JP3843376B2 - イオン注入のためのイオン源装置 - Google Patents

イオン注入のためのイオン源装置 Download PDF

Info

Publication number
JP3843376B2
JP3843376B2 JP26767295A JP26767295A JP3843376B2 JP 3843376 B2 JP3843376 B2 JP 3843376B2 JP 26767295 A JP26767295 A JP 26767295A JP 26767295 A JP26767295 A JP 26767295A JP 3843376 B2 JP3843376 B2 JP 3843376B2
Authority
JP
Japan
Prior art keywords
plasma chamber
ion source
source device
energy
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26767295A
Other languages
English (en)
Other versions
JPH08212935A (ja
Inventor
スフェラッゾー ピエロ
ローズ ピーター
レイモンド トルエイラ フランク
Original Assignee
アクセリス テクノロジーズ インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アクセリス テクノロジーズ インコーポレーテッド filed Critical アクセリス テクノロジーズ インコーポレーテッド
Publication of JPH08212935A publication Critical patent/JPH08212935A/ja
Application granted granted Critical
Publication of JP3843376B2 publication Critical patent/JP3843376B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/16Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation
    • H01J27/18Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation with an applied axial magnetic field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources
    • H01J2237/0815Methods of ionisation
    • H01J2237/0817Microwaves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/31701Ion implantation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Physical Vapour Deposition (AREA)
  • Plasma Technology (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、イオンビーム注入装置に使用されるイオン源装置、特にソース物質からイオンを発生させて誘電プラズマ室へ送るマイクロ波励起形イオン源装置に関するものである。
【0002】
【従来の技術】
イオンビームは、様々な形式のイオン源によって発生させることができる。最初に、イオンビームは物理的研究に有益であることがわかった。イオン源の有名な初期の使用例として、アストン(Aston) が発明した、同位元素の識別に使用される第1真空質量分析計がある。イオンは、2つの金属電極間に真空アークを形成するイオン源から引き出された。
【0003】
その初期以来、イオンビームは様々な工業的用途に利用されており、最も注目されているものとして、シリコンウェハにドーパントを導入する技術として利用されている。様々な目的に対して多くのイオン源が開発されているが、イオンを形成できる物理的方法は非常に限られており、固体または液体からの直接スパッタリングまたは電界放出等の現象を利用する少数のイオン源を除いて、アークまたはプラズマからのイオンの引出しに限られている。
【0004】
イオン源内のプラズマは、電極間の低圧放電によって発生し、電極の一方は、直流、パルス形、または高周波電界によって励起される電子放出フィラメントからなる陰極であることが多い。陰極として電子放出フィラメントを用いているイオン源を備えたイオン注入装置は、シャバリー(Shubaly) の米国特許第4,714,834 号に開示されており、その全体が参考文献として本説明に含まれる。このように形成されたプラズマは、通常は整形静磁場によって高められる。活性電極、特に高温のフィラメント陰極、及び陽極として機能するプラズマ壁部は、高エネルギの化学的活性イオン及び電子によって侵食される。特にプラズマを形成するためにイオン源に導入されたガス成分がそれ自体非常に反応性が高い、例えばりん、ふっ素、ほう素等の場合、イオン源の寿命が、これらの相互作用によって2〜3時間に限定されることが多い。
【0005】
工業でのイオンビームの利用の増加、例えばイオン注入、イオン・ミリング(ion milling) 及びエッチングによって、作動寿命が延びたイオン源の開発に重点が置かれている。フィラメントイオン源に比較して、マイクロ波励起形イオン源は、プラズマ室内のイオン化ガス圧が低い状態で作動する。その結果、電子温度(eV)が高くなるという所望の特性が得られる。しかし、従来技術のマイクロ波エネルギイオン源は、フィラメントイオン源と同様に、補修/交換が必要になるまでの作動寿命が短い(約2時間)ことがわかった。
【0006】
ヒップル(Hipple)他の米国特許第4,883,968 号は、そのようなマイクロ波励起形イオン源の1つを開示しており、そのすべてが参考文献として本説明に含まれる。ヒップル他の特許のイオン源は、円筒形ステンレス鋼プラズマ室の一端部に接した窓を備えている。窓は、マイクロ波エネルギインターフェース領域として、また同時に圧力または真空シールとして機能する。マイクロ波エネルギインターフェース領域として、窓はマイクロ波導波管からプラズマ室内のソース物質へマイクロ波エネルギを伝送する。真空シールとして、窓は、脱気されているプラズマ室と、イオン源の非脱気領域、例えば導波管が延在している領域との間の圧力シールになっている。ヒップル他の特許の窓は、3つの誘導ディスク(2つのディスクは窒化ほう素製、第3ディスクはアルミナ製)と1つの石英ディスクとをサンドウィッチ形に平行配置して構成されている。薄い窒化ほう素ディスクが、プラズマ室に接している。薄い窒化ほう素ディスクに厚い窒化ほう素ディスクが隣接し、それにアルミナディスクが、最後に石英ディスクが順次続いている。
【0007】
窒化ほう素ディスクは、溶解点が高く、熱伝導性が良好である。マイクロ波エネルギは、マイクロ波源から窓の石英ディスクに隣接したフランジまで延在している導波管によって窓へ送られる。フランジは、矩形の中央開口を備えており、それを通ってマイクロ波エネルギが導波管から窓へ送られる。石英ディスクは、プラズマ室に引き込まれた真空を維持するための真空シールとして機能している。アルミナプレートは、マイクロ波エネルギを調整するためのインピーダンス整合プレートとして機能している。プラズマ室のプラズマによる望ましくないマイクロ波エネルギ反射を最小限に抑えるために、インピーダンス整合が必要である。ヒップル他の特許のイオン源は、寿命を含む多くの作動特性の点で従来形イオン源を改良しているが、長い作動寿命を備えたイオン源を設計することは、イオン注入装置の製造者の目標であり続けている。
【0008】
マイクロ波窓は、プラズマ室内に存在している高温(<800 ℃)の作用を必然的に受ける。さらに、マイクロ波エネルギインターフェース領域は、清浄に保つため、またりん等の凝縮性の成分を含むソース物質をイオン化する時にマイクロ波導波管とプラズマ室内のプラズマとの間に許容可能なマイクロ波エネルギ結合を得るために、高温でなければならない。しかし、真空シールは、高温や、プラズマ内の励起イオン及び電子による化学的侵食にさらされない時、作動寿命が延びることがわかっている。
【0009】
【発明が解決しようとする課題】
マイクロ波エネルギをマイクロ波発生器からプラズマ室へ送るために、従来装置は一般的に中空の導波管を用いていた。マイクロ波エネルギ伝送の導波管モード(均一な導波管内において、その管に沿って電磁界が指数関数で特徴づけられる波)は、一定範囲の周波数に制限される。発生マイクロ波周波数がその範囲外にある場合、導波管はマイクロ波エネルギを伝送しないので、遮断状態が生じる。伝送周波数範囲が限定されていることは、導波管マイクロ波エネルギ伝送モードの欠点である。
【0010】
本発明は、上述した従来の欠点を解消するために、真空シールを高温下にさらすことなく、イオン源の作動寿命を高めること、また、マイクロ波発生器とプラズマ室との間でマイクロ波エネルギ結合を向上させることを可能にしたイオン注入のためのイオン源装置を提供することを目的としている。
【0011】
【課題を解決するための手段】
本発明に従って構成されたマイクロ波励起形イオン源装置は、開放端部を備えて内部領域を定めている誘電プラズマ室へのTEM[横電磁界(transverse electric magnetic) ]モードのマイクロ波エネルギ伝送を含む。誘電プラズマ室は、同軸マイクロ波または高周波伝送線の中央導体の拡大端部を受け取る壁部分を備えている。プラズマ室キャップが、プラズマ室の開放端部に重なっており、イオンがプラズマ室を出る際に通る細長い開口すなわちアークスリットを備えている。
【0012】
プラズマ室は、ソース源ハウジングによって脱気領域内に支持されている。同軸伝送線が脱気領域を貫通しており、従って圧力または真空シールが、プラズマ室のエネルギ入口から離して設けられている。プラズマ室に追加の熱を与えるため、ハウジングの外周の一部分に加熱コイルが巻装されている。イオン源装置は、ソース物質元素を蒸発させるための1つまたは複数の加熱式ベーパライザを備えている。ソース源ハウジング内の通路が、蒸発したソース物質元素をベーパライザのそれぞれの出口弁からプラズマ室内部領域へ送る。
【0013】
イオン源装置は、イオン源のハウジングアセンブリ内の内部領域へ延出している支持管内に支持されている。クランプ取り付け具が支持管の端部に連結されており、アークスリットを所望の所定イオンビーム線に正確に整合させるために、クランプ取り付け具に設けられている位置決めスロットにプラズマ室キャップの位置決め突起をはめ合わせる。
【0014】
プラズマ室に連結されたTEMモードで作動するマイクロ波エネルギまたは高周波入口が、エネルギをプラズマ室内へ噴射して、プラズマ室内の電子を高エネルギまで加速し、それによってプラズマ室へ送られたガスがイオン化する。TEMモードでは、マイクロ波エネルギが、中央導体及びその上に重なった同軸管を含む伝送アセンブリを介してプラズマ室へ送られる。マイクロ波エネルギは、導体空気管の間の隙間を移動する。TEMモードは、中央導体を用いていない導波管マイクロ波エネルギ伝送モードとは違って、上でも下でもエネルギ伝送が行われなくなる周波数範囲制限を設けていない。また、TEMモードは、マイクロ波発生器とプラズマ室内部との間でマイクロ波結合を良好に行う。プラズマ室は、脱気領域内に支持されており、マイクロ波エネルギまたは高周波の入口の一部分が、脱気通路に挿通されている。
【0015】
プラズマ室内のプラズマ形成を制御するために、室を取り囲む磁界形成構造体がプラズマ室内に磁界を発生する。磁界形成構造体は、磁気ホルダと、プラズマ室内に1つの磁場形状を形成する1組の永久磁石を支持している磁石スペーサリングとを備えている。この磁界形成構造体は、様々な磁場形状、すなわち双極子、六極子及びカスプ間で容易に切り替えやすくする。
【0016】
本発明に従って構成されたイオン源装置は、プラズマ室の、同軸伝送線中央導体を受け取る壁部分から離して真空シールを設けている。中央導体に係合する壁部分が、マイクロ波エネルギインターフェース領域を形成している。真空シールは、インターフェース領域から離れた位置にあるため、低温で、また励起プラズマ内の化学的作用成分から離れて作動するため、真空シールの作動寿命が長くなる。また、同軸伝送線のマイクロ波導波中央導体の拡大端部とプラズマ室の窪み部分との間の係合領域によって定められるマイクロ波インターフェース領域(壁部)が比較的大きいことから、マイクロ波導波管と励起プラズマとの間のマイクロ波エネルギ結合が向上する。本発明のさらに別の利点は、プラズマ室内の磁場形状が、使用するソース物質及びソースガスの特性、及び処理中の加工物の特定の注入要件の変化に応じて変化することである。
【0017】
本発明の上記及び他の目的、利点及び特徴は、添付の図面を参照した以下の好適な発明の形態の説明から明らかになるであろう。
【0018】
【発明の実施の形態】
図1は、正荷電イオンを発生するイオン源装置12を備えたイオン注入装置10を示す概略図である。イオンは、イオン源装置12から引き出されてイオンビームを形成し、そのイオンビームは、固定のビーム線すなわち経路14に沿って注入部16へ進み、そこでビームは処理すべき加工片(図示せず)に衝突する。そのようなイオン注入装置10の1つの典型的な用途は、半導体ウェハを製造するためにイオン注入部16でイオンを注入する、すなわち、シリコンウェハのドーピングである。
【0019】
イオン注入量の制御は、イオンビーム経路14を通過するシリコンウェハの選択的移動によって維持される。従来形注入装置10の一例として、イートン(Eaton) 社の半導体装置部が市販しているNV-20A型注入機がある。この従来形イオン注入装置は、シャバリー(Shubaly) の米国特許第4,714,834 号に開示されているものに類似した電子放出フィラメントを有するイオン源を用いている。
【0020】
図1に概略的に示されているマイクロ波発生器(エネルギ源)20は、マイクロ波エネルギをイオン源装置12へ伝送する。好適なマイクロ波発生器20は、アメリカン・サイエンス&テクノロジー(American Science and Technology) 社が市販しているS-1000型発生器である。
【0021】
イオン源装置12の一部分が、イオン源のハウジングアセンブリ22の脱気部分内に配置されている。イオン源装置12から出たイオンは、ハウジングアセンブリ22内に配置された引出し電極アセンブリ(図示せず)によって加速されて、2つの真空ポンプ24によって脱気されているビーム線または経路14に入る。イオンは、ビーム経路14に沿って分析磁石26へ進み、これは、イオンビームを曲げて、荷電イオンの向きを注入部16に向かう方向へ変える。多重電荷を備えたイオンと原子番号が違っている別種のイオンとの両方またはいずれか一方が、分析磁石26によって形成された磁界とイオンとの相互作用によって、ビームから除去される。分析磁石26と注入部16との間を進むイオンは、注入部16でウェハに衝突する前に、追加の電極(図示せず)によってさらに高いエネルギーまで加速される。
【0022】
制御電子機器28(図1に概略的に示されている)が、注入部16に達する注入量を監視して、シリコンウェハに対して望まれるドーピングレベルに基づいてイオンビーム濃度を増減させる。イオンビームドーズ量を監視する技術は従来より公知であり、一般的にビームドーズ量を測定するためにファラディーカップ(図示せず)を用いている。ファラディーカップは、注入部16に入る前のイオンビーム経路14と選択的に交差する。
【0023】
図2ないし図5を参照しながら説明すると、本発明のイオン源装置12は、正荷電イオンを発生するために、電子放出フィラメントの代わりにマイクロ波エネルギを用いている。好適な発明の形態の説明では、イオンを発生するためにマイクロ波信号を用いることを想定しているが、それに代えて、イオンを発生するために高周波信号を用いることもでき、それも発明の範囲に入ることを理解されたい。イオン源装置12は、マイクロ波発生器20及びイオン源のハウジングアセンブリ22から切り離した時、一対のベークライトハンドル30を用いて移動させることができる接続形アセンブリであり、これらのハンドル30(図2,3には一方だけが示されているが、図5には両方が断面図で示されている)は、環状のイオン源装置取り付けフランジ34の外面32から延出している。
【0024】
装置12は、図2,3に分けて示めされており、マイクロ波チューニング及び伝送アセンブリ(エネルギ入力手段)40と、イオン化またはプラズマ室42と、一対のベーライザ(vaporizer)44 と、プラズマ室42を取り囲む磁界発生アセンブリ46とを備えている。
【0025】
図2に示すマイクロ波チューニング及び伝送アセンブリ40は、マイクロ波発生器20によって供給されるマイクロ波エネルギのインピーダンスをプラズマ室42の内部領域50内の励起プラズマのインピーダンスに一致するように調整するためのチューナアセンブリ48を備えている。一方、図3に示された磁界発生アセンブリ46は、プラズマ室の内部領域50内に磁界を発生させ、それがプラズマ室42内に電子サイクロトロン共振周波数状態を形成する。電子サイクロトロン共振周波数で、プラズマ室の内部領域50内の自由電子が、従来のプラズマ放電のエネルギレベルの10倍のレベルまで活性化され、内部領域内のアークに衝突しやすくなる。
【0026】
マイクロ波チューニング及び伝送アセンブリ40は、さらに、TEMマイクロ波エネルギ伝送モードで調整マイクロ波エネルギをプラズマ室42へ送るマイクロ波エネルギ伝送アセンブリ(伝送部)52(図3参照)を備えている。マイクロ波エネルギ伝送アセンブリ52は、同軸管56の中央に配置された同軸伝送線中央導体54を備えている。好ましくは、中央導体54はモリブデンで形成し、同軸管56は銀メッキされた黄銅管で形成する。チューナアセンブリ48とマイクロ波エネルギ伝送アセンブリ52との間の結合部の周囲に、圧力または真空シール58が配置されて、イオン源装置12の非真空部分と真空部分とを分離している。
【0027】
マイクロ波エネルギ伝送アセンブリの同軸管56は、ハウジングアセンブリ22及びイオン源装置取り付けフランジ34によって定められた内部領域57と同様に脱気されている。中央導体54によって伝送されたマイクロ波エネルギは、従って脱気領域を通過してから、プラズマ室42へ進む。マイクロ波エネルギ伝送アセンブリ52の一部分が、イオン源装置取り付けフランジ34の中央開口を貫通している。同軸管56は、イオン源装置取り付けフランジ34に溶接されている。後述するように、イオン源装置12のその他の部材は、取り付けフランジ34と、同軸管56の、取り付けフランジ34の内面60より延出している部分とによって支持されている。
【0028】
プラズマ室42は、マイクロ波エネルギを透過させる誘電素材からなり、それに設けられた開放端部に、細長い開口すなわちアークスリット64を有するプラズマ室キャップ62が重なっている。蒸発したソース物質及びソースガスが、プラズマ室の、開放端部とは反対側の閉鎖端部65に設けられた3つの開口63からプラズマ室内部領域50に導入される。プラズマ室の閉鎖端部は、中央導体54の拡大先端部分を収容する窪みを設けた円筒形部分を備えており、それによって形成されたマイクロ波エネルギインターフェース領域(壁部)68をマイクロ波エネルギが通過して、プラズマ室内部領域50内の蒸発ソース物質及びソースガスを励起する。
【0029】
真空シール58は、壁部68から離れており、真空シール58と壁部であるマイクロ波インターフェース領域とは、中央導体54の対向端部に位置している。壁部68と真空シール58とが離れている結果、真空シール58は、プラズマ室の高温から離れて、比較的低温状態で機能する。さらに、後述するように、真空シール58は、シールを支持しているフランジアセンブリ72に隣接配置された水冷管70によって冷却される。また、真空シール58は、プラズマ室内部領域50内の励起プラズマによる化学的侵食から隔離されている。比較的低温の作動状態が得られ、かつ化学的侵食から保護されている結果、真空シール58の作動寿命が長くなり、従ってイオン源装置12の予想平均無故障間隔が増加する。キャップ62は、そのプラズマ室内部領域50に面する側の表面の、アークスリット64の周囲の小部分を除いた全体が、不活性素材で被覆されている。被膜は、キャップ62を励起プラズマによる化学的侵食から保護する。
【0030】
伝送アセンブリ52によってプラズマ室42へ伝送されたマイクロ波エネルギは、マイクロ波インターフェース領域の壁部68を通過して、プラズマ室内部領域50に入る。マイクロ波エネルギは、内部領域50内のガス分子をイオン化する。発生したイオンは、プラズマ室キャップ62のアークスリット64を通ってプラズマ室内部領域50から出る。プラズマ室42は、プラズマ室(ソース源)ハウジング74内にはめ込まれて、それによって支持されている。ハウジング74は、プラズマ室内部領域50内のソース物質に追加熱を与える加熱コイル(加熱手段)76を備えている。プラズマ室ハウジング74は、マイクロ波エネルギ伝送アセンブリの同軸管56の先端部に連結され、それによって支持されている。
【0031】
磁界発生部材46が、プラズマ室42を取り囲んでおり、環状磁石ホルダ78と、1組の永久磁石82を支持してそれらの向きを定めているマグネットスペーサリング80とを備えている。磁石組82は、プラズマ室内部領域50を通る磁力線を形成する。プラズマ室内部領域50内で発生したイオンは、磁力線の周囲をらせん軌道で漂う。プラズマ室内部領域50内の磁界をキャップのアークスリット64と軸方向に適当に整合させることによって、発生イオンの大部分をアークスリット64から引き出すことができるようになる。また、磁界がプラズマ室内壁面付近で最も強く(約875 ガウス)、プラズマ室内部領域50の中心付近で弱くなるように永久磁石組82を調節することによって、自由電子及びイオンがプラズマ室内壁面に衝突する頻度を減少させることができる。電子及びイオンがプラズマ室内壁面に衝突すると、プラズマ室42に供給されるマイクロ波エネルギの利用効率が低下する。プラズマ室内部領域50内に電子サイクロトロン共振周波数状態が発生するようにプラズマ室内部領域50の磁界の強さを変化させると、室42内の自由電子がさらに高いエネルギレベルまで活性化される。
【0032】
マイクロ波エネルギ及び熱を受けると、プラズマ室内部領域50内に噴射されたソース物質が、ガス化したイオン化プラズマを形成する。マイクロ波エネルギはまた、プラズマ室内部領域50内の自由電子を励起し、それらがプラズマ内のガス分子と衝突して正荷電イオン及びさらなる自由電子を発生すると、それらが次に他のガス分子と衝突する。プラズマ室内部領域50へ送られるソース物質は、1つまたは複数のソース元素を含み、それらは、プラズマ室内部領域50へ送られる前に、ベーパライザ対44によって蒸発される。蒸発用に選択される元素は、りん(P)、ひ素(As)及びアンチモン(Sb) を含むことができる。後述するように、ソース物質元素は、固体状態でベーパライザに装填される。各ベーパライザ44は、ソース元素に高温(<500 ℃)を加えて蒸発させる加熱コイル84を備えている。蒸発した元素は、ベーパライザの先端部のばね付勢式ガスシール86を通ってベーパライザから出て、プラズマ室内部領域50へ送られる。蒸発元素は、プラズマ室ハウジング74に穿かれた通路88を通って、プラズマ室42内の開口にはめ込まれたガスノズル90からプラズマ室内部領域50内へ出る。
【0033】
引出し電極アセンブリ(図示せず)が、イオン源のハウジングアセンブリ22及びイオン源装置取り付けフランジ34によって定められた内部空間57内へ延出している中空の支持管94の第1端部付近に設けられたハウジングアセンブリ22のアクセス開口(図示せず)から取り付けられる。引出し電極アセンブリは、離設されたディスク半割体で構成されており、これらのディスク半割体が励起されることによってイオンが加速されて、プラズマ室キャップのアークスリットからビーム経路14に沿って出る。ハウジングアセンブリ22から出たイオンは、引出し電極アセンブリによって与えられた初期エネルギ(例えば40〜50kev )を備えている。加速電位及びマイクロ波エネルギ発生の制御は、図1に概略的に示されているイオン源制御電子機器28によって維持される。
【0034】
図2,3にわかりやすく示されているように、イオン源装置12の一部分が、イオン源装置取り付けフランジの内面60から突出している。この部分は、プラズマ室42及びキャップ62と、ベーパライザ対44と、磁界発生アセンブリ46と、マイクロ波エネルギ伝送アセンブリ52の一部分とを含み、中空の支持管94の第2端部96内へ滑り挿入される。支持管94の第2端部96から、支持管フランジ98が突出している。イオン源装置取り付けフランジ34は、支持管フランジ98に連結され、取り付けフランジ内面60の環状溝内に配置されたOリング100 が、取り付けフランジ34と支持管フランジ98との間を確実に気密状に密閉している。この支持管フランジ98は、イオン源のハウジングアセンブリ22の一部である絶縁体104 の端部にボルト(図示せず)によって取り付けられている。支持管フランジ内面の環状溝内に配置されたOリング106 が、絶縁体104 の外面と密封係合している。支持管94は、支持管フランジ98からハウジングアセンブリ22の内部空間57内へ延出している。ハウジングアセンブリ22の絶縁体104 は、ハウジング部材110 に連結されているインターフェースプレート108 に連結されている。ハウジング部材110 は、ハウジングアセンブリ22の内部空間57及び支持管の第1端部92にアクセスできるようにするアクセス開口(図示せず)を備えている。
【0035】
プラズマ室42は、マイクロ波エネルギを透過する誘電材料、例えば窒化ほう素で構成されている。窒化ほう素は、その誘電特性に加えて、優れた熱伝導率を備え、溶融点が高く、プラズマ室42は800 ℃を越える温度で最も効果的に作動するため、これは望ましい。あるいは、アルミナを用いることもできる。室42は、一方端部が開放し、他端部65が閉じたカップ形である。プラズマ室42の閉鎖端部65の中央に窪みまたは凹み部分が設けられており、中央導体の拡大先端部66からのマイクロ波エネルギは、それを通ってプラズマ室内部領域50へ進む。
【0036】
プラズマ室42のこの形状には幾つかの利点がある。すなわち、プラズマ室42の閉鎖端部65の窪み部分によって形成されたマイクロ波エネルギインターフェース領域68は、マイクロ波エネルギ伝送線中央導体54との接触面積が、窪み無しのプラズマ室設計に較べて大きくなる。マイクロ波エネルギインターフェース領域68が大きいことによって、中央導体54とプラズマ室内部領域50との間に優れたマイクロ波エネルギ伝達特性が得られる。さらに、窪み部分がプラズマ室閉鎖端部65の中央に位置しているため、中央導体54とプラズマ室内部領域50内の点との間の距離が、窪み無しのプラズマ室設計に較べて短くなる。マイクロ波エネルギ伝送線中央導体54とプラズマ室内部領域50内の点との間の距離が短くなる結果、励起プラズマ内でのマイクロ波エネルギの分散がさらに均一になる。また、プラズマ室42は、中央導体54とプラズマ室内部領域50内の励起プラズマとを分離させている。この分離によって、中央導体の拡大先端部分66がプラズマに直接に接触した場合に発生するような化学的腐食から保護される。
【0037】
プラズマ室42は、プラズマ室ハウジング74内にはめ込まれて、それによって支持されている。ハウジング74は、環状のベース部分112 と、ベース部分から延出しているわずかに大径の第2環状部分114 とを備えている。第2環状部分114 は、プラズマ室をはめ込む大きさの円筒形内部領域を形成している。環状ベース部分の内径がわずかに小さくなっているため、半径方向内向きの段差部分すなわち肩部116 が形成されて、これがプラズマ室の閉鎖端部65の支持体になっている。図6〜図8に示されているように、プラズマ室ハウジングの環状ベース部分112 は、半径方向外向きに延出した2つの突起118 を備えている。突起118 及び環状ベース部分112 に穴が穿かれて、各ベーポライザのガスシール86とプラズマ室内部領域50との間を流体連通させるL字形通路88を形成している。それぞれの通路88に1つずつはめ込まれた2つのガスノズル90が、プラズマ室閉鎖端部65の開口63の2つにはまっている。蒸発ソース物質が通路88の端部分を通って逃げないようにするため、ドウェルピン119 が、通路88の、それぞれの突起118 内に位置している各部分の端部分に圧入されている。
【0038】
環状ベース部分112 はさらに、その外周にろう付けされた加熱コイル76を備えている。加熱コイル76は、プラズマ室内部領域50へ熱を伝導する。プラズマ室内部領域50はさらに、マイクロ波励起プラズマによっても加熱される。加熱コイル76によって追加された熱は、特にイオン源装置12を低電力レベルで運転している時に、プラズマ室内部領域50内に十分な高温レベル(<800 ℃)を確保するために必要であることがわかっている。環状ベース部分112 の端部122 に環状段差部分(図3及び図8に示されている)が設けられており、これは、マイクロ波エネルギ伝送線同軸管56の先端部に溶接されたフランジ124 の窪み部分にはめ合わされる。プラズマ室ハウジング74は、フランジ124 を貫通して環状ベース部分112 はめ込まれている6個のボルト126 でフランジ124 に固定されており、そのうちの1つが図3に示されている。
【0039】
温度測定サーモカップル(図示せず)が、プラズマ室ハウジング74に穿かれた穴に挿入される。サーモカップルは、イオン源装置取り付けフランジ34内に配置された管継手127 を通ってイオン源装置12から取り出される。
【0040】
ソースガス入口ノズル(図示せず)が、プラズマ室閉鎖端部65の第3開口(図示せず)にはめ込まれ、ガス管(図示せず)を介してイオン源装置取り付けフランジ34に設けられた管継手117 (図4を参照)に接続している。プラズマ室内部領域50へソースガスを供給するため、外部ガス供給源(例えば、酸素イオンを所望する場合には酸素ガス)が管継手117 に接続される。ガス管は、導波管としての同軸管56の先端部に溶接されたフランジ124 の開口(図示せず)を通っている。
【0041】
プラズマ室キャップ62が、プラズマ室42の開放端部に重なって、それに密封係合している。キャップ62は、4つの耐熱性タンタルねじ128 を用いてプラズマ室ハウジング74の端部に固定されている。キャップ62の外周に2つのスロット130 が穿かれている。位置決めスロット130 は、アークスリット64を二分する長手方向軸線A−Aに正確に位置合わせされる。位置決めスロット130 は、アークスリットを所定の、または所望のイオンビーム線に整合させやすくし、またイオン注入装置10の作動時の熱によって発生するイオン源装置部材の膨張によってプラズマ室42が支持管94内で軸方向移動しても、その整合状態を維持する。
【0042】
自動調心割りリングクランプアセンブリ132 が、支持管94の第1端部92に取り付けられている。クランプアセンブリ132 は、リテーナリング136 と割りリング138 との間に固定された支持リング134 を備えている。割りリング138 は、半径方向に割れており、割れ目を跨ぐ調節ねじ(図示せず)を備えている。調節ねじを適当に回すことによって、割りリング138 の直径を増減させることができる。最初に、割りリング138 とリテーナリング136 とを連結しているボルト(図示せず)を緩く締めて、支持リング134 が割りリング138 とリテーナリング136 との間を横方向に摺動できるようにする。支持リング134 に設けられた2つのタブ部分140 の各々の内周縁部から半径方向内向きに、位置決めピン142 が延出している。割りリング138 はさらに、支持リング134 及びリテーナリング136 側の表面とは反対の垂直表面に環状溝144 を設けている。
【0043】
整合取り付け具(図示せず)を用いて、支持リングタブ140 を取り付け具の取り付け表面に整合させて固定し、それによってクランプアセンブリ132 を取り付け具に固定する。取り付け具をハウジング部材110 に取り付けて、ハウジングアクセス開口から挿入する。取り付け具は、割りリング溝144 を滑らせて支持管94の第1端部92の上にはめ付けて、タブ位置決めピン142 を所定のイオンビーム線に正確に整合させることができる寸法にする。割りリングの調節ねじを回転させて、割りリング138 の直径を大きくして、割りリング溝144 を支持管94の第1端部92に押し付け、それによってクランプアセンブリ132 を支持管94に固定する。
【0044】
支持リング134 は割りリング138 とリテーナリング136 との間を横方向に摺動可能であり、支持リングタブ140 が整合取り付け具に取り付けられたままであるから、割りリング138 を支持管94の第1端部92に固定する間、位置決めピン142 所定のビーム線に整合させた状態が維持される。次に、タブ位置決めピン142 と所定のビーム線とを整合状態を保持しながら、割りリング138 とリテーナリング136 とを結合しているボルトを締め付けて、支持リング134 を所定位置に固定する。整合取り付け具を支持リングタブ140 から取り外して、ハウジング部材110 から取り出す。
【0045】
イオン源装置ハンドル30を握って、イオン源装置12を支持管の第2端部96に挿入し、ハンドルを用いてイオン源装置12を回転させることによって、プラズマ室ハウジングキャップの位置決めスロット130 を支持リングタブ位置決めピン142 に整合させて摺動可能にはめ合わせ、それによって確実にアークスリット64を所定のビーム線に適切に整合させる。次に、イオン源装置取り付けフランジ34を支持管フランジ98に結合させて、イオン源装置12を固定する。最後に、マイクロ波発生器20をチューナアセンブリ48に連結すれば、イオン源装置12の作動準備が整う。作動中、伝送アセンブリ52を含めたイオン源部材が加熱されて膨張する。マイクロ波エネルギ伝送線同軸管56がイオン源装置取り付けフランジ34に溶接されており、取り付けフランジ34がハウジングアセンブリ22に連結されるので、同軸管の軸方向膨張は、プラズマ室42を支持管の第1端部92の方へ(すなわち、図3の右側へ)軸方向移動させる傾向がある。支持リングタブ部分140 の位置決めピン142 は、軸方向に(すなわち、支持管中央軸線及び所定のビーム線に平行な方向に)十分な長さを備えているので、熱に誘発されてプラズマ室42が軸方向移動しても、ピンはキャップ位置決めスロット130 にはめ合わされた状態に維持される。タブ位置決めピン142 がキャップ位置決めスロット130 に係合した状態に維持されることによって、位置決め手段(130,142) が構成され、確実にアークスリット64を所定のビーム線に常に適切に整合させることができる。
【0046】
ベーパライザ対44は、構造及び機能が同一である。従って、説明を簡単にするため、一方のベーパライザについてだけ説明するが、それは両ベーパライザに当てはまる。ベーパライザ44はほぼ円筒形構造であり、ベーパライザ44の保守点検時やソース物質の追加時には、イオン源装置12を支持管94から取り外す必要なく、ベーパライザをイオン源装置12から抜き出すことができる。ベーパライザ44は、先端部(すなわちプラズマ室42側の端部)のばね付勢式ガスシールアセンブリ86と、ソース物質を貯留させる内部空間151 を形成している円筒形胴部150 と、胴部150 の小径部分にろう付けされた加熱コイル84と、イオン源装置取り付けフランジの外面32に取り付けられるベーパライザキャップ154 とを備えている。ガスシールアセンブリ86にねじ付きの外周表面が設けられており、これが胴部150 先端部の対応の雌ねじにねじ込まれる。ガスシールアセンブリ86を胴部150 から取り外せば、蒸発用のソース物質を胴部内部空間に導入することができる。
【0047】
ソース元素の蒸発に必要な高温(P、AsまたはSb等の成分の縮合を避けるために約500 ℃)は、加熱コイル84によって与えられる。加熱コイル84は、イオン源装置12の外部の電源(図示せず)によって励起される。加熱コイルの延長線が、ベーパライザキャップ154 の開口156 を通ってイオン源装置12から出ている。シール部材158 が、開口156 付近でベーパライザキャップ154 の外面を貫通している加熱コイル84の直線部分84Aにろう付けされて、加熱コイル84の突出直線部分84Aを取り囲む真空密封シールを形成している。(ハウジングアセンブリ22と、イオン源装置取り付けフランジ34と、マイクロ波エネルギ伝送アセンブリ52とによって定められた内部空間57は脱気されているが、ハウジングアセンブリの外側の領域は一般的に脱気されていないことを思い出されたい。)
ベーパライザは、イオン源装置取り付けフランジ34の開口から挿入される。ベーパライザの先端部分が、開放端部形のステンレス鋼円筒形熱シールド160 にはまっている。熱シールド160 は、熱シールドとして、また同時にガスシールアセンブリ86をプラズマ室内部領域50に通じたプラズマ室ハウジング通路88に適切に整合させるためのガイドとして機能する。胴部150 の拡大外径部分162 が、イオン源装置取り付けフランジ34の開口にすべりばめされて、4つのボルト164 がベーパライザキャップ154 をイオン源装置取り付けフランジ外面32に固定している。
【0048】
ステンレス鋼の円筒形熱シールド160 (各ベーパライザ44に1つずつ)は、導波管である同軸中央管56に対して正確に位置決めされる。熱シールド160 は、約1/8インチ厚さの平板金属片166 の各端部に溶接されている。この金属片は、導波管の同軸管56に取り付けられた割りクランプ(図示せず)に2つのねじ168 で固定されている。
【0049】
次に、図11〜図18を参照しながら説明すると、磁界発生アセンブリ46が、プラズマ室内部領域50内に磁界を発生する。磁界には少なくとも3つの有益な機能がある。すなわち、
(a) 電子が、磁力線を取り囲むらせん軌道で整合して、磁力線がキャップのアークスリットと軸方向に整合している場合、アークスリットから引き出される発生イオンの数が増加する。
(b) 磁界がプラズマ室内部壁付近で強い(約875 ガウス)ことによって、電子が壁に衝突する頻度を減少させることができ、そのような衝突によるプラズマの損失を低減させる。
(c) 電子サイクロトロン共振周波数に一致するように磁界強さを操作することによって、前述したようにプラズマ室内部領域50内の自由電子エネルギが増加す
る。
【0050】
個々のイオン注入状態及びソース物質によって、最適結果を得るためにプラズマ室内部領域50内に使用すべき磁場形状が異なることが、研究からわかっている。例えば、一定の注入状態では、高電子エネルギが、良好な注入結果を得る際の重要な特徴であることが確認されている。図16に示されている取り付け向きの磁石組82によって形成される双極子磁場形状が、プラズマ室内部領域50内に最高の電子温度を発生することが実験からわかっている。別の状態では、満足できる注入結果を達成するために、図17に示されている取り付け向きの磁石組82によって形成される六極子磁場形状が、または図18に示されている取り付け向きの磁石組82によって形成されるカスプ磁場形状が用いられる。
【0051】
プラズマ室内部領域50内の磁場の形状は、永久磁石の数及び取り付け向きによって決まる。後述するように、本発明の磁界発生アセンブリ46は、様々な磁場形状、例えば双極子、六極子及びカスプ形の間で迅速に切り替えることができる。
【0052】
いずれの形状においても、永久磁石組82は、共にアルミニウム製である環状磁石ホルダ78及び磁石スペーサリング80によってプラズマ室42の半径方向外側に配置されている。図11〜図14に示されているように、磁石ホルダ78は、開口中央領域を取り囲むリング部分170 を備えている。開口中央領域は、プラズマ室42の外径部に摺動式に嵌め付けることができる大きさになっている。リング部分170 の外周表面は、12個の対称的な平坦部172 を備えている。2つの平行な延出部174A,174B が、リング部分170 の両端部から半径方向外向きに延出している。延出部174A,174B は、1インチ離れていることが好ましい。
【0053】
図15に示されているように、磁石スペーサリング80は、3つの同一の切頭三角部材80A,80B 及び80C で構成されており、各部材は120 °の円弧にわたって延在している。各部材80A,80B 及び80C の幅は1インチであって、リング部分170 の平行延出部174A,174B 間にすべりばめさせることができる。磁石組82の個々の磁石の寸法は、1インチ×1インチ×0.5 インチであることが好ましい。各スペーサリング部材80A,80B 及び80C は、その内周に沿って4つのスロット176 を備えている。六極子磁場形状の場合、スロット176 は、2種類の取り付け向きまたは形状、すなわち(図15に示されているように)「平形」176Aと「縁部形」176Bを交互に設けている。「平形」スロット176Aには、磁石の1インチ×1インチ表面がスロットの内側表面178Aに接するようにして、磁石が配置される。それに対して、「縁部形」スロットには、磁石の1インチ×0.5 インチの縁部表面がスロットの内側表面178Bに接するようにして、磁石が配置される。3つのスペーサリング部材80A,80B 及び80C によって形成されるスロット176 の合計は12であって、リング部分170 の平坦部の数と一致している。個々の磁石は、スペーサリング部材80A,80B 及び80C の適当なスロットに挿入され、エポキシ樹脂を用いて所定位置に接着される。
【0054】
次に、磁石スペーサリング部材をリング部分延出部174A,174B 間に挿入して、各磁石の表面を対応のリング部分平坦部172 にぴったり接触させる。スペーサリング部材80A,80B 及び80C は、リング部分延出部174Aの孔180 (図11を参照)に挿通させ、磁石スペーサリング部材の対応の孔182 に締め付けた6個のねじ(図示せず)によって所定位置に取り付けられる。
【0055】
双極子及びカスプ形状に対しては、12個の「平形」取り付け向きまたは形状のスロットを備えた第2磁石スペーサリング(図示せず)が用いられる。このリングは、図15に示されている3部材リング構造ではなく、2つの半円部材で構成され、各半円部材に6個の「平坦」スロットが設けられている。
【0056】
各磁場形状に対して、それぞれ異なったスペーサリング部材及び磁石組が用いられる。双極子磁場形状では、磁石組82が、図16に示されているように、6個の磁石を有しており、そのうちの3つが隣接した「平形」スロットにはめ込まれ、残りの3つの磁石が磁石スペーサリングの反対側に配置されている。12個の「平形」スロットを備えた第2磁石スペーサリング(図示せず)が用いられている。(説明をわかりやすくするため、図16〜図18の図面は磁石スペーサリング部材を示していない。)磁石スペーサリング80の残りの6個のスロットは、空のままになっている。
【0057】
図17の、六極子磁場形状では、磁石組82が12個の磁石を有しており、それらが、磁石スペーサリング部材の12個のスロットすべてに挿入されている。図15に示されている磁石スペーサリングが、六極子磁場形状に用いられている、すなわち、スロット176 は「平形」スロット176Aと「縁部」形スロット176Bとを交互に設けている。
【0058】
カスプ磁場形状(図18)では、第2磁石スペーサリング(図示せず)が用いられ、図示のように12個の「平形」スロットすべてに装填される。
【0059】
磁場形状を変更するためには、磁石ホルダ78の孔180 に挿通させて、磁石スペーサリング部材80A,80B 及び80C の整合孔182 にはめ込まれているねじを取り外して、スペーサリング部材をリング部分平行延出部174A,174B 間から取り外すだけでよい。次に、所望形状のためのスペーサリング部材を延出部間に挿入して、それに固定する。
【0060】
図11及び図12に示されているように、水冷管184 が、磁石ホルダのリング部分延出部174Aの外側表面188 の隆起部分186 に沿って延在している。水冷管184 の終端部に設けられた管継手190 が、イオン源装置取り付けフランジ34を貫通しており、密封Oリング(図示せず)を重ねて六角ナット193 (図5)で所定位置に固定されている。冷却水または流体の外部供給源(図示せず)が、管継手190 の一方に接続されており、冷却水は、水冷管184 を循環した後に、他方の管継手190 に接続された外部管を通って排出される。水冷管184 は、押さえタブ及びねじの組み合わせ194 によって外側表面188 に固定されている。水冷管184 を磁石ホルダ78に組み付けた後、アセンブリ全体をディップろう付けする。水冷管184 が、磁石組82を付近のプラズマ室42内やプラズマ室加熱コイルから発生した高温熱から保護する。
【0061】
図3及び図4に示されているように、環状の電子シールド196 が、磁石ホルダリング部分延出部174Bの外側表面にねじ200 (その1つが図3に点線で示されている)で固定されており、ねじ200 は、シールド及びリング部分延出部174Bの整合孔にねじ込まれている。延出部174Bの孔202 が、図14に示されている。電子シールド196 はグラファイトであり、プラズマ室キャップのアークスリット64から出る逆流電子によるアルミニウム磁石ホルダ78の損傷を防止する。
【0062】
図2に戻って説明すると、マイクロ波チューニング及び伝送アセンブリ40は、チューナアセンブリ48と、マイクロ波エネルギ伝送アセンブリ52とを備えている。チューナアセンブリは、マイクロ波発生器20によって発生したマイクロ波エネルギの周波数を調整する機能を備えており、スラグチューナアセンブリ212 に結合された導波管コネクタ210 で構成されている。導波管コネクタ210 のフランジ付き端部214 が、マイクロ波発生器20の出口に接続している。導波管コネクタ210 の両側壁216,218 に整合開口が設けられている。スラグチューナアセンブリ212 の中央導体220 が、側壁216 の開口を貫通して、導波管コネクタ210 の内部領域222 内へ進入している。チューナ軸224 が、側壁218 の開口にはめ込まれている。チューナ軸224 は、側壁に重ねて取り付けられた、雌ねじを付けたフランジ付きスリーブ226 によって支持されている。チューナ軸224 の外周の一部分には、フランジ付きスリーブの雌ねじにはめ合わされるねじが付けられている。チューナ軸224 の端部228 が、導波管コネクタの内部領域222 から突出しており、それにスロットが設けられている。
【0063】
チューナ軸224 のスロット付き端部228 をドライバ(図示せず)で回転させることによって、チューナ軸224 の導波管コネクタの内部領域222 内への進入深さが調節される。チューナ軸224 が内部領域に進入している深さが、マイクロ波発生器20の出力部から伝送されるマイクロ波エネルギのインピーダンスを調整、すなわち変化させて、プラズマ室内部領域50内のプラズマのインピーダンスに一致させることができる。
【0064】
導波管コネクタの内部領域222 内のマイクロ波エネルギは、スラグチューナ中央導体220 へ伝達される。スラグチューナは、プラズマ室内部領域50へ伝達されるマイクロ波エネルギの周波数を変化させる第2手段になっている。スラグチューナアセンブリは、二重壁形同軸チューナ管230 が重なっているスラグチューナ中央導体220 と、一対のスラグチューナとを備えている。二重壁形同軸チューナ管230 は、銀メッキ黄銅製である。各スラグチューナは、スラグチューナ中央導体220 上に摺動可能に設けられた環状のセラミックチューニングカラー236,238 を備えている。薄いヨーク240,242 が、各チューニングカラーの外周から半径方向外向きに延出している。ヨーク240,242 は、環状カラー236,238 を駆動するために、チューナ管230 内の細い長手方向スロット(図示せず)を通ってピン254 に連結している。各ヨーク240,242 の、外側同軸管230 から外方へ延出している部分にロッド244,246 が連結されており、これらのロッドは、外径部に沿ってねじが付けられ、またV字形溝付きの端部を備えている。ロッド244 は、ロッド246 より短い。
【0065】
長いねじ付きロッド246 は、ヨーク240 のクリアランス孔とヨーク242 のねじ孔とに挿通されて、先端が尖った止めねじ(図示せず)によって固定支持ブラケット252 に固定されている。この止めねじは、ねじ付きロッド246 の端部のV字形溝に遊嵌されている。短いねじ付きロッド244 は、ヨーク240 のねじ付き孔に挿通されて、ヨーク242 にはまっており、そこで同様に先端が尖った止めねじで固定されている。ロッド244 をドライバで回転させると、ヨーク240 がピン付き環状カラー236 と共に移動し、それによって環状カラー236,238 のギャップを変化させる。ロッド246 をドライバで回転させると、両ヨーク240,242 がピン付き環状カラー236,238 と共に、中央導体220 の上に重なっている移動経路に沿って一体となって移動する。
【0066】
図2に示されているように、スラグチューナ中央導体220 の、導波管コネクタ210 とは反対側の端部は、マイクロ波エネルギ伝送線中央導体54の端部に連結されている。スラグチューナ中央導体220 の端部から延出した雄部材が、中央導体54の端部の開口にはめ込まれている。気密シールを維持するために、中央導体間にOリング256 が配置されている。真空シール58は、2部材形フランジ262 によって支持された環状セラミックリングであり、このフランジ262 は、マイクロ波エネルギ伝送管中央導体54とスラグチューナ中央導体220 との間の連結接合面を包囲している。2部材形フランジ262 は、第1及び第2フランジ部分264,266 を備えており、4つのボルト268 (図2には1つだけが示されている)で固着されている。チューナ同軸管230 の端部が、第1フランジ部分264 にはんだ付けされているのに対して、マイクロ波エネルギ伝送線同軸管56の端部が、第2フランジ部分266 にはんだ付けされている。真空シール58を取り囲むOリング269 が、第2フランジ部分269 に密着係合している。同軸管56の孔(図示せず)から同軸管内に真空が引き込まれる。チューナ同軸管230 は真空状態にない。真空シール58及びOリング256 を比較的低温状態に維持するために、U字形の冷却管70が、導波同軸管56付近の第2フランジ部分266 の外面の隆起部分にはめ付けられている。
【0067】
スラグチューナ中央導体220 及びマイクロ波エネルギ伝送線中央導体54は、マイクロ波エネルギを伝送するが、好ましくは直径が3/8インチであるのに対して、チューナ同軸管230 及びマイクロ波エネルギ伝送線同軸管56の内径は13/16インチであることが好ましい。マイクロ波エネルギ伝送線中央導体54の第1拡大部分272 付近に、中央導体と同軸管56との間にはめ込まれる大きさの環状カラー270 が設けられて、導体を管の中心に位置決めしている。カラー270 は、ピン274 によって中央導体54に取り付けられている。
【0068】
以上説明したように、本発明の実施の形態におけるマイクロ波励起形イオン源装置12は、ハウジングアセンブリ22によって定められた空間57内に延出している支持管94によって支持され、プラズマ室42と、一対のベーパライザ44と、エネルギ伝送手段40と、磁界発生アセンブリ46を備えており、プラズマ室42の内部領域50へ、ソース物質及びイオン化が可能なガスが送られ、室42に重ねられたキャップ62のアークスリット64を通って、発生イオンがプラズマ室42から出るようになっている。そして、エネルギ伝送手段40では、同軸のマイクロ波エネルギ伝送線中央導体54の一端部66が、プラズマ室42の壁部68にはめ込まれており、TEMモードでマイクロ波エネルギをプラズマ室42へ伝送する。
【0069】
この中央導体54は、これを取り囲む同軸管56の脱気部分を貫通し、同軸管56内またはその付近に、脱気されている同軸管56と非脱気領域との間の境界に真空シール58が配置される。アークスリットキャップ62は、プラズマ室42を取り囲むプラズマ室ハウジング74に取り付けられており、アークスリット64が所定のイオンビーム線と整合するようにして、支持管94の端部92に固定されたクランプアセンブリ132 にはめ合わされる。さらに中央導体54は、一対のスラグチューナ236、238 が摺動可能にはめ付けられているチューニング中央導体220 に連結しており、スラグチューナ236、238 をそれらの移動経路に沿って移動させることによって、プラズマ室42へ送られるマイクロ波エネルギのインピーダンスを変化させることができるようになっている。
【図面の簡単な説明】
【図1】マイクロ波励起形イオン源を含むイオン注入装置の概略図である。
【図2】支持管内に支持されている本発明による構造のイオン源装置のマイクロ波チューニング及び伝送アセンブリ部分を示す拡大断面図である。
【図3】図2と一体に構成されるイオン源装置のハウジングアセンブリ部分の詳細拡大断面図である。
【図4】図3の3−3線に沿った平面から見た、図2のイオン源装置の側面図である。
【図5】図3の4−4線に沿った平面から見た、図2のイオン源装置の側面図である。
【図6】図3のイオン源装置のプラズマ室ハウジングの前面図である。
【図7】図6のプラズマ室ハウジングの底面図である。
【図8】図7の7−7線に沿った平面から見た、図6のプラズマ室ハウジングの断面図である。
【図9】図2のイオン源装置のベーパライザの側面図である。
【図10】図9の9−9線に沿った平面から見た、ベーパライザの端面図である。
【図11】図2のイオン源装置の磁界発生構造体の磁石ホルダの前面図である。
【図12】図11の磁石ホルダの側面図である。
【図13】図11の12−12線に沿った平面から見た、図10の磁石ホルダの長手方向断面図である。
【図14】図12の13−13線に沿った平面から見た、図10の磁石ホルダの横断面図である。
【図15】図2のイオン源装置の磁界発生構造体の磁石スペーサリングの前面図である。
【図16】双極子形状に配置された1組の永久磁石を設けた、図11の磁石ホルダの横断面図である。
【図17】六極子形状に配置された1組の永久磁石を設けた、図11の磁石ホルダの横断面図である。
【図18】カスプ形状に配置された1組の永久磁石を設けた、図11の磁石ホルダの横断面図である。
【符号の説明】
12 イオン源装置
20 マイクロ波発生器(エネルギ源)
40 チューニング及び伝送アセンブリ(エネルギ入力(伝送)手段)
42 プラズマ室
50 プラズマ室内部領域
52 マイクロ波エネルギ伝送アセンブリ(伝送部)
54 中央導体
56 同軸管
62 プラズマ室キャップ
64 アークスリット
66 端部分
68 マイクロ波インターフェース領域(壁部)
74 プラズマ室(ソース源)ハウジング

Claims (17)

  1. 脱気領域内に支持され、かつソース物質及びイオン化するガスが送り込まれる内部室(50)が形成されるプラズマ室(42)と、このプラズマ室(42)内のガスをイオン化するために、プラズマ室(42)内の電子を高エネルギまで加速するエネルギ入力手段(40)とを備えているイオン源装置(12)であって、
    (a) プラズマ室(42)は、開口と、この開口から離れた壁部(68)とを有しており、壁部は、プラズマ室(42)内へエネルギを噴射するエネルギ放出表面を備えており、
    (b) プラズマ室(42)の開口に密封係合し、かつイオンビームを形成するためにイオンがプラズマ室(42)を出る際に通る細長いアークスリット(64)を備えているプラズマ室キャップ(62)を備えており、
    (c) エネルギ入力手段(40)は、前記プラズマ室の壁部(68)に当接して、エネルギを前記壁部(68)から内部領域(50)へ伝送する端部分(66)と、ソース源ハウジング(74)によって囲まれた脱気領域内でマイクロ波または高周波エネルギをプラズマ室(42)へ送る伝送部(52)とを備え、
    (d) 前記プラズマ室の壁部( 68 )は、前記伝送部( 52 )の中央導体 (54) との接触面積を大きくするために、前記プラズマ室の閉鎖端部の中央に窪みによって形成されるマイクロ波エネルギーインターフェース領域を有することを特徴とするイオン源装置。
  2. プラズマ室の内部領域(50)内に磁界を発生するための磁界発生手段(46)が設けられており、プラズマ室(42)のプラズマ形成を制御して、アークスリット(64)を通って出るイオンの比率を増加させるために、磁界が細長いアークスリット(64)と軸方向に整合するようにしたことを特徴とする請求項1のイオン源装置。
  3. 伝送部(52)は、脱気された同軸管(56)内に配置された中央導体(54)を備えたパワー供給線を有していることを特徴とする請求項1のイオン源装置。
  4. 伝送部(52)に結合したチューナアセンブリ(48)を有しており、チューナアセンブリ(48)は、少なくとも1つのスラグチューナを備えており、スラグチューナに設けられた環状カラー(236、238) が、エネルギ伝送中央導体(220) の一部分の上に摺動可能に設けられており、そのため、環状カラー(236、238) が移動経路に沿って移動することによって、プラズマ室(42)へ送られるマイクロ波または高周波エネルギの周波数が変化するようにしたことを特徴とする請求項3のイオン源装置。
  5. プラズマ室の内部領域(50)に流体連通した少なくとも1つのベーパライザ(44)を有しており、ベーパライザ(44)は、ソース物質を受け取ることができ、またプラズマ室の内部領域(50)へ送られたソース物質を蒸発させるために加熱手段(84)を備えていることを特徴とする請求項1のイオン源装置。
  6. ソース源ハウジング(74)は、プラズマ室(42)を支持できる大きさの窪み部分を有しており、蒸気をベーパライザ(44)の出口オリフィスからプラズマ壁部の開口(63)に送る少なくとも1つの通路(88)を設けていることを特徴とする請求項5のイオン源装置。
  7. ソース源ハウジング(74)は、プラズマ室内部領域(50)へ送られるマイクロ波または高周波エネルギによって発生する熱に加えて、プラズマ室内部領域(50)に熱を与える加熱手段(76)を備えていることを特徴とする請求項6のイオン源装置。
  8. プラズマ室内部領域(50)内へエネルギを噴射するプラズマ室(42)の壁部(68)は、側部が円筒形で、端部がほぼ平坦な壁部分を有しており、この壁部分によって定められた空間にエネルギ入力手段(40)の端部分(66)が挿入されていることを特徴とする請求項1のイオン源装置。
  9. プラズマ室内部領域(50)は、細長いアークスリット(64)を取り囲む領域を除いて、不活性物質で包囲されていることを特徴とする請求項1のイオン源装置。
  10. イオン源のハウジングアセンブリ(22)の外部で非脱気領域内に配置されたマイクロ波または高周波エネルギ源(20)と、開放端部を備え、内部領域(50)を定めているプラズマ室(42)とを設けており、内部領域(50)にソース物質及びイオン化するガスを送り込んで、エネルギ源(20)からプラズマ室(42)へ伝送されたエネルギを当てることによって、プラズマ室(42)内にプラズマが形成されて、イオンが発生するようになっており、さらに、エネルギ源(20)及びプラズマ室(42)に接続されて、エネルギをエネルギ源(20)からプラズマ室(42)へ伝送するエネルギ伝送手段(40)を設けているイオン源装置(12)であって、
    (a) イオン源のハウジングアセンブリ(22)によって定められた脱気空間(57)内に延在している、イオン源装置(12)を支持する支持管(94)を有し、
    (b) プラズマ室(42)は、脱気空間(57)内に配置されて、支持管(94)によって支持されており、
    (c) さらに、プラズマ室(42)の開口端部に重ねられ、かつ発生イオンがプラズマ室内部領域(50)を出る際に通る細長いアークスリット(64)を備えるキャップ(62)を有し、
    (d) エネルギ伝送手段(40)は、プラズマ室(42)の壁部(68)の一部分に係合した端部(66)を備えたエネルギー伝送線中央導体(54)と、少なくとも一部分が脱気され、前記中央導体(54)の上に重なった同軸管(56)と、前記プラズマ室の壁部(68)に係合した中央導体端部(66)から離れて設けられ、同軸管(56)の脱気部分とイオン源のハウジングアセンブリ(22)の外側の非脱気領域との間をシールする真空シール(58)とを含み、
    (e) 前記プラズマ室の壁部( 68 )は、前記エネルギー伝送線中央導体 (54) との接触面積を大きくするために、前記プラズマ室の閉鎖端部の中央に窪みによって形成されるマイクロ波エネルギーインターフェース領域を有することを特徴とするイオン源装置。
  11. 真空シール(58)は、中央導体(54)の上に重なった同軸管(56)内に配置されていることを特徴とする請求項10のイオン源装置。
  12. イオン源装置(12)の、支持管(94)内に入っている部分は、イオン源装置(12)の熱膨張及び収縮によってイオン源装置(12)が支持管(94)内で移動した時にも、キャップのアークスリット(64)を所定のイオンビーム経路に対して軸方向整合状態に維持するための位置決め手段(130、142) を含むことを特徴とする請求項10のイオン源装置。
  13. プラズマ室内部領域(50)の温度を 800℃以上まで上昇させるために、高周波またはマイクロ波パワーによって生じる加熱を加える加熱手段(76)を設けていることを特徴とする請求項10のイオン源装置。
  14. プラズマ室内部領域(50)内に双極子磁場形状を形成するための向きに取り付けられた2つ以上の永久磁石からなる磁石組と組み合わせて用いられる、前記プラズマ室(42)の周囲にはめ付けられた取り外し可能な磁石ホルダ(78)を有しており、前記磁場は、無線周波数またはマイクロ波周波数で電子サイクロトロン共振を与えるように調節可能であることを特徴とする請求項10のイオン源装置。
  15. 磁石ホルダ(78)は、プラズマ室内部領域(50)内に六極子及びカスプ磁場形状を形成するために、磁極の向きが異なる複数の磁石(82)を有する磁石組を支持するようにしたことを特徴とする請求項14のイオン源装置。
  16. ソース物質を蒸発させるために少なくとも1つの加熱式ベーパライザ(44)を設けており、ベーパライザ(44)の出口が、プラズマ室内部領域(50)に流体連通していることを特徴とする請求項10のイオン源装置。
  17. 前記少なくとも1つの加熱式ベーパライザ(44)は、イオン源装置(12)から取り外し可能に配置されていることを特徴とする請求項16のイオン源装置。
JP26767295A 1994-09-26 1995-09-21 イオン注入のためのイオン源装置 Expired - Fee Related JP3843376B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US312142 1989-02-17
US08/312,142 US5523652A (en) 1994-09-26 1994-09-26 Microwave energized ion source for ion implantation

Publications (2)

Publication Number Publication Date
JPH08212935A JPH08212935A (ja) 1996-08-20
JP3843376B2 true JP3843376B2 (ja) 2006-11-08

Family

ID=23210062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26767295A Expired - Fee Related JP3843376B2 (ja) 1994-09-26 1995-09-21 イオン注入のためのイオン源装置

Country Status (8)

Country Link
US (1) US5523652A (ja)
EP (1) EP0703597B1 (ja)
JP (1) JP3843376B2 (ja)
KR (1) KR100277296B1 (ja)
CA (1) CA2159028A1 (ja)
DE (1) DE69507232T2 (ja)
ES (1) ES2127999T3 (ja)
TW (1) TW295773B (ja)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5554857A (en) * 1995-10-19 1996-09-10 Eaton Corporation Method and apparatus for ion beam formation in an ion implanter
US5604350A (en) * 1995-11-16 1997-02-18 Taiwan Semiconductor Manufacturing Company Ltd. Fitting for an ion source assembly
US5825038A (en) * 1996-11-26 1998-10-20 Eaton Corporation Large area uniform ion beam formation
US5760405A (en) * 1996-02-16 1998-06-02 Eaton Corporation Plasma chamber for controlling ion dosage in ion implantation
JP2959508B2 (ja) * 1997-02-14 1999-10-06 日新電機株式会社 プラズマ発生装置
GB9710380D0 (en) * 1997-05-20 1997-07-16 Applied Materials Inc Electron flood apparatus for neutralising charge build-up on a substrate during ion implantation
DE19722272A1 (de) * 1997-05-28 1998-12-03 Leybold Systems Gmbh Vorrichtung zur Erzeugung von Plasma
EP2426693A3 (en) * 1999-12-13 2013-01-16 Semequip, Inc. Ion source
US7838842B2 (en) * 1999-12-13 2010-11-23 Semequip, Inc. Dual mode ion source for ion implantation
US6703628B2 (en) 2000-07-25 2004-03-09 Axceliss Technologies, Inc Method and system for ion beam containment in an ion beam guide
US6414329B1 (en) 2000-07-25 2002-07-02 Axcelis Technologies, Inc. Method and system for microwave excitation of plasma in an ion beam guide
TW503432B (en) * 2000-08-07 2002-09-21 Axcelis Tech Inc Magnet for generating a magnetic field in an ion source
US6583544B1 (en) * 2000-08-07 2003-06-24 Axcelis Technologies, Inc. Ion source having replaceable and sputterable solid source material
US7064491B2 (en) 2000-11-30 2006-06-20 Semequip, Inc. Ion implantation system and control method
JP3485104B2 (ja) 2001-04-24 2004-01-13 日新電機株式会社 イオン源用オーブン
JP3869680B2 (ja) * 2001-05-29 2007-01-17 株式会社 Sen−Shi・アクセリス カンパニー イオン注入装置
JP4062928B2 (ja) * 2002-02-06 2008-03-19 東京エレクトロン株式会社 プラズマ処理装置
JP4289837B2 (ja) * 2002-07-15 2009-07-01 アプライド マテリアルズ インコーポレイテッド イオン注入方法及びsoiウエハの製造方法
JP4328067B2 (ja) * 2002-07-31 2009-09-09 アプライド マテリアルズ インコーポレイテッド イオン注入方法及びsoiウエハの製造方法、並びにイオン注入装置
US6696792B1 (en) * 2002-08-08 2004-02-24 The United States Of America As Represented By The United States National Aeronautics And Space Administration Compact plasma accelerator
JP4588329B2 (ja) * 2003-02-14 2010-12-01 東京エレクトロン株式会社 プラズマ発生装置およびリモートプラズマ処理装置
US20060137613A1 (en) * 2004-01-27 2006-06-29 Shigeru Kasai Plasma generating apparatus, plasma generating method and remote plasma processing apparatus
US6812647B2 (en) * 2003-04-03 2004-11-02 Wayne D. Cornelius Plasma generator useful for ion beam generation
US6891174B2 (en) * 2003-07-31 2005-05-10 Axcelis Technologies, Inc. Method and system for ion beam containment using photoelectrons in an ion beam guide
US7145157B2 (en) * 2003-09-11 2006-12-05 Applied Materials, Inc. Kinematic ion implanter electrode mounting
US7122966B2 (en) * 2004-12-16 2006-10-17 General Electric Company Ion source apparatus and method
US20070278417A1 (en) * 2005-07-01 2007-12-06 Horsky Thomas N Ion implantation ion source, system and method
US7446326B2 (en) * 2005-08-31 2008-11-04 Varian Semiconductor Equipment Associates, Inc. Technique for improving ion implanter productivity
WO2008021501A2 (en) * 2006-08-18 2008-02-21 Piero Sferlazzo Apparatus and method for ultra-shallow implantation in a semiconductor device
KR100927995B1 (ko) * 2008-11-20 2009-11-24 한국기초과학지원연구원 전자 맴돌이 공명 이온원 장치 및 그의 제조방법
WO2010110256A1 (ja) * 2009-03-27 2010-09-30 東京エレクトロン株式会社 チューナおよびマイクロ波プラズマ源
DE102011112759A1 (de) * 2011-09-08 2013-03-14 Oerlikon Trading Ag, Trübbach Plasmaquelle
CN103236394B (zh) * 2013-04-17 2015-12-09 四川大学 基于微波等离子体的常压解吸离子源及其应用
FR3015109A1 (fr) * 2013-12-13 2015-06-19 Centre Nat Rech Scient Source d'ions a resonance cyclotronique electronique
KR102451250B1 (ko) * 2020-12-22 2022-10-06 한국기초과학지원연구원 Rf 플라즈마 이온원

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3584105D1 (de) * 1984-03-16 1991-10-24 Hitachi Ltd Ionenquelle.
US4714834A (en) * 1984-05-09 1987-12-22 Atomic Energy Of Canada, Limited Method and apparatus for generating ion beams
FR2595868B1 (fr) * 1986-03-13 1988-05-13 Commissariat Energie Atomique Source d'ions a resonance cyclotronique electronique a injection coaxiale d'ondes electromagnetiques
US4883968A (en) * 1988-06-03 1989-11-28 Eaton Corporation Electron cyclotron resonance ion source
US5032202A (en) * 1989-10-03 1991-07-16 Martin Marietta Energy Systems, Inc. Plasma generating apparatus for large area plasma processing
US5026997A (en) * 1989-11-13 1991-06-25 Eaton Corporation Elliptical ion beam distribution method and apparatus
DD300723A7 (de) * 1990-03-20 1992-07-09 Karl Marx Stadt Tech Hochschul Mikrowellen - Plasmaquelle
US5234565A (en) * 1990-09-20 1993-08-10 Matsushita Electric Industrial Co., Ltd. Microwave plasma source

Also Published As

Publication number Publication date
US5523652A (en) 1996-06-04
ES2127999T3 (es) 1999-05-01
DE69507232D1 (de) 1999-02-25
JPH08212935A (ja) 1996-08-20
KR100277296B1 (ko) 2001-01-15
EP0703597B1 (en) 1999-01-13
EP0703597A1 (en) 1996-03-27
CA2159028A1 (en) 1996-03-27
TW295773B (ja) 1997-01-11
DE69507232T2 (de) 1999-08-19

Similar Documents

Publication Publication Date Title
JP3843376B2 (ja) イオン注入のためのイオン源装置
US7700925B2 (en) Techniques for providing a multimode ion source
US5886355A (en) Ion implantation apparatus having increased source lifetime
JP5212760B2 (ja) イオン注入装置用のイオン源およびそのためのリペラ
EP1093149B1 (en) Ionizer for an ion implanter, ion source comprising this ionizer and method of cooling an ionizer
CA1321229C (en) Electron cyclotron resonance ion source
US5457298A (en) Coldwall hollow-cathode plasma device for support of gas discharges
US7176469B2 (en) Negative ion source with external RF antenna
US8796649B2 (en) Ion implanter
EP0282467B1 (en) Hollow cathode ion sources
JP2000040475A (ja) 自己電子放射型ecrイオンプラズマ源
US20090166555A1 (en) RF electron source for ionizing gas clusters
EP3590126B1 (en) Ion source device
KR100688573B1 (ko) 이온소스부, 이를 구비하는 이온주입장치 및 그 변경 방법
CN108231514B (zh) 离子植入机以及将离子植入半导体衬底中的方法
KR101977702B1 (ko) 이온 소스 헤드 및 이를 포함하는 이온 주입 장치
EP4372782A2 (en) Ion source cathode
WO2005038849A1 (en) Ion source with modified gas delivery
JPH07263183A (ja) プラズマ源
JPH0575951U (ja) イオン源

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040929

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20041228

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20050204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060802

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees