JP3847274B2 - 光変調素子及び通信システム - Google Patents
光変調素子及び通信システム Download PDFInfo
- Publication number
- JP3847274B2 JP3847274B2 JP2003156459A JP2003156459A JP3847274B2 JP 3847274 B2 JP3847274 B2 JP 3847274B2 JP 2003156459 A JP2003156459 A JP 2003156459A JP 2003156459 A JP2003156459 A JP 2003156459A JP 3847274 B2 JP3847274 B2 JP 3847274B2
- Authority
- JP
- Japan
- Prior art keywords
- line
- light
- modulation element
- light modulation
- input
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Description
【発明の属する技術分野】
本発明は、光変調素子及び通信システムに関し、特に、無線に用いられる数GHz以上の高周波信号を光によって伝送させるための光変調素子及び通信システムに関している。
【0002】
【従来の技術】
光信号を用いて通信や情報処理を行うシステムでは、電気信号(例えばマイクロ波やミリ波のような高周波信号)で光の位相や強度を変調することが必要である。このような光の変調方法には、直接変調と外部変調がある。
【0003】
直接変調は、図1(a)に示すように、半導体レーザなどの光源を駆動する電流を直接変調することにより、光源から出力される光そのものの強度を変調する方式である。直接変調は、光源の外部に変調器を設ける必要がないため、システムの小型化に適しているが、数GHz以上の高周波での光変調は困難であり、その上、半導体レーザ光の持つチャーピングにより、長距離のファイバ伝送が制限される。
【0004】
これに対し、外部変調は、図1(b)に示すように、半導体レーザなどの光源から出力された光(出力の安定した光)を光変調素子に入力し、光変調素子によって光の位相や強度を変調する。光の変調は、電気光学効果、音響光学効果、磁気光学効果、非線形光学効果などを用いて行うことが可能である。
【0005】
上述のように、半導体レーザを直接的に変調する方法によっては、超高速光変調を達成することが困難であるため、高速動作の可能な外部変調型の素子開発が急がれている。外部変調型の素子の中でも、ポッケルス効果を有する誘電体結晶を用いた電気光学光変調素子は、超高速での動作が可能であり、また、変調に伴う位相の乱れも少ないという利点を有している。このため、この電気光学光変調素子は、高速情報伝送や長距離光ファイバ通信などに非常に有効である。また、電気光学光変調素子を用いて光導波路構造を作製すれば、素子の小型化と効率化とを一挙に実現できる可能性がある。
【0006】
一般に、電気光学光変調素子は、電気光学結晶上に変調電極(信号電極)として変調信号を伝搬させる伝送線路と、この伝送線路の近傍に形成された光導波路とによって構成されている。そして、変調電極の周辺に誘起される電界によって光導波路部分の屈折率を変化させ、それによって光導波路中を伝搬する光波の位相を変化させる。
【0007】
電気光学光変調素子に用いられる通常の結晶では、電気光学係数が比較的小さい。電気光学係数は、光変調の基本となるパラメータである。したがって、電気光学光変調素子では、電界を光導波路に効率良く印加することが重要となる。
【0008】
図2は、電気光学光変調素子の基本構造を示す断面図である。電気光学効果を有する結晶(電気光学結晶)の基板表面領域に光導波路が形成されており、光導波路の上には変調用電極が形成されている。
【0009】
電気光学結晶は光学的異方性を有しており、印加される電界の大きさに略比例して屈折率が変化する(ポッケルス効果)。このため、変調電極に与える電位Vを調節することにより、光導波路の屈折率nを変化させることができる。光導波路の屈折率変化量Δnは、光導波路に印加される電界Eに比例する。光導波路の屈折率がΔnだけ変化すると、図2に示すように、出力光の位相がΔφだけ変化する。位相の変化量Δφは、一般に、電界強度Eと光導波路の長さLの積に比例する。
【0010】
光導波路に電界を形成するための変調信号は、光変調素子の外部から入力線路を介して光変調素子の電極に与えられるため、変調信号の入力を効率良く行うことが重要となる。
【0011】
次に、図3を参照しながら、従来の光変調素子をさらに詳しく説明する。図3は、従来の光変調素子の平面図であり、この光変調素子は、特許文献1に開示されている。
【0012】
図3の光変調素子は、電気光学効果を有する材料からなる基板101と、基板101の表面部に形成された光導波路112とを備えている。光導波路112は、基板101の一部に金属を熱拡散することなどによって形成されている。
【0013】
基板101の表面において、光導波路112の左右両側には、アルミニウムや金などの金属膜からなる平行結合線路13が設けられており、基板101の裏面上には、金属膜からなるグランドプレーン114が設けられている。平行結合線路113は、互いに平行な2つの線路113a、113bによって構成されている。
【0014】
この従来例では、平行結合線路113の各線路113a、113bは単一線路124によって互いに結合されているが、同公報には、2つの線路113a、113bが結合されていない構造も開示されている。
【0015】
線路113bの一部分に、タップ128を介して接続された入力端子129が設けられており、入力端子129とグランドプレーン114との間には高周波信号源119が接続されている。
【0016】
入力光は、光導波路112の一方の端部から導入され、光導波路112のうち平行結合線路113の各線路113a、113bの間隙部116に位置する部分を通過した後、光導波路112の他方の端部から出力光として出力される。このとき、入力端子129と平行結合線路113とが磁界結合された状態となるので、高周波信号源119から高周波信号が供給されると、平行結合線路113の各線路113a、113bに高周波信号が伝搬し、間隙部116に電界が生じる。この電界強度に応じて、電気光学効果により光導波路112の屈折率が変化する。その結果、出力光の位相が変化し、本光変調素子は位相変調器として動作する。
【0017】
ここで、平行結合線路には、通常、偶モードと奇モードの2種類のモードが存在する。そして、奇モードでは平行結合線路を構成する2本の線路の電圧が互いに反転することとなるため、間隙部に非常に大きな電界が誘起される。図3に示す光変調素子では、変調信号によって平行結合線路113の各線路113a、113bに奇モードを励振させることにより、高い効率の光変調が可能となる。
【0018】
【特許文献1】
米国特許第5,400,416号明細書
【0019】
【発明が解決しようとする課題】
今後、光変調素子が光通信システム等の中で汎用的に使用されるためには、前記従来の光変調素子の特性に改善の余地が残されている。つまり、より効率の高い光変調素子の開発が求められている。
【0020】
本発明の主たる目的は、光通信システムなどに組み込み得る高効率の光変調素子の提供を図ることにある。
【0035】
【課題を解決するための手段】
本発明の光変調素子は、少なくとも一部が電気光学効果を有する基板に形成されており、そして2つの分岐光導波路を具備している光導波路と、前記基板の表面に形成され、電磁気的に互いに結合した第1、第2、および第3の導体線路を有し、前記光導波路に変調電界を印加する変調電極と、前記基板の裏面に形成され、前記第1の導体線路とともに第1のマイクロストリップ線路を形成し、前記第2の導体線路とともに第2のマイクロストリップ線路を形成し、前記第3の導体線路と共に第3のマイクロストリップ線路を形成する接地導電層と、前記変調電極に光変調用高周波信号を供給する電気信号入力部と、を備え、前記第3の導体線路は、第1の導体線路および第2の導体線路の間に挟まれ、前記第1の導体線路の内側端は、一方の前記分岐光導波路の直上に位置しており、前記第2の導体線路の内側端は、他方の前記分岐光導波路の直上に位置しており、前記第1の導体線路と第2の導体線路には異なる符号の電位が印加され、前記第3の導体線路の電位は0である。
【0038】
好ましい実施形態において、前記第1、第2、および第3の導体線路を、少なくとも一方の端部において、相互に接続する接続部材をさらに有している。
【0041】
好ましい実施態様において、前記電気信号入力部は、前記接地導電層とともにマイクロストリップ線路を形成する入力線路を有しており、前記入力線路は、前記第1の導体線路に接続されている。
【0043】
本発明の通信システムは、上記いずれかの光変調素子と、前記光変調素子に光を入力する入力部と、前記光変調素子に前記変調用高周波信号を供給する制御部と、を備えている。
【0044】
(参考形態1)
以下、図4(a)から図4(c)を参照しながら、本発明による光変調素子の第1の参考形態を説明する。図4(a)は、本参考形態に係る光変調素子の平面構成を示し、図4(b)は、その導波路を垂直に横切る断面を示している。図4(c)は、この光変調素子の変調電極が形成する電界の強度分布を模式的に示している。
【0045】
本参考形態に係る光変調素子は、図4(a)に示すように、電気光学効果を有する基板11の表面部に安息香酸を用いたプロトン交換法などを用いて形成された光導波路12を有している。基板11は、例えばタンタル酸リチウム(LiTaO3)単結晶やニオブ酸リチウム(LiNbO3)単結晶などの材料から形成される。
【0046】
光導波路12は、2箇所の分岐点18a、18bで2つの分岐光導波路12a、12bに分岐している。入口側光導波路12xから入力された入力光は、一方の分岐点18aで分岐して2つの分岐光導波路12a、12bを通過した後、他方の分岐点18bで結合し、共通の出口側光導波路12yを進む。このような構成の光導波路12は、「マッハツェンダ干渉計型光導波路」と称されている。
【0047】
基板11の上には、光導波路12の各分岐光導波路12a、12bに沿うように延びる2つの線路13a、13bから形成された平行結合線路13が設けられている。各線路13a、13bの各内側端は、各分岐光導波路12a、12bのほぼ中央部の直上に位置するように形成されている(図4(b))。各線路13a、13bの両端部は、接続線路16a、16bを介して、互いにつながっている。
【0048】
さらに基板11の上には、平行結合線路13の一方の線路13bに接続された入力線路(給電線路)15が設けられており、この入力線路を介して、変調用電気信号(高周波信号)が入力される。
【0049】
平行結合線路13の各線路13a、13b、接続線路16a、16b及び入力線路15は、真空蒸着法によって堆積されたアルミニウムや金などの金属からなる膜をフォトリソグラフィ及びエッチング技術を用いてパターニングすることによって得られる。基板11の裏面には、同様の方法で作製されたグランドプレーン(接地された導電層)14が設けられている。
【0050】
なお、図4(b)には示されていないが、線路13a、13bと基板11との間には、SiO2などからなる絶縁性のバッファ層が形成されていることが好ましい。
【0051】
本参考形態の光変調素子における変調電極は、電磁気的に結合した線路13a、13b、および接続線路16a、16bによって構成されている。そして、線路13aとグランドプレーン14との間には第1のマイクロストリップ線路が形成され、線路13bとグランドプレーン4との間には第2のマイクロストリップ線路が形成されている。変調のために入力された電気信号は、これらのマイクロストリップ線路を伝搬する。
【0052】
変調対象となる光(レーザ光)は、入口側光導波路12xから入力され、各分岐光導波路12a、12bを通過する際に、以下のようにして変調作用を受ける。
【0053】
なお、本参考形態では、光を変調するための電気信号(高周波信号)を入力線路15を介して平行結合線路13の各線路13a、13bに供給する。このとき、入力線路15を介して平行結合線路13を伝搬する高周波信号の波長は、その周波数や基板の誘電率などによって決まる。本参考形態では、各線路13a、13bの長さや幅などの設計パラメータが入力される高周波信号の波長に応じて適切な値に設定されているため、所定の高周波信号を入力線路15に与えると、平行結合線路13で共振が生じる。
【0054】
このような共振が生じると、平行結合線路13の間隙部17には、図4(b)に点線で示すような電界が形成される。このとき、信号電力が共振器内に蓄積されるため、電界の強度が極めて大きくなる。この電界は、共振周波数で振動し、その向きおよび強度が周期的に変化する。このような振動電界が光導波路またはその近傍に形成されると、電気光学的効果により、分岐光導波路12a、12bを構成する材料の屈折率が電界強度に応じて周期的に変化する。
【0055】
本参考形態では、図4(b)に示すように、分岐光導波路12aおよび分岐光導波路12bに互いに上下逆方向の電界が印加される。このため、基板11が例えばzカットのタンタル酸リチウム結晶から形成されている場合、2つの分岐光導波路12a、12bを通る光に対して、互いに逆の位相変化が与えられる。その結果、出口側光導波路12yでは、分岐光導波路12a、12bを通過した2つの光の干渉が生じ、この干渉によって出力光の強度が変化する。こうして、本参考形態の光変調素子は、光強度変調器として動作することになる。
【0056】
ここで、平行結合線路13における共振モードについて説明する。
【0057】
本参考形態における平行結合線路13の各線路13a、13bは、互いに独立した2本の平行伝送線路であり、電磁気的に結合するように配置されている。一方の線路13aとグランドプレーン14とによって1つの伝送線路(マイクロストリップ線路)が構成され、他方の線路13bとグランドプレーン14とによってもう1つの伝送線路(マイクロストリップ線路)が構成されている。これらの2つの伝送線路は、互いに平行かつ近接して配置されているため、電磁気的に結合し、平行結合線路13が形成される。
【0058】
伝送線路は、上記の構成を有するものに限定されず、往路と復路との2本の線路を備え、電磁波が伝搬可能なものであればよい。その場合、往路と復路のうちの一方の線路(本参考形態における線路13a又は13b)が通常の線路電極(ストリップ電極、ホット電極などと呼ばれる)であり、他方の線路が接地電極(本参考形態におけるグランドプレーン14)である。
【0059】
平行結合線路13は、単独でも存在しうる2つの伝送線路が互いに結合することにより構成されているため、共振モードとして、互いに独立な偶モードと奇モードの2種類の伝搬モードが存在する。
【0060】
図5(a)および図5(b)は、それぞれ、図4(b)に示す断面における偶モードおよび奇モードの電界(実線)および磁界(破線)を模式的に示している。偶モードとは、図5(a)に示すように、2本の線路電極の電圧が等しい(同相の)モードである。偶モードでは、各線路電極と接地電極との間に電界が形成されるが、線路間の間隙部(図4(b)に示す間隙部17)にはほとんど電界が形成されない。
【0061】
これに対し、奇モードは、図5(b)に示すように、結合した2本の平行線路の電圧の正負が逆の(逆相の)モードである。奇モードでは、電界が、各線路と接地電極との間だけでなく、線路間の間隙部(図4(b)に示す間隙部17)にも形成される。結合した2つの線路が接近している場合には、線路間の間隙部に特に大きな電界が形成される。
【0062】
本参考形態では、平行結合線路の各線路13a、13bに奇モードの共振が生じるように、各線路13a、13bの長さおよび幅、ならびに入力線路と線路13bとの接続位置を調節している。具体的には、各線路13a、13bの長さを、高周波変調信号の波長の半分に設定している。また、後述するように、奇モードの信号伝搬の反射を抑制するように、入力線路15と線路13aとの接続箇所を適切な位置に設定している。このため、平行結合線路3に1/2波長の奇モード共振が生じ、その結果、2本の線路13a、13b間の間隙部17には大きな電界が誘起されるため、極めて高い効率の光変調が可能となる。
【0063】
なお、本参考形態では、平行結合線路13の両端が接続線路16a、16bによって接続されているため、線路13aと線路13bとの間に生じる電圧の分布状態は、図4(c)に示すように、線路13a、13bの両端で0、中央で最大となる三角関数状である。線路13a、13b間の電界の向きは、どの部分でも同じであるため、1/2波長の線路長の全体に亘って、光が1つの線路13a(又は13b)の下方の分岐光導波路12a(又は12b)中を通過する間に受けた位相変化が相殺されることなく、足し合わされ続けるので、高い変調効率が得られる。
【0064】
本参考形態の光変調素子を適切に動作させるためには、変調信号によって平行結合線路13に奇モードによる共振を効率よく起こさせる必要がある。本参考形態では、入力インピーダンスと整合のとれる位置に入力線路15を接続することで、奇モードによる共振を容易に実現することができる。
【0065】
以下、本参考形態の光変調素子および従来の構造を有する光変調素子(比較例)について、電磁界シミュレーションにより、素子特性を解析した結果を説明する。
【0066】
図6は、電磁界シミュレーションに用いた平行結合線路及び入力線路の平面寸法及び接続位置を示す平面図である。図7は、電磁界シミュレーションによって得られた光変調素子の共振状態における反射損特性を示すグラフである。
【0067】
この解析において、基板11を、厚さ0.4mmのzカットのタンタル酸リチウム結晶(比誘電率41)とし、平行結合線路13の各線路13a、13bの幅を0.05mmとし、間隙部17の幅を0.02mmとし、入力線路15の幅を特性インピーダンスが50Ωとなるよう0.05mmとした。各線路13a、13b、16a、16b、15を構成する材料は金であり、膜厚は2μmとしている。平行結合線路13の各線路13a、13bの長さと、入力線路17−線路13b間の接続位置とは、電磁界シミュレータを用いて、奇モードが10GHzで共振し、かつ、その周波数で、入力線路17に入力された信号の反射が最も少なくなるよう、言い換えれば、入力インピーダンスが整合するように決定した。
【0068】
その結果、図6に示すように、平行結合線路13の各線路13a、13bの長さは3mm、入力線路15の位置は平行結合線路13の中央から0.69mmとなる。この場合、図6からわかるように、共振点で入力信号の反射はなくなり、ほぼすべての信号電力が共振器に入力されている。等角写像法による計算によると、この場合の光変調効率は、2本の分岐光導波路中の光波にπの位相差を与えることになる。言い換えれば、光出力を0から最大まで変化させるのに必要な電力は約0.43Wとなることがわかった。この電力は、従来の光変調素子に比べて少なく、本参考形態によれば、高い変調効率を実現できる。
【0069】
図8(a)は、平行結合線路13に入力する高周波信号の波形を示し、図8(b)は、本参考形態の光変調素子の出力光強度/入力光強度の比を示し、図8(c)は、比較例の出力光強度/入力光強度の比を示している。図8(a)のグラフの縦軸は、高周波信号の電圧であり、横軸は時間である。図8(b)および図8(c)のグラフの縦軸は、入力光強度に対する出力光強度の比であり、横軸は時間である。入力光強度に対する出力光強度の比は、光導波路の損失を無視して計算した。
【0070】
2本の分岐光導波路の間にはπ/2位相バイアスを印加している条件のもとで、シミュレーションを行った。解析に用いた比較例の光変調素子において、共振周波数(10GHz)、線路113a、113bの幅および厚さは、本参考形態の各線路13a、13bと同じとし、かつ、光導波路112を2つに分岐させている。各線路の長さ(1.5mm)と、入力線路129−線路113間の接続位置は、電磁界シミュレータを用いて、奇モードが10GHzで共振し、入力インピーダンスが整合するように設定している。
【0071】
図8(b)のグラフと図8(c)のグラフとを比較すると、本参考形態の光変調素子の光変調効率が、比較例の光変調効率よりも大きく向上していることがわかる。本参考形態で光変調効率が向上する理由は、以下のとおりであると考えられる。
【0072】
まず、平行結合線路13を構成する2本の線路13a、13bの両端を接続線路16a、16bによって接続したことにより、図4(c)に示すように、1/2波長の共振器として機能する平行結合線路13を実現することができる。これに対し、図3に示す従来の光変調素子の平行結合線路113では、1/4波長の共振状態しか実現できない。
【0073】
このように、本参考形態によれば、奇モードの共振を生じさせた時、2つの接続線路16a、16bが共振の節となり得るが、図3に示す従来の光変調素子における平行結合線路113a、113bでは、奇モードのインピーダンス整合をとると、開放端が共振の節ではなく腹になる。本参考形態では、1/2波長の奇モード共振を生じさせることができるため、分岐光導波路12a、12bのうち、高周波変調信号の1/2波長に相当する長さを有する部分を通過する光に変調を加えることができ、図3の光変調素子に比べて光変調効率が向上する。
【0074】
次に、図9(a)および図9(b)を参照しながら、10GHzで共振する電極構造を有する光変調素子と26GHzで共振する電極構造を有する光変調素子の参考例を説明する。
【0075】
上記2つの光変調素子は、それぞれ、図9(a)および図9(b)に示すサイズおよびレイアウトの変調電極構造を有している。基板は、zカットのLiTaO3(厚さ0.4mm)を用い、安息香酸を用いたプロトン交換により、基板表面に幅5μmのマッハツェンダ型の光導波路を形成した。
【0076】
光導波路が形成された側の基板表面を厚さ0.13μmのSiO2層からなるバッファ層によって覆った後、そのバッファ層上に真空蒸着法によってアルミニウム膜(厚さ0.9μm)を堆積した。フォトリソグラフィおよびエッチング技術を用いて、このアルミニウム膜をパターニングし、アルミニウムからなる平行結合線路や入力線路を同時に形成した。平行結合線路の幅は50μm、間隙部の幅を20μm、入力線路の幅は110μmとした。なお、図9(a)および(b)では、平行結合線路の幅と入力線路の幅の大小関係は実際のスケールを反映してない。
【0077】
変調の実験では、波長1.3μmの光を用いて行った。測定によって求めた変調特性を示すグラフを図10に示す。図10に示すグラフは、縦軸が反射損を示し、横軸が周波数を示している。また、グラフ中において、実測データは実線で示され、電磁界シミュレーションによって求めたデータは破線で示されている。
【0078】
図10に示す結果から、共振器の信号電力の蓄積度を示す指数である無負荷Q値が約30であることがわかった。これは、共振器に入力された信号電力の約30倍の電力が共振器に蓄積されていることを意味している。この結果から、本参考形態の変調電極を用いることにより、極めて高い変調効率を実現できることが確認された。図11は、縦軸が光変調素子の出力を示し、横軸は時間を示している。
【0079】
これらの図からわかるように、10GHzの高い周波数で共振する変調電極を備えた光変素子が得られた。なお、100mWの高周波信号を投入したときの変調指数は0.2radであった。変調光のスペクトルを図12に示す。
【0080】
図13は、26GHzで共振する電極を有する光変調素子における変調電極の反射特性(実測値)を示すグラフである。
【0081】
図13に示す結果から、無負荷Q値が約60であることがわかった。この結果からも、本参考形態の変調電極を用いることにより、極めて高い変調効率を実現できることが確認された。変調光のスペクトルを図14に示す。
【0082】
上記何れの光変調素子でも、奇モードでの共振が生じている。平行結合線路では、偶モードでの共振も生じ得るが、同一の電極構造においても、奇モードと偶モードとの間に共振周波数やインビーダンスに差異が存在する。所定周波数の高周波信号に対して奇モードのみが励振されるように、本実施例では、平行結合線路の長さ、間隙部の幅、入力線路との接続位置などが調節されている。
【0083】
(参考形態2)
次に、図15(a)から(c)を参照しながら、本発明の光変調素子の第2の参考形態を説明する。図15(a)は、本参考形態に係る光変調素子の平面構成を示し、図15(b)は、基板の残留分極の極性が逆の領域を示している。図15(c)は、平行結合線路における電界強度の分布を示している。
【0084】
本参考形態に係る光変調素子には、図15(a)に示すように、電気光学効果を有する基板21の表面部に安息香酸を用いたプロトン交換法などを用いて形成された光導波路22を有している。基板21は、例えば、タンタル酸リチウム(LiTaO3)単結晶、ニオブ酸リチウム(LiNbO3)単結晶などの材料から形成される。
【0085】
光導波路22は、2箇所の分岐点28a、28bで2つの分岐光導波路22a、22bに分岐しており、入口側光導波路22xから入力された入力光が一方の分岐点28aで分岐して2つの分岐光導波路22a、22bを通過した後、他方の分岐点28bで共通の出口側光導波路22yを進むように構成されている。
【0086】
基板21の上には、光導波路22の各分岐光導波路22a、22bに沿うように延びる2つの線路23a、23bからなる平行結合線路23が設けられている。各線路23a、23bの各内側端は、各分岐光導波路22a、22bのほぼ中央部の直上に位置するように形成されている。さらに、基板21の上には、平行結合線路23の一方の線路23bに接続され平行結合線路23に共振を起こさせる入力信号を印加するための入力線路25が設けられている。平行結合線路23の各線路23a、23b、接続線路26a、26b及び入力線路25は、真空蒸着法、フォトリソグラフィ及びエッチングなどのプロセスを用いて形成されたアルミニウムや金などの金属膜によってそれぞれ構成されている。また、基板21の裏面には、金属膜の蒸着法などを用いて形成されたグランドプレーン24が設けられている。以上の構成は、基本的には、第1の参考形態の光変調素子と同じである。
【0087】
本参考形態では、第1の参考形態とは異なり、各線路23a、23bの両端部が互いに接続されることなく開放端となっている。また、基板21は、互いに残留分極の方向(電気光学係数の正負)が異なる2つの領域21a、21b(ドメイン)に分かれている。つまり、本参考形態においては、平行結合線路23を構成する2つの線路23a、23bの各前半部分の下方に位置する領域と、2つの線路23a、23bの各後半部分の下方に位置する領域とは、互いに極性が異なる残留分極を有している。
【0088】
本参考形態では、2つの線路23a、23bの各後半部分の下方に位置する領域21aが第1極性(正又は負)の残留分極を有していおり、それ以外の領域21b、つまり2つの線路23a、23bの各前半部分の下方に位置する領域を含む領域21bが第2極性(負又は正)の残留分極を有している。言い換えると、領域21aの残留分極は他の領域21bとは反転した残留分極を有している。
【0089】
入力光は、入口側光導波路22xから導入され、各分岐光導波路22a、22bを通過する際に、以下のように、光変調作用を受ける。
【0090】
入力線路25から高周波信号が入力されて、平行結合線路23の各線路23a、23bに共振が生じると、間隙部27には図4(b)に点線で示すような電界と同様の電界が生じる。そして、電気光学的効果により、分岐光導波路22a、22bを構成する材料の屈折率が電界強度に応じて変化する。本参考形態においては、第1の参考形態と同様に、分岐光導波路22aと分岐光導波路22bには互いに上下逆方向の電界が印加される。このため、基板21が例えばzカットのタンタル酸リチウム結晶等により構成されている場合、2つの分岐光導波路22a、22bを通る光には互いに逆の位相変化が与えられる。したがって、出口側光導波路22yでは、分岐光導波路22a、22bを通過した2つの光の干渉が生じ、この干渉によって出力光の強度が変化することにより、本参考形態の光変調素子は光強度変調器として動作する。
【0091】
本参考形態では、平行結合線路23の両端が開放端となっているので、線路23aと線路23bとの間に生じる電圧の分布状態は、図15(c)に示すように、線路23a、23bの中央で0、両端で符号が逆で最大となる三角関数状である。したがって、線路23a、23b間の電界の向きは、前半部分と後半部分とでは逆である。もし、基板21全体の残留分極の極性が均一であるとすると、光が平行結合線路23の各線路23a、23bの下方の各分岐光導波路22a、22bを通過している間は、前半部分と後半部分とでは逆の位相変化が与えられるので、位相変化がキャンセル(相殺)されて、高い変調効率が得られない。しかし、本参考形態の光変調素子においては、平行結合線路23の前半部分の下方に位置する基板21の領域21bと、平行結合線路23の前半部分の下方に位置する基板21の領域21aとでは、電位光学係数の正負が逆である。その結果、図15(c)の点線に示すように、各線路23a、23bに後半部分でも前半部分と同じ符号の電界を印加したのと実質的に同じの位相変調が、各分岐光導波路22a、22bを通過する光に与えられる。したがって、光が平行結合線路23の線路23a(又は23b)の下方の分岐光導波路22a(又は22b)中を通過する間に受けた変調による位相変化が相殺されることなく足し合わされ続けるので、高い変調効率が得られる。
【0092】
以上の説明では、光の走行時間を無視している。実際の光変調素子では、光の速度が有限であるため、光の感じる電界強度は、図15(c)の実線とは異なる。このため、領域21aの最適なパターンは、厳密には、図15(b)に示すパターンとは異なる。具体的には、基板21中の領域21aが各線路23a、23bの後半部分よりも高周波信号の位相の遅れ分だけやや下流側にずらせておくことが好ましい。
【0093】
なお、領域21aのパターンは、図15(b)に示すように、必ずしも広い面積の残留分極を他の領域21bとは反転させる必要はなく、各分岐光導波路22a、22b及びその必要最小限の周辺部分だけ残留分極を反転させておけばよい。
【0094】
本参考形態の光変調素子によると、基板21に、残留分極の向きの相違を利用して電気光学係数の正負が相異なる領域21a、21bを設けることにより、分岐光導波路22a、22b中を通過する間に受けた変調による位相変化が相殺されることなく足し合わされ続けるようにすることができる。つまり、本参考形態においては、第1の参考形態において各線路13a、13bの両端を接続して、1/2波長の共振器を構成することにより得た効果を、基板21中に残留分極の正負が異なる領域を設けることにより、発揮することができ、高い変調効率が得られる。
【0095】
なお、本参考形態の光変調素子は、両端が開放された半波長共振器として機能する平行結合線路23を有しているが、本発明はこのような構成を有する参考形態に限定されない。例えば、両端が接続線路によって接続された1波長共振器として機能する平行結合線路を設け、平行結合線路の各線路の後半部分に対応する基板の分岐光導波路の残留分極の極性を他の領域とは反転させておいてもよい。そのような構成によれば、1波長分だけ受けた光変調の位相変化を相殺することなく足しあわせることができる。本参考形態の光変調素子によれば、周波数が同じ場合、共振器長が図4に示す光変調素子の共振器長の2倍になるため、その分、変調効率が向上する。また、より高次の共振を用いることにより、変調効率を更に高めることが可能である。
【0096】
このように、奇モードによる高次共振を用いることによって、変調効率を飛躍的に高めることが可能である。平行結合線路の一端が接続され、他端が開放された構造を有する光変調素子であっても、残留分極の極性の相違を利用することにより、同じ効果を発揮することができる。
【0097】
なお、残留分極の極性が反転した領域の個数は1つに限定されない。適切な個数の分極反転領域を配列することにより、変調電極を長くすることができる。
【0098】
(実施形態1)
次に、図16(a)および図16(b)を参照しながら、本発明の光変調素子の第3の実施形態を説明する。図16(a)は、本実施形態に係る光変調素子の平面構成を示し、図16(b)は、その縦断面図である。
【0099】
本実施形態に係る光変調素子には、図16(a)に示すように、タンタル酸リチウム(LiTaO3 )単結晶、ニオブ酸リチウム(LiNbO3 )単結晶などの電気光学効果を有する基板31の表面部に、安息香酸を用いたプロトン交換法などを用いて形成された光導波路32が設けられている。光導波路32は、2箇所の分岐点38a、38bで2つの分岐光導波路32a、32bに分岐しており、入口側光導波路32xから入力された入力光が一方の分岐点38aで分岐して2つの分岐光導波路32a、32bを通過した後、他方の分岐点38bで共通の出口側光導波路32yを進むように構成されている。
【0100】
また、基板31の上には、光導波路32の各分岐光導波路32a、32bに沿うように延びる3つの線路33a、33b、33cからなる平行結合線路33が設けられている。各線路33a、33bの各内側端は、各分岐光導波路32a、32bのほぼ中央部の直上に位置するように形成されている。また、線路33cは、2つの線路33a、33bの中間に位置している。各線路33a、33b、33cの両端部は、接続線路36a、36bを介して互いにつながっている。さらに、基板31の上には、平行結合線路33の1つの線路33bに接続され平行結合線路33に共振を起こさせる入力信号を印加するための入力線路35が設けられている。平行結合線路33の各線路33a〜33c、接続線路36a、36b及び入力線路35は、真空蒸着法、フォトリソグラフィ及びエッチングなどのプロセスを用いて形成されたアルミニウムや金などの金属膜によってそれぞれ構成されている。また、基板31の裏面には、金属膜の蒸着法などを用いて形成されたグランドプレーン34が設けられている。
【0101】
入力光は、入口側光導波路32xから導入され、各分岐光導波路32a、32bを通過する際に、以下のように、光変調作用を受ける。
【0102】
入力線路35から高周波信号が入力されて、平行結合線路33の各線路33a、33b、33cに共振が生じると、各間隙部37a、37bには図16(b)に点線で示すような電界が生じる。そして、電気光学的効果により、分岐光導波路32a、32bを構成する材料の屈折率が電界強度に応じて変化する。したがって、出口側光導波路32yでは、分岐光導波路32a、32bを通過した2つの光の干渉が生じ、この干渉によって出力光の強度が変化することにより、本実施形態の光変調素子は光強度変調器として動作する。
【0103】
ここで、図16(a)および(b)に示すような3本の線路33a〜33cを有する平行結合線路33においては、通常、3種類の伝搬モード1〜3が存在する。
【0104】
以下の表1は、モード1〜3における各線路33a〜33cの電位の符号を表にして示している。
【0105】
【表1】
【0106】
図16(b)は、表1に示すモード2で共振を生じさせた場合の分岐光導波路32b、32b付近における電界の方向を示している。図16(b)からわかるように、2本の分岐光導波路32a、32bには上下逆方向の電界が印加されるので、光波に位相差が生じ出口側光導波路32yで干渉を生じるので、本実施形態の光変調素子は、光強度変調器として機能する。
【0107】
一方、図16(c)は、表1に示すモード3で共振を生じさせた場合の分岐光導波路32b、32b付近における電界の方向を示している。モード3で共振させる場合は、分岐光導波路32b、32bと、3つの線路33a、33b、33cとの配置関係が、図16(a)および(b)に示す配置関係とは少し異なっている。より具体的には、分岐光導波路32b、32bに形成される電界の向きが相互に反対になるように、分岐光導波路32bの位置がシフトしている。
【0108】
このように、本実施形態の構成によれば、線路33a、33b、33cの全てが常に同電位になるモード1では、光強度変調器としては機能しない。このため、本実施形態の光変調素子は、モード1以外のモード2または3で共振するように設計される。
【0109】
ここで、2つの分岐光導波路32a、32bの間隔は、光の相互干渉を回避するためにそれほど狭くできないが、間隙部37a、37bの幅は、線路33cが設けられているために、第1、第2の実施形態に比べ、遙かに狭くなる。したがって、間隙部37a、37bには非常に大きな強度の電界が生じる。よって、本実施形態の光変調素子により、高い変調効率が得られる。
【0110】
なお、本実施形態においては、両端が接続された半波長共振器として機能する平行結合線路を有する例について説明したが、本発明はかかる実施形態に限定されるものではない。例えば、第2の参考形態のように、両端が開放された平行結合線路や、従来例の図3に示す一端が接続され他端が開放された1/4波長型共振器として機能する平行結合線路を有する光変調素子によっても、本実施形態の基本的な効果を発揮することは可能である。
【0111】
また、本実施形態の光変調素子においても、第2の参考形態と同様に、分極反転領域を光導波路の一部に設けても良い。基板に残留分極の極性が相異なる2つの領域を設けることにより、第2の参考形態の効果と第1の実施形態の効果を併せて発揮ざせることができる。
【0112】
(参考形態3)
次に、図17(a)から17(c)を参照しながら、本発明による光変調素子の第3の参考形態を説明する。図17(a)は、本参考形態の光変調素子の平面構成を示す上面図であり、図17(b)は、図17(a)のA0−A1線断面図である。図17(c)は、本参考形態の一部を拡大して示す斜視図である。
【0113】
本参考形態の光変調素子は、図17(a)および(b)に示されるように、同軸コネクタ209が取り付けられた第1の基板固定用冶具212aと、基板11が固定された第2の基板固定用冶具212bとを備えており、同軸コネクタの中心線210を入力線路15に対して適切に配置するようにして、第1の冶具212aを第2の冶具212aに固定する。第1の冶具212aは、例えばネジなどによって第2の冶具212bに固定される。
【0114】
同軸コネクタの中心線210の先端部分には、中間接続部材211が取り付けられており、この中間接続部材211を介して、中心線210は入力線路15に接続される。このように本参考形態の光変調素子では、その電気信号入力部が入力線路15とは別に同軸コネクタ209および中間接続部材211を有している点で前述の参考形態とは異なっている。
【0115】
本参考形態では、変調用高周波信号を生成する外部駆動回路と、光変調素子の同軸コネクタとは、例えば同軸ケーブルによって接続される。同軸ケーブルを伝搬してきた高周波信号は、中間接続部材211を介して、入力線路15に与えられる。
【0116】
中間接続部材211は、図17(c)に示されるように、同軸コネクタの中心導体210の外周と接するように曲げられた部分を有する第1接続部214と、入力線路15に接触する平面状部分を有する第2接続部215とを備えている。
【0117】
第1接続部214と第2接続部215とを連結する部分は、弾性部材から形成されていることが好ましい。このような弾性部材を用いることにより、第2接続部材215を第1接続部材214に対して下方に付勢することができる。このため、図17(b)に示すように、第2接続部215の底面が入力線路15の上面を押圧し、第2接続部215と入力線路15との間の電気的接触が確保しやすくなる。このような構成を採用すると、第2接続部215と入力線路15との間に、導電性の接着剤を塗布する必要がなく、接続が容易になる。なお、第1接続部214と第2接続部215とは、一枚の板状導電体から形成されることが好ましい。
【0118】
以上の構成を採用することにより、光コネクタ209を介して入力線路15に与えられた高周波信号は、平行結合線路13に伝搬し、線路13aと線路13bとの間で共振を生じさせる。この結果、間隙部17に高周波の振動電界が生じるため、電気光学効果を有する材料から形成されている光導波路12の屈折率は高周波信号に応じて変化する。このとき、線路13a及び線路13bの下を通る光導波路には、図17(b)に示すように、互いに上下逆方向の電界が形成されるため、各分岐光導波路を伝搬する光に位相差が形成される。
【0119】
図18は、本参考形態の構成を有する光変調素子の入力線路15の端部Pにおける反射特性を示している。図18からわかるように、変調電極の共振周波数は、26GHzであり、共振周波数において入力インピーダンスが整合している。図19は、入力線路15の周波数に対する透過損出の関係を示すグラフである。
【0120】
(参考形態4)
次に、本発明による光変調素子の第4の参考形態を説明する。
【0121】
本参考形態の光変調素子は、第3の参考形態における光変調素子とほぼ同様の構成を有しているが、基板11上に入力線路を設けられていない点で、第3の参考形態における光変調素子とは異なっている。
【0122】
図20(a)は、本参考形態の光変調素子を示す平面面図であり、図20(b)は、そのB0−B1線断面図である。
【0123】
本参考形態の光変調素子の電気信号入力部は、参考形態3と同様に、同軸コネクタ9コネクタ209および中間接続部材211を有しているが、この中間接続部材211が変調電極13に入力線路を介することなく直接的に接続されている。
【0124】
光変調素子を動作させるためには、変調用の高周波信号を平行結合線路13に供給することによって平行結合線路3に奇対称モードによる共振を効率よく引き起こす必要がある。このことは、中間接続部材211を入力インピーダンス整合のとれる位置に接続することにより、実現することができる。
【0125】
図21は、基板11上の平行結合線路13と同軸コネクタの中心導体210との接続状態を示している。同軸コネクタの中心導体210および中間接続部材211は、図17(c)に示す構成を有している。前述のように、第1接続部214と第2接続部215とを連結する部分は、湾曲した弾性部材から形成されており、第1接続部材214に対して第2接続部材215を下方に付勢している。このため、第2接続部215の底面が平行結合線路13の上面を押圧し、第2接続部215と平行結合線路13との間の電気的接触が確保される。第2接続部215と平行結合線路13との間に、導電性を有する接着剤を塗布する必要がなく、接続が容易である。
【0126】
平行結合線路13の形成された基板11は、基板固定用冶具212bに固定されており、中間接続部材211及び同軸コネクタ209は、基板固定冶具212aに固定されている。基板固定用冶具212aを基板固定冶具212bに対してスライドさせることにより、平行結合線路13と中間接続部材211とを適切な位置で接触させることができる。基板固定用冶具212aは、ネジなどによって基板固定用冶具212bに固定される。
【0127】
平行結合線路13に中間接続部材211を接触させるだけで、変調用高周波信号の入力が可能となるため、平行結合線路13における入力反射特性を測定した後に、平行結合線路13に対する中間接続部材211の接続位置を調節することが簡単に行える。この接続位置の調節は、冶具212aと冶具212bのねじ止め位置を微調整することによって行うことができる。
【0128】
次に、本参考形態の光変調素子について、電磁界シミュレーションによる解析を行った結果を説明する。この具体例では、基板11として、厚さ0.400mmのzカットタンタル酸リチウム結晶(比誘電率42)を用い、平行結合線路13の線路幅を0.05mm、間隙部の幅を0.02mmに設定した。
【0129】
各線路の材料は、アルミニウムとし、線路を構成するアルミニウム膜の厚さは1μmに設定した。中間接続部材は、厚さ0.01mm、幅0.15mmの金メッキ処理を施したベリリウム銅とした。
【0130】
平行結合線路13の長さと中間接続部材211との接続位置は、入力インピーダンスが整合するように設定した。具体的には、電磁界シミュレーターを用いて、奇対称モードが26GHzで共振し、かつその周波数で、同軸コネクタに入力した信号の反射が最も少なくなるように決定した。
【0131】
その結果、図22に示すように、平行結合線路13の長さは1.20mm、中間接続部材の接続位置は平行結合線路13の中央から0.25mmとした。また、基板固定用冶具212aから平行結合線路13までの距離は0.30mmとした。
【0132】
図23は、上記構成を有する光変調素子における中間接続部材211と平行結合線路13との接続部での反射特性を示す。図23からわかるように、共振点で入力信号の反射はなくなり、ほとんど全ての信号電力が平行結合線路13に入力されている。また、入力線路を設けない場合においても共振特性に影響がないことがわかる。
【0133】
本参考形態の構成によれば、入力線路における透過損失をなくすことができる。
【0134】
参考形態3の光変調素子では、入力線路15の存在により、26GHzの周波数で0.5dBの透過損出が生じたが、本参考形態の構成によれば、このような入力線路による伝送損失を発生させることなく、高周波信号の入力が可能となり、変調効率をさらに向上させることができる。このため、入力線路を設ける場合に比べて、光出力を0から最大にまで変化させるのに必要な電力を、0.5dB減少させることが可能となる。
【0135】
本参考形態の光変調素子を、図22に示す設計値に従って作製した場合における作製直後における入力反射特性が、図24の破線で示すような特性を示したとする。この場合、中間接続部材211と平行結合線路13との接続位置を0.05mmだけ変調電極の中心に近づけるように移動させるだけで、図24の実線で示す入力反射特性を得ることができる。すなわち、光変調素子の作製後に、製造プロセスのばらつきなどに起因して入力インピーダンスが設計値からシフトした場合でも、中間接続部材211と平行結合線路13の接続位置を調整することにより、入力インピーダンスを整合させることが容易に実現できる。
【0136】
本参考形態によれば、入力線路を設けることなく、共振型電極に信号を入力し、変調効率を改善することができ、また、素子作成後であっても共振型電極の入力インピーダンスの整合を行うことができる。
【0137】
なお、本参考形態では、両端を短絡した半波長共振器構造を有する電極構成を採用しているが、本発明における変調電極は、このような構成を有するものに限定されず、共振器構造を有する変調電極であればよい。
【0138】
以上に説明してきた各参考形態および実施形態では、何れも、電気光学効果を有する基板中に光導波路を形成しているが、本発明は、このような構成にも限定されない。基板の表面領域に周囲よりも屈性率の高いコア部を形成し、コア部の上にクラッド部として電気光学効果を有する材料からなる膜を形成する構成を採用してもよい。この場合、コア部を伝搬する光の一部がクラッド部に染み出すため、クラッド部の屈性率を変化させることにより、コア部を伝搬する光の位相を変調することができる。コア部は電気光学効果を有する材料から形成されている必要は無い。
【0139】
また、上記参考形態および実施形態における光導波路は、分岐された少なくとも2つの分枝光導波路と、2つの分枝光導波路を結合する光入力部と、2つの分枝光導波路を結合する光出力部とを有するマッハツェンダ干渉計型の構成を有しているが、本発明の光変調素子は、このような構成を有する光強度変調素子に限定されない。本発明による光変調素子の光導波路が単一の光導波路を有する場合であっても、伝搬する光の位相を効率的に変調することができる。この意味では、本発明の光変調素子は、光の位相を変調する点に本質的な機能を有しており、位相の変調された光を干渉させることによって光強度をも変調させることが可能である。
【0140】
なお、第1、第2の参考形態の光変調素子は、光導波路を途中で2つに分岐させて分岐光導波路を有しているが、本発明は、このような分岐光導波路を有する光変調素子に限定されない。例えば、単一の光導波路のみを有する光変調素子に本発明を適用すると、位相変調器として機能する光変調素子が得られる。その場合でも、本発明によれば、線路間における電圧の符号(極性)が均一となり、光の位相変化が相殺されることがないので、光変調素子の光変調効率の向上を図ることができる。
【0141】
第1、第2の参考形態および第1の実施形態に係る光変調素子では、入力線路が平行結合線路の1つの線路に直接接続されているが、本発明は、そのような構成を有するものに限定されない。例えば、入力線路の先端を平行結合線路の1つの線路に間隙を介して対向させることによって、入力結合させることも可能である。特に、線路を構成する材料として超伝導材料を用いた場合など、線路の損失が小さく、共振の無負荷Q値が高い場合などはこのような構成が、特に有効である。
【0142】
また、平行結合線路の各線路を接続している接続線路は、添付図面において部分円形状を有しているように描かれているが、接続線路は各線路同士を短い距離で接続できればよいので、多角形の一部を構成するなど、直線部分を有する形状であっても、光変調素子の特性に悪影響を及ぼすことはない。
【0143】
素子の基板は、タンタル酸リチウム結晶やニオブ酸リチウムなどの電気光学効果を有する材料以外の電気光学結晶から形成されたものであってもよい。光導波路は、電気光学結晶基板の表面に対して安息香酸中でプロトン交換処理を施す方法によって好適に形成されるが、光導波路は、他の方法で作製されてもよい。例えば、他の機能素子との集積化などのために、タンタル酸リチウム単結晶など以外の基板を利用する必要がある場合には、基板上に、基板よりも屈折率が高く、かつ、電気光学効果を有する材料からなる膜を形成し、その膜を光導波路として用いることもできる。また、基板の表面領域に周囲よりも屈折率の高いコア部を形成し、コア部の上に、クラッド部として電気光学効果を有する材料からなる膜を形成することにより、コア部からしみ出した電界を利用してクラッド部の屈折率変化によって光変調を行うことも同様に有効である。また、平行結合線路は、基板内に埋設されていてもよい。
【0144】
(実施形態2)
図25は、本発明によるファイバ無線システムの構成を示すブロック構成図である。
【0145】
本実施形態のファイバ無線システム50は、第1〜第3の実施形態の光変調素子を内蔵した光変復調器51を備えている。そして、アンテナ53により、通常のインターネット等のデータ通信網や、携帯端末との通信、あるいは、CATVからの信号の受信等を、例えばミリ波の搬送波を用いて直接行うことができる。なお、光変復調器51には、光変調素子とともに光復調素子(例えばフォトダイオード)が内蔵されている。
【0146】
一方、ミリ波等の周波数の高い無線信号は長距離の伝送は困難であり、かつ、物体による信号の遮断を受けやすい。そこで、データ通信網61や、CATV62や、携帯電話システム63との通信を、無線装置60及び無線装置に付設されたアンテナ64を用いて行うこともできる。その場合、ファイバ無線通信システム50と光ファイバ70を介して接続される光変復調器55と、これに付設されるアンテナ54とをさらに備えておく。そして、アンテナ54、64及び光変復調器55を介して、無線装置60との間で、信号の授受を行うことができる。光変復調器55には、光変調素子とともに光復調素子(例えばフォトダイオード)が内蔵されている。
【0147】
例えば長距離伝送を行いたい場合や、壁等で仕切られた屋内での伝送の際には、ミリ波等の無線信号で変調された光信号を光ファイバ70を通して伝送することが効果的である。
【0148】
【発明の効果】
本発明の光変調素子の構成によれば、位相変調器又は光強度変調器として機能する光変調素子の光変調効率の向上を図ることができ、この光変調素子を通信システムに配置することにより、ミリ波レベルの高周波信号を利用した通信が可能になる。
【図面の簡単な説明】
【図1】 (a)は、光の直接変調を説明するための図であり、(b)は光の外部変調を説明する
ための図である。
【図2】 電気光学効果を利用した光の外部変調の動作原理を示す断面図である。
【図3】 光変調素子の従来例を示す平面図である。
【図4】 (a)は、本参考形態に係る光変調素子の平面構成を示す平面図、(b)は、その導波
路を垂直に横切る断面図、(c)は、この光変調素子の変調電極が形成する電界の強度分
布を模式的に示す図である。
【図5】 (a)および(b)は、それぞれ、図4(b)に示す断面における偶モード、および奇
モードの電界(実線)及び磁界(破線)の状態を示す図である。
【図6】 第1の参考形態において、電磁界シミュレーションに用いた平行結合線路及び入力線路
の平面寸法及び接続位置を示す平面図である。
【図7】 第1の参考形態において、電磁界シミュレーションによって得られた光変調素子の共振
状態における反射損特性を示す図である。
【図8】 (a)は、第1の参考形態における平行結合線路13に入力する高周波信号の波形を示
すグラフであり、(b)は、本参考形態の光変調素子の出力光強度/入力光強度の比を示
すグラフであり、(c)は、比較例の出力光強度/入力光強度の比を示すグラフである。
【図9】 (a)および(b)は、それぞれ、10GHzで共振する電極構造を有する光変調素子
および26GHzで共振する電極構造を有する光変調素子の参考例を示す平面図である。
【図10】 図9(a)に示す参考例の反射損特性を示すグラフである。
【図11】 図9(a)に示す参考例の光出力の時間変化を示すグラフである。
【図12】 図9(a)に示す参考例の変調光スペクトルを示すグラフである。
【図13】 図9(b)に示す参考例における変調電極の反射特性(実測値)を示すグラフである。
【図14】 図9(b)に示す参考例の変調光のスペクトルを示すグラフである。
【図15】 (a)は、本発明による光変調素子の第2の参考形態の平面構成を示す平面図、(b)
は、基板の残留分極の極性が逆の領域を示す平面図、(c)は、平行結合線路における電
界強度の分布を示す図である。
【図16】 (a)は、本発明による光変調素子の第1の実施形態の平面図、(b)は、モード2で
共振する場合の縦断面図であり、(c)は、モード3で共振する場合の縦断面図である。
【図17】 (a)は、本発明による光変調素子の第3の参考形態を示す上面図であり、(b)は、
(a)のA0−A1断面図であり、(c)は同軸コネクタ中心導体210と中間接続部材
211の接続を示す斜視図である。
【図18】 第3の参考形態における入力線路部の反射特性を示すグラフである。
【図19】 第3の参考形態における入力線路部の透過損失を示すグラフである。
【図20】 (a)は、本発明による光変調素子の第4の参考形態を示す上面図であり、(b)は、
(a)のB0−B1断面図である。
【図21】 第4の参考形態の一部を示す斜視図である。
【図22】 第4の参考形態における光変調素子の設計パラメータ値を示すレイアウト図である。
【図23】 図22の光変調素子について行ったシミュレーションの結果を示すグラフである。
【図24】 図22の光変調素子について行ったシミュレーションの結果を示すグラフである。
【図25】 本発明によるファイバ無線システムの実施形態の構成を示すブロック構成図である。
Claims (4)
- 少なくとも一部が電気光学効果を有する基板に形成されており、そして2つの分岐光導波路を具備している光導波路と、
前記基板の表面に形成され、電磁気的に互いに結合した第1、第2、および第3の導体線路を有し、前記光導波路に変調電界を印加する変調電極と、
前記基板の裏面に形成され、前記第1の導体線路とともに第1のマイクロストリップ線路を形成し、前記第2の導体線路とともに第2のマイクロストリップ線路を形成し、前記第3の導体線路と共に第3のマイクロストリップ線路を形成する接地導電層と、
前記変調電極に光変調用高周波信号を供給する電気信号入力部と、
を備え、
前記第3の導体線路は、第1の導体線路および第2の導体線路の間に挟まれ、
前記第1の導体線路の内側端は、一方の前記分岐光導波路の直上に位置しており、
前記第2の導体線路の内側端は、他方の前記分岐光導波路の直上に位置しており、
前記第1の導体線路と第2の導体線路には異なる符号の電位が印加され、
前記第3の導体線路の電位は0である
光変調素子。 - 前記第1、第2、および第3の導体線路を、少なくとも一方の端部において、相互に接続する接続部材をさらに有している、請求項1に記載の光変調素子。
- 前記電気信号入力部は、前記接地導電層とともにマイクロストリップ線路を形成する入力線路を有しており、
前記入力線路は、前記第1の導体線路に接続されている、請求項1に記載の光変調素子。 - 請求項1から3のいずれかに記載された光変調素子と、
前記光変調素子に光を入力する入力部と、
前記光変調素子に前記変調用高周波信号を供給する制御部と、
を備えた通信システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003156459A JP3847274B2 (ja) | 2002-06-03 | 2003-06-02 | 光変調素子及び通信システム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002161798 | 2002-06-03 | ||
JP2003156459A JP3847274B2 (ja) | 2002-06-03 | 2003-06-02 | 光変調素子及び通信システム |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006187513A Division JP4553876B2 (ja) | 2002-06-03 | 2006-07-07 | 光変調素子及び通信システム |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004062158A JP2004062158A (ja) | 2004-02-26 |
JP3847274B2 true JP3847274B2 (ja) | 2006-11-22 |
Family
ID=31949263
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003156459A Expired - Fee Related JP3847274B2 (ja) | 2002-06-03 | 2003-06-02 | 光変調素子及び通信システム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3847274B2 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5375738B2 (ja) | 2010-05-18 | 2013-12-25 | ソニー株式会社 | 信号伝送システム |
JP6739808B2 (ja) * | 2016-02-25 | 2020-08-12 | 国立大学法人三重大学 | 光ssb変調器 |
WO2018174179A1 (ja) * | 2017-03-23 | 2018-09-27 | 公立大学法人兵庫県立大学 | 光変調器 |
US11953742B2 (en) * | 2021-03-30 | 2024-04-09 | Tdk Corporation | Optical device and optical system |
WO2023176053A1 (ja) * | 2022-03-17 | 2023-09-21 | 株式会社村田製作所 | 光変調器 |
-
2003
- 2003-06-02 JP JP2003156459A patent/JP3847274B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004062158A (ja) | 2004-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2758538B2 (ja) | 光変調素子と光変調装置及びその駆動方法 | |
US6504640B2 (en) | Resonant optical modulators with zero chirp | |
EP1369741B1 (en) | Resonant electro-optical modulator for optical short pulse generation | |
US20050196092A1 (en) | Optical modulator and communications system | |
JPWO2018174179A1 (ja) | 光変調器 | |
hl et al. | Investigations on short-path-length high-speed optical modulators in LiNbO3 with resonant-type electrodes | |
JP2806425B2 (ja) | 導波型光デバイス | |
JP3847274B2 (ja) | 光変調素子及び通信システム | |
JP4553876B2 (ja) | 光変調素子及び通信システム | |
CN114185186A (zh) | 包括光调制器的光器件及光收发器 | |
US6980706B2 (en) | Waveguide optical modulator | |
JP3592245B2 (ja) | 共振型光変調器 | |
Gopalakrishnan et al. | Performance and modeling of resonantly enhanced LiNbO/sub 3/modulators for low-loss analog fiber-optic links | |
JP2004246321A (ja) | 光変調素子および当該光変調素子を有するシステム | |
US5530777A (en) | Optical modulation device | |
JP2007171452A (ja) | 光導波路および光変調素子および光通信システム | |
JP2007033894A (ja) | 光変調器 | |
JP2758540B2 (ja) | 光変調素子及びそれを用いた光変調装置 | |
JP2004279872A (ja) | 光変調素子および当該光変調素子を有するシステム | |
JP2004226471A (ja) | 光変調素子および当該光変調素子を有するシステム | |
JP2004309784A (ja) | 光変調素子および当該光変調素子を有するシステム | |
JP2004287354A (ja) | 光変調素子および当該光変調素子を有するシステム | |
JP2004334098A (ja) | 光変調システム | |
JP2006178275A (ja) | 光導波路および光変調素子および通信システム | |
Enokihara et al. | Guided-wave EO intensity modulator using coupled microstrip line electrode of higher-order harmonic resonance combined with polarization-reversed structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040915 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060512 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060516 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060707 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060707 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060822 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060822 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3847274 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090901 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100901 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110901 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120901 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130901 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |