JP3848303B2 - Structure, functional structure, and method of manufacturing magnetic recording medium - Google Patents

Structure, functional structure, and method of manufacturing magnetic recording medium Download PDF

Info

Publication number
JP3848303B2
JP3848303B2 JP2003163852A JP2003163852A JP3848303B2 JP 3848303 B2 JP3848303 B2 JP 3848303B2 JP 2003163852 A JP2003163852 A JP 2003163852A JP 2003163852 A JP2003163852 A JP 2003163852A JP 3848303 B2 JP3848303 B2 JP 3848303B2
Authority
JP
Japan
Prior art keywords
pattern forming
forming layer
layer
stamper
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003163852A
Other languages
Japanese (ja)
Other versions
JP2004066447A (en
Inventor
彩 今田
透 田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003163852A priority Critical patent/JP3848303B2/en
Priority to PCT/JP2003/015591 priority patent/WO2004109401A1/en
Priority to US10/559,966 priority patent/US7534359B2/en
Priority to AU2003286423A priority patent/AU2003286423A1/en
Publication of JP2004066447A publication Critical patent/JP2004066447A/en
Application granted granted Critical
Publication of JP3848303B2 publication Critical patent/JP3848303B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Duplication Or Marking (AREA)
  • Electroplating Methods And Accessories (AREA)
  • ing And Chemical Polishing (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、孔を有する構造体の製造方法に関する。特に、孔に磁性体等の機能性材料を充填することによって、磁気記録媒体等の機能性の構造体を製造する方法に関する。
【0002】
【従来の技術】
物体表面に微細な構造を作製する技術として、従来からの光や電子線によるリソグラフィーではなく、凹凸を持つ構造体を加工物に直接押圧してナノメートルサイズの構造を形成するナノ・インプリント(nano−imprint)という方法が、新しい技術として提案されている(米国特許第5,772,905号公報)。
【0003】
この手法は、図9に示すように電子ビーム等により加工された数十〜数百nmサイズの凸構造パターン103を有するスタンパ100を、平坦な基板105上に形成した樹脂薄膜104に押圧して引き離すことで凹凸構造パターンを形成し、樹脂薄膜の凹部(モールド領域)106を反応性イオンエッチング等によって除去し、この樹脂層をマスクとして基板105をエッチングすることで、元のスタンパと相対する凹凸を有するナノメートルサイズの構造体107、108を形成するものである。この手法では、押圧によるスタンパ100の劣化を防ぐために、スタンパ100の凸構造103が樹脂薄膜104を形成した基板105に到達する前に押圧をやめ、引き離す手法をとっている。この手法では、樹脂薄膜にスタンパの凸構造表面が到達する直前に押圧をやめた場合であっても、押圧による樹脂の盛り上がりにより、スタンパの凹構造表面に樹脂薄膜が接触する場合があった。
【0004】
斯かる接触は、スタンパを樹脂薄膜から引き離す際に樹脂薄膜に形成された凹凸形状の乱れなどを起こす場合があった。
【0005】
【発明が解決しようとする課題】
そこで、本発明の課題は、所望の位置に孔を形成した構造体を提供することにある。
【0006】
【課題を解決するための手段】
本発明は、孔を有する構造体の製造方法であって、被陽極酸化膜上に、陽極酸化処理により溶解する材料からなるパターン形成層を有する第1の部材を用意し、複数の凸部を有する第2の部材を、該パターン形成層に押付けて、該パターン形成層に凹凸構造を形成し、該凹凸構造の凹部に該パターン形成層を残存させたまま、該基板を陽極酸化溶液に浸して陽極酸化処理し、該凹部側を開始点として該基板に孔を形成することを特徴とする孔を有する構造体の製造方法に関する。
【0007】
また、本発明は、複数の凸構造を有する押圧部材を被加工層上のパターン形成層に押圧する工程、及び該部材と該パターン形成層を引き離す工程を含む構造体の製造方法において、該凸構造表面のサイズが500nm以下であって、且つ該凸構造の高さが10μm以下の該部材を用い、該部材の該凸構造の高さより該パターン形成層の膜厚を薄くし、該部材の凸構造の先端と該被加工層表面との間隔が50nm以下の場合に該部材の凹部に該パターン形成層の表面が接触しないように押圧することを特徴とする構造体の製造方法に関する。
【0008】
ここでいう、押圧部材の凸構造表面のサイズとは、その表面形状が円の場合は直径を、多角形の場合はその外径である。上記凸構造の高さは、数nm以上10μm以下、好ましくは数10nm以上5μm以下である。
【0009】
本発明でのナノ構造体の製造方法は、被加工層の表面にスタンパの凸構造の高さよりも薄い膜厚のパターン形成層を設け、これにスタンパを相対向させて押圧し、パターン形成層にスタンパの凸構造パターンを形成することが好ましい。
【0010】
スタンパの凸構造の高さよりも薄いパターン形成層を使用することで、気泡の影響を軽減し、真空雰囲気を必要とせず、また、押圧後のエッチングにより被加工層を露出させた後に陽極酸化等の加工を行う。押圧方向への厳密な位置制御を行う必要がなく、簡易なナノプリント法を提供することが出来る。
【0011】
【発明の実施の形態】
本発明の実施態様として以下のものが挙げられる。
【0012】
図4に示すように、凸構造のパターンが形成されたスタンパ(押圧部材)とパターン形成層が上部に設けられた被加工層を、相対向させて前記スタンパを前記パターン形成層に押圧し、少なくとも前記凸構造の先端が前記被加工層表面から最大50nmの位置まで接近してから前記スタンパを引き離し、前記パターン形成層に前記スタンパの凸構造パターンを形成する方法が好ましい。
【0013】
前記パターン形成層が、温度上昇に比例して低粘性になる材料である場合、前記押圧時に前記パターン形成層を適当な粘性になるよう加熱してから押圧し、冷却して剥離することが好ましい。
【0014】
図2(a)、(b)に示すように、前記製造方法により作製されるナノ構造体において、ドライエッチングまたはウエットエッチング技術により前記パターン形成層の凹部にて前記被加工層を露出させる(工程)方法が好ましく、図2(c)に示すように、前記のいずれかの製造方法により作製されるナノ構造体を陽極酸化することにより前記被加工層に凹構造を形成する方法が好ましい。
【0015】
前記被加工層を露出させる工程で、パターン形成層凹部の前記被加工層を露出させると共に、前記被加工層に深さ1nm以上の凹部を作製するドライエッチングまたはウエットエッチングである方法であることが好ましい(図2(b))。
【0016】
前記スタンパは、前記凸構造の間隔が1μm以下である少なくとも一組の隣接した凹凸構造体を有することが好ましい。
【0017】
前記パターン形成層が、溶剤に溶かした樹脂やアルコキシドやシリコンを含む樹脂材料やシルセスキオキサン等の流動性があり且つ薄く塗布することの出来る材料であることが好ましい。
【0018】
前記被加工層が、アルミニウムを成分とする金属であることが好ましい。
【0019】
前記被加工層が、アルミニウム以外の金属を成分とする下地層と、アルミニウムを成分とする表面層からなることが好ましい。
【0020】
また本発明のナノ構造体の製造方法では、図1に示すように、凸構造4のパターンが形成されたスタンパ1と、凸構造4の高さより薄い膜厚のパターン形成層2を有する被加工層3を相対向させ、スタンパ1を押圧し、少なくとも凸構造4の先端を被加工層3の表面から最大50nmの範囲内に接近させ、次いでスタンパを引き離し、パターン形成層2にスタンパ1の凸構造パターンを形成することが好ましい。
【0021】
例えば、電子線、X線、紫外線または可視光線等によるリソグラフィーとウエットエッチングもしくはドライエッチング技術、電子線直描技術、または陽極酸化法等によって、少なくとも一つの凹凸を有するスタンパ1を作製する。この凸構造4の表面は平坦であることが好ましく、凸構造4が複数形成される場合には各々の頂点が同一平面内に位置することが好ましい。また凸構造は、図5(a)に示すように、三角格子状の円柱配列構造であることが好ましい。また、図5(b)のように、数種類の規則構造からなる多周期配列でも良い。
【0022】
また図1に示すように、被加工層3上にスピンコート方等により溶剤に溶かした樹脂やアルコキシドやシリコンを含む樹脂材料やシルセスキオキサン等の流動性があり且つ薄く塗布することの出来る材料を主成分とする液状材料を塗布し、パターン形成層2とする。パターン形成層2の膜厚はスタンパ1の凸構造4の高さよりも薄くなるようにする。次に、スタンパ1をパターン形成層2に相対向させ、次いで押圧し、少なくともスタンパ1の凸構造4の先端が被加工層3の表面から最大50nmの範囲内に達してからスタンパを引き離し、パターン形成層2にスタンパ1の凸構造パターン4を形成する。押付け部材は、表層がシリコンやニッケル等からなる規則配列凸構造体であり、剥離性を良くするためにフッ素樹脂やシランカップリング剤等の離型材料を付与することが望ましい。
【0023】
パターン形成層2の膜厚がスタンパ凸構造4の高さより薄いため、スタンパ凹構造5に溜まってパターン形成を阻害していた気泡によるパターン形成層への影響が生じにくくなる。そのため、真空雰囲気中で押圧し、引き離しを行う必要がなくなる。また、被加工物9をパターン形成層2の粘度が下がる温度まで上昇させ、流動性を良くしてから押圧することも好ましい。
【0024】
また、こうして作製された構造体に対し、ドライエッチングまたはウエットエッチングを行い、パターン形成層凹部7に残留したパターン形成層2を除去して被加工層3を露出させることが好ましい(図2(a)、(b))。
【0025】
例えば、被加工層3が金属等の導電性物質であり、パターン形成層2が樹脂等の絶縁物であれば、パターン形成後のパターン形成層2をマスクとし、露出した被加工層3を電極として電気めっきを行うことが出来る。この後、パターン形成層2のみを溶解する溶液中に浸すことで、スタンパ1と同様の凹凸構造を有する異種材料による構造体を得る事が出来る。
【0026】
また、図2(c)に示すように、被加工層3がアルミニウムを主成分とする材料である場合、パターン形成層凹部7の底部に残った膜をエッチングして得られた被加工層の露出部を開始点として陽極酸化を行えば、露出部分のパターンを反映したアルミナナノホールを得る事が出来る。パターン形成層が陽極酸化の溶液で溶解されてしまう場合は、図6に示すように、その上から陽極酸化時に溶解するようなアルミニウム等の金属を薄く積層して保護層11とし(図6(b))、陽極酸化を行えばよい(図6(c))。
【0027】
また図7に示すように、エッチング時に被加工層の露出部も多少削られる場合は、パターン形成層を除去してから(図7(b))、陽極酸化を行えば良い(図7(c))。
具体的に陽極酸化とは、パターン形成層を有する被加工層を陽極としてシュウ酸水溶液や硫酸水溶液などの酸性溶液中に浸し、電解を印加して陽極酸化を行うことである。陽極酸化による酸化と溶解は、パターン形成層の凹構造部分から優先的に開始するため、凹構造パターンを反映した配列の細孔が形成されることになる。このとき印加する電圧は、一般に形成する配列周期の2.5-1[V/nm]倍とされており、例えば100nm間隔の三角格子配列のときは、40Vを印加すれば良く、印加する電圧により形成される細孔の平均周期長がきまる。そのため、例えば三角格子状の規則凹構造をパターン形成層2に形成し、その凹部7から細孔を形成する場合、規則凹構造の配列が多少乱れていても陽極酸化印加電圧により自然に補正されて規則正しい配列の細孔を得ることが可能である。
【0028】
また、パターン形成層が上記陽極酸化溶液によって適度な速度で均一に溶解する材料である場合、エッチングプロセスを省略することが可能である。陽極酸化を開始すると、パターン形成層が溶解を始め、まず凹構造底部の被加工層が露出し、そこから電流が流れて被加工層のナノホールが形成され始める。パターン形成層が陽極酸化溶液によって溶解しない材料の場合は、被加工層表面には何も形成されない。
【0029】
次に、リン酸水溶液などの被加工層を溶解する溶液中にこれを浸せば、形成されたナノホール構造の径を任意に拡大することが出来る。
【0030】
さらに、電着やスパッタ等でホールに機能性材料を充填することによって、種々の機能を有した構造体ができる。特に、電着で磁性体を細孔に充填することによって、磁気記録媒体の作成が可能である。
【0031】
【実施例】
以下、図面を参照して本発明の実施例を詳細に説明する。
【0032】
[実施例1]
本発明の一例を示す。図1を参照する。
【0033】
凹凸構造のパターンが形成されたスタンパ1を、凸構造4の高さより薄い膜厚のパターン形成層2を有する被加工層3に相対向させて押圧し、少なくとも凸構造4の先端が被加工層3の表面から30nmまで近づいた後に引き離し、パターン形成層2にスタンパ1の凸構造パターンを形成する。
【0034】
例として、原盤に、100nm間隔で配列した直径30nm、高さ75nmの円柱状凸構造4を、電子ビーム露光とドライエッチングプロセスにより作製しスタンパ1とする。次に、図1に示すようにSi基板8上に酸化シリコン(SiO2)から成る厚さ100nmの被加工層3と、ポリメチルメタクリレート(PMMA)から成る厚さ50nmのパターン形成層2を作製する。PMMAはエチルセロソルブアセテートに溶解し、スピンコート法にて塗布する。パターン形成層2にスタンパ1を相対向させ、基板温度120℃、荷重1000kgf/cm2で押圧し、30秒間保持した後に60℃まで冷却してから引き離す(図1(a)(b))。パターン形成層2の凸構造6の高さは、凹構造7の体積分の樹脂が流動するために押圧前の厚さより若干厚くなり、凹構造7の底部にはスタンパ形状の不均一性による残留樹脂が薄膜となって残る。
【0035】
パターン形成層2の膜厚がスタンパ凸構造4より薄いため、従来スタンパ凹構造5に溜まってパターン形成を阻害していた気泡は、スタンパ凹構造間を伝わり外部へ放出されるため、真空雰囲気中での押圧などの手段を行わずに微細なパターンを作製することが出来ると共に、接触面積が小さいために押圧圧力も少なく済む。また、パターン形成後のパターン形成層凸部6の高さも、当初のパターン形成層2の膜厚とスタンパ1形状により決定されるため、押圧荷重の微調整や押圧方向の位置制御を行う必要が無い。
【0036】
[実施例2]
本発明の一例を示す。図2,3を参照する。
【0037】
実施例1に記載のナノ構造体の製造方法により作製された構造体に対し、ドライエッチングまたはウエットエッチングを行い、パターン形成層凹部7に残留した樹脂材料を除去して被加工層3を露出させる。
【0038】
実施例1に記載のスタンパ1を、被加工層3が厚さ100nmのアルミニウム(Al)であり、且つ、パターン形成層2がPMMAである被加工物9に、基板温度120℃、荷重1000kgf/cm2、保持時間30秒間の条件で相対向させて押圧、次いで60℃に冷却してから引き離して図1(c)のような構造体を作製する。酸素雰囲気下でドライエッチングを行い、パターン形成層凹部7に残留した樹脂を除去し、Alを露出させる(図2(a))。また、BCl3とO2ガスの混合ガス等の雰囲気下でエッチングを行い、パターン形成層凹部7の下部のAlも同時にエッチングして凹部を作製することも出来る(図2(b))。
【0039】
また、この後、パターン形成層凸部6をマスクとし、被加工層3を電極として錫銅半田電気めっきを行い、アセトンの超音波洗浄によりパターン形成層凸部6のみを除去し、ナノメートル間隔に並んだ半田凸構造体を作製することが出来る。
【0040】
また、図3(a)に示すようにスパッタ等で所望の材料の積層膜10を形成し、アセトンの超音波洗浄によりパターン形成層凸部6のみを除去し、図3(b)のような凸構造体を作製することも出来る。
【0041】
[実施例3]
本発明の一例を示す。図2,3を参照する。
【0042】
実施例1に記載のスタンパ1を、被加工層3がAlであり、且つ、パターン形成層2がシルセスキオキサンである被加工物9に、基板温度室温、荷重1200kgf/cm2、保持時間30秒間の条件で相対向させ押圧して、次いで引き離し、アルゴンやSF6雰囲気下にてドライエッチングを行い、Alを露出させる(図2(a))。次に、これを0.3mol/L蓚酸水溶液中にて陽極とし、温度16℃で40Vを印加して陽極酸化を行う。露出部分が陽極酸化の開始点となるため、パターン形成層のパターンを反映して配置されたアスペクト比の高いナノメートルサイズの孔を得る事が出来る(図2(c))。シルセスキオキサンは蓚酸水溶液に不溶であるため、除去をする必要がない。
【0043】
[実施例4]
本発明の一例を示す。図4を参照する。
【0044】
凹凸構造のパターンが形成されたスタンパ1を、パターン形成層2を有する被加工層3に相対向させて押し付けてから引き離し、パターン形成層2にスタンパ1の凸構造と相反する凹構造パターンを形成する。
【0045】
例として、Siからなる原盤に、100nm間隔で三角格子状に配列した直径30nm、高さ75nmの円柱状凸構造4を、電子ビームリソグラフィとドライエッチングプロセスにより作製しスタンパ1とする。凸構造4の最も高い表面は、同一平面内上に位置することが望ましい。次に、図4に示すようにSiからなる基板8上に酸化シリコン(SiO2)から成る厚さ100nmの被加工層3と、ポリメチルメタクリレート(PMMA)から成る厚さ100nmのパターン形成層2を作製する。PMMAはエチルセロソルブアセテートに溶解し、スピンコート法にて塗布する。パターン形成層2にスタンパ1を相対向させ、基板温度120℃、荷重500kgf/cm2で押し付け、その状態で保持したまま60℃まで冷却した後に引き離す(図4(a)、(b)、(c))。凹構造7の体積分の樹脂が流動するために、パターン形成層2のプレスした部分の周囲の厚みは押し付け前の厚さより若干厚くなり、凹構造7の底部にはスタンパ形状の不均一性や流動しきれなかったことによる残留樹脂が薄膜となって残る。
【0046】
パターン形状によっては、スタンパ1の凹構造5に気泡が残留し、樹脂の流動が妨げられて完全にスタンパ形状に沿ったパターンを形成することが困難となるが、基板温度を高くし樹脂の流動性を高めたり、パターン形成層2の厚さを凸構造4より薄くしたりすることにより、この影響を減じることが出来る。
【0047】
[実施例5]
本発明の一例を示す。図6を参照する。
【0048】
実施例4に記載のナノ構造体の製造方法により作製された構造体に対し、ドライエッチングまたはウエットエッチングを行い、パターン形成層凹部7に残留した樹脂材料を除去して被加工層3を露出させる。
【0049】
実施例4に記載のスタンパ1を、Si基板8上に形成された被加工層3が厚さ200nmのアルミニウム(Al)であり、且つ、パターン形成層2がPMMAである被加工物9に、基板温度120℃、荷重500kgf/cm2 で相対向させて押し付け、その状態で保持したまま60℃まで冷却した後に引き離して図4(c)のような構造体を作製する。ドライエッチングにより酸素雰囲気下でエッチングを行い、パターン形成層凹部7に残留した樹脂のみを除去し、Alを露出させる(図6(a))。次に、図6(b)に示すようにスパッタで厚さ5nmのAlの保護層11を形成し、これを陽極としてシュウ酸水溶液(0.3mol/L,16℃)中に浸して、40Vの印加電圧の下で陽極酸化を行うと、図6(c)に示すようなアルミナナノホールが形成される。ナノホールはパターン形成層凹部7から形成され、100nm間隔の三角格子状に配列する。保護層11は、酸性溶液中においてパターン形成層2が侵されるのを防ぐ役目を果たし、リン酸水溶液中等のアルミニウムを溶解する溶液中にて超音波洗浄を行うことで、除去できる。同様に、PMMAもリン酸水溶液やアセトン等の溶媒中で超音波洗浄することにより、除去できる。
【0050】
[実施例6]
本発明の一例を示す。図7を参照する。
【0051】
実施例5ないし実施例2に記載のナノ構造体の製造方法での工程において、ドライエッチングをBCl3とO2の混合エッチング雰囲気下でエッチングを行い、パターン形成層凹部7の下部の残留した樹脂とAlを同時にエッチングし、Al表面に凹部を作製することも出来る(図7(a))。この後、アセトン中にて超音波洗浄してPMMAを除去するかオゾンアッシングで除去をし(図7(b))、これを陽極としてシュウ酸水溶液(0.3mol/L,16℃)中に浸して、40Vの印加電圧の下で陽極酸化を行うと、図7(c)に示すようなアルミナナノホールが形成される。ナノホールはAl表面の凹部13から形成され、100nm間隔の三角格子状に配列する。
【0052】
[実施例7]
本発明の一例を示す。図8を参照する。
【0053】
凹凸構造のパターンが形成された押付け部材を、パターン形成層を有する被加工層に相対向させて押し付けてから引き離し、パターン形成層に押付け部材の凸構造と相反する凹構造パターンを形成する。
次に、Siからなる基板上に厚さ10nmのチタンと更にその上層に厚さ500nmのアルミニウム膜を形成し、被加工層とする。また更にその上層に、アルミニウムアルコキシドから成る厚さ75nmのパターン形成層を作製する。アルミニウムアルコキシドはIPA(イソプロピルアルコール)に溶解してから、スピンコート法にて塗布する。パターン形成層に実施例4記載の押付け部材を相対向させ、基板温度150℃、荷重1000kgf/cm2で押し付け、その状態で保持したまま60℃まで冷却した後に引き離す。凹構造の体積分の樹脂が流動するために、パターン形成層のプレスした部分の周囲の厚みは押し付け前の厚さより若干厚くなり、凹構造の底部には押付け部材形状の不均一性や流動しきれなかったことによる残留樹脂が薄膜となって残る。
【0054】
次に、これを陽極として蓚酸水溶液(0.3mol/L,16℃)中に浸し、40Vの電圧を印加して陽極酸化を行う。アルミニウムアルコキシドは加水分解をし蓚酸水溶液中で徐々に溶解して行くため、先に被加工層が露出する凹構造底部から電流が流れ始め、その部分が開始点となってアルミナナノホールの形成が開始する。陽極酸化によるアルミナナノホールは、基板に対して垂直に形成され、通常のフォトリソグラフィやエッチングプロセスでは得られない高アスペクト比な構造を非常に容易に得ることが出来る。
【0055】
リン酸水溶液(0.3mol/L)中に40分ほど浸すと、直径30nm、深さ500nmの規則化アルミナナノホールが得られる。
【0056】
最後に、電着によりホールに磁性材料を充填することによって、磁気記録媒体が作成できる。
【0057】
【発明の効果】
本発明は、ナノ・インプリント法とドライエッチング、ウエットエッチング、又は陽極酸化によるナノ構造体の製造方法であり、微細な凹型ナノ構造体を簡易に製造することができる。
【図面の簡単な説明】
【図1】本発明の実施例1を説明する断面図である。
【図2】本発明の実施例2、3を説明する断面図である。
【図3】本発明の実施例2、3を説明する断面図である。
【図4】本発明の実施例4を説明する断面図である。
【図5】本発明の凸構造の配置例を説明する断面図である。
【図6】本発明の実施例5を説明する断面図である。
【図7】本発明の実施例6を説明する断面図である。
【図8】本発明の実施例7を説明する断面図である。
【図9】従来例を説明する図である。
【符号の説明】
1 スタンパ
2 パターン形成層
3 被加工層
4 凸構造
5 凹構造
6 パターン形成層凸部
7 パターン形成層凹部
8 基板
9 被加工物
10 積層膜
100 スタンパ
103 凸構造
104 樹脂薄膜
105 基板
106 モールド領域
107 凸構造
108 凹構造
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a structure having holes. In particular, the present invention relates to a method of manufacturing a functional structure such as a magnetic recording medium by filling a hole with a functional material such as a magnetic material.
[0002]
[Prior art]
As a technology for creating a fine structure on the surface of an object, a nanoimprint (not a conventional lithography using light or electron beams) is used to form a nanometer-sized structure by directly pressing an uneven structure onto a workpiece. A method called nano-imprint has been proposed as a new technique (US Pat. No. 5,772,905).
[0003]
In this method, as shown in FIG. 9, a stamper 100 having a convex structure pattern 103 with a size of several tens to several hundreds of nanometers processed by an electron beam or the like is pressed against a resin thin film 104 formed on a flat substrate 105. By forming the concavo-convex structure pattern by pulling apart, the concave portion (mold region) 106 of the resin thin film is removed by reactive ion etching or the like, and the substrate 105 is etched using this resin layer as a mask, so The nanometer-sized structures 107 and 108 having the above are formed. In this method, in order to prevent the stamper 100 from deteriorating due to the pressing, the pressing is stopped before the convex structure 103 of the stamper 100 reaches the substrate 105 on which the resin thin film 104 is formed, and the stamper 100 is pulled apart. In this method, even when the pressing is stopped immediately before the convex structure surface of the stamper reaches the resin thin film, the resin thin film may come into contact with the concave structure surface of the stamper due to the swelling of the resin due to the pressing.
[0004]
Such contact may cause irregularities in the uneven shape formed on the resin thin film when the stamper is pulled away from the resin thin film.
[0005]
[Problems to be solved by the invention]
Then, the subject of this invention is providing the structure which formed the hole in the desired position.
[0006]
[Means for Solving the Problems]
The present invention is a method for producing a structure having holes, and a first member having a pattern forming layer made of a material that is dissolved by an anodic oxidation treatment is prepared on an anodized film, and a plurality of protrusions are provided. The second member is pressed against the pattern forming layer to form a concavo-convex structure in the pattern forming layer, and the substrate is immersed in an anodic oxidation solution while the pattern forming layer remains in the concave portion of the concavo-convex structure. The present invention relates to a method for producing a structure having holes, characterized in that holes are formed in the substrate by anodizing the substrate and using the concave side as a starting point .
[0007]
The present invention also provides a method of manufacturing a structure including a step of pressing a pressing member having a plurality of convex structures against a pattern forming layer on a layer to be processed, and a step of separating the member from the pattern forming layer. Using the member having a structure surface size of 500 nm or less and a height of the convex structure of 10 μm or less, the thickness of the pattern forming layer is made thinner than the height of the convex structure of the member, The present invention relates to a method for manufacturing a structure, characterized in that when the distance between the tip of a convex structure and the surface of a layer to be processed is 50 nm or less, the surface of the pattern forming layer is pressed against the concave portion of the member.
[0008]
The size of the convex structure surface of the pressing member here is the diameter when the surface shape is a circle, and the outer diameter when the surface shape is a polygon. The height of the convex structure is several nm to 10 μm, preferably several tens nm to 5 μm.
[0009]
In the method for producing a nanostructure in the present invention, a pattern forming layer having a film thickness thinner than the height of the convex structure of the stamper is provided on the surface of the layer to be processed, and the stamper is pressed against the stamper to form a pattern forming layer. It is preferable to form a convex structure pattern of the stamper.
[0010]
By using a pattern forming layer that is thinner than the height of the convex structure of the stamper, the effect of bubbles is reduced, no vacuum atmosphere is required, and anodization is performed after exposing the work layer by etching after pressing Process. There is no need to perform strict position control in the pressing direction, and a simple nanoprint method can be provided.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the embodiment of the present invention include the following.
[0012]
As shown in FIG. 4, a stamper (pressing member) on which a pattern of a convex structure is formed and a work layer provided with a pattern forming layer on top of each other are pressed against each other to press the stamper against the pattern forming layer, A method is preferred in which at least the tip of the convex structure approaches the position of a maximum of 50 nm from the surface of the layer to be processed, and the stamper is pulled away to form the convex structure pattern of the stamper on the pattern forming layer.
[0013]
When the pattern forming layer is a material having a low viscosity in proportion to the temperature rise, it is preferable that the pattern forming layer is heated to have an appropriate viscosity at the time of pressing, then pressed, cooled and peeled off. .
[0014]
As shown in FIGS. 2A and 2B, in the nanostructure manufactured by the manufacturing method, the layer to be processed is exposed in the concave portion of the pattern formation layer by dry etching or wet etching technology (step) ) Method is preferable, and as shown in FIG. 2C, a method of forming a concave structure in the work layer by anodizing a nanostructure produced by any one of the above-described manufacturing methods is preferable.
[0015]
The step of exposing the processed layer may be a dry etching method or a wet etching method in which the processed layer in the concave portion of the pattern forming layer is exposed and a concave portion having a depth of 1 nm or more is formed in the processed layer. It is preferable (FIG. 2 (b)).
[0016]
Preferably, the stamper has at least one pair of adjacent concavo-convex structure bodies in which the interval between the convex structures is 1 μm or less.
[0017]
The pattern forming layer is preferably a fluid material such as a resin material containing a resin dissolved in a solvent, an alkoxide or silicon, or a silsesquioxane, which can be applied thinly.
[0018]
The layer to be processed is preferably a metal containing aluminum as a component.
[0019]
It is preferable that the layer to be processed includes a base layer containing a metal other than aluminum as a component and a surface layer containing aluminum as a component.
[0020]
Further, in the method for producing a nanostructure of the present invention, as shown in FIG. 1, a workpiece having a stamper 1 on which a pattern of a convex structure 4 is formed and a pattern forming layer 2 having a thickness smaller than the height of the convex structure 4. The layers 3 are opposed to each other, the stamper 1 is pressed, and at least the tip of the convex structure 4 is brought closer to the range of 50 nm from the surface of the layer 3 to be processed. It is preferable to form a structural pattern.
[0021]
For example, the stamper 1 having at least one concavo-convex is produced by lithography using an electron beam, X-rays, ultraviolet rays, visible light, or the like and a wet etching or dry etching technique, an electron beam direct drawing technique, or an anodic oxidation method. The surface of the convex structure 4 is preferably flat, and when a plurality of convex structures 4 are formed, it is preferable that each vertex is located in the same plane. Further, the convex structure is preferably a triangular grid-like columnar arrangement structure as shown in FIG. Further, as shown in FIG. 5B, a multi-period arrangement composed of several types of regular structures may be used.
[0022]
Further, as shown in FIG. 1, a resin material dissolved in a solvent by spin coating or the like, a resin material containing alkoxide or silicon, or a silsesquioxane or the like can be applied thinly on the work layer 3. A liquid material containing the material as a main component is applied to form the pattern forming layer 2. The film thickness of the pattern forming layer 2 is made thinner than the height of the convex structure 4 of the stamper 1. Next, the stamper 1 is made to face the pattern forming layer 2 and then pressed, and at least the tip of the convex structure 4 of the stamper 1 reaches within a range of 50 nm at the maximum from the surface of the layer 3 to be processed. A convex structure pattern 4 of the stamper 1 is formed on the formation layer 2. The pressing member is a regular array convex structure whose surface layer is made of silicon, nickel or the like, and it is desirable to provide a release material such as a fluororesin or a silane coupling agent in order to improve the peelability.
[0023]
Since the film thickness of the pattern formation layer 2 is thinner than the height of the stamper convex structure 4, it is difficult to cause an influence on the pattern formation layer due to bubbles accumulated in the stamper concave structure 5 and hindering pattern formation. Therefore, it is not necessary to press and release in a vacuum atmosphere. Moreover, it is also preferable to press the workpiece 9 after raising the workpiece 9 to a temperature at which the viscosity of the pattern forming layer 2 is lowered and improving the fluidity.
[0024]
Further, it is preferable that dry etching or wet etching is performed on the structure thus manufactured to remove the pattern formation layer 2 remaining in the pattern formation layer recess 7 and expose the layer 3 to be processed (FIG. 2A ), (B)).
[0025]
For example, if the layer to be processed 3 is a conductive material such as metal and the pattern forming layer 2 is an insulator such as a resin, the exposed layer 3 to be processed is an electrode using the pattern forming layer 2 after pattern formation as a mask. Can be electroplated. After that, by immersing only the pattern forming layer 2 in a solution that dissolves, a structure made of a different material having an uneven structure similar to that of the stamper 1 can be obtained.
[0026]
In addition, as shown in FIG. 2C, in the case where the processing layer 3 is made of a material mainly composed of aluminum, the processing layer obtained by etching the film remaining on the bottom of the pattern forming layer concave portion 7 is used. If anodic oxidation is performed starting from the exposed portion, alumina nanoholes reflecting the pattern of the exposed portion can be obtained. When the pattern forming layer is dissolved in the anodic oxidation solution, as shown in FIG. 6, a protective layer 11 is formed by thinly laminating a metal such as aluminum that dissolves during the anodic oxidation from the top (FIG. 6 ( b)), anodic oxidation may be performed (FIG. 6C).
[0027]
As shown in FIG. 7, when the exposed portion of the layer to be processed is also slightly etched during etching, the pattern forming layer is removed (FIG. 7B), and then anodization may be performed (FIG. 7C )).
Specifically, the anodic oxidation is to immerse a processed layer having a pattern forming layer as an anode in an acidic solution such as an aqueous oxalic acid solution or an aqueous sulfuric acid solution, and apply an electrolysis to perform anodization. Oxidation and dissolution by anodic oxidation starts preferentially from the concave structure portion of the pattern forming layer, so that pores having an array reflecting the concave structure pattern are formed. The voltage applied at this time is generally 2.5 -1 [V / nm] times the array period to be formed. For example, in the case of a triangular lattice array with an interval of 100 nm, 40 V may be applied. The average period length of the pores formed by is determined. Therefore, for example, when a regular concave structure in the form of a triangular lattice is formed in the pattern forming layer 2 and a pore is formed from the concave portion 7, even if the arrangement of the regular concave structure is somewhat disturbed, it is naturally corrected by the anodic oxidation applied voltage. It is possible to obtain pores with a regular arrangement.
[0028]
Further, when the pattern forming layer is a material that can be uniformly dissolved at an appropriate rate by the anodic oxidation solution, the etching process can be omitted. When the anodic oxidation is started, the pattern forming layer starts to dissolve, and first, the processing layer at the bottom of the concave structure is exposed, and current flows from there to start forming nanoholes in the processing layer. When the pattern forming layer is a material that is not dissolved by the anodizing solution, nothing is formed on the surface of the layer to be processed.
[0029]
Next, if this is immersed in a solution that dissolves the layer to be processed such as an aqueous phosphoric acid solution, the diameter of the formed nanohole structure can be arbitrarily enlarged.
[0030]
Furthermore, by filling a hole with a functional material by electrodeposition or sputtering, structures having various functions can be obtained. In particular, a magnetic recording medium can be produced by filling the pores with a magnetic material by electrodeposition.
[0031]
【Example】
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0032]
[Example 1]
An example of this invention is shown. Please refer to FIG.
[0033]
The stamper 1 on which the pattern of the concavo-convex structure is formed is pressed opposite to the processing layer 3 having the pattern forming layer 2 having a film thickness thinner than the height of the convex structure 4, and at least the tip of the convex structure 4 is the processing layer. 3, the convex structure pattern of the stamper 1 is formed on the pattern forming layer 2.
[0034]
As an example, a cylindrical convex structure 4 having a diameter of 30 nm and a height of 75 nm arranged on a master disk at an interval of 100 nm is manufactured by an electron beam exposure and a dry etching process to be a stamper 1. Next, as shown in FIG. 1, a processed layer 3 made of silicon oxide (SiO 2 ) having a thickness of 100 nm and a pattern forming layer 2 made of polymethyl methacrylate (PMMA) are made on a Si substrate 8. To do. PMMA is dissolved in ethyl cellosolve acetate and applied by spin coating. The stamper 1 is opposed to the pattern forming layer 2, pressed at a substrate temperature of 120 ° C. and a load of 1000 kgf / cm 2 , held for 30 seconds, cooled to 60 ° C., and then pulled apart (FIGS. 1A and 1B). The height of the convex structure 6 of the pattern forming layer 2 is slightly thicker than the thickness before pressing because the resin of the volume of the concave structure 7 flows, and remains at the bottom of the concave structure 7 due to the nonuniformity of the stamper shape. The resin remains as a thin film.
[0035]
Since the film thickness of the pattern forming layer 2 is thinner than that of the stamper convex structure 4, the air bubbles that have been accumulated in the stamper concave structure 5 and have hindered pattern formation are discharged outside through the stamper concave structure. A fine pattern can be produced without performing means such as pressing at the same time, and since the contact area is small, the pressing pressure can be reduced. Further, since the height of the pattern forming layer convex portion 6 after pattern formation is also determined by the initial film thickness of the pattern forming layer 2 and the stamper 1 shape, it is necessary to finely adjust the pressing load and control the position in the pressing direction. No.
[0036]
[Example 2]
An example of this invention is shown. Please refer to FIG.
[0037]
The structure produced by the method for producing a nanostructure described in Example 1 is dry-etched or wet-etched to remove the resin material remaining in the pattern formation layer recess 7 and expose the layer 3 to be processed. .
[0038]
The stamper 1 described in Example 1 is applied to a workpiece 9 in which the processing layer 3 is aluminum (Al) having a thickness of 100 nm and the pattern formation layer 2 is PMMA. The substrate temperature is 120 ° C. and the load is 1000 kgf / Pressing them against each other under the conditions of cm 2 and a holding time of 30 seconds, then cooling to 60 ° C. and then pulling away to produce a structure as shown in FIG. Dry etching is performed in an oxygen atmosphere to remove the resin remaining in the pattern formation layer recess 7 and expose Al (FIG. 2A). Further, etching can be performed in an atmosphere such as a mixed gas of BCl 3 and O 2 gas, and Al in the lower part of the pattern forming layer recess 7 can be etched simultaneously to form a recess (FIG. 2B).
[0039]
Thereafter, tin-copper solder electroplating is performed using the pattern forming layer convex portion 6 as a mask and the layer to be processed 3 as an electrode, and only the pattern forming layer convex portion 6 is removed by ultrasonic cleaning with acetone. It is possible to produce solder convex structures arranged in a row.
[0040]
Further, as shown in FIG. 3A, a laminated film 10 of a desired material is formed by sputtering or the like, and only the pattern forming layer convex portion 6 is removed by ultrasonic cleaning with acetone, as shown in FIG. A convex structure can also be produced.
[0041]
[Example 3]
An example of this invention is shown. Please refer to FIG.
[0042]
The stamper 1 described in Example 1 was applied to the workpiece 9 in which the layer to be processed 3 was Al and the pattern forming layer 2 was silsesquioxane, at a substrate temperature of room temperature, a load of 1200 kgf / cm 2 , and a holding time. They are pressed against each other under the condition of 30 seconds, and then separated, and dry etching is performed in an atmosphere of argon or SF 6 to expose Al (FIG. 2A). Next, this is used as an anode in a 0.3 mol / L oxalic acid aqueous solution, and anodization is performed by applying 40 V at a temperature of 16 ° C. Since the exposed portion serves as a starting point for anodic oxidation, it is possible to obtain nanometer-sized holes having a high aspect ratio and reflecting the pattern of the pattern forming layer (FIG. 2C). Since silsesquioxane is insoluble in oxalic acid aqueous solution, it does not need to be removed.
[0043]
[Example 4]
An example of this invention is shown. Please refer to FIG.
[0044]
The stamper 1 on which the pattern of the concavo-convex structure is formed is pressed against the processing layer 3 having the pattern forming layer 2 and pressed away from the stamper 1 to form a concave structure pattern opposite to the convex structure of the stamper 1. To do.
[0045]
As an example, a cylindrical convex structure 4 having a diameter of 30 nm and a height of 75 nm arranged in a triangular lattice pattern at an interval of 100 nm on a master disk made of Si is manufactured by an electron beam lithography and a dry etching process to be a stamper 1. The highest surface of the convex structure 4 is preferably located on the same plane. Next, as shown in FIG. 4, on the substrate 8 made of Si, a processed layer 3 made of silicon oxide (SiO 2 ) having a thickness of 100 nm and a pattern forming layer 2 made of polymethyl methacrylate (PMMA) having a thickness of 100 nm. Is made. PMMA is dissolved in ethyl cellosolve acetate and applied by spin coating. The stamper 1 is opposed to the pattern forming layer 2, pressed at a substrate temperature of 120 ° C. and a load of 500 kgf / cm 2 , cooled to 60 ° C. while being held in that state, and then pulled apart (FIGS. 4A, 4B, ( c)). Since the resin of the volume of the concave structure 7 flows, the thickness around the pressed portion of the pattern formation layer 2 is slightly thicker than the thickness before pressing, and the bottom of the concave structure 7 has a stamper-shaped non-uniformity or Residual resin due to failure to flow remains as a thin film.
[0046]
Depending on the pattern shape, air bubbles may remain in the concave structure 5 of the stamper 1 and the flow of the resin is obstructed, making it difficult to form a pattern completely along the stamper shape. This effect can be reduced by improving the property or making the thickness of the pattern forming layer 2 thinner than the convex structure 4.
[0047]
[Example 5]
An example of this invention is shown. Please refer to FIG.
[0048]
The structure produced by the method for producing a nanostructure described in Example 4 is dry-etched or wet-etched to remove the resin material remaining in the pattern formation layer recess 7 and expose the layer 3 to be processed. .
[0049]
The stamper 1 described in Example 4 is applied to a workpiece 9 in which the processing layer 3 formed on the Si substrate 8 is 200 nm thick aluminum (Al) and the pattern formation layer 2 is PMMA. The substrate is pressed with a substrate temperature of 120 ° C. and a load of 500 kgf / cm 2 , and is cooled to 60 ° C. while being held in that state, and then separated to produce a structure as shown in FIG. Etching is performed in an oxygen atmosphere by dry etching to remove only the resin remaining in the pattern formation layer recess 7 and to expose Al (FIG. 6A). Next, as shown in FIG. 6B, an Al protective layer 11 having a thickness of 5 nm is formed by sputtering, and this is immersed in an aqueous oxalic acid solution (0.3 mol / L, 16 ° C.) as an anode. When anodization is performed under the applied voltage, alumina nanoholes as shown in FIG. 6C are formed. The nanoholes are formed from the pattern forming layer recesses 7 and arranged in a triangular lattice pattern with an interval of 100 nm. The protective layer 11 serves to prevent the pattern forming layer 2 from being attacked in an acidic solution, and can be removed by ultrasonic cleaning in a solution that dissolves aluminum, such as an aqueous phosphoric acid solution. Similarly, PMMA can be removed by ultrasonic cleaning in a solvent such as an aqueous phosphoric acid solution or acetone.
[0050]
[Example 6]
An example of this invention is shown. Please refer to FIG.
[0051]
In the steps of the method for manufacturing a nanostructure described in Example 5 to Example 2, dry etching is performed in a mixed etching atmosphere of BCl 3 and O 2 , and the resin remaining under the recess 7 of the pattern formation layer It is also possible to etch Al and Al at the same time to produce a recess on the Al surface (FIG. 7A). Thereafter, ultrasonic cleaning in acetone is performed to remove PMMA or ozone ashing (FIG. 7B), and this is used as an anode in an oxalic acid aqueous solution (0.3 mol / L, 16 ° C.). When immersed and anodized under an applied voltage of 40 V, alumina nanoholes as shown in FIG. 7C are formed. The nanoholes are formed from the recesses 13 on the Al surface, and are arranged in a triangular lattice pattern with an interval of 100 nm.
[0052]
[Example 7]
An example of this invention is shown. Please refer to FIG.
[0053]
The pressing member on which the pattern of the concavo-convex structure is formed is pressed against the processing layer having the pattern forming layer, and then separated to form a concave structure pattern opposite to the convex structure of the pressing member on the pattern forming layer.
Next, titanium having a thickness of 10 nm is formed on a substrate made of Si, and an aluminum film having a thickness of 500 nm is further formed thereon to form a layer to be processed. Further, a pattern forming layer made of aluminum alkoxide and having a thickness of 75 nm is formed thereon. Aluminum alkoxide is dissolved in IPA (isopropyl alcohol) and then applied by spin coating. The pressing member described in Example 4 is opposed to the pattern forming layer, pressed at a substrate temperature of 150 ° C. and a load of 1000 kgf / cm 2 , cooled to 60 ° C. while being held in this state, and then pulled apart. Since the resin of the volume of the concave structure flows, the thickness around the pressed part of the pattern formation layer is slightly thicker than the thickness before pressing, and the pressing member shape non-uniformity and flow at the bottom of the concave structure Residual resin resulting from the failure to remain remains as a thin film.
[0054]
Next, this is immersed in an aqueous oxalic acid solution (0.3 mol / L, 16 ° C.) as an anode, and an anodic oxidation is performed by applying a voltage of 40V. Aluminum alkoxide hydrolyzes and dissolves gradually in the aqueous oxalic acid solution, so that current begins to flow from the bottom of the concave structure where the layer to be processed is exposed, and that part starts to form alumina nanoholes. To do. Alumina nanoholes by anodization are formed perpendicular to the substrate, and a high aspect ratio structure that cannot be obtained by ordinary photolithography and etching processes can be obtained very easily.
[0055]
When immersed in a phosphoric acid aqueous solution (0.3 mol / L) for about 40 minutes, ordered alumina nanoholes having a diameter of 30 nm and a depth of 500 nm are obtained.
[0056]
Finally, a magnetic recording medium can be produced by filling a hole with a magnetic material by electrodeposition.
[0057]
【The invention's effect】
The present invention is a method for producing a nanostructure by a nanoimprint method and dry etching, wet etching, or anodic oxidation, and a minute concave nanostructure can be easily produced.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating Example 1 of the present invention.
FIG. 2 is a cross-sectional view illustrating Embodiments 2 and 3 of the present invention.
FIG. 3 is a cross-sectional view illustrating Embodiments 2 and 3 of the present invention.
FIG. 4 is a cross-sectional view illustrating Example 4 of the present invention.
FIG. 5 is a cross-sectional view illustrating an example of the arrangement of convex structures according to the present invention.
FIG. 6 is a cross-sectional view illustrating a fifth embodiment of the present invention.
FIG. 7 is a cross-sectional view illustrating a sixth embodiment of the present invention.
FIG. 8 is a cross-sectional view illustrating Example 7 of the present invention.
FIG. 9 is a diagram illustrating a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Stamper 2 Pattern formation layer 3 Processed layer 4 Convex structure 5 Concave structure 6 Pattern formation layer convex part 7 Pattern formation layer recessed part 8 Substrate 9 Workpiece 10 Laminated film 100 Stamper 103 Convex structure 104 Resin thin film 105 Substrate 106 Mold area 107 Convex structure 108 Concave structure

Claims (6)

孔を有する構造体の製造方法であって、
被陽極酸化膜上に、陽極酸化処理により溶解する材料からなるパターン形成層を有する第1の部材を用意し、
複数の凸部を有する第2の部材を、該パターン形成層に押付けて、該パターン形成層に凹凸構造を形成し、
該凹凸構造の凹部に該パターン形成層を残存させたまま、該基板を陽極酸化溶液に浸して陽極酸化処理し、
該凹部側を開始点として該基板に孔を形成することを特徴とする孔を有する構造体の製造方法。
A method of manufacturing a structure having holes,
On the anodized film, a first member having a pattern forming layer made of a material that is dissolved by anodizing treatment is prepared.
A second member having a plurality of convex portions is pressed against the pattern forming layer to form a concavo-convex structure in the pattern forming layer;
With the pattern forming layer remaining in the recesses of the uneven structure, the substrate is immersed in an anodizing solution and anodized,
A method of manufacturing a structure having holes, wherein holes are formed in the substrate starting from the concave side.
前記パターン形成層は、前記第2の部材よりも強度の弱い材料である請求項1記載の孔を有する構造体の製造方法。The method for manufacturing a structure having holes according to claim 1, wherein the pattern forming layer is made of a material whose strength is weaker than that of the second member. 前記パターン形成層がアルコキシドを含有することを特徴とする請求項1又は2に記載の孔を有する構造体の製造方法。The method for producing a structure having holes according to claim 1 or 2, wherein the pattern forming layer contains an alkoxide. 前記第2の部材の前記凸部の高さが、前記パターン形成層の厚さより高いことを特徴とする請求項1から3のいずれか1項に記載の孔を有する構造体の製造方法。4. The method for manufacturing a structure having a hole according to claim 1, wherein a height of the convex portion of the second member is higher than a thickness of the pattern forming layer. 5. 請求項1から4のいずれか1項に記載の製造方法により形成されている前記孔の中に、機能性材料を充填する工程を有することを特徴とする機能性構造体の製造方法。A method for producing a functional structure, comprising a step of filling a functional material into the holes formed by the production method according to claim 1. 請求項5に記載の前記機能性材料が、磁性材料であることを特徴とする磁気記録媒体の製造方法。6. The method of manufacturing a magnetic recording medium, wherein the functional material according to claim 5 is a magnetic material.
JP2003163852A 2002-06-07 2003-06-09 Structure, functional structure, and method of manufacturing magnetic recording medium Expired - Fee Related JP3848303B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003163852A JP3848303B2 (en) 2002-06-07 2003-06-09 Structure, functional structure, and method of manufacturing magnetic recording medium
PCT/JP2003/015591 WO2004109401A1 (en) 2003-06-09 2003-12-05 Process for producing structure, structure thereof, and magnetic recording medium
US10/559,966 US7534359B2 (en) 2003-06-09 2003-12-05 Process for producing structure, structure thereof, and magnetic recording medium
AU2003286423A AU2003286423A1 (en) 2003-06-09 2003-12-05 Process for producing structure, structure thereof, and magnetic recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002167240 2002-06-07
JP2003163852A JP3848303B2 (en) 2002-06-07 2003-06-09 Structure, functional structure, and method of manufacturing magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2004066447A JP2004066447A (en) 2004-03-04
JP3848303B2 true JP3848303B2 (en) 2006-11-22

Family

ID=32032140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003163852A Expired - Fee Related JP3848303B2 (en) 2002-06-07 2003-06-09 Structure, functional structure, and method of manufacturing magnetic recording medium

Country Status (1)

Country Link
JP (1) JP3848303B2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2869601B1 (en) * 2004-04-28 2006-06-09 Commissariat Energie Atomique MOLD FOR NANO-PRINTING, METHOD OF MANUFACTURING SUCH MOLD AND USE OF SUCH A MOLD
TWI366218B (en) 2004-06-01 2012-06-11 Semiconductor Energy Lab Method for manufacturing semiconductor device
JP4954498B2 (en) * 2004-06-01 2012-06-13 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP4544518B2 (en) 2004-09-01 2010-09-15 キヤノン株式会社 Electric field excitation type light emitting device and image display device
JP4641442B2 (en) * 2004-09-01 2011-03-02 キヤノン株式会社 Method for producing porous body
JP4560356B2 (en) * 2004-09-01 2010-10-13 キヤノン株式会社 Method for producing porous body and structure
CN100395121C (en) * 2004-11-19 2008-06-18 鸿富锦精密工业(深圳)有限公司 Hot-press printing method
JP5168795B2 (en) * 2005-02-21 2013-03-27 学校法人東京理科大学 Manufacturing method of three-dimensional mold
WO2006088209A1 (en) * 2005-02-21 2006-08-24 Tokyo University Of Science Educational Foundation Administrative Organization Production method for 3-d mold, production method for finely machined product, production method for fine-pattern molded product, 3-d mold, finely machined product, fine-pattern molded product and optical component
JP2006310678A (en) * 2005-05-02 2006-11-09 Ricoh Opt Ind Co Ltd Substrate for forming micro surface structure, method of manufacturing article having micro surface structure, and article having micro surface structure manufactured by the method
JP5103712B2 (en) * 2005-06-16 2012-12-19 富士通株式会社 Method for producing nanohole structure
US7648641B2 (en) 2005-06-17 2010-01-19 Hitachi Global Storage Technologies Netherlands B.V. Method and apparatus for creating a topographically patterned substrate
JP4747693B2 (en) 2005-06-28 2011-08-17 住友電気工業株式会社 Method for forming resin body, method for forming structure for optical waveguide, and method for forming optical component
JP4612514B2 (en) 2005-09-27 2011-01-12 株式会社東芝 Stamper for magnetic recording medium, method for manufacturing magnetic recording medium using the same, and method for manufacturing stamper for magnetic recording medium
JP4861044B2 (en) * 2006-04-18 2012-01-25 キヤノン株式会社 Substrate processing method and method for manufacturing member having pattern region
JP2007329276A (en) * 2006-06-07 2007-12-20 Tokyo Ohka Kogyo Co Ltd Method for forming resist pattern by nanoimprint lithography
US7794861B2 (en) 2006-08-11 2010-09-14 Canon Kabushiki Kaisha Patterned media, method of manufacturing magnetic recording medium, and method of manufacturing a base
JP5094208B2 (en) * 2006-08-24 2012-12-12 キヤノン株式会社 Manufacturing method of structure
GB0701069D0 (en) * 2007-01-19 2007-02-28 Univ Bath Nanostructure template and production of semiconductors using the template
CN101414119B (en) * 2008-10-28 2011-06-22 吉林大学 Method for building sub-micron or nano-scale formwork by micrometre scale formwork
JP5739107B2 (en) * 2010-02-15 2015-06-24 公益財団法人神奈川科学技術アカデミー Method for producing porous structural material
JP5733747B2 (en) * 2011-03-23 2015-06-10 学校法人早稲田大学 Method for manufacturing article having fine pattern on surface
CN104181769B (en) * 2014-08-07 2018-03-30 北京大学 A kind of preparation method of volcano shape of the mouth as one speaks graphical sapphire substrate
JP6685886B2 (en) * 2016-12-08 2020-04-22 キオクシア株式会社 Template and method for manufacturing semiconductor device
WO2018118932A1 (en) * 2016-12-22 2018-06-28 Illumina, Inc. Imprinting apparatus

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062167A (en) * 1992-06-19 1994-01-11 Matsushita Electric Works Ltd Production of metallic body having fine pore and production of light emitting body for lamp
US5772905A (en) * 1995-11-15 1998-06-30 Regents Of The University Of Minnesota Nanoimprint lithography
JPH11224422A (en) * 1998-02-04 1999-08-17 Nippon Telegr & Teleph Corp <Ntt> Magnetic recording medium and manufacture thereof
JP4532634B2 (en) * 1998-12-25 2010-08-25 キヤノン株式会社 Method for producing pores
JP2000232095A (en) * 1999-02-12 2000-08-22 Nippon Telegr & Teleph Corp <Ntt> Formation method for fine pattern of semiconductor surface
JP2001166717A (en) * 1999-12-07 2001-06-22 Canon Inc Fluorescent sheet and its manufacturing method
JP2001250217A (en) * 2000-03-07 2001-09-14 Hitachi Maxell Ltd Information recording medium and its manufacturing method
JP2002004087A (en) * 2000-06-22 2002-01-09 Canon Inc Method for manufacturing nanostructure and nanostructure
JP4672839B2 (en) * 2000-09-06 2011-04-20 キヤノン株式会社 Luminescent body, structure and manufacturing method thereof
JP4724281B2 (en) * 2000-09-14 2011-07-13 キヤノン株式会社 Display device

Also Published As

Publication number Publication date
JP2004066447A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
JP3848303B2 (en) Structure, functional structure, and method of manufacturing magnetic recording medium
JP2005008909A (en) Structure manufacturing method
JP3714507B2 (en) Method for producing porous anodized alumina film
TWI422477B (en) Optical element molding die and method for molding optical element
JP2004513504A (en) Substrate related to structure and method of manufacturing the same
WO1998009005A1 (en) Method of manufacturing porous anodized alumina film
US7538042B2 (en) Method of manufacturing a structure having a projection
JP2003043203A (en) Antireflection film, method for manufacturing the same, stamper for manufacture of antireflection film, method for manufacturing the stamper, casting mold for manufacture of stamper and method for manufacturing the casting mold
TWI465759B (en) Mold and method for producing mold
JP5851165B2 (en) Method for forming microstructure and method for producing porous alumina composite
JP2003129288A (en) Porous structure and manufacturing process therefor
KR101064900B1 (en) Method of forming pattern
US7432218B2 (en) Method for producing porous body
US7534359B2 (en) Process for producing structure, structure thereof, and magnetic recording medium
JP2000315785A (en) Manufacture of nano structural member and nano structural member device
JP2003025298A (en) Structure having pore and its manufacturing method
JP2004314238A (en) Manufacturing method of nanostructure and nanostructure
JP2002332578A (en) Method of manufacturing nano-structure
JP4641442B2 (en) Method for producing porous body
JP2003305700A (en) Nano-structure, and method for manufacturing the same
JP2005307340A (en) Process for producing structure, process for producing magnetic recording medium, and process for producing molded product
JP2004319762A (en) Nanostructure and manufacturing method thereof
JP2004001191A (en) Irregularity structure and its manufacturing method and functional device
JP2012048030A (en) Method for forming substrate
KR101103484B1 (en) Method for fabricating roll stamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060824

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees