JP3845934B2 - Manufacturing method of cold rolled steel sheet for 2-piece can - Google Patents

Manufacturing method of cold rolled steel sheet for 2-piece can Download PDF

Info

Publication number
JP3845934B2
JP3845934B2 JP03804697A JP3804697A JP3845934B2 JP 3845934 B2 JP3845934 B2 JP 3845934B2 JP 03804697 A JP03804697 A JP 03804697A JP 3804697 A JP3804697 A JP 3804697A JP 3845934 B2 JP3845934 B2 JP 3845934B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
cold
piece
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03804697A
Other languages
Japanese (ja)
Other versions
JPH10237592A (en
Inventor
章男 登坂
金晴 奥田
誠 荒谷
英雄 久々湊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP03804697A priority Critical patent/JP3845934B2/en
Publication of JPH10237592A publication Critical patent/JPH10237592A/en
Application granted granted Critical
Publication of JP3845934B2 publication Critical patent/JP3845934B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は飲料缶などとして利用される2ピース缶に用いられる冷延鋼板に関し、特に、高い製品歩留りが得られる2ピース缶用冷延鋼板の製造方法を提案するものである。
【0002】
【従来の技術】
飲料缶などに用いられる容器用の缶は、その形態の違いから2ピース缶と3ピース缶に分類される。
2ピース缶は、一体化された胴部・底部と蓋の2部品よりなる缶であり、加工時の主な変形様式は深絞り成形加工によるものである。一方、3ピース缶は、胴部、底部、蓋部が別々の3部品からなり、主な変形様式がロール成形であり、成形された胴は接着または溶接により円筒に成形される。
なかでも、2ピース缶は、製造工程がより短いという点、さらに“継目”がなく、均一で高い精度の巻締めが可能であるという点で、3ピース缶よりも有利である。
さて、これら製品の歩留り(缶/冷延鋼板の歩留りを指す。以下、単に「歩留り」と略記する)は、2ピース缶と3ピース缶とで、以下のように異なる。
まず、3ピース缶においては2ピース缶のような切り捨てが原理的に発生しないので、鋼板の切断から製品に至まで、素材のロスが少なく歩留りという点では、大きな問題がない。
【0003】
【発明が解決しようとする課題】
しかし、2ピース缶の製造においては、めっきあるいはPETなどの樹脂フィルムをラミネートされた鋼板が、まず所定の形状、ほとんどの場合は製品形状の関係から、図1(a)に示すように、円形に打ち抜き(ブランキング)され、その後、1回以上の深絞り、再しぼり、さらには、しごき成形などが行われ、この間、各工程で順次缶の径の縮小や高さの増加が生じつつ、所定形状の製品とされる。
このような2ピース缶における円筒成形においては、鋼板の機械的性質の面内異方性が大きい場合に、いわゆるイヤリング(耳立ち)という問題が発生する。これは、以下の点で問題となる。
すなわち、缶胴と缶底を形成する製缶の最終工程で、トリミングが行われ、缶の高さは一定に切りそろえられる。このとき、イヤリングが大きいと、トリミング量すなわち切り捨て量が大きくなるので、打ち抜き時にこのことを考慮して、通常、あらかじめ初期ブランク径を大きくするなどの対策がとられてきた。しかし、この対策では、実質的に切り捨て量が増加するため、歩留りの低下を生じ、はなはだ好ましくない。
【0004】
したがって、2ピース缶を歩留りよく製造できることになれば、省資源がはかられ、製造コストの低減も可能となるので、上記2ピース缶の有利性が一層発揮されることが期待される。なお、2ピース缶としては、深絞り加工としごき加工を併用するいわゆるDI缶(Drawn &Ironed can)、絞り加工と再絞り加工で製缶するDRD缶(Drawn &Re−Drawn can)、さらには再絞り加工工程で鋼板にストレッチ加工をほどこし鋼板厚みの低減をはかるDTR缶(Drawn Thin Redrawn can) などが含まれる。
【0005】
ところで、従来から提案されてきた、2ピース缶の歩留りを改善するための方策では、鋼板の機械的性質の面内異方性, 特にr値の面内異方性を改善することに重点がおかれてきた。すなわち、r値の面内異方性を表す△r
△r=((r0 +r90)−2×r45)/2
が、絶対値で0になるように鋼板の開発が行われてきた。
例えば、特開平6−41683 号公報には、鋼組成、熱延条件、冷延条件を最適化することにより、いわゆるノンイヤリング鋼板を製造する技術が開示されている。しかし、この技術により、△r≒0が達成されたとしても、缶成形素材(ブランク)の形状が円形であることから、最大限でもおよそ85%程度にしか到達できなかった。
【0006】
一方では、缶製造コストの低減の観点から、缶用鋼板の板厚を薄くすることが指向されている。このような板厚の薄肉化に伴う、缶強度の低下に対処する技術として、例えば特開昭51−131413号公報記載の提案がある。
この提案は、焼鈍後の2次冷延、いわゆるダブルレデュース(以下、DRと略記する) により、鋼板の硬さを確保するとともに板厚の低減をはかるもので、DR後に過度に硬くならないように、熱間圧延後の巻取温度を制御し、鋼中の固溶NをAlNとして固定することで対処する技術である。
しかし、この方法で製造された鋼板の△r値は、一般に負の大きな値(−0.4 程度以下)であり、円形の缶成形素材(ブランク)では鋼板の圧延方向に村して45°の方向に大きな耳を生じて、歩留りが大きく低下するという問題があった。
【0007】
そこで、本発明は、2ピース缶を製造するための素材や製缶工程における上記問題点を解決し、鋼板の薄肉化がさらに進んだ不利な状況であっても、良好な歩留りで製缶が可能な2ピース缶用冷延鋼板の製造方法を提案することを目的とする。
【0008】
【課題を解決するための手段】
発明者らは、上記の課題を解決するために多くの実験、研究を行なった結果、冷延鋼板の集合組織制御に基づくr値の適正化と、製缶工程における鋼板の打ち抜き方法の適正化とにより、顕著な歩留まりの向上が可能であることを知見した。
従来、2ピース缶のような深絞り用途には、深絞り性確保の上から高いr値(多くは平均r値)が、また、製缶時の耳発生(イヤリング)を抑制する上から小さな△r (絶対値) が要求されてきた。しかし、近年、鋼板の成形時の摩擦を低減する技術 (高潤滑技術) が向上し、また加工が極めて対象性の良い成形であるために、それほど際立った高いr値は必要はない場合がほとんどであった。
【0009】
一方、製缶時の材料の歩留りという観点では、まず、円形に打抜く従来の方法では自ずと限界があった。これを向上させるには、図1(b)に示すように、限りなく正方形に近い形に打抜いて成形するのが有利であるが、この場合は、従来の冷延鋼板では、成形時にしわや割れが発生しやすくなるという問題のほかに、最終的にカップの縁を切るいわゆるトリミング工程まで考慮すれば、このような非円形ブランク材では切り捨て量が増大するだけで、歩留りの向上には寄与しないという問題があった。
【0010】
発明者らは、上述した観点にたって、従来の打ち抜き方法、鋼板の材料特性について再検討を加え、2ピース缶の形成において、非円形のブランク材による最終的な歩留り向上を達成するためには、鋼板の集合組織の最適化制御が必須と考えた。
そして、鋼板の成分組成、熱延条件、冷延、焼鈍条件等を幅広く変化させて、鋼板の機械的性質、集合組織の異なる鋼板を製造し、製缶のシミュレーション試験をおこなった。
その結果、従来鋼に比してC量を低減させた鋼を使用し、熱延仕上げ、巻取り温度適正範囲に制御し、さらに熱延鋼板の厚みの低減により1次冷延圧下率を従来に比して低減することなどを結合して鋼板を製造することにより、この目標が達成できることが判明した。
【0013】
本発明は上記のような知見に基づいて構成されたものであり、その要旨とするところは次のとおりである
)C:0.02wt%以下、Si:0.10wt%以下、Mn:0.1〜1.5wt%、P:0.02wt%以下、S:0.020wt%以下、Al:0.150wt%以下、N:0.0050wt%以下を含有し、残部がFeおよび不可避的不純物からなる鋼片を、仕上げ圧延温度950〜700℃で熱間圧延して、板厚1.80mm以下の熱延鋼板とし、800〜500℃の温度範囲で巻き取り、酸洗し、次いで冷間圧下率75%以下で1次冷間圧延し、再結晶温度以上かつ850℃以下の温度範囲で連続焼鈍し、さらに圧下率6%以下で2次冷間圧延することにより、下記(1)式を満たす冷延鋼板を得ることを特徴とする2ピース缶用冷延鋼板の製造方法。

(r 60 +r 120 )/2+(r 30 +r 330 )/2≧(r 30 +r 60 ) ・・・(1)
ただし、r 30 ,r 60 ,r 120 ,r 330 :圧延方向に対してそれぞれ30°,60°,120°,330°の方向のr値
【0015】
)上記(1)に記載の製造方法において、鋼片の成分組成が、さらに第1群として、Nb:0.050wt%以下、Ti:0.050wt%以下およびB:0.0050wt%以下、第2群として、Cu:0.2wt%以下、Ni:0.2wt%以下、Cr:0.2wt%以下、Mo:0.2wt%以下のうちから選ばれる種以上を含有する組成からなることを特徴とする2ピース缶用冷延鋼板の製造方法。
【0018】
【発明の実施の形態】
まず、鋼の化学成分の限定理由について説明する。
C:0.02%以下
Cは、含有量が0.02wt%を超えるとDR後の鋼板が硬質化することにより製缶性やネック加工性が劣化するため、その上限を0.02wt%とする。なお、C量が極端に低い場合には、結晶粒の粗大化にともなう缶強度の低下を、高圧下率の2次冷延により確保する必要があるため、特に圧延直角方向の延性が劣化して、均一な深絞り加工が困難となるので、C量は0.0005wt%以上含有していることが望ましい。さらに、加工性の改善という観点では、0.015wt %以下がより望ましい。
【0019】
Si:0.10wt%以下
Siは、多量に含有すると表面処理性の劣化、耐食性の劣化等の問題を招くので、その上限を0.10wt%とする。特に優れた耐食性が要求される場合には、0.02wt%以下に制限するするのが好ましい。
【0020】
Mn:0.1 〜1.5 wt%
Mnは、Sによる熱間割れを防止する有効な元素であり、また結晶粒を微細化する元素である。これらの効果を発揮させるためには、少なくとも0.1 wt%以上の添加が必要である。一方、Mnを過剰に添加すると、耐食性を劣化させやすくなることに加え、鋼板を硬質化させてフランジ加工性、ネック加工性を劣化させるので、その上限を1.5 wt%とする。なお、より良好な成形性が要求される用途では0.90wt%以下の範囲が望ましい。
【0021】
P:0.02wt%以下
Pは、多量に含有すると、鋼を硬質化させ、フランジ加工性やネック加工性を劣化させるとともに、耐食性を劣化させるので、その上限を0.02wt%とする。これらの特性が特に重要視される場合は0.01wt%以下とすることが望ましい。
【0022】
S:0.020 wt%以下
Sは、鋼中で介在物として存在し、鋼板の延性を減少させ、さらに耐食性の劣化をもたらす元素であるので、その上限を0.020 wt%とする。特に良好な加工性が要求される用途においては0.010 wt%以下に制限することが望ましい。
【0023】
Al:0.150 wt%以下
Alは、鋼中のO濃度を低減し、清浄度を改善するのに有利な元素である。しかし、含有量が過度に多くなると、表面性状の劣化、圧延方向異方性の増大によるプレス成形の不安定化をもたらすので、その上限を0.150 wt%とする。材質の安定性という観点では0.008 〜0.100 wt%の範囲とすることが望ましい。
【0024】
N:0.0050wt%以下
Nは、0.0050wt%を超えて含有すると、最終製品の段階で、固溶Nとして非平衡的に残存する確率が高くなることで時効性が顕著に増加するため、その上限を0.0050wt%とする。この範囲であれば、厳しい促進時効条件下であっても、固溶Nによる顕著な材質劣化の問題は生じない。製造工程全体を考慮した材質の安定性という観点からは、0.0005〜0.0040wt%の範囲が好適である。
【0025】
Nb:0.050 wt%以下
Nbは、鋼の組織微細化に寄与し、2ピース缶においては最終工程であるフランジ成形の際に重要な伸びフランジ成形性を改善し、肌荒れを防止するうえで有効な元素であるが、0.050 wt%超えて添加すると、鋼の硬化が著しく、熱間圧延性、冷間圧延性が劣化する。また、スラブ製造時にも種々の割れの成因となる。なお、Nb添加による上記効果は概ね0.003 wt%以上の添加で発揮される。従って、Nb添加量は0.050 wt%以下、好ましくは0.003 〜0.030 wt%とする。材質上さらに好ましいのは0.02wt%以下である。
【0026】
Ti:0.050 wt%以下
Tiも、Nbとほぼ同様の効果を有するが、0.050 wt%を超えて添加すると缶用鋼板には致命的と言える表面欠陥の発生が増大する。なお、組織微細化のためには0.003 wt%以上の添加が必要である。従って、Ti添加量は0.050 wt%以下、好ましくは0.003 〜0.020 wt%とする。材質上さらに好ましいのは0.015 wt%以下である。
【0027】
B:0.0050wt%以下
Bは、組織の微細化効果と時効性の調整制御に有効な元素であるが、0.0050wt%を超えて添加すると鋼板の面内異方性が増加するので好ましくない。なお、B添加による前記効果は、概ね0.0002wt%以上の添加で得られる。従って、B添加量は0.0050wt%以下、好ましくは0.0002〜0.0020wt%とする。さらに望ましい範囲は0.0005〜0.0010wt%である。
【0028】
Cu:0.2 wt%以下、Ni:0.2 wt%以下、Cr:0.2 wt%以下およびMo:0.2 wt%以下
Cu、Ni、CrおよびMoは、いずれも概ね0.01wt%以上の添加により鋼板の組織の均一、微細化をさらに促進する、有用な元素である。しかし、0.2 wt%を超えて添加すると、冷間圧延性が低下することに加えて表面性状が悪化する。従って、これら元素はいずれも0.2 wt%以下、好ましくは0.01〜0.2 wt%の範囲で添加するものとする。
【0029】
上述したこれらの選択的添加元素はおのおの群のなかで単独に添加してもよいし、複合添加してもよく、また、各群にわたり複合添加してもよい。いずれの場合においても、これらの元素による望ましい効果は相殺されることはない。
【0030】
次に製造条件の限定理由について説明する。
スラブ加熱温度は、熱延において充分な熱延仕上げ温度を確保するための最低限の温度でよい。
仕上げ圧延温度:950 〜700 ℃
仕上げ圧延温度は本発明で目指す望ましい集合組織を形成する上で重要な要件である。詳細な機構は必ずしも明らかではないが、少なくとも、フェライト相の高温域で仕上げ圧延を終了することが必要である。高温で仕上げることによる顕著な材質の劣化はないが、スケール厚みの増大などのために、次行程である酸洗において、ライン速度の低下などの問題を生ずる危険が増大する。したがって、仕上げ圧延温度は950 〜700 ℃とする。なお、最終製品の成形性を向上させるという観点からは、 80O℃以上の温度が好適である。
【0031】
熱延鋼板の厚み:1.80mm以下
熱延鋼板の厚みは材質の均一性を確保するうえで重要な要件であり、この厚みを1.80mm以下にすることにより、最終製品の材質(特にr値)の均一化をはかることができる。詳細な機構は必ずしも明らかではないが、1.8mm 以下とすることにより、熱延鋼板の表層部と内部の組織が均一化することが1つの要因と考えられる。なお、材質の上から、 1.2 mm 以下が好ましく、1.0 mm以下とすればより一層の材質の均一化が達成される。
【0033】
巻取温度;800 〜500 ℃
巻取り温度は、操業の効率、鋼板の形状、材質の均一性、さらに本発明の主眼であるr値の面内異方性の観点から決定される。巻取温度を500 ℃以上とすることで本発明の主眼である望ましい成形性を得ることができる。この効果はより高くすることでさらに改善する傾向はあるものの、800 ℃を超えるような高温で巻取った場合はスケールに起因する欠陥の発生の危険性が高まる。
従って、これらの点を考慮して巻取温度は800 〜500 ℃とする。なお、r値の観点からすると、巻取温度は750 〜600 ℃とするのが望ましい。
また、熱間圧延後のスケールの除去については、特に限定する必要はなく、通常行われている酸洗方法で除去すればよい。
【0034】
1次冷間圧延:圧下率75%以下
1次冷間圧延が、75%を超えると、(1)式を満足できなくなり、本発明で目指す効果が得られなくなる。したがって1次冷間圧延の圧下率は75%以下、好ましくは50〜75%とする。
【0035】
連続焼鈍:再結晶温度以上〜850 ℃
連続焼鈍は、鋼板の機械的性質を決定するきわめて重要な工程である。焼鈍温度は、鋼板の再結晶温度以上が必要である。というのは、再結晶温度未満の温度でもある程度の延性は得られるものの、本発明で必要なr値の面内異方性の改善は達成できないからである。本発明に従う製造方法の条件範囲であれば、焼鈍温度を高くすることによる問題はなく、種々の機械的性質は望ましい方向に変化する。しかし、850 ℃を超える温度での焼鈍は顕著な粒成長を生じ、成形時の表面荒れ、肌荒れといった問題を引き起こす。従って、焼鈍温度は再結晶温度以上、850 ℃以下とする。
【0036】
2次冷間圧延(焼鈍後の冷間圧延):圧下率6%以下
2次冷間圧延の目的は、製品厚みまで板厚を低減させることのほか、加工硬化により所定の硬さまで硬化させることにある。しかし、6%を超えて2次冷間圧延すると、鋼板の機械的性質、特にr値の面内異方性が顕著に増大する。このため、2次冷間圧延の圧下率の上限を6%とした。なお、この圧下率における下限は、ストレッチヤーストレインの安定的な防止の観点から、1%以上とすることが望ましい
【0037】
表面処理:
本発明で得られた冷延鋼板は一般に表面処理が施される。適用される表面処理として、通常の缶用鋼板に用いられる、錫めっき、クロムめっき、ニッケルめっき、ニッケル・クロムめっきなどいずれも可能である。
また、これらのめっきを行った後に、塗装あるいは有機樹脂フィルムを貼って製缶するような用途にもなんら問題なく適用可能である。
【0038】
面内異方性:
面内異方性は本発明において特に重要な要件である。従来、鋼板の面内異方性は、圧延方向に対して0°, 45°、90°の各方向で測定した値のみを用いて評価されてきた。
例えば、代表的な特性であるr値(例えば、薄板マニュアル冷延鋼板編)については、△r=((r0 +r90)−2×r45)/2で定義されるパラメータにより面内異方性を評価し、またr=((r0 +r90)+2×r45)/4で定義される平均r値で深絞り性を評価していた。ただし、r0 、r45、r90は、それぞれ0°, 45°、90°方向のr値を表す。
これらのパラメータのうち、従来から、平均r値は深絞り性に対応し、△rは深絞り成形を行った際の耳発生に対応する(例えば、川鉄技報25 (1993) 1, 27-35)と言われていた。
【0039】
発明者らは、成分組成が広範囲に変化した鋼を種々の条件で製造した冷延鋼板について機械的性質を調査し、これと深絞り成形を行った際の耳発生との関係を調査した。
その結果、上述した従来のパラメータによる評価では、本発明が対象とするような極薄鋼板の成形時の耳発生の傾向を十分に表現することができず、製缶工程の下流工程ににおける不具合発生など(耳発生に起因すると考えられるものに限定)との対応が十分でないことが判明した。
【0040】
発明者らは、さらに検討を推し進め、鋼板の面内異方性をより詳細に検討し、缶用冷延鋼板においては、30°刻みのいわゆる六方異方と、45°刻みのいわゆる正方異方が混在して複雑な面内異方性を有すること、また、60°、120 °および0°±30°のr値を評価すれば、その材料の成形時の耳発生の特徴が表現できることが明らかとなった。この知見をもとに、円筒成形時のブランク形状の最適化について検討した。
その結果、圧延方向に対して30°、60°、120 °、330 ° (=−30°) 方向のr値をr30, r60, r120 , r330 としたとき、
(r60+r120)/2+ (r30+r330)/2≧ (r30+r60)
を満足する冷延鋼板を缶成形素材に用い、かつ
45/D0 > 1.0
ここで、D0 , D45は圧延方向に対して 0°, 45°方向のブランク径(缶成形素材の打ち抜き径)
を満足するようなブランク形状を採用することにより、鋼板の歩留り向上が達成できることがわかった。
【0041】
なお、ここで定義する歩留りは単なるブランク面積と残材の幾何学的な関係ではなく、複数回の絞り成形の繰り返しにより、規定の深さの円筒状のプレス品を得たのち、製品に要求される、形状、寸法などを全て勘案した後に、耳切りなどを行った最終製品の重量で算出したものである。このことは、r値の定義から単純に予想される効果だけではなく、円周方向の素材の流入状況に対しても従来は知見できなかったような現象を含むものと考えられる。
ブランク径の比、D45/D0 は、冷延鋼板のr値の制御でさらに大きくすることが可能ではあるが、1.0 超えとすることで製缶コストの低減が可能である。このD45/D0 は、望ましくは1.05以上、さらに望ましくは1.10以上とすれば、極めて大きなコスト低減が達成できる。
【0042】
次に本発明の実施例について説明する。
【実施例】
表1に示す成分組成を含み、残部が実質的にFeからなる鋼を転炉で溶製し、この鋼スラブを表2に示す条件で熱間圧延したのち、1次冷延、連続焼鈍、2次冷延を行い、最終仕上げ板厚を0.20mmの冷延鋼板とした。そして、ハロゲンタイプの電気錫めっきラインにて25番相当の錫めっきを連続的に施してぶりきに仕上げた。このようにして得られた錫めっき鋼板の機械的性質を調査した結果を表3に示す。
本発明によれば、先の(1) 式を満足する鋼板が製造できることがわかる。この鋼板を用いて、表4に示す条件で円筒絞り加工を行い、加工後の形状を調査した。その結果を表3に併記する。
本発明鋼板は、いずれも十分な深絞り成形性を示し、このような非円形のブランク条件でも成形可能であることがわかる。
【0043】
次に、鋼3を用いて、表5に示す条件で板厚0.26mmの冷延鋼板を製造し、表面にCrめっきを行ったのち、樹脂フィルムを接着して供試鋼板を製造した。得られた冷延鋼板の (r60+r120)/2+ (r30+r330)/2の値は3.05、また (r30+r60) の値は2.40であり、 (1)式を満たしていた。
この鋼板を用いて、ブランク形状を表6に示す種々の条件に変化させて、絞り・1回再絞り成形を行い、歩留り向上効果を算出した結果を、表6に併せて示す。
歩留りは、初期の鋼板重量に対して、成形後、その後の製品特性を考慮して、適正量のトリミング(耳切)を行った後の全缶の合計重量の比で評価した。
【0044】
表6から、45°方向と0°方向のブランク径の比を1.00超えとすることにより大きな歩留り向上効果が得られることが明らかである。この効果は、打ち抜き個数が極めて大きく高速なプロセスであるため、わずか数%の改善でもその利点はきわめて大きい。
またこのような歩留り向上効果が十分に発揮されるためには、幅方向の形状、材質の均一性が重要であることも明らかとなった。
因みに、表1の鋼9に準じて製造した鋼板では、しわ発生、壁厚みの偏肉などで目標レベルの製缶が不可能であった。
【0045】
【表1】

Figure 0003845934
【0046】
【表2】
Figure 0003845934
【0047】
【表3】
Figure 0003845934
【0048】
【表4】
Figure 0003845934
【0049】
【表5】
Figure 0003845934
【0050】
【表6】
Figure 0003845934
【0051】
【発明の効果】
以上説明したように、本発明によれば、鋼組成、製造条件を制御することにより、鋼板の集合組織(面内異方性)が制御され、2ピース缶に成形した際の歩留りが高い冷延鋼板が提供可能となる。
また、本発明によれば、面内異方性に合わせたブランク形状を採用することにより、円筒成形した2ピース缶の歩留りを大幅に向上させる打ち抜き方法を提供可能となる。
【図面の簡単な説明】
【図1】鋼板からの板取り方法を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cold rolled steel sheet used in the two-piece can be used as such as a beverage can, in particular, is to propose a manufacturing how the two-piece can for a cold rolled steel sheet high product yield is obtained.
[0002]
[Prior art]
Cans for containers used for beverage cans and the like are classified into two-piece cans and three-piece cans based on the difference in form.
The two-piece can is a can composed of two parts of an integrated body / bottom and lid, and the main deformation mode during processing is by deep drawing. On the other hand, a three-piece can consists of three parts, which are a body part, a bottom part, and a cover part. The main deformation mode is roll molding, and the molded body is formed into a cylinder by bonding or welding.
Among these, the two-piece can is advantageous over the three-piece can in that the manufacturing process is shorter, and there is no “seam”, and uniform and high-precision winding is possible.
Now, the yield of these products (referring to the yield of cans / cold rolled steel sheets, hereinafter simply abbreviated as “yield”) differs between 2-piece cans and 3-piece cans as follows.
First, in the three-piece can, since the truncation unlike the two-piece can does not occur in principle, there is no big problem in terms of yield from the cutting of the steel plate to the product with little material loss.
[0003]
[Problems to be solved by the invention]
However, in the production of a two-piece can, a steel plate laminated with a resin film such as plating or PET is first formed into a circular shape as shown in FIG. After that, one or more deep-drawing, re-squeezing, and ironing are performed, and during this process, the diameter of the can is gradually reduced and the height is increased in each process. The product has a predetermined shape.
In such cylindrical molding in a two-piece can, when the in-plane anisotropy of the mechanical properties of the steel sheet is large, a problem of so-called earring (earing) occurs. This is a problem in the following points.
That is, trimming is performed in the final step of can making to form the can body and the bottom of the can, and the height of the can is kept constant. At this time, if the earring is large, the trimming amount, that is, the cut-off amount becomes large. Therefore, in consideration of this at the time of punching, measures such as increasing the initial blank diameter in advance have been taken. However, with this measure, the amount of truncation increases substantially, resulting in a decrease in yield, which is not preferable.
[0004]
Therefore, if the two-piece can can be manufactured with a high yield, it will be possible to save resources and reduce the manufacturing cost, and it is expected that the advantages of the two-piece can will be further exhibited. As for 2-piece cans, so-called DI cans (Drawn & Ironed cans) that combine deep drawing and ironing, DRD cans (Drawn & Re-Drawn cans) that can be made by drawing and redrawing, and redrawing Examples include DTR cans (Drawn Thin Redrawn cans) that reduce the thickness of steel sheets by subjecting them to stretch processing in the processing process.
[0005]
By the way, in the measures for improving the yield of the two-piece can which has been conventionally proposed, the emphasis is on improving the in-plane anisotropy of the mechanical properties of the steel sheet, particularly the in-plane anisotropy of the r value. I have been placed. That is, Δr representing the in-plane anisotropy of the r value.
Δr = ((r 0 + r 90 ) −2 × r 45 ) / 2
However, steel sheets have been developed so that the absolute value becomes zero.
For example, Japanese Patent Laid-Open No. 6-41683 discloses a technique for manufacturing a so-called non-earring steel plate by optimizing the steel composition, hot rolling conditions, and cold rolling conditions. However, even if Δr≈0 is achieved by this technique, since the shape of the can molding material (blank) is circular, it can reach only about 85% at the maximum.
[0006]
On the other hand, from the viewpoint of reducing can manufacturing costs, it is directed to reduce the thickness of steel plates for cans. As a technique for coping with a decrease in can strength accompanying such a reduction in plate thickness, there is a proposal described in, for example, Japanese Patent Application Laid-Open No. 51-131413.
This proposal is intended to ensure the hardness of the steel sheet and reduce the thickness by secondary cold rolling after annealing, so-called double reduction (hereinafter abbreviated as DR), so that it will not become excessively hard after DR. In this technique, the coiling temperature after hot rolling is controlled to fix the solid solution N in the steel as AlN.
However, the Δr value of the steel sheet manufactured by this method is generally a large negative value (about −0.4 or less), and in the case of a circular can molding material (blank), the direction of 45 ° is set in the direction of rolling of the steel sheet. There was a problem that a large ear was produced and the yield was greatly reduced.
[0007]
Therefore, the present invention solves the above-mentioned problems in the raw material for producing a two-piece can and the can-making process, and even in an unfavorable situation where the thinning of the steel plate has further progressed, the can-making can be performed with a good yield. and an object thereof is to propose a manufacturing how the two-piece can for cold-rolled steel sheet possible.
[0008]
[Means for Solving the Problems]
As a result of many experiments and researches to solve the above problems, the inventors have optimized the r value based on the texture control of the cold-rolled steel sheet and the steel sheet punching method in the can manufacturing process. As a result, it was found that the yield can be significantly improved.
Conventionally, for deep drawing applications such as two-piece cans, a high r value (mostly an average r value) is obtained from the viewpoint of ensuring deep drawability, and it is small from the viewpoint of suppressing the generation of ears (earrings) during canning. Δr (absolute value) has been requested. However, in recent years, the technology to reduce friction when forming steel sheets (high lubrication technology) has been improved, and since the processing is extremely good forming, there is almost no need for an extremely high r value. Met.
[0009]
On the other hand, from the viewpoint of the yield of the material at the time of can making, the conventional method of punching into a circle has a limit naturally. In order to improve this, as shown in FIG. 1 (b), it is advantageous to form by punching into a shape that is as close to a square as possible. In this case, the conventional cold-rolled steel sheet is wrinkled at the time of forming. In addition to the problem that cracks are likely to occur, considering the so-called trimming process that finally cuts the edge of the cup, such a non-circular blank material only increases the amount of cutting, which improves the yield. There was a problem of not contributing.
[0010]
In order to achieve the final yield improvement by the non-circular blank material in the formation of the two-piece can, the inventors have reviewed the conventional punching method and the material characteristics of the steel sheet based on the above-described viewpoint. Therefore, the optimization control of the texture of the steel sheet was considered essential.
Then, the steel sheet having different mechanical properties and textures was manufactured by changing the composition of the steel sheet, hot rolling conditions, cold rolling, annealing conditions and the like, and a simulation test of can manufacturing was performed.
As a result, steel with a reduced amount of C compared to conventional steel is used, hot rolling finish and coiling temperature are controlled in the proper range, and the primary cold rolling reduction ratio is reduced by reducing the thickness of the hot rolled steel sheet. It has been found that this goal can be achieved by manufacturing a steel sheet combined with a reduction compared to the above.
[0013]
This invention is comprised based on the above knowledge, and the place made into the summary is as follows .
( 1 ) C: 0.02 wt% or less, Si: 0.10 wt% or less, Mn: 0.1 to 1.5 wt%, P: 0.02 wt% or less, S: 0.020 wt% or less, Al: 0. A steel piece containing 150 wt% or less, N: 0.0050 wt% or less, and the balance consisting of Fe and inevitable impurities is hot-rolled at a finish rolling temperature of 950 to 700 ° C. to obtain a plate thickness of 1.80 mm or less. Rolled steel sheet, wound in a temperature range of 800-500 ° C, pickled, then primary cold-rolled at a cold reduction rate of 75% or less, and continuously annealed in a temperature range from the recrystallization temperature to 850 ° C. A method for producing a cold rolled steel sheet for a two-piece can is characterized in that a cold rolled steel sheet satisfying the following formula (1) is obtained by secondary cold rolling at a rolling reduction of 6% or less.
Record
(R 60 + r 120 ) / 2 + (r 30 + r 330 ) / 2 ≧ (r 30 + r 60 ) (1)
However, r 30 , r 60 , r 120 , r 330 : r values in directions of 30 °, 60 °, 120 °, and 330 ° with respect to the rolling direction, respectively.
( 2 ) In the manufacturing method according to the above (1) , the component composition of the steel slab further includes Nb: 0.050 wt% or less, Ti: 0.050 wt% or less, and B: 0.0050 wt% or less as the first group. As a second group, from a composition containing one or more selected from Cu: 0.2 wt% or less, Ni: 0.2 wt% or less, Cr: 0.2 wt% or less, Mo: 0.2 wt% or less. A method for producing a cold rolled steel sheet for a two-piece can.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
First, the reason for limiting the chemical composition of steel will be described.
C: 0.02% or less C, if the content exceeds 0.02 wt%, the steel plate after DR hardens and the canability and neck workability deteriorate, so the upper limit is set to 0.02 wt%. In addition, when the amount of C is extremely low, it is necessary to secure a reduction in can strength accompanying the coarsening of crystal grains by secondary cold rolling at a high pressure reduction rate, and therefore ductility in the direction perpendicular to rolling deteriorates. Thus, it is difficult to perform uniform deep drawing, so that the C content is preferably 0.0005 wt% or more. Furthermore, from the viewpoint of improving workability, 0.015 wt% or less is more desirable.
[0019]
Si: 0.10wt% or less
If Si is contained in a large amount, it causes problems such as deterioration of surface treatment properties and corrosion resistance, so the upper limit is made 0.10 wt%. When particularly excellent corrosion resistance is required, it is preferable to limit to 0.02 wt% or less.
[0020]
Mn: 0.1 to 1.5 wt%
Mn is an effective element that prevents hot cracking due to S, and is an element that refines crystal grains. In order to exert these effects, it is necessary to add at least 0.1 wt% or more. On the other hand, when Mn is added excessively, the corrosion resistance tends to be deteriorated, and the steel plate is hardened to deteriorate the flange workability and the neck workability, so the upper limit is set to 1.5 wt%. In applications where better moldability is required, a range of 0.90 wt% or less is desirable.
[0021]
P: 0.02 wt% or less When P is contained in a large amount, the steel is hardened, the flange workability and the neck workability are deteriorated, and the corrosion resistance is deteriorated. Therefore, the upper limit is set to 0.02 wt%. If these characteristics are particularly important, it is desirable that the content be 0.01 wt% or less.
[0022]
S: 0.020 wt% or less S is an element that exists as an inclusion in steel and decreases the ductility of the steel sheet and further causes deterioration of corrosion resistance. Therefore, the upper limit is set to 0.020 wt%. In applications that require particularly good workability, it is desirable to limit it to 0.010 wt% or less.
[0023]
Al: 0.150 wt% or less
Al is an element advantageous for reducing the O concentration in steel and improving cleanliness. However, if the content is excessively large, surface properties are deteriorated and press forming is unstable due to an increase in anisotropy in the rolling direction, so the upper limit is made 0.150 wt%. From the viewpoint of the stability of the material, it is desirable to be in the range of 0.008 to 0.100 wt%.
[0024]
N: 0.0050 wt% or less When N is contained in excess of 0.0050 wt%, the aging property is remarkably increased by increasing the probability of remaining in a non-equilibrium state as a solid solution N at the final product stage. The upper limit is 0.0050 wt%. If it is this range, the problem of remarkable material deterioration by the solid solution N will not arise even under severe accelerated aging conditions. From the viewpoint of the stability of the material in consideration of the entire manufacturing process, the range of 0.0005 to 0.0040 wt% is preferable.
[0025]
Nb: 0.050 wt% or less
Nb contributes to the refinement of the steel structure, and is an effective element for improving the stretch flangeability, which is important in flange forming, which is the final process in 2-piece cans, and preventing rough skin. If added in excess of wt%, the steel is markedly hardened and the hot and cold rollability deteriorates. Moreover, it becomes a cause of various cracks also at the time of slab manufacture. In addition, the said effect by Nb addition is exhibited by the addition of 0.003 wt% or more in general. Accordingly, the Nb addition amount is 0.050 wt% or less, preferably 0.003 to 0.030 wt%. More preferable in terms of material is 0.02 wt% or less.
[0026]
Ti: 0.050 wt% or less
Ti has almost the same effect as Nb, but if it exceeds 0.050 wt%, the occurrence of surface defects that can be considered fatal in steel sheets for cans increases. It should be noted that 0.003 wt% or more is necessary to refine the structure. Therefore, the Ti addition amount is 0.050 wt% or less, preferably 0.003 to 0.020 wt%. More preferable in terms of material is 0.015 wt% or less.
[0027]
B: 0.0050 wt% or less B is an element effective for controlling the refinement of the structure and aging, but adding more than 0.0050 wt% is not preferable because it increases the in-plane anisotropy of the steel sheet. In addition, the said effect by B addition is acquired by addition of 0.0002 wt% or more in general. Therefore, the amount of B added is 0.0050 wt% or less, preferably 0.0002 to 0.0020 wt%. A more desirable range is 0.0005 to 0.0010 wt%.
[0028]
Cu: 0.2 wt% or less, Ni: 0.2 wt% or less, Cr: 0.2 wt% or less, and Mo: 0.2 wt% or less
Cu, Ni, Cr and Mo are all useful elements that further promote uniform and refinement of the structure of the steel sheet by adding approximately 0.01 wt% or more. However, when it exceeds 0.2 wt%, the cold rolling property is deteriorated and the surface property is deteriorated. Therefore, all of these elements are added in an amount of 0.2 wt% or less, preferably in the range of 0.01 to 0.2 wt%.
[0029]
These selective additive elements described above may be added individually in each group, may be added in combination, or may be added in combination over each group. In any case, the desired effects of these elements are not offset.
[0030]
Next, the reasons for limiting the manufacturing conditions will be described.
The slab heating temperature may be a minimum temperature for securing a sufficient hot rolling finish temperature in hot rolling.
Finishing rolling temperature: 950-700 ° C
The finish rolling temperature is an important requirement for forming the desired texture desired in the present invention. Although the detailed mechanism is not necessarily clear, it is necessary to finish the finish rolling at least in the high temperature region of the ferrite phase. Although there is no noticeable deterioration of the material due to finishing at a high temperature, there is an increased risk of causing problems such as a decrease in line speed in the next pickling because of an increase in scale thickness. Therefore, the finish rolling temperature is 950 to 700 ° C. From the viewpoint of improving the formability of the final product, a temperature of 80O ° C. or higher is suitable.
[0031]
Thickness of hot-rolled steel sheet: 1.80 mm or less The thickness of a hot-rolled steel sheet is an important requirement for ensuring material uniformity. By making this thickness 1.80 mm or less, the material of the final product (especially r value) Can be made uniform. Although the detailed mechanism is not necessarily clear, it is considered that one of the factors is that the surface layer portion and the internal structure of the hot-rolled steel sheet become uniform by setting the thickness to 1.8 mm or less. From the viewpoint of the material, it is preferably 1.2 mm or less, and if it is 1.0 mm or less, further uniform material can be achieved.
[0033]
Winding temperature: 800-500 ° C
The coiling temperature is determined from the viewpoints of operational efficiency, steel plate shape, material uniformity, and in-plane anisotropy of r value, which is the main point of the present invention. By setting the coiling temperature to 500 ° C. or higher, it is possible to obtain desirable formability which is the main point of the present invention. Although this effect tends to be further improved by increasing the effect, when it is wound at a high temperature exceeding 800 ° C., the risk of occurrence of defects due to scale increases.
Therefore, taking these points into consideration, the coiling temperature is set to 800 to 500 ° C. From the viewpoint of the r value, the coiling temperature is preferably 750 to 600 ° C.
Moreover, it is not necessary to specifically limit about the removal of the scale after hot rolling, What is necessary is just to remove by the pickling method currently performed normally.
[0034]
Primary cold rolling: Reduction ratio of 75% or less If the primary cold rolling exceeds 75%, the expression (1) cannot be satisfied, and the effect aimed by the present invention cannot be obtained. Therefore, the reduction ratio of primary cold rolling is 75% or less, preferably 50 to 75%.
[0035]
Continuous annealing: above recrystallization temperature ~ 850 ℃
Continuous annealing is a very important process that determines the mechanical properties of steel sheets. The annealing temperature needs to be higher than the recrystallization temperature of the steel sheet. This is because, although a certain degree of ductility can be obtained even at a temperature lower than the recrystallization temperature, the improvement of the in-plane anisotropy of the r value required in the present invention cannot be achieved. If it is the condition range of the manufacturing method according to this invention, there will be no problem by making an annealing temperature high, and various mechanical properties will change to a desired direction. However, annealing at a temperature exceeding 850 ° C. causes remarkable grain growth and causes problems such as surface roughness and rough surface during molding. Accordingly, the annealing temperature is set to the recrystallization temperature or higher and 850 ° C. or lower.
[0036]
Secondary cold rolling (cold rolling after annealing): Reduction rate of 6% or less The purpose of secondary cold rolling is to reduce the sheet thickness to the product thickness and to harden it to a predetermined hardness by work hardening It is in. However, when the secondary cold rolling exceeds 6% , the mechanical properties of the steel sheet, particularly the in-plane anisotropy of the r value, are significantly increased. Therefore, the upper limit of the rolling reduction of the secondary cold rolling was 6%. The lower limit of the rolling reduction is desirably 1% or more from the viewpoint of stable prevention of stretch yarn strain .
[0037]
surface treatment:
The cold-rolled steel sheet obtained by the present invention is generally subjected to surface treatment. As the surface treatment to be applied, any of tin plating, chromium plating, nickel plating, nickel / chromium plating, etc., which are used for ordinary steel plates for cans, is possible.
In addition, the present invention can be applied without any problem to applications such as coating or making an organic resin film after making these platings.
[0038]
In-plane anisotropy:
In-plane anisotropy is a particularly important requirement in the present invention. Conventionally, the in-plane anisotropy of a steel sheet has been evaluated using only values measured in directions of 0 °, 45 °, and 90 ° with respect to the rolling direction.
For example, the r value which is a typical characteristic (for example, a thin manual cold-rolled steel sheet) is different depending on a parameter defined by Δr = ((r 0 + r 90 ) −2 × r 45 ) / 2. The directivity was evaluated, and the deep drawability was evaluated with an average r value defined by r = ((r 0 + r 90 ) + 2 × r 45 ) / 4. Here, r 0 , r 45 , and r 90 represent r values in the directions of 0 °, 45 °, and 90 °, respectively.
Among these parameters, the average r value conventionally corresponds to the deep drawability, and Δr corresponds to the ear generation when deep drawing is performed (for example, Kawatetsu Technical Report 25 (1993) 1, 27-). 35).
[0039]
The inventors investigated the mechanical properties of a cold-rolled steel sheet produced with various conditions of steel having various component compositions, and investigated the relationship between this and the occurrence of ears when deep drawing was performed.
As a result, in the evaluation using the conventional parameters described above, the tendency of the ear generation at the time of forming the ultra-thin steel sheet as the object of the present invention cannot be sufficiently expressed, and the problem in the downstream process of the can manufacturing process It was found that the response to the occurrence (limited to those thought to be caused by ear development) is not sufficient.
[0040]
The inventors have further studied and examined the in-plane anisotropy of the steel sheet in more detail, and in cold-rolled steel sheets for cans, the so-called hexagonal anisotropy in 30 ° increments and the so-called square anisotropy in 45 ° increments Have complex in-plane anisotropy, and if the r-values of 60 °, 120 ° and 0 ° ± 30 ° are evaluated, the characteristics of the ear generation during molding of the material can be expressed. It became clear. Based on this knowledge, we investigated the optimization of the blank shape during cylindrical molding.
As a result, when r values in the directions of 30 °, 60 °, 120 °, 330 ° (= −30 °) with respect to the rolling direction are r 30 , r 60 , r 120 , r 330 ,
(r 60 + r 120 ) / 2 + (r 30 + r 330 ) / 2 ≧ (r 30 + r 60 )
Cold-rolled steel sheet that satisfies the above requirements, and D 45 / D 0 > 1.0
Here, D 0 and D 45 are blank diameters at 0 ° and 45 ° with respect to the rolling direction (punching diameter of the can molding material)
It was found that the yield of the steel sheet can be improved by adopting a blank shape that satisfies the above.
[0041]
Note that the yield defined here is not just the geometric relationship between the blank area and the remaining material, but is required for the product after obtaining a cylindrical press product with a specified depth by repeating multiple drawing operations. This is calculated based on the weight of the final product that has been trimmed after taking into consideration all the shape and dimensions. This is considered to include not only the effect simply predicted from the definition of the r value, but also a phenomenon that has not been known in the past in relation to the inflow state of the material in the circumferential direction.
The ratio of blank diameter, D 45 / D 0, albeit can be further increased by controlling the r value of cold-rolled steel sheet, it is possible to reduce the can-cost be exceeded 1.0. If D 45 / D 0 is desirably 1.05 or more, and more desirably 1.10 or more, a very large cost reduction can be achieved.
[0042]
Next, examples of the present invention will be described.
【Example】
A steel composition containing the composition shown in Table 1 and the balance being substantially made of Fe is melted in a converter, and this steel slab is hot-rolled under the conditions shown in Table 2, and then primary cold rolling, continuous annealing, Secondary cold rolling was performed to obtain a cold rolled steel sheet having a final finished sheet thickness of 0.20 mm. Then, tin plating equivalent to No. 25 was continuously applied on a halogen type electric tin plating line to finish it with a tinplate. Table 3 shows the results of investigating the mechanical properties of the tin-plated steel sheet thus obtained.
According to the present invention, it can be seen that a steel sheet satisfying the above equation (1) can be manufactured. Using this steel plate, cylindrical drawing was performed under the conditions shown in Table 4, and the shape after processing was investigated. The results are also shown in Table 3.
It can be seen that the steel sheets of the present invention all exhibit sufficient deep drawability and can be formed even under such non-circular blank conditions.
[0043]
Next, using steel 3, a cold-rolled steel sheet having a thickness of 0.26 mm was manufactured under the conditions shown in Table 5, and after plating the surface with Cr, a resin film was adhered to manufacture a test steel sheet. The value of (r 60 + r 120 ) / 2 + (r 30 + r 330 ) / 2 of the obtained cold-rolled steel sheet was 3.05, and the value of (r 30 + r 60 ) was 2.40, satisfying equation (1) .
Table 6 shows the results of calculating the yield improvement effect by changing the blank shape to various conditions shown in Table 6 and performing drawing and redrawing once using this steel plate.
Yield was evaluated by the ratio of the total weight of all cans after trimming (ear-cutting) of an appropriate amount in consideration of subsequent product characteristics with respect to the initial steel plate weight.
[0044]
From Table 6, it is clear that a large yield improvement effect can be obtained by setting the ratio of the blank diameter in the 45 ° direction and the 0 ° direction to more than 1.00. Since this effect is a high-speed process with a very large number of punches, even a few percent improvement has a great advantage.
It has also become clear that the shape in the width direction and the uniformity of the material are important in order to sufficiently exhibit such a yield improvement effect.
Incidentally, in the steel plate manufactured according to Steel 9 in Table 1, it was impossible to produce a can at the target level due to wrinkles and uneven wall thickness.
[0045]
[Table 1]
Figure 0003845934
[0046]
[Table 2]
Figure 0003845934
[0047]
[Table 3]
Figure 0003845934
[0048]
[Table 4]
Figure 0003845934
[0049]
[Table 5]
Figure 0003845934
[0050]
[Table 6]
Figure 0003845934
[0051]
【The invention's effect】
As described above, according to the present invention, by controlling the steel composition and production conditions, the texture (in-plane anisotropy) of the steel sheet is controlled, and the yield when forming into a two-piece can is high. A rolled steel sheet can be provided.
Further, according to the present invention, it is possible to provide a punching method that greatly improves the yield of a cylindrically formed two-piece can by adopting a blank shape that matches the in-plane anisotropy.
[Brief description of the drawings]
FIG. 1 is a diagram showing a method of removing a plate from a steel plate.

Claims (2)

C:0.02wt%以下、Si:0.10wt%以下、Mn:0.1〜1.5wt%、P:0.02wt%以下、S:0.020wt%以下、Al:0.150wt%以下、N:0.0050wt%以下を含有し、残部がFeおよび不可避的不純物からなる鋼片を、仕上げ圧延温度950〜700℃で熱間圧延して、板厚1.80mm以下の熱延鋼板とし、800〜500℃の温度範囲で巻き取り、酸洗し、次いで冷間圧下率75%以下で1次冷間圧延し、再結晶温度以上かつ850℃以下の温度範囲で連続焼鈍し、さらに圧下率6%以下で2次冷間圧延することにより、下記(1)式を満たす冷延鋼板を得ることを特徴とする2ピース缶用冷延鋼板の製造方法。

(r60+r120)/2+(r30+r330)/2≧(r30+r60) ・・・(1)
ただし、r30,r60,r120,r330:圧延方向に対してそれぞれ30°,60°,120°,330°の方向のr値
C: 0.02 wt% or less, Si: 0.10 wt% or less, Mn: 0.1 to 1.5 wt%, P: 0.02 wt% or less, S: 0.020 wt% or less, Al: 0.150 wt% or less , N: 0.0050 wt% or less, and a steel slab consisting of Fe and inevitable impurities in the balance is hot-rolled at a finish rolling temperature of 950 to 700 ° C. to obtain a hot-rolled steel sheet having a thickness of 1.80 mm or less. , Rolled in the temperature range of 800-500 ° C, pickled, then primary cold-rolled at a cold reduction rate of 75% or less, continuously annealed in the temperature range of the recrystallization temperature to 850 ° C, and further reduced A method for producing a cold rolled steel sheet for a two-piece can, characterized in that a cold rolled steel sheet satisfying the following formula (1) is obtained by secondary cold rolling at a rate of 6% or less.
(R 60 + r 120 ) / 2 + (r 30 + r 330 ) / 2 ≧ (r 30 + r 60 ) (1)
However, r 30 , r 60 , r 120 , r 330 : r values in directions of 30 °, 60 °, 120 °, and 330 ° with respect to the rolling direction, respectively.
請求項に記載の製造方法において、鋼片の成分組成が、さらに第1群として、Nb:0.050wt%以下、Ti:0.050wt%以下およびB:0.0050wt%以下、第2群として、Cu:0.2wt%以下、Ni:0.2wt%以下、Cr:0.2wt%以下、Mo:0.2wt%以下のうちから選ばれる1種以上を含有する組成からなることを特徴とする2ピース缶用冷延鋼板の製造方法 2. The manufacturing method according to claim 1 , wherein the component composition of the steel slab further includes Nb: 0.050 wt% or less, Ti: 0.050 wt% or less, and B: 0.0050 wt% or less, as the first group. As follows: Cu: 0.2 wt% or less, Ni: 0.2 wt% or less, Cr: 0.2 wt% or less, Mo: 0.2 wt% or less, a composition containing one or more selected from The manufacturing method of the cold rolled steel plate for 2 piece cans .
JP03804697A 1997-02-21 1997-02-21 Manufacturing method of cold rolled steel sheet for 2-piece can Expired - Fee Related JP3845934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03804697A JP3845934B2 (en) 1997-02-21 1997-02-21 Manufacturing method of cold rolled steel sheet for 2-piece can

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03804697A JP3845934B2 (en) 1997-02-21 1997-02-21 Manufacturing method of cold rolled steel sheet for 2-piece can

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2006034961A Division JP4438758B2 (en) 2006-02-13 2006-02-13 Cold rolled steel sheet for 2-piece cans
JP2006188343A Division JP2007023385A (en) 2006-07-07 2006-07-07 Method for blanking cold rolled steel sheet for two-piece can

Publications (2)

Publication Number Publication Date
JPH10237592A JPH10237592A (en) 1998-09-08
JP3845934B2 true JP3845934B2 (en) 2006-11-15

Family

ID=12514596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03804697A Expired - Fee Related JP3845934B2 (en) 1997-02-21 1997-02-21 Manufacturing method of cold rolled steel sheet for 2-piece can

Country Status (1)

Country Link
JP (1) JP3845934B2 (en)

Also Published As

Publication number Publication date
JPH10237592A (en) 1998-09-08

Similar Documents

Publication Publication Date Title
TW201837199A (en) Steel sheet for two-piece can and production method therefor
JP4788030B2 (en) Steel plate for lightweight two-piece can and manufacturing method thereof
JPH10280089A (en) Steel sheet for two-piece modified can, two-piece modified can body, and their manufacture
JP4265574B2 (en) Steel plate for two-piece deformable can and manufacturing method thereof
JP4193228B2 (en) Steel plate for can and manufacturing method thereof
JPH10245655A (en) Steel sheet for deformed three piece can and its production
JP6455639B1 (en) Steel plate for 2-piece can and manufacturing method thereof
JP4438758B2 (en) Cold rolled steel sheet for 2-piece cans
JP3845934B2 (en) Manufacturing method of cold rolled steel sheet for 2-piece can
JP2007023385A (en) Method for blanking cold rolled steel sheet for two-piece can
JP3900640B2 (en) Steel plate for two-piece battery can excellent in sealing performance of sealing part and manufacturing method thereof
JP4810766B2 (en) Manufacturing method of ultra-thin high-strength steel sheet for lightweight 2-piece can
JPH1017993A (en) Steel sheet for di can having double layered structure and free from flange cracking and its production
JP3707260B2 (en) Method for producing ultra-thin steel sheet for 2-piece can with excellent in-plane anisotropy and in-plane anisotropy uniformity in coil
JPH11222647A (en) Original sheet for surface treated steel sheet excellent in aging resistance and small in generating rate of earing and its production
JP3257390B2 (en) Method for producing two-piece steel sheet with small in-plane anisotropy
JP3900639B2 (en) Steel plate for two-piece battery can formed by deep drawing and method for manufacturing the same
KR102587650B1 (en) Steel sheet for cans and method of producing same
JP3546286B2 (en) Hot rolled base sheet for good formability cold rolled steel sheet, method for producing the same, and method for producing good formability cold rolled steel sheet
KR102677317B1 (en) Steel plate for cans and its manufacturing method
JP3407531B2 (en) Method for producing ultra-thin steel sheet for two-piece can with small in-plane anisotropy
JP3609883B2 (en) Method for producing steel plate for containers with extremely small earrings during drawing
JPH1088233A (en) Production of steel sheet for can
JP3806242B2 (en) Steel plate for containers with extremely small earrings during drawing and method for producing the same
JP3244947B2 (en) Method for producing steel sheet for two-piece can container with small in-plane anisotropy

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060213

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060814

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees