissipating board for mounting electronic parts and manufacturing method thereof - Google Patents

Heat dissipating board for mounting electronic parts and manufacturing method thereof Download PDF

Info

Publication number
JP3855306B2
JP3855306B2 JP13621196A JP13621196A JP3855306B2 JP 3855306 B2 JP3855306 B2 JP 3855306B2 JP 13621196 A JP13621196 A JP 13621196A JP 13621196 A JP13621196 A JP 13621196A JP 3855306 B2 JP3855306 B2 JP 3855306B2
Authority
JP
Japan
Prior art keywords
metal plate
insulating material
composite insulating
heat
heat dissipation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13621196A
Other languages
Japanese (ja)
Other versions
JPH09321395A (en
Inventor
浩之 半田
政毅 鈴村
令二 今野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP13621196A priority Critical patent/JP3855306B2/en
Publication of JPH09321395A publication Critical patent/JPH09321395A/en
Application granted granted Critical
Publication of JP3855306B2 publication Critical patent/JP3855306B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/20Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern
    • H05K3/202Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern using self-supporting metal foil pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components

Landscapes

  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Structure Of Printed Boards (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はインバータ回路や電源回路のように大電力を扱う電子回路モジュール等に用いられるパワー半導体及び各種電子部品等を搭載する電子部品搭載用放熱基板及びその製造方法に関するものである。
【0002】
【従来の技術】
近年、インバータ回路や電源回路のように大電力を扱う電子回路は機器の小型化にともないモジュール化が進んでいる。このパワー電子回路のモジュール化を達成するためには、高密度実装されたパワー半導体等の損失による発熱をいかに放熱するかが重要な課題である。従来この種の電子回路モジュールには、金属支持板上の表面に薄い絶縁体層を介して導体箔を張り合わせ、この導体箔をエッチングすることにより配線パターンを形成する基板(以下金属ベース基板と称す)が用いられ、これにパワー半導体および各種電子部品を搭載して回路を形成していた。
【0003】
この従来の電子回路モジュールについて図16、図17により説明する。
【0004】
図16及び図17は従来の金属ベース基板を用いた電子回路モジュールを示すものである。同図によると、91は金属支持板、92は絶縁体層、93は導体箔、94はパワー半導体を含む電子部品である。導体箔93は金属支持板91に絶縁体層92を介して張り合わされている。この導体箔93はエッチングにより配線パターン状に形成され、これに電子部品94を搭載し回路を構成する。95は外部接続端子であり電子部品94と同様に搭載される。電子部品94での発熱は絶縁体層92を介して金属支持板91に伝えられる。96はパターンの配線抵抗を低減するためのバスバー、97は放熱器であり金属支持板91のみの放熱では不十分な場合に放熱を補うために用いるものである。
【0005】
【発明が解決しようとする課題】
しかしながら上記従来の構成では、配線パターンの形成をエッチングにより行うため、導体箔93には35μmや70μmといった薄いものが用いられており、大電流が流れるようなパワー回路を構成する際にその配線抵抗が問題となる。このため電流の多く流れる部分にはバスバー96を基板に実装している。またこの金属ベース基板の放熱特性は金属支持板91と導体箔93の間に形成された絶縁体層92により決定され、一般的にこの種の絶縁体層92はエポキシ樹脂の塗布により形成しており、放熱特性を良くするために薄く成形されている。このため絶縁特性が高くできないことや、導体箔93と金属支持板91との間に発生する分布容量が大きくなるために、回路の高周波化を阻害したり、金属支持板91を介してノイズが伝搬し易いといった課題があった。さらに、モジュールを構成する場合の外部接続端子95は別パーツで基板に実装する必要があり、複数の外部接続端子の位置決めが難しいといった課題も有していた。
【0006】
本発明は上記従来の課題を解決するもので、放熱基板の重要な特性である放熱特性と絶縁特性の両方を改善すると同時に大電力の電子回路を構成する上で重要となる配線抵抗の低減やノイズの原因となる配線パターンの分布容量の低減を達成し、外部接続端子なども一体化できる立体構造の可能な放熱基板であって、しかも容易に実現することのできる電子部品搭載用放熱基板及びその製造方法を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
上記課題を解決するために本発明は、所定の配線パターン状に打ち抜かれた金属板と、この金属板と一体成型された高熱伝導性の複合絶縁材料とを備え、前記複合絶縁材料から、少なくとも前記金属板における部品搭載部分を露出させ、この部品搭載部分における発熱部品配置部には段差加工部を設けたものである。
【0008】
この構成により、配線パターンは金属板であるために当然のことながら配線抵抗は低く、大電流回路に適している。またこの基板に実装された部品の発熱は一旦金属板により熱拡散された後、高熱伝導性の複合絶縁材料により放熱されるため放熱性が良好であり、また、高熱伝導性の複合絶縁材料で構成されるため絶縁層は厚くできるので絶縁性が向上し、パターン間の分布容量も低減が可能となる。さらに金属板は打ち抜き加工を用い、これに高熱伝導性の複合絶縁材料を一体成形するので容易に実施可能であり、従来の放熱基板では困難である立体的な構造も可能となるものである。
【0009】
【発明の実施の形態】
本発明の請求項1に記載の発明は、所定の配線パターン状に打ち抜かれた金属板と、この金属板と一体成型された高熱伝導性の複合絶縁材料とを備え、前記複合絶縁材料から、少なくとも前記金属板における部品搭載部分を露出させ、この部品搭載部分における発熱部品配置部には段差加工部を設けたものであり、これによれば前記発熱部品配置部の下部に形成される前記複合絶縁材料が薄くなり、その結果として、前記金属板によって熱拡散した後、高熱伝導性の絶縁材料によって放熱されるため、放熱性が良好となるとともに、前記配線パターンの分布容量も低減できるものである。
【0010】
本発明の請求項2に記載の発明は、請求項1に記載の複合絶縁材料により部品収納可能なキャビティを構成するものであり、搭載する電子部品の位置決めを容易とするものである。
【0011】
本発明の請求項3に記載の発明は、請求項1に記載の複合絶縁材料により電子部品搭載用放熱基板の表面周囲に突起部を設けたものであり、基板の強度向上、ケースとの嵌合部を極めて容易に形成できるものである。
【0012】
本発明の請求項4に記載の発明は、請求項1に記載の金属板を所定の配線パターン状に打ち抜くとともに少なくとも一部に折り曲げ加工あるいは絞り加工を施して前記金属板の平面よりも突出させたものであり、金属板によって放熱基板の強度向上を可能とするものである。
【0013】
本発明の請求項5に記載の発明は、請求項1に記載の金属板の一部を端子としたものであり、端子部を別途設ける必要のないものである。
【0014】
本発明の請求項6に記載の発明は、請求項5に記載の金属板を一体成形した高熱伝導性の複合絶縁材料の成形体の外形よりも内側で少なくともその一部を折り曲げて端子としたものであり、裏面に接続されるシャーシや放熱器との沿面距離を確保して、回路からの絶縁耐圧を向上させるものである。
【0015】
本発明の請求項7に記載の発明は、まず金属板を所定の配線パターン状に打ち抜くとともに前記金属板における部品搭載部分の発熱部品配置部に段差加工を施し次に前記金属板を金型内に保持し、この金型に溶融した高熱伝導性の複合絶縁材料を流し込み、前記金属板を少なくとも前記部品搭載部分を露出させた状態で前記高熱伝導性の複合絶縁材料により基板上に一体成形その後前記一体成形した基板に部品を電気的に接続次に前記金属板の一部を折り曲げて端子に加工その後ケースまたは樹脂により前記部品を覆う電子部品搭載用放熱基板の製造方法であり、効率よく電子部品を搭載した電子部品搭載用放熱基板を製造できるものである。
【0016】
以下、本発明の一実施の形態について、図1〜図15により説明する。
【0017】
(実施の形態1)
図1、図2は第1の実施の形態の電子部品搭載用放熱基板を示す図であり、図1は斜視図、図2は断面図である。図1において、1は配線パターン状に打ち抜いた金属板で、金属板1としては熱伝導率及び導電率の良好な銅板が望ましく、配線パターン状に打ち抜き加工する手段としてはプレス機を用いることにより容易に実現できる。2は高熱伝導性の複合絶縁材料で、これは射出成形やトランスファ成形により金属板1のインサート成形ができる材料であり、ベースの樹脂材料として電子部品の半田付けが可能なよう高耐熱性を有する熱硬化性のエポキシ樹脂あるいは、熱可塑性のポリフェニレンサルファイド、液晶ポリマー、ポリスチレン、ナイロンのいずれかあるいはこれらの混合物を用い、このベース樹脂材料に絶縁性と高熱伝導率を有する酸化アルミ、窒化アルミ、酸化マグネシウム、窒化ボロン、酸化亜鉛、シリカ、チタニア、スピネル等のいずれかあるいはこれらの中より選択された混合物をチタニウム、シランなどのカップリング剤で表面処理した粉体フィラーとガラスやウィスカーなどの繊維状のフィラーとを主体とする充填剤を混練して熱伝導性と強度を高めた複合絶縁材料である。
【0018】
3は放熱基板に搭載された電子部品、4は電子部品3を電気的に接続するための金属板1の露出部、5は電子部品3を搭載するためのキャビティ、6は金属板1を用いた端子部である。図2において、7は放熱基板のみでは放熱が十分でない時に用いる外付けの放熱器である。このような高熱伝導性の複合絶縁材料2により配線パターン状に打ち抜いた金属板1を電子部品3の搭載部分を露出させた状態で一体化成形している。
【0019】
以上のように構成された放熱基板は配線パターンが打ち抜き加工された金属板1であるため配線抵抗が低く、実装された電子部品3の発熱は配線パターン状に打ち抜いた金属板1により熱拡散された後、高熱伝導性の複合絶縁材料2によって放熱されるため放熱特性に優れている。また外付けの放熱器7を用いる場合においても絶縁層が厚いため絶縁特性は良好であり、パターン間の分布容量も低減が可能となる。さらに金属板1の部品実装部分を露出させ、高熱伝導性の複合絶縁材料2により搭載用のキャビティ5を構成することにより部品の位置決めが容易となるとともに、半田ブリッジの防止用のレジストが不要となる。
【0020】
また、金属板1は高熱伝導性の複合絶縁材料2によりモールドされるため密着度が向上するとともに、金属板1の両側に高熱伝導性の複合絶縁材料2が配置されるので成形後の樹脂の収縮に伴う基板のソリが低減される、といった基板構成上の利点を有するものである。さらに従来の基板表面に形成された配線パターンはパターン間の絶縁確保のため、所定の沿面距離を確保する必要があったが、本構成によれば配線パターンは高熱伝導性の複合絶縁材料2に埋め込まれるのでパターン間隔を狭めることも可能となる。
【0021】
図3、図4に第1の実施の形態に改善を行った例を示す。図3は放熱基板の表面に高熱伝導性の複合絶縁材料2による枠状の突起部8を設けた例を示す。このような突起部8を構成することにより放熱基板の強度向上や絶縁に必要な沿面距離の確保及びケース等との嵌合部の構成といった様々の機能を持たせることも可能であり、しかも金型によりこれらの構成は容易に達成可能である。
【0022】
図4は金属板1に折り曲げ加工部9を設けた例を示す。このような折り曲げ加工や絞り加工により放熱基板の強度向上を行うことができる。また、このような金属板1の加工によっても電子部品3の位置決め機能を持たせることも可能である。この種の加工もプレスの金型により配線パターンの形成と同時に構成できる。このように本構成の放熱基板は従来の放熱基板では困難であった立体的な加工を容易に実現できる。
【0023】
なお、金属板1としての銅板の厚みは熱拡散効果と端子を構成したときの強度を考慮すると0.5mm以上が望ましく、プレス機を用いて金型によりパターン形成する場合の加工性を考慮すると1.0mm以下が望ましい。また銅板の部品実装面は鍍金することにより半田付け性を良好とすることができ、底面を黒化処理やブラスト処理により表面を荒らすことで金属板1と高熱伝導性の複合絶縁材料2との密着性は改善される。さらに金属板1のパターン面積が広い場合には部分的に穴加工を施しておくことにより一体成形時に高熱伝導性の複合絶縁材料2が前記穴加工部にまで入り込むためさらに密着性を改善できる。
【0024】
(実施の形態2)
以下本発明の第2の実施の形態として一体成形方法について図面を参照しながら説明する。図5、図6は(実施の形態1)の一体成形方法を示す断面図である。図5において、1は配線パターン状に打ち抜いた金属板、11は第1の金型、12は第2の金型、13は第1の金型11及び第2の金型12に設けたキャビティ、14は第1の金型11に設けた金属板1を固定するための突起部、15は第2の金型12に設けた金属板1を固定するための突起部、16は突起部15の先端部に設けた切り欠き部、17は突起部15が第2の金型12より突出した状態を保持するためのバネである。図6において2はキャビティ13に流し込んだ高熱伝導性の複合絶縁材料である。
【0025】
以上のように構成された金型を用いての一体成形方法について具体的に説明する。金属板1は第1の金型11に設けられた突起部14と第2の金型12に設けられた突起部15によりキャビティ13内で保持される。この状態でキャビティ13に溶融した高熱伝導性の複合絶縁材料2を流し込むことにより金属板1と高熱伝導性の複合絶縁材料2の一体成形が達成される。ここで突起部14を部品収納可能な形状とすることにより金属板1の一部を露出させかつ高熱伝導性の複合絶縁材料2の成形体に部品収納可能なキャビティ13を構成できる。また突起部15はその先端部に設けた切り欠き部16に溶融した高熱伝導性の複合絶縁材料2がキャビティ13内に充填完了した後圧力が加わり押し下げられる。これにより金属板1には突起部15の移動量に応じた厚みの高熱伝導性の複合絶縁材料2が配置されるので金属板1はこの面に露出しない。
【0026】
なお、突起部15は外部より機械的にスライドさせることも可能でありこの時切り欠き部16は不要となる。
【0027】
図7、図8、図9は前述の一体成形方法について改善した例を示す断面図である。図7、図8、図9において図5、図6と同一のものについては同一の番号を付してその説明を省略して説明すると、図7において図5と異なる点は金属板1に段差加工部18を設けた点にある。金属板1の裏面に高熱伝導性の複合絶縁材料2により形成される絶縁層はその絶縁特性及び樹脂強度より0.4mm以上が望ましい。しかし金属板1の全ての裏面を0.4mmとした場合充填剤の添加によって粘度の高くなった高熱伝導性の複合絶縁材料2を充填させることが困難であると同時に基板強度が弱くなる。また前記絶縁層を厚くすると放熱特性が悪化するため極力薄くしたいといった相反の課題を有している。そこで少なくとも発熱部品の配置される金属板1のパターン部に段差加工部18を設け、この段差加工部18の裏面の絶縁層を0.4mmとする。また突起部15の先端部に設けた切り欠き部16の高さを0.4mm以内とすれば前記絶縁層は全ての領域において0.4mm以上とすることができる。以上の構成により放熱特性と絶縁特性に優れ、しかも基板強度を向上し、成形性に優れた放熱基板の一体成形が達成できる。この場合分布容量はさらに低減可能となる。
【0028】
なお、絶縁層厚みの最小値は0.4mmから0.6mmの間に設定すれば絶縁特性、成形性に問題なく、これ以上では放熱特性が劣化するだけである。また前記段差加工により絶縁層を薄くした部分の下部に複合絶縁材料2を流し込むためのゲート部を配置することにより金属板1の露出面にバリを発生させることも無く容易に絶縁層を形成できる。
【0029】
図8において図6と異なるのは第2の金型12に固定された突起部19を設けた点にある。突起部19は少なくとも発熱部品の配置される金属板1のパターン部の裏面に設け、この部分の高熱伝導性の複合絶縁材料2により形成される絶縁層を薄くするものであり、効果は図7の場合と同様である。図7と異なる点は外付けの放熱器に突起部19と同様な突起を付ける必要があるが金属板1の段差加工がなくせることや、放熱器の突起を突起部19よりも高くすることにより放熱基板にソリがある場合でもこの部分の密着度が良好となるといった特徴がある。
【0030】
図9において図5と異なるのは金属板1に溝部20を形成した点である。溝部20は第1の金型11に設けられた突起部14に接する部分で金属板1の露出部の内側周囲に形成する。この溝部20により高熱伝導性の複合絶縁材料2をキャビティ13に充填した際に金属板1と突起部14との間にバリが発生した場合においてもバリはこの溝部20で止められるため金属板1の露出部までバリが及ぶことはない。
【0031】
(実施の形態3)
以下本発明の第3の実施の形態について図10〜図15により説明する。図10から図15は本発明の第3の実施の形態としてDC−DCコンバータを構成する電子部品を搭載した放熱基板の製造工程毎の図である。
【0032】
まず図10に示すように、金属板1は打ち抜き加工により外枠フレームで一体となった所定の配線パターンを形成する。22は放熱基板をシャーシや放熱器に固定するためのビス座であり、このビス座22は金属板1を打ち抜く際同時に加工したもので、しかもこの底面が放熱基板の底面と同一面となるよう段差加工を施している。ここで金属板1は半田付けが可能でかつ熱伝導率の良好な材料として0.5mm厚の銅板を用いている。
【0033】
次に図11に示すように、金属板1を高熱伝導性の複合絶縁材料2により放熱基板上に一体成形する。一体成形の方法としては金属板1を基板形状のキャビティを有する金型内に固定し、その状態で金型内に溶融した高熱伝導性の複合絶縁材料2を流し込む射出成形あるいはトランスファー成形によるインサート成形法とした。部品搭載部分は金型に突起部を設け、この突起部により金属板1を固定することにより電子部品3を電気的に接続するための金属板1の露出部4と電子部品3を搭載するためのキャビティ5を形成している。図11において露出部4はハッチングにより示している。また端子部6は成形時にその上面及び側面を金型に接するように固定することにより高熱伝導性の複合絶縁材料2との接する面積を低減している。
【0034】
次に図12に示すように電子部品3を放熱基板に形成したキャビティ5に配置し露出部4に電気的に接続を行う。電子部品3の電気的接続方法としては半田付けにより行っている。この放熱基板は表面が平坦ではないので半田の配置方法としてはディスペンサーによる塗布方法、転写による塗布方法及び板状の半田を配置する方法等がある。熱源30により温度コントロールされた液体槽31と前記液体槽31の表面に配置した箔体32により構成される加熱手段の前記箔体32の表面に半田と電子部品3を配置した放熱基板を乗せて加熱し半田付けする工程を用いている。箔体32は放熱基板に液体槽31の材料が付着することを防止すると共に放熱基板との密着性を向上するために用いるものである。具体的には所定の温度にコントロールしたオイルまたは半田等の溶融金属を用いた液体槽31の表面に箔体32としてポリイミドやテフロン等の高耐熱プラスチックフィルムを配置し、この上に放熱基板を乗せて加熱し半田付けするものである。
【0035】
気相を用いたリフローの場合、熱容量の大きい放熱基板が所定の温度に達するまでに時間がかかり電子部品3や高熱伝導性の複合絶縁材料2に過大な熱ストレスが加わるが、この方法によれば放熱基板及び基板上の電子部品3には液体槽31の温度以上には加熱されないので放熱基板を構成する高熱伝導性の複合絶縁材料2や電子部品3に対する熱ストレスを大幅に低減できる。また基板自体の熱伝導性が優れているために半田への熱伝達が速く半田付け時間が短縮できる。さらに液体槽31を2つの槽として一方の槽にてプリヒートを行うことにより半田付け時間はさらに短縮することが可能となる。
【0036】
なお、この半田付け工法は金属ベース基板やアルミナ基板等の放熱基板でも同様の効果が得られることはいうまでもない。
【0037】
次に図13に示すように、金属板1の外枠フレームを切り放し配線パターンを独立化する。この状態で回路の電気的試験を行うことも可能である。その後端子部6の曲げ起こしを行う。この時、端子部6の曲げ起こし部は放熱基板の外形よりも内側とする。予めこの端子部6は金型により高熱伝導性の複合絶縁材料2の接する面積を低減しているために剥離は容易であり、しかも、複数ある端子部6は高熱伝導性の複合絶縁材料2と一体化していることからその位置決めは容易である。また端子部6を外形よりも内側で曲げ起こすことにより裏面に接続されるシャーシや放熱器との沿面距離を確保できるため回路からの絶縁耐圧を向上することが可能となる。
【0038】
次に図14に示すように、端子部6の一部を露出させた状態で電子部品3を覆うようにモールドまたはケーシングを行う。
【0039】
図15は図11の金属板1及び高熱伝導性の複合絶縁材料2の構成を変更した放熱基板の斜視図である。図15において図11と異なる点は複数ある端子部6を放熱基板とは独立した複合絶縁材料2により一体成形した点と、金属板1を所定の間隔となるよう互い違いに配置した点である。
【0040】
図15において41は端子部6を一体化する複合絶縁材料成形体、42は金属板1の対向部である。複合絶縁材料成形体41により端子部6の相対位置精度及び端子強度を向上することが可能であり、しかも端子に別基板を挿入した際の放熱基板との距離を規定することが可能となる。金属板1の対向部42は絶縁された状態で放熱基板の強度を向上することが可能である。
【0041】
【発明の効果】
以上のように本発明の電子部品搭載用放熱基板は所定の配線パターン状に打ち抜かれた金属板と、この金属板と一体成型された高熱伝導性の複合絶縁材料とを備え、前記複合絶縁材料から、少なくとも前記金属板における部品搭載部分を露出させているために、配線パターンは金属板であるために当然のことながら配線抵抗は低く、大電流回路に適している。
【0042】
また、部品搭載部分における発熱部品配置部には段差加工部を設けることにより前記発熱部品配置部の下部に形成される前記複合絶縁材料を薄くすることで、放熱特性の向上と、絶縁特性、基板強度の向上との両立を図ることができる。
【0043】
さらに、この基板に実装された電子部品の発熱は一旦金属板により熱拡散された後、高熱伝導性の複合絶縁材料により放熱されるため放熱性が良好であり、この基板に外付けの放熱器を取り付ける場合においても前記発熱部品と放熱器の間の熱抵抗は低い。この放熱性の改善により前記高熱伝導性の複合絶縁材料で構成される絶縁層は厚くできるので絶縁性が向上し、パターン間の分布容量も低減が可能となる。その上、金属板は打ち抜き加工を用いこれに高熱伝導性の複合絶縁材料を一体成形するので容易に実施可能であり、従来の放熱基板では困難である立体的な構造も可能となるものである。
【図面の簡単な説明】
【図1】 本発明の一実施の形態での電子部品搭載用放熱基板の斜視図
【図2】 同側断面図
【図3】 同電子部品を配置した状態の斜視図
【図4】 同要部である金属板の斜視図
【図5】 本発明の他の実施の形態の電子部品搭載用放熱基板の製造方法を示す側断面図
【図6】 同複合絶縁材料の充填時の成形状態の側断面図
【図7】 同改善例の側断面図
【図8】 同改善例の成形状態を説明する側断面図
【図9】 同改善例の成形状態を説明する側断面図
【図10】 本発明の他の実施の形態の要部の金属板の斜視図
【図11】 同要部である複合絶縁材料で一体成形した状態の斜視図
【図12】 同電子部品の装着状態を説明する側断面図
【図13】 同金属板を切断して端子を折曲した電子部品搭載用基板の斜視図
【図14】 同端子部を除き、モールド成形した状態の斜視図
【図15】 同改善例の要部である複合絶縁材料で一体成形した状態の斜視図
【図16】 従来の電子部品搭載用放熱基板の斜視図
【図17】 同側断面図
【符号の説明】
1 金属板
2 複合絶縁材料
3 電子部品
4 露出部
5 キャビティ
6 端子部
8 突起部
9 折り曲げ部
11 第1の金型
12 第2の金型
13 キャビティ
14 突起部
15 突起部
16 切り欠き部
17 バネ
18 段差加工部
19 突起部
20 溝部
22 ビス座
30 熱源
31 液体槽
32 箔体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power semiconductor used for an electronic circuit module that handles a large amount of power such as an inverter circuit or a power supply circuit, and an electronic component mounting heat dissipation board on which various electronic components are mounted, and a method for manufacturing the same.
[0002]
[Prior art]
In recent years, electronic circuits that handle large amounts of power, such as inverter circuits and power supply circuits, have been modularized as devices become smaller. In order to achieve modularization of this power electronic circuit, it is an important issue how to dissipate heat generated by the loss of a power semiconductor or the like mounted at high density. Conventionally, in this type of electronic circuit module, a conductive foil is laminated on the surface of a metal support plate via a thin insulator layer, and this conductive foil is etched to form a wiring pattern (hereinafter referred to as a metal base substrate). ) Was used, and a power semiconductor and various electronic components were mounted thereon to form a circuit.
[0003]
This conventional electronic circuit module will be described with reference to FIGS.
[0004]
16 and 17 show an electronic circuit module using a conventional metal base substrate. According to the figure, 91 is a metal support plate, 92 is an insulator layer, 93 is a conductor foil, and 94 is an electronic component including a power semiconductor. The conductor foil 93 is bonded to the metal support plate 91 via the insulator layer 92. The conductive foil 93 is formed into a wiring pattern by etching, and an electronic component 94 is mounted on the conductive foil 93 to constitute a circuit. An external connection terminal 95 is mounted in the same manner as the electronic component 94. Heat generated by the electronic component 94 is transmitted to the metal support plate 91 through the insulator layer 92. 96 is a bus bar for reducing the wiring resistance of the pattern, and 97 is a radiator, which is used to supplement the heat radiation when the heat radiation only by the metal support plate 91 is insufficient.
[0005]
[Problems to be solved by the invention]
However, in the above conventional configuration, since the wiring pattern is formed by etching, a thin conductor foil 93 such as 35 μm or 70 μm is used, and when configuring a power circuit in which a large current flows, the wiring resistance Is a problem. For this reason, the bus bar 96 is mounted on the substrate in a portion where a large amount of current flows. The heat dissipation characteristics of this metal base substrate are determined by an insulator layer 92 formed between the metal support plate 91 and the conductor foil 93. Generally, this kind of insulator layer 92 is formed by applying an epoxy resin. It is thinly molded to improve heat dissipation characteristics. For this reason, the insulation characteristics cannot be improved, and the distributed capacitance generated between the conductor foil 93 and the metal support plate 91 is increased, so that high frequency of the circuit is hindered or noise is generated via the metal support plate 91. There was a problem of easy propagation. Further, the external connection terminal 95 in the case of configuring a module needs to be mounted on the substrate as a separate part, and there is a problem that positioning of the plurality of external connection terminals is difficult.
[0006]
The present invention solves the above-mentioned conventional problems, and improves both the heat dissipation characteristics and the insulation characteristics, which are important characteristics of the heat dissipation board, and at the same time reduces the wiring resistance which is important in constructing a high-power electronic circuit. A heat dissipating board with a three-dimensional structure that can reduce the distribution capacity of wiring patterns that cause noise and can be integrated with external connection terminals, etc., and that can be easily realized and The object is to provide a manufacturing method thereof.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the present invention comprises a metal plate punched into a predetermined wiring pattern, and a highly thermally conductive composite insulating material molded integrally with the metal plate, and at least from the composite insulating material, A component mounting portion in the metal plate is exposed, and a step processing portion is provided in the heat generating component arrangement portion in the component mounting portion .
[0008]
With this configuration, since the wiring pattern is a metal plate, the wiring resistance is naturally low, which is suitable for a large current circuit. In addition, the heat generated by the components mounted on this board is once diffused by the metal plate and then dissipated by the highly heat-conductive composite insulating material. Since the insulating layer can be made thick, the insulating property is improved, and the distributed capacity between patterns can be reduced. Further, since the metal plate is stamped and formed with a composite material having high thermal conductivity, the metal plate can be easily implemented, and a three-dimensional structure that is difficult with a conventional heat dissipation substrate is also possible.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to claim 1 of the present invention comprises a metal plate punched into a predetermined wiring pattern, and a high thermal conductivity composite insulating material integrally molded with the metal plate, from the composite insulating material, At least a component mounting portion in the metal plate is exposed, and a stepped portion is provided in the heat generating component placement portion in the component mounting portion. According to this, the composite formed in the lower portion of the heat generating component placement portion As a result, the insulating material becomes thinner, and as a result , after being thermally diffused by the metal plate, heat is dissipated by the highly heat-insulating insulating material, so that heat dissipation is improved and the distribution capacity of the wiring pattern can be reduced. is there.
[0010]
According to a second aspect of the present invention, the composite insulating material according to the first aspect constitutes a cavity capable of housing a component, and facilitates positioning of the electronic component to be mounted.
[0011]
According to a third aspect of the present invention, the composite insulating material according to the first aspect is provided with protrusions around the surface of the heat dissipating board for mounting electronic components, and the strength of the board is improved and the fitting with the case is performed. The joint can be formed very easily.
[0012]
According to a fourth aspect of the present invention, the metal plate according to the first aspect is punched into a predetermined wiring pattern, and at least a part thereof is bent or drawn so as to protrude from the plane of the metal plate. The metal plate can improve the strength of the heat dissipation substrate.
[0013]
According to a fifth aspect of the present invention, a part of the metal plate according to the first aspect is used as a terminal, and it is not necessary to provide a terminal part separately.
[0014]
According to a sixth aspect of the present invention, a terminal is formed by bending at least a part of the outer shape of the molded body of the high thermal conductivity composite insulating material integrally molded with the metal plate according to the fifth aspect. It is intended to improve the withstand voltage from the circuit by securing a creepage distance from the chassis and radiator that are connected to the rear surface.
[0015]
In the invention according to claim 7 of the present invention, first, a metal plate is punched into a predetermined wiring pattern, and a step processing is applied to a heat generating component arrangement portion of a component mounting portion of the metal plate, and then the metal plate is molded into a mold. held within, the mold pouring molten high thermal conductivity of the composite insulating material, integrally molded on the substrate by a composite insulating material of the high thermal conductivity of the metal plate while exposing at least the component mounting portion and, then the electrically connecting parts integrally molded substrate and processed into terminal then bending a portion of the metal plate, then the manufacture of electronic components mounting heat dissipation substrate which covers the components by the case or resin This method can efficiently manufacture a heat dissipation board for mounting electronic components on which electronic components are mounted.
[0016]
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
[0017]
(Embodiment 1)
1 and 2 are views showing an electronic component mounting heat dissipation board according to the first embodiment. FIG. 1 is a perspective view and FIG. 2 is a cross-sectional view. In FIG. 1, reference numeral 1 denotes a metal plate punched into a wiring pattern. The metal plate 1 is preferably a copper plate having good thermal conductivity and conductivity, and a press machine is used as a means for punching into a wiring pattern. It can be easily realized. Reference numeral 2 denotes a composite insulating material having high thermal conductivity, which is a material capable of insert molding of the metal plate 1 by injection molding or transfer molding, and has high heat resistance so that electronic parts can be soldered as a base resin material. Using thermosetting epoxy resin or thermoplastic polyphenylene sulfide, liquid crystal polymer, polystyrene, nylon, or a mixture of these materials, this base resin material is made of aluminum oxide, aluminum nitride, and oxide with insulation and high thermal conductivity. Powder filler made of magnesium, boron nitride, zinc oxide, silica, titania, spinel, etc., or a mixture selected from these with a coupling agent such as titanium or silane, and fiber such as glass or whisker Thermal conductivity and strength by kneading filler mainly composed of filler A composite dielectric material having enhanced.
[0018]
3 is an electronic component mounted on the heat dissipation board, 4 is an exposed portion of the metal plate 1 for electrically connecting the electronic component 3, 5 is a cavity for mounting the electronic component 3, and 6 is the metal plate 1 It was the terminal part that was. In FIG. 2, reference numeral 7 denotes an external radiator used when the heat radiation board alone is not sufficient for heat radiation. The metal plate 1 pierced into a wiring pattern with such a high thermal conductive composite insulating material 2 is integrally formed with the mounting portion of the electronic component 3 exposed.
[0019]
Since the heat dissipation substrate configured as described above is the metal plate 1 with the wiring pattern punched out, the wiring resistance is low, and the heat generated by the mounted electronic component 3 is thermally diffused by the metal plate 1 punched into the wiring pattern. After that, the heat is dissipated by the high thermal conductivity composite insulating material 2, and thus the heat dissipation characteristics are excellent. Further, even when the external radiator 7 is used, the insulating characteristic is good because the insulating layer is thick, and the distributed capacity between patterns can be reduced. Furthermore, the component mounting portion of the metal plate 1 is exposed and the mounting cavity 5 is configured by the high thermal conductive composite insulating material 2, thereby facilitating the positioning of the component and eliminating the need for a resist for preventing solder bridges. Become.
[0020]
In addition, since the metal plate 1 is molded with the high thermal conductive composite insulating material 2, the degree of adhesion is improved, and the high thermal conductive composite insulating material 2 is disposed on both sides of the metal plate 1, so that the resin after molding is formed. The present invention has the advantage of the substrate structure that the warpage of the substrate due to shrinkage is reduced. Furthermore, the conventional wiring pattern formed on the surface of the substrate needs to secure a predetermined creepage distance in order to ensure insulation between the patterns, but according to this configuration, the wiring pattern is made of the composite insulating material 2 having high thermal conductivity. Since it is embedded, the pattern interval can be reduced.
[0021]
FIGS. 3 and 4 show an example in which the first embodiment is improved. FIG. 3 shows an example in which a frame-shaped protrusion 8 made of a highly heat-conductive composite insulating material 2 is provided on the surface of the heat dissipation substrate. By constructing such a protrusion 8, it is possible to provide various functions such as improving the strength of the heat dissipation substrate, ensuring the creepage distance necessary for insulation, and configuring the fitting portion with the case, etc. Depending on the mold, these configurations can be easily achieved.
[0022]
FIG. 4 shows an example in which a bent portion 9 is provided on the metal plate 1. The strength of the heat dissipation substrate can be improved by such bending and drawing. Further, the function of positioning the electronic component 3 can be provided by processing the metal plate 1 as described above. This type of processing can also be configured simultaneously with the formation of the wiring pattern by a press die. As described above, the heat dissipation board of this configuration can easily realize the three-dimensional processing that was difficult with the conventional heat dissipation board.
[0023]
The thickness of the copper plate as the metal plate 1 is preferably 0.5 mm or more in consideration of the thermal diffusion effect and the strength when the terminal is configured, and considering the workability when forming a pattern with a mold using a press. 1.0 mm or less is desirable. Moreover, the soldering property can be improved by plating the component mounting surface of the copper plate, and the surface of the bottom surface is roughened by blackening treatment or blasting treatment, so that the metal plate 1 and the high thermal conductive composite insulating material 2 Adhesion is improved. Further, when the pattern area of the metal plate 1 is large, the hole is partially drilled, so that the high thermal conductivity composite insulating material 2 penetrates into the hole-drilled portion at the time of integral molding, so that the adhesion can be further improved.
[0024]
(Embodiment 2)
Hereinafter, an integral molding method according to a second embodiment of the present invention will be described with reference to the drawings. 5 and 6 are cross-sectional views showing the integral molding method of (Embodiment 1). In FIG. 5, 1 is a metal plate punched into a wiring pattern, 11 is a first mold, 12 is a second mold, and 13 is a cavity provided in the first mold 11 and the second mold 12. , 14 is a protrusion for fixing the metal plate 1 provided on the first mold 11, 15 is a protrusion for fixing the metal plate 1 provided on the second mold 12, and 16 is a protrusion 15. A notch 17 provided at the tip of the spring 17 is a spring for holding the projection 15 protruding from the second mold 12. In FIG. 6, reference numeral 2 denotes a high thermal conductivity composite insulating material poured into the cavity 13.
[0025]
The integral molding method using the mold configured as described above will be specifically described. The metal plate 1 is held in the cavity 13 by a protrusion 14 provided on the first mold 11 and a protrusion 15 provided on the second mold 12. In this state, when the molten high thermal conductivity composite insulating material 2 is poured into the cavity 13, the metal plate 1 and the high thermal conductive composite insulating material 2 are integrally formed. Here, by forming the protruding portion 14 into a shape that can accommodate components, a cavity 13 that exposes a part of the metal plate 1 and that can accommodate components in the molded body of the composite insulating material 2 having high thermal conductivity can be configured. Further, the protrusion 15 is pressed down after the cavity 13 is completely filled with the high heat conductive composite insulating material 2 melted in the notch 16 provided at the tip thereof. As a result, the metal plate 1 is not exposed to this surface because the high thermal conductivity composite insulating material 2 having a thickness corresponding to the amount of movement of the protrusion 15 is disposed on the metal plate 1.
[0026]
The protrusion 15 can be mechanically slid from the outside, and the notch 16 is not necessary at this time.
[0027]
7, 8, and 9 are cross-sectional views showing an improved example of the above-described integral molding method. 7, FIG. 8, and FIG. 9 that are the same as those in FIG. 5 and FIG. 6 are given the same reference numerals and explanation thereof is omitted. In FIG. 7, the difference from FIG. The processing part 18 is provided. The insulating layer formed of the high thermal conductivity composite insulating material 2 on the back surface of the metal plate 1 is desirably 0.4 mm or more in view of its insulating characteristics and resin strength. However, when all the back surfaces of the metal plate 1 are set to 0.4 mm, it is difficult to fill the high thermal conductive composite insulating material 2 whose viscosity is increased by adding the filler, and at the same time, the substrate strength is weakened. In addition, when the insulating layer is thickened, the heat dissipation characteristic is deteriorated. Accordingly, at least the stepped portion 18 is provided in the pattern portion of the metal plate 1 on which the heat generating component is disposed, and the insulating layer on the back surface of the stepped portion 18 is set to 0.4 mm. If the height of the notch 16 provided at the tip of the protrusion 15 is within 0.4 mm, the insulating layer can be 0.4 mm or more in all regions. With the above configuration, it is possible to achieve integral molding of a heat dissipation substrate having excellent heat dissipation characteristics and insulation characteristics, improved substrate strength, and excellent moldability. In this case, the distributed capacity can be further reduced.
[0028]
In addition, if the minimum value of the insulating layer thickness is set between 0.4 mm and 0.6 mm, there is no problem in the insulation characteristics and moldability, and only heat dissipation characteristics deteriorate above this. Further, by disposing a gate portion for pouring the composite insulating material 2 below the portion where the insulating layer is thinned by the step processing, the insulating layer can be easily formed without generating burrs on the exposed surface of the metal plate 1. .
[0029]
8 differs from FIG. 6 in that a projection 19 fixed to the second mold 12 is provided. The projecting portion 19 is provided at least on the back surface of the pattern portion of the metal plate 1 on which the heat generating component is disposed, and the insulating layer formed by the high thermal conductivity composite insulating material 2 in this portion is thinned. It is the same as the case of. 7 differs from FIG. 7 in that it is necessary to attach a projection similar to the projection 19 to the external radiator, but the step processing of the metal plate 1 can be eliminated, and the projection of the radiator is made higher than the projection 19. As a result, even when the heat dissipation substrate has a warp, the adhesion degree of this portion is good.
[0030]
9 differs from FIG. 5 in that a groove 20 is formed in the metal plate 1. The groove portion 20 is a portion in contact with the protrusion 14 provided on the first mold 11 and is formed around the inside of the exposed portion of the metal plate 1. Even when burrs are generated between the metal plate 1 and the protrusions 14 when the cavity 13 is filled with the composite insulating material 2 having a high thermal conductivity by the grooves 20, the burrs are stopped at the grooves 20, and thus the metal plate 1. No burr extends to the exposed part.
[0031]
(Embodiment 3)
A third embodiment of the present invention will be described below with reference to FIGS. FIG. 10 to FIG. 15 are diagrams for each manufacturing process of the heat dissipation board on which electronic components constituting the DC-DC converter are mounted as the third embodiment of the present invention.
[0032]
First, as shown in FIG. 10, the metal plate 1 forms a predetermined wiring pattern integrated with the outer frame frame by punching. Reference numeral 22 denotes a screw seat for fixing the heat radiating board to the chassis or the heat radiator. The screw seat 22 is processed at the same time as the metal plate 1 is punched, and the bottom surface thereof is flush with the bottom surface of the heat radiating board. Step processing is applied. Here, a 0.5 mm thick copper plate is used as the metal plate 1 as a material that can be soldered and has good thermal conductivity.
[0033]
Next, as shown in FIG. 11, the metal plate 1 is integrally formed on the heat dissipation substrate with the composite insulating material 2 having high thermal conductivity. As an integral molding method, the metal plate 1 is fixed in a mold having a substrate-shaped cavity, and in that state, a high-heat conductive composite insulating material 2 is poured into the mold and injection molding or transfer molding is performed. The law. The component mounting portion is provided with a protrusion on the mold, and the exposed portion 4 of the metal plate 1 for electrically connecting the electronic component 3 and the electronic component 3 are mounted by fixing the metal plate 1 with the protrusion. The cavity 5 is formed. In FIG. 11, the exposed portion 4 is indicated by hatching. The terminal portion 6 is fixed so that the upper surface and side surfaces thereof are in contact with the mold at the time of molding, thereby reducing the area in contact with the composite insulating material 2 having high thermal conductivity.
[0034]
Next, as shown in FIG. 12, the electronic component 3 is disposed in the cavity 5 formed on the heat dissipation substrate and electrically connected to the exposed portion 4. The electronic component 3 is electrically connected by soldering. Since the surface of this heat radiating substrate is not flat, there are a solder placement method such as a dispenser coating method, a transfer coating method, and a plate-like solder placement method. A heat radiating board on which solder and electronic components 3 are placed is placed on the surface of the foil body 32 of the heating means composed of a liquid tank 31 controlled in temperature by a heat source 30 and a foil body 32 placed on the surface of the liquid tank 31. A process of heating and soldering is used. The foil body 32 is used for preventing the material of the liquid tank 31 from adhering to the heat dissipation substrate and improving the adhesion to the heat dissipation substrate. Specifically, a highly heat-resistant plastic film such as polyimide or Teflon is arranged as a foil body 32 on the surface of a liquid tank 31 using a molten metal such as oil or solder controlled at a predetermined temperature, and a heat dissipation board is placed thereon. Heating and soldering.
[0035]
In the case of reflow using a gas phase, it takes time until the heat dissipation substrate having a large heat capacity reaches a predetermined temperature, and an excessive thermal stress is applied to the electronic component 3 and the high thermal conductivity composite insulating material 2. For example, since the heat dissipation substrate and the electronic component 3 on the substrate are not heated above the temperature of the liquid tank 31, thermal stress on the high thermal conductivity composite insulating material 2 and the electronic component 3 constituting the heat dissipation substrate can be greatly reduced. Further, since the substrate itself has excellent thermal conductivity, heat transfer to the solder is fast and the soldering time can be shortened. Furthermore, the soldering time can be further shortened by preheating in one tank using two liquid tanks 31.
[0036]
Needless to say, this soldering method can achieve the same effect even with a heat dissipation substrate such as a metal base substrate or an alumina substrate.
[0037]
Next, as shown in FIG. 13, the outer frame frame of the metal plate 1 is cut away to make the wiring pattern independent. It is also possible to perform an electrical test of the circuit in this state. Thereafter, the terminal portion 6 is bent up. At this time, the bent portion of the terminal portion 6 is set to the inner side of the outer shape of the heat dissipation board. The terminal portion 6 is easily peeled off because the area where the high thermal conductivity composite insulating material 2 is in contact with the mold is reduced in advance, and the plurality of terminal portions 6 can be separated from the high thermal conductive composite insulating material 2. Since it is integrated, the positioning is easy. Further, since the creeping distance from the chassis and the radiator connected to the back surface can be ensured by bending the terminal portion 6 on the inner side of the outer shape, the withstand voltage from the circuit can be improved.
[0038]
Next, as shown in FIG. 14, molding or casing is performed so as to cover the electronic component 3 with a part of the terminal portion 6 exposed.
[0039]
FIG. 15 is a perspective view of a heat dissipation board in which the configurations of the metal plate 1 and the high thermal conductive composite insulating material 2 of FIG. 11 are changed. 15 differs from FIG. 11 in that a plurality of terminal portions 6 are integrally formed of a composite insulating material 2 independent of the heat dissipation substrate, and the metal plates 1 are alternately arranged at a predetermined interval.
[0040]
In FIG. 15, reference numeral 41 denotes a composite insulating material molded body that integrates the terminal portion 6, and 42 denotes a facing portion of the metal plate 1. The composite insulating material molded body 41 can improve the relative positional accuracy and terminal strength of the terminal portion 6, and can also define the distance from the heat dissipation substrate when another substrate is inserted into the terminal. The opposing part 42 of the metal plate 1 can improve the strength of the heat dissipation board while being insulated.
[0041]
【The invention's effect】
As described above, the electronic component mounting heat dissipating board of the present invention includes a metal plate punched into a predetermined wiring pattern, and a highly thermally conductive composite insulating material integrally molded with the metal plate, and the composite insulating material Therefore, since at least the component mounting portion of the metal plate is exposed, the wiring pattern is a metal plate, so that the wiring resistance is naturally low, which is suitable for a large current circuit.
[0042]
In addition, by providing a stepped portion in the heat generating component placement portion in the component mounting portion, the composite insulating material formed under the heat generating component placement portion is thinned to improve heat dissipation characteristics, insulation characteristics, and substrate It is possible to achieve both improvement in strength.
[0043]
In addition , the heat generated by the electronic components mounted on this board is once diffused by the metal plate, and then dissipated by the high thermal conductivity composite insulating material, so the heat dissipation is good. Even in the case of mounting, the heat resistance between the heat-generating component and the radiator is low. By improving the heat dissipation, the insulating layer made of the high thermal conductivity composite insulating material can be made thicker, so that the insulating property is improved and the distributed capacity between patterns can be reduced. In addition, the metal plate is stamped and formed with a high thermal conductivity composite insulating material, so that it can be easily implemented, and a three-dimensional structure that is difficult with a conventional heat dissipation substrate is also possible. .
[Brief description of the drawings]
FIG. 1 is a perspective view of a heat dissipation board for mounting electronic components according to an embodiment of the present invention. FIG. 2 is a sectional view of the same side. FIG. 3 is a perspective view of a state in which the electronic components are arranged. FIG. 5 is a side sectional view showing a method for manufacturing a heat dissipation board for mounting electronic components according to another embodiment of the present invention. FIG. 6 is a view showing a molding state when the composite insulating material is filled. Side sectional view [FIG. 7] Side sectional view of the improved example [FIG. 8] Side sectional view illustrating the molded state of the improved example [FIG. 9] Side sectional view illustrating the molded state of the improved example [FIG. 10] The perspective view of the metal plate of the principal part of other embodiment of this invention [FIG. 11] The perspective view of the state integrally molded with the composite insulating material which is the principal part [FIG. 12] The mounting state of the same electronic component is demonstrated. Side cross-sectional view [Fig. 13] Perspective view of the electronic component mounting board with the metal plate cut and the terminals bent. [Fig. FIG. 15 is a perspective view of a state where it is integrally formed with a composite insulating material, which is a main part of the improvement example. FIG. 16 is a perspective view of a conventional heat dissipation board for mounting electronic components. Side sectional view [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Metal plate 2 Composite insulating material 3 Electronic component 4 Exposed part 5 Cavity 6 Terminal part 8 Protrusion part 9 Bending part 11 1st metal mold | die 12 2nd metal mold | die 13 Cavity 14 Protrusion part 15 Protrusion part 16 Notch part 17 Spring 18 Step processed portion 19 Projection portion 20 Groove portion 22 Screw seat 30 Heat source 31 Liquid tank 32 Foil body

Claims (7)

所定の配線パターン状に打ち抜かれた金属板と、この金属板と一体成型された高熱伝導性の複合絶縁材料とを備え、前記複合絶縁材料から、少なくとも前記金属板における部品搭載部分を露出させ、この部品搭載部分における発熱部品配置部には段差加工部を設けた電子部品搭載用放熱基板。A metal plate punched into a predetermined wiring pattern, and a high thermal conductive composite insulating material integrally molded with the metal plate, from the composite insulating material, exposing at least a part mounting portion in the metal plate ; A heat dissipating board for mounting an electronic component, in which a stepped portion is provided in a heat generating component arrangement portion in the component mounting portion . 金属板の少なくとも部品搭載部分を露出させた状態でかつ部品収納可能なキャビティを構成するように前記金属板の上下両面に複合絶縁材料を一体形成した請求項1に記載の電子部品搭載用放熱基板。  2. The electronic component mounting heat dissipation board according to claim 1, wherein a composite insulating material is integrally formed on both the upper and lower surfaces of the metal plate so as to form a cavity in which at least a component mounting portion of the metal plate is exposed and a component can be stored. . 金属板の少なくとも部品搭載部分を露出させた状態で前記金属板の上下両面に配置するとともに表面に突起部を配置するように複合絶縁材料を一体形成した請求項2に記載の電子部品搭載用放熱基板。  The heat radiation for mounting an electronic component according to claim 2, wherein a composite insulating material is integrally formed so as to be disposed on both upper and lower surfaces of the metal plate with at least a component mounting portion of the metal plate exposed. substrate. 金属板は所定の配線パターン状に打ち抜くとともに少なくとも一部に折り曲げ加工あるいは絞り加工を施し、前記金属板の平面よりも突出させた請求項1に記載の電子部品搭載用放熱基板。  The heat dissipating board for mounting an electronic component according to claim 1, wherein the metal plate is punched into a predetermined wiring pattern, and at least a part thereof is bent or drawn so as to protrude from the plane of the metal plate. 金属板の少なくとも一部を露出させた状態で複合絶縁材料を一体形成し、前記金属板の一部を端子とした請求項1に記載の電子部品搭載用放熱基板。  The electronic component mounting heat dissipation board according to claim 1, wherein a composite insulating material is integrally formed with at least a part of the metal plate exposed, and the part of the metal plate is used as a terminal. 金属板は一体成形した高熱伝導性の複合絶縁材料の成形体の外形よりも内側で少なくともその一部を折り曲げて端子とした請求項5に記載の電子部品搭載用放熱基板。  6. The heat dissipating board for mounting electronic parts according to claim 5, wherein the metal plate is bent at least partly inside the outer shape of the integrally formed molded body of high thermal conductivity composite insulating material to form a terminal. まず金属板を所定の配線パターン状に打ち抜くとともに前記金属板における部品搭載部分の発熱部品配置部に段差加工を施し次に前記金属板を金型内に保持し、この金型に溶融した高熱伝導性の複合絶縁材料を流し込み、前記金属板を少なくとも前記部品搭載部分を露出させた状態で前記高熱伝導性の複合絶縁材料により基板上に一体成形その後前記一体成形した基板に部品を電気的に接続次に前記金属板の一部を折り曲げて端子に加工その後ケースまたは樹脂により前記部品を覆う電子部品搭載用放熱基板の製造方法。 First, the metal plate is punched into a predetermined wiring pattern, and a step processing is performed on the heat-generating component placement portion of the component mounting portion of the metal plate, and then the metal plate is held in the mold and melted in the mold. pouring the conductivity of composite insulation material, the integrally formed on a substrate by a composite insulating material of the high thermal conductivity metal plate while exposing at least the component mounting portion, electrical components subsequently the integrally molded substrate was connected, it was processed into a terminal and then folding a portion of the metal plate, a method of manufacturing an electronic component mounting heat dissipation substrate which covers the components by subsequent case or resin.
JP13621196A 1996-05-30 1996-05-30 Heat dissipating board for mounting electronic parts and manufacturing method thereof Expired - Fee Related JP3855306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13621196A JP3855306B2 (en) 1996-05-30 1996-05-30 Heat dissipating board for mounting electronic parts and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13621196A JP3855306B2 (en) 1996-05-30 1996-05-30 Heat dissipating board for mounting electronic parts and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH09321395A JPH09321395A (en) 1997-12-12
JP3855306B2 true JP3855306B2 (en) 2006-12-06

Family

ID=15169916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13621196A Expired - Fee Related JP3855306B2 (en) 1996-05-30 1996-05-30 Heat dissipating board for mounting electronic parts and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3855306B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10192818B2 (en) 2014-11-20 2019-01-29 Nsk Ltd. Electronic part mounting heat-dissipating substrate
US10249558B2 (en) 2014-11-20 2019-04-02 Nsk Ltd. Electronic part mounting heat-dissipating substrate
EP3481166A1 (en) * 2017-11-06 2019-05-08 Molex, LLC Circuit assembly and mounting unit
US10388596B2 (en) 2014-11-20 2019-08-20 Nsk Ltd. Electronic part mounting heat-dissipating substrate

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10038092A1 (en) * 2000-08-04 2002-02-14 Bosch Gmbh Robert Method for the electrical connection of a semiconductor component to an electrical assembly
US6870244B2 (en) 2000-12-27 2005-03-22 Matsushita Electric Industrial Co., Ltd. Lead frame and production process thereof and production process of thermally conductive substrate
JP4719994B2 (en) * 2001-03-30 2011-07-06 パナソニック株式会社 Circuit board and manufacturing method thereof
JP4584600B2 (en) * 2004-02-06 2010-11-24 株式会社オートネットワーク技術研究所 Circuit structure
JP2006202913A (en) * 2005-01-19 2006-08-03 Ricoh Co Ltd Wiring structure and method of manufacturing the same
JP4778837B2 (en) * 2006-05-30 2011-09-21 矢崎総業株式会社 Electrical junction box
JP4641030B2 (en) * 2007-08-06 2011-03-02 株式会社オートネットワーク技術研究所 Vehicle power distributor and manufacturing method thereof
JP5419342B2 (en) * 2007-12-11 2014-02-19 三菱重工業株式会社 Bus bar assembly and inverter-integrated electric compressor using the same
JP5087435B2 (en) * 2008-03-12 2012-12-05 株式会社オートネットワーク技術研究所 Electrical junction box
JP5216378B2 (en) * 2008-03-12 2013-06-19 株式会社オートネットワーク技術研究所 Circuit assembly and electrical junction box
DE102010002140A1 (en) * 2010-02-19 2011-08-25 Robert Bosch GmbH, 70469 Circuitry has carrier on which power component is received over coupling layer which is formed by mole dynamic mechanical analysis-solid state extrusion (DMA-SSE) portion, connected with the heat sink
JP2012238676A (en) * 2010-05-10 2012-12-06 Shin Kobe Electric Mach Co Ltd Resin molding
JP5257715B2 (en) * 2011-07-11 2013-08-07 住友電装株式会社 Plastic molded product with metal plate
JP2013074244A (en) * 2011-09-29 2013-04-22 Yazaki Corp Wiring board
JP6226724B2 (en) * 2012-12-21 2017-11-08 ポリプラスチックス株式会社 Method for producing composite molded body and method for improving heat dissipation
JP6287659B2 (en) * 2014-07-22 2018-03-07 株式会社オートネットワーク技術研究所 Circuit structure
JP6287815B2 (en) * 2014-12-24 2018-03-07 株式会社オートネットワーク技術研究所 Method for manufacturing circuit structure
JP6498974B2 (en) * 2015-03-20 2019-04-10 古河電気工業株式会社 Junction structure between circuit board and electronic component, electronic circuit board, and method for manufacturing circuit board
JP2018190767A (en) * 2017-04-28 2018-11-29 株式会社オートネットワーク技術研究所 Circuit device including circuit board and circuit component and manufacturing method of circuit device
JP7181015B2 (en) * 2017-11-06 2022-11-30 モレックス エルエルシー Circuit assembly and mounting unit
JP6950496B2 (en) 2017-11-28 2021-10-13 株式会社オートネットワーク技術研究所 Circuit board and manufacturing method of circuit board
JP2019102488A (en) * 2017-11-28 2019-06-24 株式会社オートネットワーク技術研究所 Circuit board and manufacturing method of circuit board
JP6939542B2 (en) 2017-12-28 2021-09-22 株式会社オートネットワーク技術研究所 Electrical connection device
JP6988729B2 (en) 2018-07-31 2022-01-05 株式会社オートネットワーク技術研究所 Electrical junction box
JP7115385B2 (en) 2019-03-27 2022-08-09 株式会社オートネットワーク技術研究所 Method for manufacturing circuit board and electrical connection box including circuit board
JP7548089B2 (en) * 2021-03-22 2024-09-10 株式会社オートネットワーク技術研究所 Circuit device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10192818B2 (en) 2014-11-20 2019-01-29 Nsk Ltd. Electronic part mounting heat-dissipating substrate
US10249558B2 (en) 2014-11-20 2019-04-02 Nsk Ltd. Electronic part mounting heat-dissipating substrate
US10388596B2 (en) 2014-11-20 2019-08-20 Nsk Ltd. Electronic part mounting heat-dissipating substrate
EP3481166A1 (en) * 2017-11-06 2019-05-08 Molex, LLC Circuit assembly and mounting unit
US10840178B2 (en) 2017-11-06 2020-11-17 Molex, Llc Circuit assembly and mounting unit

Also Published As

Publication number Publication date
JPH09321395A (en) 1997-12-12

Similar Documents

Publication Publication Date Title
JP3855306B2 (en) Heat dissipating board for mounting electronic parts and manufacturing method thereof
JP3605547B2 (en) Heat dissipating substrate and manufacturing method thereof
US6775141B2 (en) Heat dissipation structure for use in combination with electronic circuit board
JP3547333B2 (en) Power converter
JP6044473B2 (en) Electronic device and method for manufacturing the same
JP2010129868A (en) Semiconductor module for power and method of manufacturing the same
JP2020004840A (en) Electronic unit and manufacturing method thereof
JP5096094B2 (en) Circuit equipment
JPH10303522A (en) Circuit board
JP3906510B2 (en) Heat dissipation board for mounting electronic components
CN114038811A (en) Semiconductor circuit and method for manufacturing semiconductor circuit
JP6716045B1 (en) Component-embedded substrate and method for manufacturing component-embedded substrate
JP2007073782A (en) High power semiconductor apparatus
JP2011129818A (en) Semiconductor device, and method of producing the same
JPH08306855A (en) Semiconductor package,lead frame,circuit board,metallic moldfor molding semiconductor package,electronic circuit board and manufacture of lead frame
JP3196446B2 (en) Wiring board for power circuit and method of manufacturing the same
JP2882280B2 (en) Circuit board and electric junction box provided with the circuit board
JP2005191147A (en) Method for manufacturing hybrid integrated circuit device
CN214848625U (en) Semiconductor circuit having a plurality of transistors
JP3629811B2 (en) Wiring board with connection terminal
CN112805828B (en) Semiconductor component arrangement, method for producing a semiconductor component arrangement and heat sink
JP7528573B2 (en) Circuit structure
JP3951400B2 (en) Electronic circuit module
JP2002124313A (en) Bus bar and mounting structure for electronic or electrical component
JPH09326467A (en) Electronic device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060727

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees