JP3841640B2 - 半導体集積回路 - Google Patents

半導体集積回路 Download PDF

Info

Publication number
JP3841640B2
JP3841640B2 JP2000357019A JP2000357019A JP3841640B2 JP 3841640 B2 JP3841640 B2 JP 3841640B2 JP 2000357019 A JP2000357019 A JP 2000357019A JP 2000357019 A JP2000357019 A JP 2000357019A JP 3841640 B2 JP3841640 B2 JP 3841640B2
Authority
JP
Japan
Prior art keywords
circuit
output
value
bias current
semiconductor integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000357019A
Other languages
English (en)
Other versions
JP2002164770A (ja
Inventor
広美 難波
徹 水谷
良 池下
雅人 竹藪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2000357019A priority Critical patent/JP3841640B2/ja
Priority to DE60102549T priority patent/DE60102549T2/de
Priority to EP01306546A priority patent/EP1217741B1/en
Priority to TW090119003A priority patent/TW503557B/zh
Priority to US09/921,578 priority patent/US6535039B2/en
Priority to KR1020010048686A priority patent/KR100732924B1/ko
Publication of JP2002164770A publication Critical patent/JP2002164770A/ja
Priority to US10/740,901 priority patent/USRE40168E1/en
Application granted granted Critical
Publication of JP3841640B2 publication Critical patent/JP3841640B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C27/00Electric analogue stores, e.g. for storing instantaneous values
    • G11C27/02Sample-and-hold arrangements
    • G11C27/024Sample-and-hold arrangements using a capacitive memory element
    • G11C27/026Sample-and-hold arrangements using a capacitive memory element associated with an amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/30Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/003Modifications for increasing the reliability for protection
    • H03K19/00369Modifications for compensating variations of temperature, supply voltage or other physical parameters
    • H03K19/00384Modifications for compensating variations of temperature, supply voltage or other physical parameters in field effect transistor circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/22Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral
    • H03K5/24Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude
    • H03K5/2472Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude using field effect transistors
    • H03K5/2481Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude using field effect transistors with at least one differential stage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/22Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral
    • H03K5/24Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude
    • H03K5/2472Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude using field effect transistors
    • H03K5/249Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude using field effect transistors using clock signals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/453Controlling being realised by adding a replica circuit or by using one among multiple identical circuits as a replica circuit

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Amplifiers (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、出力のスルーレート(単位時間当たりの出力電圧の変化量)がバイアス電流に依存する被調整回路及び該バイアス電流の値を自動調整する回路を含む半導体集積回路に関する。
【0002】
【従来の技術】
図9は、出力のスルーレートがバイアス電流IBに依存する被調整回路11を含む従来の半導体集積回路10Xのバイアス調整説明図である。
【0003】
被調整回路11には、バイアス回路12からバイアス電流IBが供給される。被調整回路11の出力端は不図示の回路又は半導体集積回路10Xの出力端子に接続され、被調整回路11の出力端から見た負荷インピーダンスはZLである。
【0004】
図10は、図9中の被調整回路11としての、スイッチトキャパシタ回路と演算増幅器13Xとを組み合わせたサンプルホールド回路を示す。図10では、負荷インピーダンスが容量CLで近似できる場合を示している。図11は、図10の回路の動作を示す波形図である。
【0005】
図10中のスイッチは、図11に示す2相クロックФ1及びФ2で制御され、クロックの高レベル及び低レベルがそれぞれそのクロックで制御されるスイッチのオン及びオフに対応している。スイッチ素子P11、P12及びP13はクロックФ1で制御され、スイッチ素子P21及びP22はクロックФ2で制御される。
【0006】
被調整回路11の入出力電圧をそれぞれVi及びVoで表す。クロックФ1が高レベルのとき、キャパシタC2の両端が接地されてリセットされると共に、キャパシタC1が入力電圧Viで充電される。キャパシタC1に充電される電荷量Q1は、C1・Viである。次にクロックФ2が高レベルになると、この電荷Q1がキャパシタC2へ移動し、充分なセットリング時間が与えられた場合には、キャパシタC2の電荷量Q2はC2・Voとなる。Q1=Q2であるので、Vo=(C1/C2)Viと表される。
【0007】
被調整回路11を高速クロックで動作させた場合、被調整回路11が負荷容量CLに対して充分な駆動能力を有しなければ、スルーレートが不足してVo<(C1/C2)Viとなり、必要な出力振幅が得られない。
【0008】
設計においては、製造過程で発生する回路素子特性の偏差、電源電圧及び温度の最悪条件下において、必要な出力スルーレートが得られるように、演算増幅器13Xに供給するバイアス電流IBが決定される。この際、バイアス電流IBの変動に伴う演算増幅器13Xの駆動能力の変動及び負荷容量CLの変動が考慮される。
【0009】
しかし、通常は最悪条件にならず、消費電力過多となる。
【0010】
図12は、同一設計に基づいて製造された被調整回路11の異なる条件下での出力電圧Voを、図11中の時間t1〜t3について示す。図12中、VLLは被調整回路11が最悪条件下で正常動作するために必要な出力電圧Voの下限値を示す。
【0011】
図9に戻って、従来ではこの消費電力過多の問題を解決するために、バイアス電流IBを調整可能なバイアス回路12を半導体集積回路10Xに備え、被調整回路11に供給されるバイアス電流IBと同じ値のバイアス電流IBをバイアス回路12から外部に取り出して電流計14で測定し、この値が所定範囲内になるように、調整回路15Xによりバイアス電流IBを調整するというトリミング調整が行われていた。この調整は、半導体集積回路10Xの製造の最終段階で行われる。
【0012】
【発明が解決しようとする課題】
しかし、負荷インピーダンスの特性偏差や電源電圧及び温度の変動による負荷インピーダンスの値の変化を考慮していないので、負荷インピーダンスの最大値を想定してバイアス電流IBを決定しなければならず、省電力化が不十分となる。また、半導体集積回路10Xの製造段階でバイアス電流IBの調整作業を行う必要があるので、コスト高となる。
【0013】
本発明の目的は、このような問題点に鑑み、出力のスルーレートがバイアス電流に依存する回路を、製品出荷前にバイアス電流の調整を行うことなく、より省電力化することができる半導体集積回路を提供することにある。
【0014】
【課題を解決するための手段及びその作用効果】
本発明による半導体集積回路の一態様では、出力のスルーレートがバイアス電流に依存する被調整回路のレプリカ回路と、バイアス電流自動調整回路とを備え、調整のためにこのレプリカ回路に対し所定の動作を繰り返し実行させる。この自動調整回路は、評価回路と比較回路とバイアス調整回路とを有する。該評価回路は、該レプリカ回路の出力端から見た負荷インピーダンスが該被調整回路の出力端から見た負荷インピーダンスと略同一になるように設計されている。
【0015】
該評価回路では、その出力をリセットし、該レプリカ回路に所定値をステップ入力してから第1時間経過した後の第1出力信号と第2時間経過した後の第2出力信号との差を所定回数求め、該差を累積加算する、という処理を繰り返す。該比較回路では、この累積加算した値を設定値と比較する。該バイアス調整回路では、バイアス調整回路該所定回数毎に、該比較回路の比較結果に応じて該レプリカ及び該被調整回路のバイアス電流を同じように変化させる。
【0016】
この半導体集積回路によれば、製造偏差、電源電圧及び周囲温度により該被調整回路のバイアス電流及び出力負荷にばらつきがあっても、それに応じてバイアス電流が適当に自動調整されるので、省電力化が実現できる。また、該自動調整回路の回路素子の寄生容量は、該被調整回路を含む主信号系に影響を与えず、しかも、該主信号系の動作を止めることなくこれと平行して該被調整回路のバイアス電流を自動調整することができる。さらに、該半導体集積回路の製造の最終段階でバイアス電流調整作業を行う必要がなくなり、そのコストを低減することができる。
【0017】
本発明の他の目的、構成及び効果は以下の説明から明らかになる。
【0018】
【発明の実施の形態】
以下、図面を参照して本発明の実施形態を説明する。
【0019】
[第1実施形態]
図1は、出力のスルーレートがバイアス電流に依存する被調整回路11及びバイアス電流自動調整回路を含む半導体集積回路10のブロック図である。
【0020】
被調整回路11の出力端は、不図示の他の回路又は半導体集積回路10の出力端子に接続され、被調整回路11の出力端から見た負荷インピーダンスはZLである。半導体集積回路10内には、被調整回路11と実質的に同一のレプリカ回路11Rが形成されている。被調整回路11との同一性をより高めるために、レプリカ回路11Rは被調整回路11の近くに形成されている。被調整回路11とレプリカ回路11Rには同じ値のバイアス電流が流れ、この値はバイアス電流調整回路15により調整可能となっている。レプリカ回路11Rの出力端からみた負荷インピーダンスが被調整回路11のそれにほぼ等しい値になるように、レプリカ回路11Rの出力端に接続された評価回路16が設計されている。
【0021】
評価回路16は、減算・積分回路17と制御回路18とを備え、減算・積分回路17はスイッチ素子P2A及び2Bと積分回路19とを備えている。
【0022】
スイッチ素子P2Aは、レプリカ回路11Rの出力端と積分回路19の反転入力端との間に接続され、スイッチ素子P2Bは、レプリカ回路11Rの出力端と積分回路19の非反転入力端との間に接続されている。積分回路19は、反転入力端と非反転入力端とを備え、非反転入力端に供給された信号と反転入力端に供給された信号との差に比例した値を累積加算し、これを差累積加算電圧VDとして出力する。累積加算するのは、バイアス電流調整精度を高めるためである。すなわち、該差が極めて微小であり、許容誤差範囲内でこれを直接比較評価することが困難であるので、該差を累積加算する。
【0023】
差累積加算電圧VDは比較器20の反転入力端に供給され、比較器20の反転入力端には基準電圧VSが供給される。比較器20から出力されるイネーブル信号ENは、VD>VSのとき高レベル、VD<VSのとき低レベルである。
【0024】
制御回路18は、レプリカ回路11R及び減算・積分回路17に対しタイミング信号を供給して、レプリカ回路11R及び減算・積分回路17を後述のように周期的に動作させ、減算・積分回路17がN回繰り返し動作した後にイネーブル信号ENが高レベルであれば、すなわちVD>VSであれば、バイアス電流調整回路15に調整信号APのパルスを供給する。バイアス電流調整回路15はこのパルスに応答して、レプリカ回路11R及び被調整回路11のバイアス電流を、その値が最適値に収束する方向へ1ステップ調整する。
【0025】
図2は、図1の一部の構成例を示す。
【0026】
被調整回路11は、電源電位VDDとグランドとの間に回路21とFET22とが直列接続されている。レプリカ回路11RのFET21R及び22Rはそれぞれ被調整回路11のFET21及び22に対応している。
【0027】
バイアス電流調整回路15は、カウンタ23と、その計数値が供給されるD/A変換器24とを備え、D/A変換器24の出力がゲート電圧VGとしてFET22及びFET22Rのゲートに供給される。FET22及びFET22Rには、ゲート電圧VGの値に応じたバイアス電流IBが流れる。ゲート電圧VGが上昇すると、バイアス電流IBが増加して回路21及び21Rの出力スルーレートが高くなる。
【0028】
制御回路18では、クロックCLKがゲート回路25を介してタイミング発生回路26に供給される。タイミング発生回路26は、このクロックCLKに基づいて、図1のレプリカ回路11R及び減算・積分回路17に対するタイミング信号を生成する。タイミング発生回路26はまた、パルス周期が比較判定周期(図3のステップS7でK=Nと判定される周期)に等しい判定サイクル信号JCSを生成してアンドゲート28の一方の入力端に供給する。アンドゲート28の他方の入力端にはイネーブル信号ENが供給され、イネーブル信号ENが高レベルの間、判定サイクル信号JCSのパスルがアンドゲート28を介し調整信号APとしてカウンタ23のクロック入力端CKに供給される。ゲート回路25は、電源投入後、クロックCLKに対しスルー状態になり、この状態がフリップフロップに保持され、判定サイクル信号JCSのパルス立ち上がりでイネーブル信号ENが低レベルになると、このフリップフロップがリセットされてクロックCLKに対し遮断状態になり、制御回路18の動作が停止、すなわちバイアス電流自動調整動作が完了する。
【0029】
図3は、図1の制御回路18による制御のシーケンスを示すフローチャートである。図4(A)〜(C)は、図1中の出力電圧Voの波形並びにスイッチ素子P2A及びP2Bのオン/オフ波形を示す。以下、括弧内は図3中のステップ識別符号である。
【0030】
(S1)積分回路19をリセットしてその出力VDを0Vにする。また、内部カウンタKに初期値1をロードし、図2のカウンタ23に初期値をロードする。
【0031】
(S2)レプリカ回路11Rをリセットしてその出力電圧Voを0Vにする。
【0032】
(S3)レプリカ回路11Rに対し、入力電圧Viをステップ入力させる。これにより、出力電圧Voが例えば図4(A)に示す如く立ち上がる。
【0033】
(S4)カウンタKが奇数であればステップS5へ進み、偶数であればステップS6へ進む。
【0034】
(S5)レプリカ回路11Rに入力電圧Viをステップ入力してから時間t1経過するまで、図4(A)に示す如くスイッチ素子P2Bをオンにし、積分回路19に対し、スイッチ素子P2Bがオンからオフに遷移する時の出力電圧Voの値Vo1をVDに加算させる。次にステップS7へ進む。
【0035】
(S6)レプリカ回路11Rに入力電圧Viをステップ入力してから時間t2経過するまで、図4(A)に示す如くスイッチ素子P2Aをオンにし、積分回路19に対し、スイッチ素子P2Aがオンからオフに遷移する時の出力電圧Voの値Vo2をVDから減算させる。
【0036】
(S7)N<KであればステップS8へ進み、N=KであればステップS9へ進む。
【0037】
(S8)カウンタKの値を1だけインクリメントし、ステップS2へ戻る。
【0038】
ステップS〜S8の処理を2回繰り返す毎に、ΔV=Vo1−Vo2がVDに加算される。一般には、差電圧ΔVに比例した値がVDに加算される。
【0039】
(S9)図2中の判定サイクル信号JCSが立ち上がり、この時イネーブル信号ENが高レベル(‘H’)、すなわちVD>VSであれば、ステップS10へ進み、そうでなければ図2においてクロックCLKがタイミング発生回路26に供給されず、制御回路18の動作が停止する。調整信号APのパルスがカウンタ23に供給されなくなり、カウンタ23の出力が固定されるので、ゲート電圧VG及びバイアス電流IBも固定される。これにより、バイアス電流自動調整が完了する。
【0040】
(S10)図2において、判定サイクル信号JCSのパルスがアンドゲート28を通り、調整信号APのパルスとしてカウンタ23のクロック入力端CKに供給される。次に、ステップS1へ戻る。
【0041】
図4(A)〜(C)の出力電圧Voの波形に対応するゲート電圧VGの値をそれぞれVG1、VG2及びVG3で表すと、VG1<VG2<VG3である。すなわち、図4(A)よりも図4(B)の場合の方がバイアス電流IBの値が大きく、図4(B)よりも図4(C)の場合の方がバイアス電流IBの値が大きい。バイアス電流IBの値が大きいほど、出力電圧Voの立ち上がり時間が短くなって差電圧ΔVが小さくなり、これをN回積算したVDの値も小さくなる。VDの値が小さいほど消費電力が大きくなるので、消費電力過多を防止できる。被調整回路11が正常動作する適当なVDの値を予め求めておき、この値を基準電圧VSとしておく。
【0042】
ゲート電圧VGは調整信号APのパルスに応答して、図5(A)に示すように階段状に変化する。
【0043】
本実施形態によれば、被調整回路11に対し上述のようなバイアス電流自動調整回路が半導体集積回路10に備えられているので、製造偏差、電源電圧及び周囲温度により被調整回路11のバイアス電流及び出力負荷にばらつきがあっても、それに応じてバイアス電流が適当に自動調整され、省電力化が実現できる。また、半導体集積回路10の製造の最終段階でバイアス電流調整作業を行う必要がなくなり、そのコストを低減することができる。さらに、被調整回路11に対応してレプリカ回路11Rを備え、その出力を用いて自動調整を行っているので、自動調整回路の回路素子の寄生容量が主信号系に影響を与えず、しかも、主信号系の動作を止めることなくこれと平行して被調整回路11のバイアス電流を自動調整することができる。
【0044】
なお、バイアス電流IBを収束させるのに他の方法を採用してもよい。例えば、カウンタ23をダウンカウンタで置き換え、図1中の比較器20の非反転入力端及び反転入力端にそれぞれ基準電圧VS及び差累積加算電圧VDを供給するようにしてもよい。この場合、ゲート電圧VGは図5(B)に示すように変化する。また、図2のカウンタ23及びアンドゲート28を用いずに、判定サイクル信号JCSのパルスが供給される毎に、イネーブル信号ENの符号に応じて1/2探索方でゲート電圧VGを図5(C)に示す如く変化させ、差累積加算電圧VDと基準電圧VSとの差の絶対値が設定値ε以下になるまでこれを繰り返すようにしてもよい。
【0045】
図6及び図7はそれぞれ、図1中のレプリカ回路11R及び減算・積分回路17の構成例を示す。これらの回路は、相補入出力型である。図8は、クロックCLKと、図6及び図7の回路に供給される制御信号と、図2中の判定サイクル信号JCSとを示す。図8は図3中のNの値が4である場合を示している。
【0046】
このレプリカ回路11Rは、スイッチトキャパシタ回路と相補入出力型演算増幅器13とを組み合わせたサンプルホールド回路であり、図10の被調整回路11に類似している。図6中のスイッチ素子には、図10中の対応するものと同じ符号を付している。図6の回路では、図10中にないスイッチ素子として、P14及びP23を備えている。
【0047】
スイッチ素子P14は、レプリカ回路11Rのリセット時に演算増幅器13の反転入力端と非反転出力端との間及び非反転入力端と反転出力端との間を短絡して、演算増幅器13の相補入出力を同電位、例えば1.4Vにしてオフセットを0Vにするためのものである。スイッチ素子P23は、このリセット時に演算増幅器13の出力をキャパシタC21及びC22から切り離して、キャパシタC21及びC22を演算増幅器13とは異なるグランド電位にリセットするためである。
【0048】
スイッチ素子P11〜P14は、クロックCLKを4分周した図8中のクロックФ1によりオン/オフ制御され、クロックФ1が高レベルのときこれらスイッチがオンになる。スイッチ素子P21〜P23は、クロックФ1と逆相のクロックФ2によりオン/オフ制御され、クロックФ2が高レベルのときこれらスイッチがオンになる。キャパシタC11及びC12は互いに同一容量値であり、図10のキャパシタC1に対応している。キャパシタC21及びC22は互いに同一容量値であり、図10のキャパシタC2に対応している。
【0049】
レプリカ回路11Rには、相補入力信号として例えばVip=1.6V、Vim=1.2Vが供給される。
【0050】
図6の回路の動作は、上述した図10のそれから容易に理解できるので、その説明を省略する。
【0051】
図7の減算・積分回路17は、図6のレプリカ回路11Rと類似しており、相補入出力型演算増幅器30、極性切換回路31、スイッチ素子P15、キャパシタCL1及びCL2、C31及びC32、極性切換回路32はそれぞれ図6の演算増幅器13、スイッチ素子P11、P21、キャパシタC11及びC12、C21及びC22、スイッチ素子P22に対応している。
【0052】
スイッチ素子P2A及びP2Bを平行及びクロス接続(正逆接続)した極性切換回路31は、電荷量の加減算を可能にするためのものであり、スイッチ素子P23をオン、スイッチ素子P15及びP16をオフにした状態で、出力電圧Vop及びVomでそれぞれキャパシタCL1及びCL2を充電し又はキャパシタCL2及びCL1を充電して、次にこれらの電荷をキャパシタC31及びC32に移すと、キャパシタC31及びC32の積算電荷に対し加算及び減算が行われる。
【0053】
キャパシタCL1及びCL2の容量値は、図6の回路の出力端からみた負荷インピーダンスが図1中の負荷インピーダンスZLにほぼ等しくなるように定められる。
【0054】
キャパシタCL1及びCL2の電荷は、極性切換回路32及び33が正又は逆の接続状態でスイッチ素子P23をオフにしスイッチ素子P15及びP16をオンにすることにより、それぞれキャパシタC31及びC32に移動する。
【0055】
極性切換回路32及び33はオフセット電圧相殺用であり、極性切換回路32及び33を正接続状態にしてキャパシタCL1及びCL2の電荷をそれぞれキャパシタC31及びC32に移した時にキャパシタC31及びC32に加算されるオフセット電圧の極性と、極性切換回路32及び33を逆接続状態にしてキャパシタCL1及びCL2の電荷をそれぞれキャパシタC31及びC32に移した時にキャパシタC31及びC32に加算されるオフセット電圧の極性とが逆になって、オフセット電圧が相殺される。
【0056】
リセットスイッチ素子RSW1及びRSW2は、キャパシタC31及びC32の電荷をリセットするためのものである。
【0057】
スイッチ素子P2A及びP2Bはそれぞれ図8中のクロックФ2A及びクロックФ2Bにより制御される。スイッチ素子P15及びP16は、図6中のスイッチ素子P11〜P14と共に図8中のクロックФ1により制御される。スイッチ素子P23は、図6中のスイッチ素子P21〜P23と共に、図8中のクロックФ2により制御される。スイッチ素子P31及びP32は図8中のクロックФ3により制御される。スイッチ素子P41及びP42は図8中のクロックФ4により制御される。リセットスイッチ素子RSW1及びRSW2は図8中のクロックФRSTにより制御される。図8中のスイッチ素子制御用クロックはいずれも、高レベル及び低レベルがそれぞれこのクロックで制御されるスイッチ素子のオン及びオフに対応している。
【0058】
相補出力電圧VDpとVDmの差電圧が図1中の差累積加算電圧VDに対応しており、これが基準電圧VSと比較器20(図1)で比較される。
【0059】
次に、図7の回路の動作を、図8を参照して説明する。
【0060】
(t1〜t2)リセットスイッチ素子RSW1及びRSW2がオンであり、減算・積分回路17がリセット、すなわちキャパシタC31及びC32の電荷がリセットされる。
【0061】
(t2〜t9)リセットスイッチ素子RSW1及びRSW2はオフである。時間t2〜t7ではスイッチ素子P41及びP42がオン、スイッチ素子P31及びP32がオフであり、次の時間t7〜t9ではこの逆である。
【0062】
時間t2〜t7の詳細は次の通りである。
【0063】
(t3〜t4)スイッチ素子P2Aがオン、スイッチ素子P2Bがオフ、スイッチ素子P15及びP16がオフ、スイッチ素子P23がオンであり、キャパシタCL1及びCL2がそれぞれ出力電圧Vop及びVomで充電される。t4でスイッチ素子P2Aがオフになり、この時の出力電圧Vop及びVomの電圧がそれぞれキャパシタCL1及びCL2に保持される。
【0064】
(t5〜t6)スイッチ素子P23がオフ、スイッチ素子P15及びP16がオンであり、キャパシタCL1及びCL2の電荷がそれぞれキャパシタC31及びC32に移動する。
【0065】
(t6〜t7)スイッチ素子P2Aがオフ、スイッチ素子P2Bがオン、スイッチ素子P15及びP16がオフ、スイッチ素子P23がオンであり、キャパシタCL1及びCL2がそれぞれ出力電圧Vom及び出力電圧Vopで充電される。t7でスイッチ素子P2Bがオフになり、この時の出力電圧Vom及び出力電圧Vopの電圧がそれぞれキャパシタCL1及びCL2に保持される。
【0066】
時間t7〜t10の詳細は、次の通りである。
【0067】
(t7〜t8)スイッチ素子P23がオフ、スイッチ素子P15及びP16がオンであり、キャパシタCL1及びCL2の電荷がそれぞれキャパシタC31及びC32に移動する。
【0068】
時間t8〜t10においては、上記t3〜t8と同様な動作が行われる。但し、t10でキャパシタC31及びC32がリセットされる直前に、判定サイクル信号JCSのパルスが図2のタイミング発生回路26から出力される。
【0069】
このような動作により、図1について説明した動作が実行される。
【0070】
なお、本発明には外にも種々の変形例が含まれる。
【0071】
例えば、バイアス電流自動調整処理は、電源投入時のみならず、一定時間おき、システムリセット時、温度又は電源電圧が設定範囲外になった時などに開始するようにしてもよい。また、被調整回路11は、出力スルーレートがバイアス電流に依存するものであればよい。
【図面の簡単な説明】
【図1】本発明の一実施形態の、出力のスルーレートがバイアス電流に依存する被調整回路及びバイアス電流自動調整回路を含む半導体集積回路のブロック図である。
【図2】図1の一部の構成例を示すブロック図である。
【図3】図1の制御回路による制御のシーケンスを示すフローチャートである。
【図4】(A)〜(C)はいずれも、図1中の出力電圧Voの波形並びにスイッチ素子P2A及びP2Bのオン/オフ波形を示す図である。
【図5】(A)〜(C)はそれぞれステップアップ、ステップダウン及び1/2探索法でバイアス電流を自動調整する場合のバイアス電流調整回路の出力値の時間的変化を示す線図である。
【図6】図1中のレプリカ回路の構成例を示す図である。
【図7】図1中の減算・積分回路の構成例を示す図である。
【図8】基準クロックCLKと、図6及び図7の回路のスイッチ素子に供給される制御信号と、図2中の判定サイクル信号JCSとを示すタイミングチャートである。
【図9】出力のスルーレートがバイアス電流に依存する被調整回路を含む従来の半導体集積回路のバイアス調整説明図である。
【図10】図9中の被調整回路としての、スイッチトキャパシタ回路と演算増幅器とを組み合わせたサンプルホールド回路を示す図である。
【図11】図10の回路の動作を示す波形図である。
【図12】同一設計に基づいて製造された被調整回路の異なる条件下での出力電圧Voの波形を、図11中の時間t1〜t3について示す図である。
【符号の説明】
10 半導体集積回路
11 被調整回路
11R レプリカ回路
12 バイアス回路
13、30 相補入出力型演算増幅器
15 バイアス電流調整回路
16 評価回路
17 減算・積分回路
18 制御回路
19 積分回路
20 比較器
22、22R FET
23 カウンタ
24 D/A変換器
25 ゲート回路
26 タイミング発生回路
31〜33 極性切換回路

Claims (10)

  1. 出力のスルーレートがバイアス電流に依存する被調整回路と、
    該バイアス電流と実質的に同じ値のバイアス電流が流れる、該被調整回路のレプリカ回路と、
    出力をリセットし、該レプリカ回路に所定値をステップ入力してから第1時間経過した後の第1出力信号と第2時間経過した後の第2出力信号との差を所定回数求め、該差を累積加算する、という処理を繰り返す評価回路と、
    この累積加算した値を設定値と比較する比較回路と、
    該所定回数毎に、該比較回路の比較結果に応じて該バイアス電流を変化させるバイアス調整回路と、
    を有し、該レプリカ回路の出力端から見た負荷インピーダンスが該被調整回路の出力端から見た負荷インピーダンスと略同一になるように該評価回路が設計されていることを特徴とする半導体集積回路。
  2. 上記評価回路は、
    上記第1出力信号と上記第2出力信号との差を積分する減算・積分回路と、
    制御回路とを有し、該制御回路は、
    (1)該減算・積分回路の積分値をリセットさせ、
    (2)該レプリカ回路をリセットし、次いで該レプリカ回路に所定値を入力させ、この入力後、第1時間経過した後又は該第1時間経過するまで該レプリカ回路の出力を該第1出力信号として該減算・積分回路に供給させ、次いで該レプリカ回路をリセットし、次いで該レプリカ回路に該所定値を入力させ、この入力後、第2時間経過した後又は該第2時間経過するまで該レプリカ回路の出力を該第2出力信号として該減算・積分回路に供給させるという処理を上記所定回数繰り返し、
    該(1)と(2)の処理を繰り返す、
    ことを特徴とする請求項1記載の半導体集積回路。
  3. 上記バイアス調整回路は、上記比較回路により上記累積加算値が上記設定値より大きいと判定されたことに応答して上記バイアス電流をステップアップさせ、
    上記制御回路は、該累積加算値が該設定値より小さいと判定されたことに応答して動作を停止する、
    ことを特徴とする請求項2記載の半導体集積回路。
  4. 上記バイアス調整回路は、上記比較回路により上記累積加算値が上記設定値より小さいと判定されたことに応答して上記バイアス電流をステップダウンさせ、
    上記制御回路は、該累積加算値が該設定値より大きい判定されたことに応答して動作を停止する、
    ことを特徴とする請求項2記載の半導体集積回路。
  5. 上記バイアス調整回路は、上記比較回路により上記累積加算値が上記設定値より小さいと判定されたことに応答して上記バイアス電流をステップダウンさせ、該累積加算値が該設定値より大きい判定されたことに応答して該バイアス電流をステップアップさせ、
    上記制御回路は、該累積加算値と該設定値との差の絶対値が所定値より小さい場合に動作を停止する、
    ことを特徴とする請求項2記載の半導体集積回路。
  6. 上記レプリカ回路は相補出力型であり、
    上記減算・積分回路は、
    相補入出力型演算増幅回路と、
    該演算増幅回路の反転入力端と非反転出力端との間に接続された第1キャパシタと、
    該演算増幅回路の非反転入力端と反転出力端との間に接続された第2キャパシタと、
    該第1及び第2キャパシタの電荷をリセットするリセットスイッチ回路と、
    第3及び第4キャパシタと、
    該レプリカ回路の相補出力でそれぞれ該第3及び該第4キャパシタを充電させ又はそれぞれ第4及び第3キャパシタを充電させ、次いで該第3及び該第4キャパシタの電荷をそれぞれ該第1及び第2キャパシタに移すスイッチ回路と、
    を有することを特徴とする請求項3記載の半導体集積回路。
  7. 上記減算・積分回路は、
    上記第3及び第4キャパシタの第1端をそれぞれ上記演算増幅回路の反転及び非反転入力端に接続させて正接続状態にし又はそれぞれ該演算増幅回路の該非反転及び反転入力端に接続させて逆接続状態にする第1極性切換スイッチ回路と、上記第3及び第4キャパシタの第2端をそれぞれ該演算増幅回路の非反転及び反転出力端に接続させて正接続状態にし又はそれぞれ該演算増幅回路の該反転及び非反転出力端に接続させて逆接続状態にする第2極性切換スイッチ回路と、
    を有することを特徴とする請求項6記載の半導体集積回路。
  8. 上記制御回路は、上記第1及び第2極性切換スイッチ回路を共に上記正接続状態にする第1期間と、該第1及び第2極性切換スイッチ回路を共に上記逆接続状態にする第2期間とを交互に繰り返し、該第1及び第2期間の各々において上記(2)の上記処理を1回行うことを特徴とする請求項7記載の半導体集積回路。
  9. 上記被調整回路は、演算増幅回路を有することを特徴とする請求項1乃至7のいずれか1つに記載の半導体集積回路。
  10. 上記被調整回路はさらに、上記演算増幅回路の入力段に接続されスイッチトキャパシタ回路を有することを特徴とする請求項9記載の半導体集積回路。
JP2000357019A 2000-11-24 2000-11-24 半導体集積回路 Expired - Fee Related JP3841640B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2000357019A JP3841640B2 (ja) 2000-11-24 2000-11-24 半導体集積回路
DE60102549T DE60102549T2 (de) 2000-11-24 2001-07-31 Schaltung mit niedriger Leistung und Anstiegszeitsteuerung
EP01306546A EP1217741B1 (en) 2000-11-24 2001-07-31 Low power circuit with slew rate adjustment
TW090119003A TW503557B (en) 2000-11-24 2001-08-03 Low power circuit with proper slew rate by automatic adjustment of bias current
US09/921,578 US6535039B2 (en) 2000-11-24 2001-08-06 Low power circuit with proper slew rate by automatic adjustment of bias current
KR1020010048686A KR100732924B1 (ko) 2000-11-24 2001-08-13 반도체 집적 회로
US10/740,901 USRE40168E1 (en) 2000-11-24 2003-12-22 Low power circuit with proper slew rate by automatic adjustment of bias current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000357019A JP3841640B2 (ja) 2000-11-24 2000-11-24 半導体集積回路

Publications (2)

Publication Number Publication Date
JP2002164770A JP2002164770A (ja) 2002-06-07
JP3841640B2 true JP3841640B2 (ja) 2006-11-01

Family

ID=18829152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000357019A Expired - Fee Related JP3841640B2 (ja) 2000-11-24 2000-11-24 半導体集積回路

Country Status (6)

Country Link
US (2) US6535039B2 (ja)
EP (1) EP1217741B1 (ja)
JP (1) JP3841640B2 (ja)
KR (1) KR100732924B1 (ja)
DE (1) DE60102549T2 (ja)
TW (1) TW503557B (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4199191B2 (ja) 2002-07-31 2008-12-17 エヌエックスピー ビー ヴィ バイナリ信号におけるスライスレベルを設定するための方法及び装置
US6839015B1 (en) * 2002-12-06 2005-01-04 Marvell International Ltd. Low power analog to digital converter
US7071863B1 (en) 2002-12-06 2006-07-04 Marvell International Ltd. Low power analog to digital converter having reduced bias during an inactive phase
KR100532414B1 (ko) * 2003-01-10 2005-12-02 삼성전자주식회사 자동 슬루율 제어기능을 갖는 출력 드라이버 및 이의슬루율 제어방법
EP1492233A1 (en) 2003-06-27 2004-12-29 Dialog Semiconductor GmbH Circuit and method for slew rate sensing and control of a high-voltage output driver for a variable voltage range and variable output load
US7202702B2 (en) * 2003-12-10 2007-04-10 Hewlett-Packard Development Company, L.P. Output buffer slew rate control using clock signal
DE102004054819B3 (de) * 2004-11-12 2006-06-22 Infineon Technologies Ag Elektronische Schaltungsanordnung mit aktiver Regelung bei einem Empfang eines elektrischen Empfangssignals
TWI295050B (en) * 2005-03-15 2008-03-21 Himax Display Inc Circuit and method for driving display panel
US7656226B2 (en) * 2006-03-31 2010-02-02 Intel Corporation Switched capacitor equalizer with offset voltage cancelling
US8044654B2 (en) 2007-05-18 2011-10-25 Analog Devices, Inc. Adaptive bias current generator methods and apparatus
JPWO2009031191A1 (ja) * 2007-09-03 2010-12-09 富士通株式会社 クロック出力回路
US7750837B2 (en) * 2008-08-01 2010-07-06 Qualcomm Incorporated Adaptive bias current generation for switched-capacitor circuits
US7982526B2 (en) * 2008-09-17 2011-07-19 Qualcomm, Incorporated Active-time dependent bias current generation for switched-capacitor circuits
US7944309B2 (en) * 2009-03-18 2011-05-17 Qualcomm, Incorporated Transconductance bias circuit, amplifier and method
US8248151B2 (en) * 2010-08-24 2012-08-21 Analog Devices, Inc. Apparatus and method configured to provide electrical bias
JP5434891B2 (ja) * 2010-11-22 2014-03-05 株式会社デンソー 負荷駆動装置の製造方法
US8531324B2 (en) * 2011-07-19 2013-09-10 Freescale Semiconductor, Inc. Systems and methods for data conversion
US8384579B2 (en) * 2011-07-19 2013-02-26 Freescale Semiconductor, Inc. Systems and methods for data conversion
KR102242104B1 (ko) 2014-10-30 2021-04-21 삼성디스플레이 주식회사 표시장치
US12009807B2 (en) * 2022-02-15 2024-06-11 Infineon Technologies Ag Slew rate control for fast switching output stages
CN118017941A (zh) * 2024-04-10 2024-05-10 上海安其威微电子科技有限公司 一种放大器芯片及偏置校准方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3342866C1 (de) 1983-11-26 1985-09-05 Inter-Wood-Maschinen GmbH & Co KG, 8923 Lechbruck Verfahren und Vorrichtung zum Austauschen von Verschleissteilen einer Rotormuehle
US5107224A (en) * 1987-10-30 1992-04-21 North American Philips Corporation Wideband single-ended voltage-to-current converter and gain-control circuit
US5831562A (en) * 1996-07-12 1998-11-03 Sipex Corporation Differential sample and hold circuit with common mode sampling for an analog-to-digital converter
US6154083A (en) * 1998-05-18 2000-11-28 National Semiconductor Corporation Ground bounce control using DLL to optimize output stage di/dt using output driver replica
US6429746B1 (en) * 1999-12-07 2002-08-06 Nokia Networks Oy System and method for auto-bias of an amplifier
US7570585B2 (en) * 2002-12-16 2009-08-04 Alcatel Lucent Facilitating DSLAM-hosted traffic management functionality

Also Published As

Publication number Publication date
EP1217741B1 (en) 2004-03-31
KR20020040542A (ko) 2002-05-30
EP1217741A1 (en) 2002-06-26
KR100732924B1 (ko) 2007-06-29
TW503557B (en) 2002-09-21
DE60102549T2 (de) 2005-02-03
USRE40168E1 (en) 2008-03-25
DE60102549D1 (de) 2004-05-06
US20020063590A1 (en) 2002-05-30
US6535039B2 (en) 2003-03-18
JP2002164770A (ja) 2002-06-07

Similar Documents

Publication Publication Date Title
JP3841640B2 (ja) 半導体集積回路
US7855538B2 (en) Method for current sensing in switched DC-to-DC converters
US8339186B2 (en) Voltage level shift circuits and methods
US7595616B2 (en) Control circuit for a polarity inverting buck-boost DC-DC converter
Roh High-performance error amplifier for fast transient DC-DC converters
EP3217246B1 (en) Reference voltage circuit
US20070211502A1 (en) Voltage step-up circuit and electric appliance therewith
US9391520B2 (en) Discontinuous mode DC-DC converter including a voltage-current conversion circuit for converting into current a difference between an output voltage and an input voltage of switches of the converter
US7403064B2 (en) Dynamically accelerated operational amplifier and method thereof
US7453312B2 (en) Voltage regulator outputting positive and negative voltages with the same offsets
US8198869B2 (en) System and method for charging capacitors using automatic cell balancing
TWI668947B (zh) 電荷泵電路及其運作方法
CN112740527A (zh) 自调谐零电流检测电路
US10483844B2 (en) Charge pump arrangement and method for operating a charge pump arrangement
CN110113028B (zh) 片上有源rc滤波器的分压积分型时常数校准电路
CN110068401B (zh) 温度感测设备和温度-电压转换器
US11171565B2 (en) Switched-mode power converter
CN109314464B (zh) 基于电压的开关时间自动校正
CN108459644A (zh) 低压差稳压装置及其操作方法
US11736018B2 (en) Voltage comparator and method
EP1601091B1 (en) Control circuit for a polarity inverting buck-boost DC-DC converter
US20170331475A1 (en) Reference voltage buffer circuit
JPH09229970A (ja) 入力検出回路
US20240223065A1 (en) Inductor current reconstruction circuit and method for use in switched-mode power supply
US7071761B1 (en) Apparatus and method for reducing propagation delay

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060808

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees