JP3832342B2 - 光通信ネットワーク、ノード装置及びそれに用いるパス経路計算方法 - Google Patents

光通信ネットワーク、ノード装置及びそれに用いるパス経路計算方法 Download PDF

Info

Publication number
JP3832342B2
JP3832342B2 JP2001398723A JP2001398723A JP3832342B2 JP 3832342 B2 JP3832342 B2 JP 3832342B2 JP 2001398723 A JP2001398723 A JP 2001398723A JP 2001398723 A JP2001398723 A JP 2001398723A JP 3832342 B2 JP3832342 B2 JP 3832342B2
Authority
JP
Japan
Prior art keywords
optical
area
node device
boundary
route
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001398723A
Other languages
English (en)
Other versions
JP2003198609A (ja
Inventor
義晴 前野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2001398723A priority Critical patent/JP3832342B2/ja
Priority to US10/196,985 priority patent/US7397802B2/en
Publication of JP2003198609A publication Critical patent/JP2003198609A/ja
Application granted granted Critical
Publication of JP3832342B2 publication Critical patent/JP3832342B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Optical Communication System (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は光通信ネットワーク、ノード装置及びそれに用いるパス経路計算方法に関し、特にクロスコネクト装置を相互接続して構成した領域を複数含む通信ネットワークにおいて、光クロスコネクト装置の物理的な特性や管理上の制約に起因して、各領域内部で光クロスコネクト装置間の接続性(connectivity)に制限があって、領域内部で必ずしも任意のパスの径路を設定することができない場合に複数の領域にまたがるパスの経路計算方法に関する。
【0002】
【従来の技術】
従来、光通信ネットワークにおいては、光リンクによって多数のクロスコネクト[以下、XC(cross−connect)とする]装置をメッシュ状に相互接続した網から構成されている。この光通信ネットワークとしては、光XC装置間に波長多重伝送装置を配置し、光リンク上に複数の波長チャネルが波長多重されて伝送される場合もある。
【0003】
光XC装置は特定の入力インタフェースの波長チャネル上を伝送されてきたデータ信号を、複数の出力インタフェースから選択された特定の出力インタフェースの波長チャネルへ切替え、データ信号を波長チャネル単位で転送するための装置である。光XC装置にはインタフェースにおいて光−電気変換によって波長チャネル上のデータ信号をいったん光信号から電気信号へ変換して処理する電気XC装置と、光−電気変換を使用しない光XC装置とがある。
【0004】
光XC装置には任意の速度やフォーマットのデータ信号を処理することができるという特徴がある反面、データ信号が多数の光XC装置を経由したり、長い距離を伝送されたりすると、ノイズの蓄積等によってデータ信号のビットエラーレート等の品質が劣化するという問題がある。
【0005】
光XC装置は他の光XC装置と相互接続されるだけでなく、SONET(synchronous optical network)多重・分離装置、ATM(asynchronous transfer mode)スイッチ、IP(internet protocol)ルータ等の光通信ネットワークのクライアントとなる装置とも接続される。
【0006】
光通信ネットワークは一つ以上の波長を使用して、複数のユーザ装置の間に光パスを提供するサービスを実現する。光パスはユーザ装置の接続された送信側光XC装置から複数の中継光XC装置を経由し、他のユーザ装置の接続された受信側光XC装置へ至るように設定される。このような光XC装置に関する技術については、特開2000−004460号公報に開示されている。
【0007】
光通信ネットワークは効率的なネットワークの制御や事業者間の管理の都合から、一般に、複数の領域(domain)に分割される。領域は複数の光XC装置を含む。したがって、異なる領域に属する光XC装置に接続されたユーザ装置間の光パスは複数の領域にまたがって設定される。
【0008】
このような光通信ネットワークの例を図27に示す。図27に示す光通信ネットワーク500には4個の領域#1〜#4が配置されている。領域#1,#3,#4に属する光XC装置にはユーザ装置51,71,72,81,82が接続されている。領域#1〜#4とユーザ装置51,71,72,81,82との間にはデータ信号を伝送するための光リンクと制御チャネルとが配置されている。制御チャネルは装置間のさまざまな制御メッセージの転送に使用される。
【0009】
ユーザ装置51,71,72,81,82は制御チャネルを通して光通信ネットワーク500に光パスの設定や開放を要求することができる。領域#1〜#4とユーザ装置51,71,72,81,82との境界をまたぐ制御チャネルをUNI(user―to―network interface)制御チャネルと呼ぶ。
【0010】
領域#1〜#4の間にも、上記と同様に、光リンクと制御チャネルとが配置される。領域#1〜#4の間の境界をまたぐ制御チャネルをNNI(network−to−network interface)制御チャネルと呼ぶ。
【0011】
各領域#1〜#4内のクロスコネクト装置または領域#1〜#4内を管理する管理システムは光パスの目的地装置毎の中継径路を記述したルーティングテーブル(routing table)61〜64を維持している。ルーティングテーブル61〜64には目的地装置に到達するまでに経由する一連の領域#1〜#4の組が記載されている。ユーザ装置51,71,72,81,82毎に経由する一連の領域#1〜#4の組を記載したルーティングテーブル61〜64の例を図28に示す。
【0012】
図28において、領域#1のルーティングテーブル61には、ユーザ装置51の中継経路として「領域#1」が、ユーザ装置71の中継経路として「領域#1−領域#2−領域#4」が、ユーザ装置72の中継経路として「領域#1−領域#2−領域#4」が、ユーザ装置81の中継経路として「領域#1−領域#2−領域#3」が、ユーザ装置82の中継経路として「領域#1−領域#2−領域#3」がそれぞれ記載されている。
【0013】
領域#2のルーティングテーブル62には、ユーザ装置51の中継経路として「領域#2−領域#1」が、ユーザ装置71の中継経路として「領域#2−領域#4」が、ユーザ装置72の中継経路として「領域#2−領域#4」が、ユーザ装置81の中継経路として「領域#2−領域#3」が、ユーザ装置82の中継経路として「領域#2−領域#3」がそれぞれ記載されている。
【0014】
領域#3のルーティングテーブル63には、ユーザ装置51の中継経路として「領域#3−領域#2−領域#1」が、ユーザ装置71の中継経路として「領域#3−領域#4」が、ユーザ装置72の中継経路として「領域#3−領域#4」が、ユーザ装置81の中継経路として「領域#3」が、ユーザ装置82の中継経路として「領域#3」がそれぞれ記載されている。
【0015】
領域#4のルーティングテーブル64には、ユーザ装置51の中継経路として「領域#4−領域#2−領域#1」が、ユーザ装置71の中継経路として「領域#4」が、ユーザ装置72の中継経路として「領域#4」が、ユーザ装置81の中継経路として「領域#4−領域#3」が、ユーザ装置82の中継経路として「領域#4−領域#3」がそれぞれ記載されている。
【0016】
UNI制御チャネルを通して光パスの設定が要求されると、領域#1〜#4はルーティングテーブル61〜64を参照して目的地までの径路を計算し、制御チャネルを使用して光パスの設定を要求する制御メッセージを径路に沿って送信する。
【0017】
例えば、ユーザ装置51がユーザ装置81へ至る光パス#1の設定を領域#1に要求すると、領域#1はルーティングテーブル61に記載された径路「領域#1−領域#2−領域#4」に沿って制御メッセージが転送され、光パス#1を設定する。光パス#1が経由する領域#2,#4の内部の詳細な径路に関しては、領域#2,#4が独立に決定することができる。
【0018】
領域の内部の詳細な径路の計算方法としては、IP(internet−protocol)通信ネットワークのIGP(interior−gateway−protocol)として使用されているOSPF(open−shortest−path−first)ルーティングプロトコルがある。OSPFルーティングプロトコルの詳細については、IPの国際標準化機関であるIETF(internet−engineering−task−force)において規定されたRFC(request−for−comments)における、J.MoyのRFC2328の「OSPF Version2」(1998年4月)に記述されている。また、他の経路の計算方法としては、特開2000−78136号公報に記載された技術等がある。
【0019】
このような複数の領域#1〜#4にまたがった経路計算に使用されるルーティングテーブル61〜64を維持するために領域#1〜#4間で動作するルーティングプロトコルの代表的な例として、IP(internet−protocol)通信ネットワークのEGP(exterior−gateway−protocol)として使用されているBGP(border−gateway−protocol)ルーティングプロトコルがある。BGPルーティングプロトコルはTCP(transmission control protocol)/IP上で動作する距離ベクトル型(distance vector)ルーティングプロトコルである。
【0020】
BGPルーティングプロトコルでは、BGP Open制御メッセージとBGP Keepalives制御メッセージとを使用し、隣接領域間での相互の接続関係の発見と維持とを行う。また、BGPルーティングプロトコルでは、BGP update制御メッセージを使用して隣接領域から公告(advertise)された目的地装置毎の中継経路情報と自領域内部のルーティングテーブルとから、新規の中継径路情報を算出して公告すると同時に、ルーティングテーブルの更新を行う。公告の動作を何回も繰返すと、ルーティングテーブルは一定の状態に収束し、径路計算に使用することができるようになる。
【0021】
BGPルーティングプロトコルの詳細については、IPの国際標準化機関であるIETF(internet−engineering−task−force)において規定されたRFC(request−for−comments)における、Y.RehkerとT.LiとのRFC1771の「A Border Gateway Protocol 4(BGP4)」(1995年3月)に記述されている。
【0022】
【発明が解決しようとする課題】
しかしながら、上述した従来の光通信ネットワークでは、各領域内部でXC装置間の接続性(connectivity)に制限があって、領域内部で必ずしも任意のパスの径路を設定することができない場合が起こる。例えば、領域内部の光XC装置を多数経由するために、データ信号の信号伝送品質が劣化して光パスが設定できない場合がある。
【0023】
また、OADM(optical add−drop multiplexer)型の光XC装置では特定波長しかadd−dropできない場合があり、光XC装置がそもそも完全な接続性、つまりノンブロッキング特性を提供していない場合もある。図27に示す光パス#2は領域#4の接続性の制限によって光パスの設定に失敗する例である。
【0024】
したがって、従来の光通信ネットワークでは、BGPルーティングプロトコル等を使用して計算した経路に沿って光パスを設定しようとしても、光パスの経由する各領域内部で光パスの設定が失敗する場合がある。
【0025】
また、各領域内部での光XC装置間の接続性の制限に関するすべての情報をすべての光XC装置で共有すると、光XC装置の保持する情報量が非常に大きくなり、光XC装置数や領域数に限界が発生する。さらに、このような光通信ネットワークのスケーラビリティの問題もある。
【0026】
そこで、本発明の目的は上記の問題点を解消し、各領域内部での光XC装置間の接続性の制限に関するすべての情報をすべての光XC装置で共有することなく、かつ計算した経路に沿った光パスの設定が中継領域内部での接続性の制限に依存して失敗するのを防ぐことができる光通信ネットワーク、ノード装置及びそれに用いるパス経路計算方法を提供することにある。
【0027】
本発明の他の目的は、中継領域内部での接続性の制限まで考慮した光パスの経路の最適化を行うことができる光通信ネットワーク、ノード装置及びそれらに用いるパス経路計算方法を提供することにある。
【0028】
本発明のさらに他の目的は、高速に光パスの設定を行うことができる光通信ネットワーク、ノード装置及びそれに用いるパス経路計算方法を提供することにある。
【0029】
【課題を解決するための手段】
本発明による光通信ネットワークは、各々光パスのクロスコネクト機能を実行する複数のノード装置が相互接続された複数の領域から構成され、前記光パスを動的に設定・開放するサービスを提供する光通信ネットワークであって、前記領域の境界に位置する領域境界ノード装置と各領域内部の接続性の制限を表現する領域境界ノード装置間の仮想隣接光リンクとからなるバックボーンエリアを備え、前記複数の領域を前記バックボーンエリアに接続されたエリアに再構成している。
【0030】
本発明によるノード装置は、光パスを動的に設定・開放するサービスを提供する光通信ネットワークにおいて、前記光パスのクロスコネクト機能を実行しかつ隣接する装置に相互接続されることで領域を構成するノード装置であって、
前記領域の境界に位置する領域境界ノード装置と各領域内部の接続性の制限を表現する領域境界ノード装置間の仮想隣接光リンクとからなるバックボーンエリアを経由して各々当該バックボーンエリアに接続された始点エリアから終点エリアへと前記光パスを設定している。
【0031】
本発明によるパス経路計算方法は、各々光パスのクロスコネクト機能を実行する複数のノード装置が相互接続された複数の領域から構成され、前記光パスを動的に設定・開放するサービスを提供する光通信ネットワークのパス経路計算方法であって、前記領域の境界に位置する領域境界ノード装置と各領域内部の接続性の制限を表現する領域境界ノード装置間の仮想隣接光リンクとからなるバックボーンエリアに接続されたエリアに前記複数の領域を再構成するステップを備えている。
【0032】
すなわち、本発明の光通信ネットワークは、各領域内部の接続性の制限を領域境界光XC装置間の仮想隣接光リンクとして表現し、すべての領域境界光XC装置とすべての仮想隣接光リンクとから構成されたバックボーンエリアにおいて光通信ネットワーク全体の接続性の制限を管理し、始点領域からバックボーンエリアのみを経由して終点領域へ光パスを設定することを特徴としている。
【0033】
【発明の実施の形態】
次に、本発明の実施例について図面を参照して説明する。図1は本発明の一実施例による光通信ネットワークの構成を示すブロック図である。図1において、光通信ネットワーク1にはそれぞれ6つの光XC装置11〜16,21〜26,31〜36,41〜46を含む4つの領域#1〜#4が配置され、5つのクライアント装置51,71,72,81,82が接続されている。
【0034】
ここで、領域外部の装置と接続されている光XC装置を領域境界(domain−border)光XC装置と呼ぶ。この場合、光XC装置15,16,21,22,25,26,35,36,41,42,46が領域境界光XC装置である。
【0035】
光パスは領域境界光XC装置を通して領域外部へと転送される。各領域#1〜#4には領域固有の接続性の制限があり、領域#1〜#4内の任意の光XC装置11〜16,21〜26,31〜36,41〜46間で光パスを設定することができるとは限らない。図1に示す例では、光XC装置21と光XC装置26との間、光XC装置32と光XC装置35との間、光XC装置41と光XC装置46との間には、信号伝送品質の劣化や使用可能なチャネルの枯渇等によって光パスを設定することができないものとする。
【0036】
領域#1〜#4間の境界にはNNI(network−to−networkinterface)制御チャネルが設定されており、このNNI制御チャネルを介して経路計算や光パスの設定に必要な制御メッセージが交換される。光XC装置11,31,32,45,46とユーザ装置51,71,72,81,82との境界、または領域#1,#3,#4とユーザ装置51,71,72,81,82との境界にはUNI(user―to―network interface)制御チャネルが設定されており、ユーザ装置51,71,72,81,82はUNI制御チャネルを通して光通信ネットワーク1に対して光パスの設定や開放を要求する制御メッセージを送信する。
【0037】
NNI制御チャネルやUNI制御チャネルに並行して、領域境界をはさんで隣接する光XC装置間にデータ信号を伝送するためデータチャネルとしての領域境界をまたぐ光リンクが備えられている。光リンク及び制御チャネルは上り下り2本で1組とし、双方向通信が可能であるとする。
【0038】
領域#1〜#4の内部においては光XC装置間にも制御メッセージが交換される。これは、隣接光XC装置間に光リンクに沿って用意された制御チャネルか、あるいは領域#1〜#4毎に、領域#1〜#4内の全ての光XC装置と接続された集中制御装置(図示せず)を介して実現することができる。
【0039】
この集中制御装置を使用する場合、NNI制御チャネルは集中制御装置間に、UNI制御チャネルは集中制御装置とユーザ装置との間に設定される。制御メッセージは複数の光XC装置で転送されて、複数の制御チャネルを通って運ばれる場合もある。
【0040】
NNI制御チャネル、UNI制御チャネル、領域内の制御チャネルには光リンク上のデータ信号とは異なる波長チャネルや、光リンク上のデータ信号のSONET(synchronous optical network)フレームに含まれるオーバヘッド内のデータコミュニケーションチャネル(data communication channel:DCC)を使用して、制御チャネルとデータチャネルとを物理的には同一媒体を使用して実現することもできる。また、イーサネット(R)(ethernet)やATM(asynchronous transfer mode)を使用した専用のアウトバンド制御チャネルを使用することもできる。
【0041】
制御メッセージはIPパケットに格納されて転送される。特に、光パスの設定と開放とに係わるシグナリングに関する制御メッセージの交換には、RSVP(resource−reservation−protocol)やLDP(label−distribution−protocol)等のプロトコルが使用される。適切なプロトコルを採用すれば、制御メッセージを複数の領域、または複数の光XC装置にマルチキャスト転送することもできる。尚、上述の構成は光通信ネットワークの設計段階または起動前において、管理者(集中管理装置、手動設定)によって設定される。
【0042】
図2は本発明の一実施例による光通信ネットワークの構成を示すブロック図である。図2において、光通信ネットワーク1は図1に示すような構成の場合、各領域#1〜#4に対応する4つのエリア(area)#1〜#4とバックボーンエリアとに再構成される。
【0043】
領域境界光XC装置15,16,21,22,25,26,35,36,41,42,46は、バックボーンエリアにも、エリア#1〜4のいずれかにも属する。領域境界光XC装置15,16,21,22,25,26,35,36,41,42,46は、エリア境界光XC装置でもある。NNI制御チャネルに対応する領域境界をまたぐ光リンクは全てバックボーンエリアに属する。
【0044】
また、各エリア内部のエリア境界光XC装置間の接続性を考慮した仮想隣接リンク(virtual adjacency link)をバックボーンエリア内部に設定する。例えば、エリア#2ではエリア境界光XC装置21とエリア境界光XC装置22との間、エリア境界光XC装置21とエリア境界光XC装置25との間、エリア境界光XC装置22とエリア境界光XC装置25との間、エリア境界光XC装置22とエリア境界光XC装置26との間には接続性の制限が無く、光パスを設定することができるので、これらのエリア境界光XC装置21,22,25,26間には直通の仮想隣接リンクがあるとみなす。尚、エリア境界光XC装置21とエリア境界光XC装置26との間には接続性の制限があるため、それらの間では光パスを設定することができないので、到達不可能となる。
【0045】
エリア境界光XC装置21とエリア境界光XC装置22との間には仮想隣接リンク312が設定され、エリア境界光XC装置21とエリア境界光XC装置25との間には仮想隣接リンク313が設定される。光通信ネットワーク1は1つのバックボーンエリアと、バックボーンエリアだけに接続された4つのエリア#1〜#4とから構成されているものとみなすことができる。
【0046】
つまり、光通信ネットワーク1を、複数の領域#1〜#4がメッシュ状に接続されたトポロジーから、複数のエリア#1〜#4をバックボーンエリアにスター状に接続したトポロジーに再構成したことになる。この場合、光パスは1つの始点エリアからバックボーンエリアを経由して他の終点エリアへ至るものとみなすことができる。
【0047】
領域からエリアへの再構成は、光通信ネットワーク1の起動時にエリア境界光XC装置15,16,21,22,25,26,35,36,41,42,46が自動的に行うが、手動で設定することもできる。
【0048】
図3は図2の光XC装置11の構成を示すブロック図である。図3において、光XC装置11は入力インタフェース(IF#1〜#3)111〜113と、3×3光スイッチ114と、出力インタフェース(IF#1〜#3)115〜117と、スイッチ制御部118と、制御メッセージ処理部119と、エリア内ルーティングプロトコル処理部120と、ルーティングテーブル121と、光リンク状態データベース122とから構成されている。
【0049】
制御メッセージ処理部119内にはUNI処理部119aが設けられており、UNI処理部119aはユーザ装置51の出力インタフェース(図示せず)から入力インタフェース111へと入力されるUNI制御チャネルの制御メッセージが入力インタフェース111で終端されて入力されると、その制御メッセージに対する処理を行い、出力インタフェース115からユーザ装置51の入力インタフェース(図示せず)へと出力する。一般に、UNIは入出力インタフェース、UNI制御チャネル、及びUNI処理部119aを含み、それらの間の信号のやりとりの手順を規定している。さらに、光リンクまで含めてUNIと呼ぶ場合もある。
【0050】
図4は図2のエリア境界光XC装置21の構成を示すブロック図である。図4において、エリア境界光XC装置21は入力インタフェース(IF#1〜#3)211〜213と、3×3光スイッチ214と、出力インタフェース(IF#1〜#3)215〜217と、スイッチ制御部218と、制御メッセージ処理部219と、エリア内ルーティングプロトコル処理部220と、ルーティングテーブル221と、光リンク状態データベース222と、バックボーンエリア内ルーティングプロトコル処理部223と、ルーティングテーブル224と、光リンク状態データベース225と、仮想隣接光リンク状態データベース226と、装置登録テーブル227とから構成されている。
【0051】
制御メッセージ処理部219内にはNNI処理部219aが設けられており、NNI処理部219aはエリア境界光XC装置15の出力インタフェース(図示せず)から入力インタフェース211へと入力されるNNI制御チャネルの制御メッセージが入力インタフェース211で終端されて入力されると、その制御メッセージに対する処理を行い、出力インタフェース215からエリア境界光XC装置15の入力インタフェース(図示せず)へと出力する。一般に、NNIは入出力インタフェース、NNI制御チャネル、及びNNI処理部219aを含み、それらの間の信号のやりとりの手順を規定している。さらに、光リンクまで含めてNNIと呼ぶ場合もある。尚、制御メッセージ処理部の中には上述したUNI処理部及びNNI処理部を両方とも備えるものもある。
【0052】
3×3光スイッチ114,214は光リンク上のデータ信号を波長チャネル単位で切替え、光パスの設定と開放とを行う。光スイッチ114,214は微小電子機械式スイッチ(micro−electro−mechnical−switch:MEMS)、あるいは自動化主分配盤(main−distribution−frame:MDF)で構成することができる。UNI制御チャネル、NNI制御チャネルに対応した領域境界をまたぐ光リンクに接続された入力インタフェースや出力インタフェースには光−電気変換器及び電気−光変換器が使用されるが、その他のインタフェースでは電気信号処理を使用しない。インタフェースには波長チャネル毎の光強度検出器を備え、光パスの信号品質や光リンクの障害を監視する場合もある。
【0053】
エリア境界光XC装置21はエリア内ルーティングプロトコル処理部220に加えて、バックボーンエリア内ルーティングプロトコル処理部223と、それに関連した仮想隣接光リンク状態データベース226と装置登録テーブル227とを備えている。エリア内ルーティングプロトコル処理部220とバックボーンエリア内ルーティングプロトコル処理部223とは、2種類の異なるルーティングプロトコルであってもよいし、1種類のルーティングプロトコルを2組動作させて実現しても良い。また、エリアがスター状に接続されたトポロジーに対応したルーティングプロトコルであれば、エリア内ルーティングプロトコルとバックボーンエリア内ルーティングプロトコルとを兼ねた1組のルーティングプロトコルで代用することもできる。この場合には、ルーティングプロトコル処理部220とバックボーンエリア内ルーティングプロトコル処理部223とを一つにまとめることができる。さらに、光リンク状態データベース222,225、仮想隣接光リンク状態データベース226も一つのデータベースにまとめることができる。さらにまた、ルーティングテーブル221,224も一つのテーブルにまとめることができる。
【0054】
エリアがスター状に接続されたトポロジーに対応したルーティングプロトコルには、IPネットワークで通常使用されているopen shortest path first(OSPF)プロトコルを使用する。OSPFルーティングプロトコルはIP上で動作するリンク状態型(link state)ルーティングプロトコルである。IS−IS(intermediate systemto intermediate system)等の他のルーティングプロトコルを使用することもできる。OSPFルーティングプロトコルはIP上で動作するリンク状態型(link state)ルーティングプロトコルである。
【0055】
領域内ルーティングプロトコルの光リンク状態データベース222には、エリア内の全ての光リンクの状態が記載されている。光リンク状態データベースに記載された個々の光リンクの状態に関する光リンク状態情報(link state advertisement:LSA)はその光リンクが接続された光XC装置からエリア内部の全ての光XC装置へ公告される。
【0056】
図5は図4のエリア境界光XC装置21のエリア内ルーティングプロトコルの光リンク状態データベース222の構成例を示す図である。図5において、光リンク状態データベース222には光リンク番号、光XC装置Aの光XC装置番号及びインタフェース(IF)番号、光XC装置Bの光XC装置番号及びインタフェース番号、属性のコスト及び波長の各項目が設けられており、光XC装置A及び光XC装置Bは光リンクの両端の装置を示している。
【0057】
光リンク状態データベース222についてさらに詳述すると、光リンク番号「231」に対応する記憶領域には光XC装置Aの光XC装置番号「21」及びインタフェース番号「#2」と、光XC装置Bの光XC装置番号「22」及びインタフェース番号「#4」と、属性のコスト「1」及び波長「λ2」とが格納されている。
【0058】
光リンク番号「232」に対応する記憶領域には光XC装置Aの光XC装置番号「21」及びインタフェース番号「#3」と、光XC装置Bの光XC装置番号「23」及びインタフェース番号「#1」と、属性のコスト「1」及び波長「λ2」とが格納されている。
【0059】
光リンク番号「233」に対応する記憶領域には光XC装置Aの光XC装置番号「22」及びインタフェース番号「#3」と、光XC装置Bの光XC装置番号「24」及びインタフェース番号「#1」と、属性のコスト「1」及び波長「λ2」とが格納されている。
【0060】
光リンク番号「234」に対応する記憶領域には光XC装置Aの光XC装置番号「23」及びインタフェース番号「#3」と、光XC装置Bの光XC装置番号「25」及びインタフェース番号「#1」と、属性のコスト「1」及び波長「λ2」とが格納されている。
【0061】
光リンク番号「235」に対応する記憶領域には光XC装置Aの光XC装置番号「24」及びインタフェース番号「#3」と、光XC装置Bの光XC装置番号「26」及びインタフェース番号「#1」と、属性のコスト「1」及び波長「λ2」とが格納されている。
【0062】
光リンク番号「236」に対応する記憶領域には光XC装置Aの光XC装置番号「25」及びインタフェース番号「#2」と、光XC装置Bの光XC装置番号「26」及びインタフェース番号「#4」と、属性のコスト「1」及び波長「λ2」とが格納されている。
【0063】
エリア内ルーティングプロトコル処理部220は、光リンク状態データベース222を基にエリア内の全ての光XC装置へ至る最適経路を計算し、その最適経路をルーティングテーブル221に保持する。エリア内ルーティングプロトコルの最適経路の計算においては、管理者(集中管理装置、手動設定)によって設定された制約(constraint)条件下で総コストを最小化する始点光XC装置から終点光XC装置へ至る光リンクの組を求める。総コストは経路を構成する光リンクのコストの合計値である。エリア毎に異なる制約を設定することもある。
【0064】
図6は図4のエリア境界光XC装置21のエリア内ルーティングプロトコルのルーティングテーブル221の構成例を示す図である。図6において、ルーティングテーブル221には始点光XC装置の光XC装置番号及びインタフェース(IF)番号、終点光XC装置の光XC装置番号及びインタフェース番号、中継光XC装置、総コストの各項目が設けられている。
【0065】
このルーティングテーブル221についてさらに詳述すると、始点光XC装置の光XC装置番号「21」及びインタフェース番号「#2」と、終点光XC装置の光XC装置番号「22」及びインタフェース番号「#4」とで示される最適経路に対応する記憶領域には中継光XC装置「22」と、総コスト「1」とが格納されている。
【0066】
始点光XC装置の光XC装置番号「21」及びインタフェース番号「#3」と、終点光XC装置の光XC装置番号「23」及びインタフェース番号「#1」とで示される最適経路に対応する記憶領域には中継光XC装置「23」と、総コスト「1」とが格納されている。
【0067】
始点光XC装置の光XC装置番号「21」及びインタフェース番号「#2」と、終点光XC装置の光XC装置番号「24」及びインタフェース番号「#1」とで示される最適経路に対応する記憶領域には中継光XC装置「22−24」と、総コスト「2」とが格納されている。
【0068】
始点光XC装置の光XC装置番号「21」及びインタフェース番号「#3」と、終点光XC装置の光XC装置番号「25」及びインタフェース番号「#1」とで示される最適経路に対応する記憶領域には中継光XC装置「23−25」と、総コスト「2」とが格納されている。
【0069】
エリア境界光XC装置21からエリア境界光XC装置26へは接続制限があり、接続することができないので、中継光XC装置の情報として「到達不可能」が格納されている。
【0070】
このような接続制限は、エリア内ルーティングプロトコルが光リンク状態データベース222から自動的に判断する場合もあれば、光通信ネットワーク1の起動時に管理者によって設定される場合や、エリア内部の経路管理サーバ(図示せず)から指定される場合もある。ルーティングプロトコルが自動的に判断する場合には、光リンク状態情報や光リンク状態データベースに光リンクの距離や使用する光ファイバの物理パラメータ等も記載することがある。
【0071】
図6に示すルーティングテーブル221には光XC装置21から他の光XC装置22〜26へ至る経路のみが保持されているが、さらに他の光XC装置を始点とする経路の情報を保持することもできる。
【0072】
図7は図3の光XC装置11のエリア内ルーティングプロトコルのルーティングテーブル121の構成例を示す図である。図7において、ルーティングテーブル121には始点光XC装置の光XC装置番号及びインタフェース番号、終点光XC装置の光XC装置番号及びインタフェース番号、中継光XC装置、総コストの各項目が設けられている。
【0073】
このルーティングテーブル121についてさらに詳述すると、始点光XC装置の光XC装置番号「11」及びインタフェース番号「#2」と、終点光XC装置の光XC装置番号「12」及びインタフェース番号「#4」とで示される経路に対応する記憶領域には中継光XC装置「12」と、総コスト「1」とが格納されている。
【0074】
始点光XC装置の光XC装置番号「11」及びインタフェース番号「#3」と、終点光XC装置の光XC装置番号「13」及びインタフェース番号「#1」とで示される経路に対応する記憶領域には中継光XC装置「13」と、総コスト「1」とが格納されている。
【0075】
始点光XC装置の光XC装置番号「11」及びインタフェース番号「#2」と、終点光XC装置の光XC装置番号「14」及びインタフェース番号「#1」とで示される経路に対応する記憶領域には中継光XC装置「12−14」と、総コスト「2」とが格納されている。
【0076】
始点光XC装置の光XC装置番号「11」及びインタフェース番号「#3」と、終点光XC装置の光XC装置番号「15」及びインタフェース番号「#1」とで示される経路に対応する記憶領域には中継光XC装置「13−15」と、総コスト「2」とが格納されている。
【0077】
始点光XC装置の光XC装置番号「11」及びインタフェース番号「#2」と、終点光XC装置の光XC装置番号「16」及びインタフェース番号「#1」とで示される経路に対応する記憶領域には中継光XC装置「12−14−16」と、総コスト「3」とが格納されている。
【0078】
バックボーンエリア内ルーティングプロトコルの装置登録テーブル227には、各エリア#1〜#4に属する光XC装置及びエリア境界光XC装置の一覧が記載されている。
【0079】
図8は図4のエリア境界光XC装置21のバックボーンエリア内ルーティングプロトコルの装置登録テーブル227の構成例を示す図である。図8において、装置登録テーブル227にはエリア番号「#1」に対応して光XC装置番号「11」,「12」,「13」,「14」と、エリア境界光XC装置番号「15」,「16」とが、エリア番号「#2」に対応して光XC装置番号「23」,「24」と、エリア境界光XC装置番号「21」,「22」,「25」,「26」とが、エリア番号「#3」に対応して光XC装置番号「31」,「32」,「33」,「34」と、エリア境界光XC装置番号「35」,「36」とが、エリア番号「#4」に対応して光XC装置番号「43」,「44」,「45」と、エリア境界光XC装置番号「41」,「42」,「46」とがそれぞれ格納されている。
【0080】
バックボーンエリア内ルーティングプロトコルの仮想隣接光リンク状態データベース226には、バックボーンエリア内の全ての仮想隣接光リンクの状態が記載されている。仮想隣接光リンク状態情報はその仮想隣接光リンクの両端のエリア境界光XC装置からバックボーンエリア内部の全てのエリア境界光XC装置へ公告される。
【0081】
図9は図4のエリア境界光XC装置21のバックボーンエリア内ルーティングプロトコルの仮想隣接光リンク状態データベース226の構成例を示す図である。図9において、仮想隣接光リンク状態データベース226には光リンク番号、光XC装置Aの光XC装置番号及びインタフェース(IF)番号、光XC装置Bの光XC装置番号及びインタフェース番号、属性のコスト及び波長の各項目が設けられており、光XC装置A及び光XC装置Bは光リンクの両端の装置を示している。
【0082】
仮想隣接光リンク状態データベース226についてさらに詳述すると、光リンク番号「311」に対応する記憶領域には光XC装置Aの光XC装置番号「15」及びインタフェース番号「#2」と、光XC装置Bの光XC装置番号「16」及びインタフェース番号「#4」と、属性のコスト「1」及び波長「λ1」とが格納されている。
【0083】
光リンク番号「312」に対応する記憶領域には光XC装置Aの光XC装置番号「21」及びインタフェース(IF)番号「#2」と、光XC装置Bの光XC装置番号「22」及びインタフェース番号「#4」と、属性のコスト「1」及び波長「λ2」とが格納されている。
【0084】
光リンク番号「313」に対応する記憶領域には光XC装置Aの光XC装置番号「21」及びインタフェース(IF)番号「#3」と、光XC装置Bの光XC装置番号「25」及びインタフェース番号「#1」と、属性のコスト「2」及び波長「λ2」とが格納されている。
【0085】
光リンク番号「314」に対応する記憶領域には光XC装置Aの光XC装置番号「22」及びインタフェース(IF)番号「#3」と、光XC装置Bの光XC装置番号「25」及びインタフェース番号「#2」と、属性のコスト「3」及び波長「λ2」とが格納されている。
【0086】
光リンク番号「315」に対応する記憶領域には光XC装置Aの光XC装置番号「22」及びインタフェース(IF)番号「#3」と、光XC装置Bの光XC装置番号「26」及びインタフェース番号「#1」と、属性のコスト「2」及び波長「λ2」とが格納されている。
【0087】
光リンク番号「316」に対応する記憶領域には光XC装置Aの光XC装置番号「25」及びインタフェース(IF)番号「#2」と、光XC装置Bの光XC装置番号「26」及びインタフェース番号「#4」と、属性のコスト「1」及び波長「λ2」とが格納されている。
【0088】
光リンク番号「317」に対応する記憶領域には光XC装置Aの光XC装置番号「35」及びインタフェース(IF)番号「#2」と、光XC装置Bの光XC装置番号「36」及びインタフェース番号「#4」と、属性のコスト「1」及び波長「λ3」とが格納されている。
【0089】
光リンク番号「318」に対応する記憶領域には光XC装置Aの光XC装置番号「41」及びインタフェース(IF)番号「#2」と、光XC装置Bの光XC装置番号「42」及びインタフェース番号「#4」と、属性のコスト「1」及び波長「λ4」とが格納されている。
【0090】
光リンク番号「319」に対応する記憶領域には光XC装置Aの光XC装置番号「42」及びインタフェース(IF)番号「#3」と、光XC装置Bの光XC装置番号「46」及びインタフェース番号「#1」と、属性のコスト「2」及び波長「λ4」とが格納されている。
【0091】
バックボーンエリア内ルーティングプロトコルの光リンク状態データベース225には、バックボーンエリア内の全ての光リンクの状態が記載されている。これらの光リンクは、NNI制御チャネルに対応した領域境界をまたぐ全ての光リンクである。
【0092】
図10は図4のエリア境界光XC装置21のバックボーンエリア内ルーティングプロトコルの光リンク状態データベース225の構成例を示す図である。図10において、光リンク状態データベース225には光リンク番号、光XC装置Aの光XC装置番号及びインタフェース(IF)番号、光XC装置Bの光XC装置番号及びインタフェース番号、属性のコスト及び波長の各項目が設けられており、光XC装置A及び光XC装置Bは光リンクの両端の装置を示している。
【0093】
光リンク状態データベース225についてさらに詳述すると、光リンク番号「321」に対応する記憶領域には光XC装置Aの光XC装置番号「15」及びインタフェース(IF)番号「#3」と、光XC装置Bの光XC装置番号「21」及びインタフェース番号「#1」と、属性のコスト「2」及び波長「任意」とが格納されている。
【0094】
光リンク番号「322」に対応する記憶領域には光XC装置Aの光XC装置番号「16」及びインタフェース(IF)番号「#3」と、光XC装置Bの光XC装置番号「22」及びインタフェース番号「#1」と、属性のコスト「2」及び波長「任意」とが格納されている。
【0095】
光リンク番号「323」に対応する記憶領域には光XC装置Aの光XC装置番号「25」及びインタフェース(IF)番号「#3」と、光XC装置Bの光XC装置番号「41」及びインタフェース番号「#1」と、属性のコスト「2」及び波長「任意」とが格納されている。
【0096】
光リンク番号「324」に対応する記憶領域には光XC装置Aの光XC装置番号「26」及びインタフェース(IF)番号「#2」と、光XC装置Bの光XC装置番号「35」及びインタフェース番号「#4」と、属性のコスト「2」及び波長「任意」とが格納されている。
【0097】
光リンク番号「325」に対応する記憶領域には光XC装置Aの光XC装置番号「34」及びインタフェース(IF)番号「#3」と、光XC装置Bの光XC装置番号「42」及びインタフェース番号「#2」と、属性のコスト「2」及び波長「任意」とが格納されている。
【0098】
光リンク番号「326」に対応する記憶領域には光XC装置Aの光XC装置番号「36」及びインタフェース(IF)番号「#3」と、光XC装置Bの光XC装置番号「46」及びインタフェース番号「#2」と、属性のコスト「2」及び波長「任意」とが格納されている。
【0099】
バックボーンエリア内ルーティングプロトコルは、仮想隣接光リンク状態データベース226(図9参照)と光リンク状態データベース225(図10参照)とを基にバックボーンエリア内の全てのエリア境界光XC装置へ至る最適経路を計算し、ルーティングテーブル224(図11参照)に保持する。
【0100】
バックボーンエリア内ルーティングプロトコルの最適経路の計算においては、管理者(集中管理装置、手動設定)によって設定された制約(constraint)条件下で総コストを最小化する始点エリア境界光XC装置から終点エリア境界光XC装置へ至る光リンクの組を求める。総コストは経路を構成する光リンクのコストの合計値である。制約は光通信ネットワークや光XC装置の特性に依存し、運用する光通信ネットワークごとに異なる制約を設定することもある。
【0101】
本実施例では2つの制約を導入する。第一の制約は「経路の両端に仮想隣接光リンクを使用しない」である。仮想隣接光リンクは同一エリアに属する2つのエリア境界光XC装置間に設定されており、経路の両端に使用するとバックボーンエリア内の経路にならないからである。第二の制約は「経路上で仮想隣接光リンクを2つ続けて使用しない」である。仮想隣接光リンクの両端のエリア境界光XC装置間には接続性の制限がないことが保証されているが、2つ繋いだ仮想隣接光リンクの両端の境界光XC装置間では接続性の制限がある場合もあるからである。これらの制約を導入することによって、エリア内部での接続性の制限をバックボーンエリア内部の最適経路の計算に正確に反映する。
【0102】
図11は図4のエリア境界光XC装置21のバックボーンエリア内ルーティングプロトコルのルーティングテーブル224の構成例を示す図である。図11において、ルーティングテーブル224には始点光XC装置の光XC装置番号及びインタフェース(IF)番号、終点光XC装置の光XC装置番号及びインタフェース番号、中継光XC装置、総コストの各項目が設けられている。
【0103】
このルーティングテーブル224についてさらに詳述すると、始点光XC装置の光XC装置番号「21」及びインタフェース番号「#1」と、終点光XC装置の光XC装置番号「15」及びインタフェース番号「#3」とで示される経路に対応する記憶領域には中継光XC装置「15」と、総コスト「2」とが格納されている。
【0104】
始点光XC装置の光XC装置番号「21」及びインタフェース番号「#1」と、終点光XC装置の光XC装置番号「35」及びインタフェース番号「#3」とで示される経路に対応する記憶領域には中継光XC装置「15−16−22−25−41−42−35」と、総コスト「13」とが格納されている。
【0105】
始点光XC装置の光XC装置番号「21」及びインタフェース番号「#1」と、終点光XC装置の光XC装置番号「36」及びインタフェース番号「#3」とで示される経路に対応する記憶領域には中継光XC装置「15−16−22−26−35−41−42−36」と、総コスト「15」とが格納されている。
【0106】
始点光XC装置の光XC装置番号「21」及びインタフェース番号「#1」と、終点光XC装置の光XC装置番号「41」及びインタフェース番号「#1」とで示される経路に対応する記憶領域には中継光XC装置「15−16−22−25−41」と、総コスト「10」とが格納されている。
【0107】
始点光XC装置の光XC装置番号「21」及びインタフェース番号「#1」と、終点光XC装置の光XC装置番号「42」及びインタフェース番号「#4」とで示される経路に対応する記憶領域には中継光XC装置「15−16−22−26−35−42」と、総コスト「11」とが格納されている。
【0108】
始点光XC装置の光XC装置番号「21」及びインタフェース番号「#1」と、終点光XC装置の光XC装置番号「46」及びインタフェース番号「#2」とで示される経路に対応する記憶領域には中継光XC装置「15−16−22−26−35−36−46」と、総コスト「12」とが格納されている。
【0109】
光XC装置21から光XC装置21,22,25,26へは、バックボーンエリアを介さずにエリア#2内部で到達可能なので記載せず、「エリア内で到達可能」を中継光XC装置の情報として格納する。光XC装置21から光XC装置16へは、上記の制約のものでは、光パスを設定することができず到達不可能となるので、「到達不可能」を中継光XC装置の情報として格納する。
【0110】
図12は図2のエリア境界光XC装置15のバックボーンエリア内ルーティングプロトコルのルーティングテーブルの構成例を示す図である。図12において、このルーティングテーブルには始点光XC装置の光XC装置番号及びインタフェース(IF)番号、終点光XC装置の光XC装置番号及びインタフェース番号、中継光XC装置、総コストの各項目が設けられている。
【0111】
このルーティングテーブルについてさらに詳述すると、始点光XC装置の光XC装置番号「15」及びインタフェース番号「#3」と、終点光XC装置の光XC装置番号「21」及びインタフェース番号「#1」とで示される経路に対応する記憶領域には中継光XC装置「21」と、総コスト「2」とが格納されている。
【0112】
始点光XC装置の光XC装置番号「15」及びインタフェース番号「#3」と、終点光XC装置の光XC装置番号「26」及びインタフェース番号「#2」とで示される経路に対応する記憶領域には中継光XC装置「21−25−41−42−35−26」と、総コスト「11」とが格納されている。
【0113】
始点光XC装置の光XC装置番号「15」及びインタフェース番号「#3」と、終点光XC装置の光XC装置番号「35」及びインタフェース番号「#3」とで示される経路に対応する記憶領域には中継光XC装置「21−25−41−42−35」と、総コスト「9」とが格納されている。
【0114】
始点光XC装置の光XC装置番号「15」及びインタフェース番号「#3」と、終点光XC装置の光XC装置番号「41」及びインタフェース番号「#1」とで示される経路に対応する記憶領域には中継光XC装置「21−25−41」と、総コスト「6」とが格納されている。
【0115】
始点光XC装置の光XC装置番号「15」及びインタフェース番号「#3」と、終点光XC装置の光XC装置番号「46」及びインタフェース番号「#2」とで示される経路に対応する記憶領域には中継光XC装置「21−25−41−42−35−36−46」と、総コスト「12」とが格納されている。
【0116】
光XC装置15から光XC装置15,16へは、バックボーンエリアを介さずにエリア#1内部で到達可能なので記載せず、「エリア内で到達可能」を中継光XC装置の情報として格納する。光XC装置15から光XC装置22,25,36,42へは、上記の制約のものでは、光パスを設定することができず到達不可能となるので、「到達不可能」を中継光XC装置の情報として格納する。
【0117】
図13は図3及び図4のエリア内ルーティングプロトコル処理部120,220の処理動作を示すフローチャートであり、図14及び図15は図4のバックボーンエリア内ルーティングプロトコル処理部223の処理動作を示すフローチャートである。これら図4〜図14を参照して光通信ネットワーク1が起動後、図5〜図12に示すような各光XC装置内のテーブル等を構成していく手順について説明する。
【0118】
尚、図13に示す処理は各光XC装置11〜16,21〜26,31〜36,41〜46で実行され、図14に示す処理は各エリア境界光XC装置15,16,21,22,25,26,35,36,41,42,46で実行される。以下の説明では光XC装置11及びエリア境界光XC装置21について述べるが、他の光XC装置12〜16,22〜26,31〜36,41〜46でも同様にしてテーブル等が構成される。
【0119】
光XC装置11,21において、エリア内ルーティングプロトコル処理部120,220は領域#1,#2内で制御チャネルを使用して光リンク状態情報を交換しながら(図13ステップS1)、エリア領域内ルーティングプロトコルの光リンク状態データベース122,222を構成する(図13ステップS2)。
【0120】
エリア内ルーティングプロトコル処理部120,220は領域#1,#2の光リンク状態データベース122,222を基に領域#1,#2内の全ての光XC装置へ至る最適経路を計算し(図13ステップS3)、ルーティングテーブル121,221を構成する(図13ステップS4)。尚、領域#3,#4についても、領域#1,#2と同様にして、エリア領域内ルーティングプロトコルの光リンク状態データベースやルーティングテーブルが構成される。
【0121】
続いて、エリア境界光XC装置21において、バックボーンエリア内ルーティングプロトコル処理部223は領域#2のルーティングテーブルを基に接続制限の無い領域境界光XC装置を収集し、その間に仮想隣接光リンクを設定する(図14ステップS11)。
【0122】
バックボーンエリア内ルーティングプロトコル処理部223は領域境界光XC装置間、仮想隣接光リンク、NNI制御チャネルに対応する領域境界をまたぐ光リンクをバックボーンエリアとして設定し(図14ステップS12)、領域境界光XC装置をエリア境界光XC装置とし、領域をエリアとして再定義する(図14ステップS13)。
【0123】
その後に、バックボーンエリア内ルーティングプロトコル処理部223はバックボーンエリア内でエリア境界光XC装置間で制御チャネルを使用して光リンク状態情報を交換しながら(図14ステップS14)、バックボーンエリア内ルーティングプロトコルの光リンク状態データベース225を構成し(図14ステップS15)、さらに交換される光リンク状態情報を基にバックボーンエリア内ルーティングプロトコルの仮想隣接光リンク状態データベース226を構成する(図14ステップS16)。
【0124】
また、バックボーンエリア内ルーティングプロトコル処理部223は上記のステップS15,S16で構成した光リンク状態データベース225と仮想隣接光リンク状態データベース226とを基にバックボーンエリア内の全ての光XC装置へ至る最適経路を計算し(図14ステップS17)、ルーティングテーブル224を構成する(図14ステップS18)。
【0125】
さらに、バックボーンエリア内ルーティングプロトコル処理部223はエリア内ルーティングプロトコル処理部220のルーティングテーブル221からエリア#2に属する光XC装置の一覧を収集し(図15ステップS31)、その一覧をバックボーンエリア内でエリア境界光XC装置間で制御チャネルを使用して交換する(図15ステップS32)。
【0126】
バックボーンエリア内ルーティングプロトコル処理部223はエリア境界光XC装置間で交換される各エリア#1〜#4に属する光XC装置の一覧が記載された装置登録テーブル227を構成する(図15ステップS33)。
【0127】
図16は本発明の一実施例による光通信ネットワーク1における光パスの設定を説明するための図であり、図17は本発明の一実施例による光XC装置の処理動作を示すフローチャートであり、図18及び図19は本発明の一実施例によるエリア境界光XC装置の処理動作を示すフローチャートである。これら図16〜図19を参照して、ユーザ装置51からユーザ装置72へ至る光パスの設定を要求された光通信ネットワーク1が、光XC装置11から光XC装置32へ至る光パスの設定の手順について説明する。
【0128】
必ず光パスの経路はエリア内で閉じた経路か、始点エリア(source area)からバックボーンエリアを経由して終点エリア(destination area)へ至る経路かのいずれかになる。経路の設定は一回で成功するとは限らず、成功するまで複数回の試行を行う場合がある。
【0129】
まず、「1回目の試行」の場合、始点光XC装置11はエリア内ルーティングプロトコルのルーティングテーブル121を参照して終点光XC装置32及び中継経路を検索する(図17ステップS41,S42)。この検索によって終点光XC装置32を発見することができれば(図17ステップS43,S44)、始点光XC装置11はエリア#1内で中継経路に沿って光パスを設定する制御メッセージを発行して光パスを設定し(図17ステップS45)、処理を終了する。
【0130】
しかしながら、上記の検索によって終点光XC装置32を発見することができたが、到達不可能であることがわかれば(図17ステップS44)、始点光XC装置11はユーザ装置51にエラーを通知する制御メッセージを返送し(図17ステップS47)、処理を終了する。
【0131】
上記以外の場合、つまり終点光XC装置32が自エリア(エリア#1)内になければ(図17ステップS43)、始点光XC装置11は最も近いバックボーンエリアのエリア境界光XC装置15へ至る中継経路に沿って終点光XC装置32へ至る光パス設定を要求する制御メッセージを発行する(図16の処理A)(図17ステップS46)。
【0132】
エリア境界光XC装置15は光XC装置11からの終点光XC装置32へ至る光パス設定を要求する制御メッセージを受けると(図18ステップS51,52)、装置登録テーブルを参照して終点光XC装置32がエリア#3に属し、バックボーンエリアからエリア#3へ到達するためのエリア境界光XC装置が光XC装置35,36であることを検索する(図8参照)(図18ステップS53)。
【0133】
続いて、エリア境界光XC装置15はバックボーンエリア内ルーティングプロトコルのルーティングテーブルを参照して光XC装置35,36及び中継経路を検索する(図12参照)(図18ステップS54)。
【0134】
この場合、光XC装置36は到達不可能であるため、エリア境界光XC装置15はルーティングテーブルで検索した光XC装置35へ至る中継経路(光XC装置21−25−41−42−35)に沿って終点光XC装置32へ至る光パス設定を要求する制御メッセージを発行し、中継経路の先頭に示されるエリア境界光XC装置21へ送信する(図16の処理B)(図18ステップS55)。
【0135】
エリア境界光XC装置21はエリア境界光XC装置15からの終点光XC装置32へ至る光パス設定を要求する制御メッセージを受けると(図18ステップS51,S52,S56)、バックボーンエリア内ルーティングプロトコルのルーティングテーブル224を参照して中継経路に示される次のエリア境界光XC装置25を検索する。エリア境界光XC装置25はエリア#2内で到達可能であることがわかり、中継経路に使用されている光リンク(光XC装置21−25)が仮想隣接光リンクであることがわかる。次に、エリア内ルーティングプロトコルのルーティングテーブル221を検索し(図18ステップS57)、光XC装置35へ至る中継経路に使用されている仮想隣接光リンク(光XC装置21−25)をエリア#2内の中継経路(光XC装置21−23−25)に変換する(図6参照)(図18ステップS58)。エリア境界光XC装置21は制御メッセージを検索した中継経路に沿って光XC装置23,25へ転送する(図18ステップS59)。
【0136】
エリア境界光XC装置25はエリア境界光XC装置21からの光XC装置35へ至る中継経路に沿って終点光XC装置32へ至る光パス設定を要求する制御メッセージを受けると(図18ステップS51,S52)、エリア#4のエリア境界光XC装置41へ転送する(図16の処理C)(図18ステップS53〜S55)。
【0137】
エリア境界光XC装置41はエリア境界光XC装置25からの光XC装置35へ至る中継経路に沿って終点光XC装置32へ至る光パス設定を要求する制御メッセージを受けると(図18ステップS51,S52,S56)、エリア境界光XC装置21と同様の手順でエリア内ルーティングプロトコルのルーティングテーブルを検索し(図18ステップS57)、光XC装置35へ至る中継経路に使用されている仮想隣接光リンク(光XC装置41−42)をエリア#4内の中継経路(光XC装置41−42)に変換し(図18ステップS58)、その検索した中継経路に沿って制御メッセージを転送する(図18ステップS59)。
【0138】
エリア境界光XC装置42はエリア境界光XC装置41からの光XC装置35へ至る中継経路に沿って終点光XC装置32へ至る光パス設定を要求する制御メッセージを受けると(図18ステップS51,S52)、その制御メッセージをエリア#3のエリア境界光XC装置35に転送する(図16の処理C)(図18ステップS53〜S55)。この場合には、上記のエリア#2と異なり、仮想隣接光リンクがエリア#4内の中継経路と一致する。
【0139】
エリア境界光XC装置35はエリア境界光XC装置42からの終点光XC装置32へ至る光パス設定を要求する制御メッセージを受けると(図18ステップS51,S52,S56)、エリア内ルーティングプロトコルのルーティングテーブルを参照して終点光XC装置32及び中継経路を検索する(図19ステップS62)。この検索によって終点光XC装置32を発見することができれば(図19ステップS63)、エリア境界光XC装置35はエリア#3内でルーティングテーブルで検索した中継経路に沿って光パスを設定する制御メッセージを発行し(図19ステップS64)、制御メッセージを終点光XC装置32へ送信して光パスを設定し(図19ステップS65)、処理を終了する。
【0140】
上記以外の場合、つまり検索によって終点光XC装置32を発見することができなければ、あるいはエリア#3に属しているが到達不可能であれば(図19ステップS63)、エリア境界光XC装置35は終点光XC装置32が到達不可能なので、設定失敗を通知する制御メッセージを上記の中継経路を逆に辿って始点光XC装置11に返送する(図16の処理D)(図19ステップS66)。上記の中継経路上にあるエリア境界光XC装置42,41,25,21,15では設定失敗を通知する制御メッセージをそのまま始点光XC装置11に転送する(図18ステップS60,S61)。
【0141】
始点光XC装置11は設定失敗を通知する制御メッセージを受けると(図17ステップS41,S48)、「2回目の試行」に移る。この場合、始点光XC装置11はバックボーンエリアのエリア境界光XC装置16へ至る中継経路に沿って光パス設定を要求する制御メッセージを発行する(図16の処理A’)(図17ステップS49)。
【0142】
エリア境界光XC装置16は装置登録テーブルとバックボーンエリア内ルーティングプロトコルのルーティングテーブルとを参照して光XC装置36へ至る中継経路に沿って光パス設定を要求する制御メッセージを発行する(図16の処理B’)(図18ステップS51〜S55)。
【0143】
エリア境界光XC装置22,42はエリア内ルーティングプロトコルのルーティングテーブルを参照して、中継経路に使用されている仮想隣接光リンクをエリア2内の中継経路に変換して制御メッセージを転送する(図16の処理C’)(図18ステップS51〜,S52,S56〜S59)。
【0144】
エリア境界光XC装置36はエリア内ルーティングプロトコルのルーティングテーブルを参照して終点光XC装置32及び中継経路を検索し、領域#3内で中継経路に沿って光パス設定を要求する制御メッセージを発行して光パスを設定する(図16の処理D’)(図18ステップS51,S52,S56及び図19ステップS62〜S65)。
【0145】
実際の光パスの設定は光パス設定を要求する制御メッセージの転送と平行して、始点光XC装置11から終点光XC装置32へ向けて順次行うこともできるが、光パス設定を要求する制御メッセージが終点光XC装置32まで届いた後に行う方法もある。また、光パスの設定失敗を通知する制御メッセージだけでなく、光パスの設定成功を通知する制御メッセージを始点光XC装置11へ返送する場合もある。
【0146】
このように、本実施例では、バックボーンエリア内ルーティングプロトコルが、中継エリア内部での接続制限をバックボーンエリア内の仮想隣接光リンクとして考慮しているので、中継エリア内部での接続制限が原因となって光パスの設定が失敗することをなくすことができ、いかなる中継経路を使用しても光パスが設定できないことを速やかに判断することができる。
【0147】
光パスの設定が失敗する原因は終点エリア内部での接続制限だけである。始点エリア内部での接続制限が原因となる場合には、どのような最適経路の計算をしても光パスの設定は不可能である。
【0148】
図20は本発明の他の実施例によるエリア境界光XC装置の装置登録テーブルの構成例を示す図である。本発明の他の実施例による光通信ネットワークや光XC装置の構成は上述した本発明の一実施例と同様であるが、装置登録テーブル227についてさらに工夫している。図20において、装置登録テーブル227にはエリア境界光XC装置15,16,21,22,25,26,35,36,41,42,46毎にそのエリア境界光XC装置から到達可能な光XC装置を記載している。
【0149】
この装置登録テーブルについてさらに詳述すると、エリア番号「#1」及びエリア境界光XC装置「15」に対応する記憶領域には光XC装置番号「11」,「12」,「13」,「14」,「16」が、エリア番号「#1」及びエリア境界光XC装置「16」に対応する記憶領域には光XC装置番号「11」,「12」,「13」,「14」,「15」がそれぞれ格納されている。
【0150】
エリア番号「#2」及びエリア境界光XC装置「21」に対応する記憶領域には光XC装置番号「22」,「23」,「24」,「25」が、エリア番号「#2」及びエリア境界光XC装置「22」に対応する記憶領域には光XC装置番号「21」,「23」,「24」,「25」,「26」が、エリア番号「#2」及びエリア境界光XC装置「25」に対応する記憶領域には光XC装置番号「21」,「22」,「23」,「24」,「26」が、エリア番号「#2」及びエリア境界光XC装置「26」に対応する記憶領域には光XC装置番号「22」,「23」,「24」,「25」がそれぞれ格納されている。
【0151】
エリア番号「#3」及びエリア境界光XC装置「35」に対応する記憶領域には光XC装置番号「31」,「33」,「34」,「36」が、エリア番号「#3」及びエリア境界光XC装置「36」に対応する記憶領域には光XC装置番号「31」,「32」,「33」,「34」,「35」がそれぞれ格納されている。
【0152】
エリア番号「#4」及びエリア境界光XC装置「41」に対応する記憶領域には光XC装置番号「42」,「43」,「44」,「45」が、エリア番号「#4」及びエリア境界光XC装置「42」に対応する記憶領域には光XC装置番号「41」,「43」,「44」,「45」,「46」が、エリア番号「#4」及びエリア境界光XC装置「46」に対応する記憶領域には光XC装置番号「42」,「43」,「44」,「45」がそれぞれ格納されている。
【0153】
例えば、光XC装置32へ到達するためには、エリア境界光XC装置として光XC装置35ではなく、光XC装置36を経由しなければならないことがわかる。このように、本実施例の装置登録テーブル227を用いて、この装置登録テーブル227とバックボーンエリア内ルーティングプロトコルのルーティングテーブルとを参照することによって、中継エリア内部での接続制限だけでなく、終点エリア内部での接続制限が原因となって光パスの設定が失敗することをなくすことができ、いかなる中継経路を使用しても光パスが設定できないことを速やかに判断することができる。光パスの設定が失敗する原因は、始点エリア内部での接続制限だけである。
【0154】
図21は本発明の他の実施例による光通信ネットワーク1における光パスの設定を説明するための図である。この図21を参照して、ユーザ装置51からユーザ装置72へ至る光パスの設定を要求された光通信ネットワーク1が、光XC装置11から光XC装置32へ至る光パスを設定する手順について説明する。
【0155】
上述した本発明の一実施例による光パスの設定(図16参照)と同様に、エリア境界光XC装置15が装置登録テーブルとバックボーンエリア内ルーティングプロトコルのルーティングテーブルとを参照し、エリア#3へ至る中継経路を検索する。
【0156】
この時点で、エリア境界光XC装置15からはエリア#3のエリア境界光XC装置35へのみ到達可能で、エリア境界光XC装置35から光XC装置32へは到達不可能であることがわかる。そこで、エリア境界光XC装置15は始点光XC装置11に設定失敗を通知する制御メッセージを返送する(図21の処理A”,B”)。
【0157】
始点光XC装置11は設定失敗を通知する制御メッセージを受けると、上述した本発明の一実施例による光パスの設定(図16の処理A’〜D’)と同様にして、終点光XC装置32への光パスを設定する。
【0158】
本実施例は本発明の一実施例と比較して、始点光XC装置11が設定失敗を通知する制御メッセージを受信して、再試行を開始するまでの時間が短縮されるので、光パスの設定に要する合計の時間が短くなる。
【0159】
図22は本発明の別の実施例による光通信ネットワークの動作を説明するための図である。図22において、本発明の別の実施例による光通信ネットワークの構成は、上述した本発明の一実施例による光通信ネットワーク1の構成と同様であるが、最適経路の計算についてさらに工夫している。つまり、本発明の別の実施例では始点エリア、バックボーンエリア、終点エリアにまたがった最適経路の計算を行うために、装置登録テーブルに代わりサマリ光リンク状態情報(summary LSA)を導入している。図22においてはエリア境界光XC装置35から他の光XC装置へサマリ光リンク状態情報が公告される様子を示している。
【0160】
図23は図22のエリア境界光XC装置35がバックボーンエリアへ公告するエリア#3のサマリ光リンク状態情報を示す図である。図23において、サマリ光リンク状態情報はエリア境界光XC装置35がバックボーンエリアへ公告するエリア#3の光リンク状態情報の要約を示しており、光XC装置Aの光XC装置番号及びインタフェース(IF)番号、光XC装置Bの光XC装置番号及びインタフェース番号、属性のコスト及び波長の各項目を持ち、光XC装置A及び光XC装置Bは光リンクの両端の装置を示している。
【0161】
このサマリ光リンク状態情報についてさらに詳述すると、光XC装置Aの光XC装置番号「35」及びインタフェース番号「#1」と、光XC装置Bの光XC装置番号「31」及びインタフェース番号「#3」とに対応する記憶領域には属性のコスト「2」及び波長「λ3」が格納されている。
【0162】
光XC装置Aの光XC装置番号「35」及びインタフェース番号「#2」と、光XC装置Bの光XC装置番号「33」及びインタフェース番号「#3」とに対応する記憶領域には属性のコスト「1」及び波長「λ3」が格納されている。
【0163】
光XC装置Aの光XC装置番号「35」及びインタフェース番号「#2」と、光XC装置Bの光XC装置番号「34」及びインタフェース番号「#3」とに対応する記憶領域には属性のコスト「2」及び波長「λ3」が格納されている。
【0164】
光XC装置Aの光XC装置番号「35」及びインタフェース番号「#2」と、光XC装置Bの光XC装置番号「36」及びインタフェース番号「#4」とに対応する記憶領域には属性のコスト「1」及び波長「λ3」が格納されている。
【0165】
図24は図22のエリア境界光XC装置15がエリア#1へ公告するエリア#3のサマリ光リンク状態情報を示す図である。図24において、サマリ光リンク状態情報はエリア境界光XC装置15がエリア#1へ公告するエリア#3の光リンク状態情報の要約を示しており、光XC装置Aの光XC装置番号及びインタフェース(IF)番号、光XC装置Bの光XC装置番号及びインタフェース番号、属性のコスト及び波長の各項目を持ち、光XC装置A及び光XC装置Bは光リンクの両端の装置を示している。
【0166】
このサマリ光リンク状態情報についてさらに詳述すると、光XC装置Aの光XC装置番号「15」及びインタフェース番号「#3」と、光XC装置Bの光XC装置番号「31」及びインタフェース番号「#3」とに対応する記憶領域には属性のコスト「11」及び波長「任意」が格納されている。
【0167】
光XC装置Aの光XC装置番号「15」及びインタフェース番号「#3」と、光XC装置Bの光XC装置番号「33」及びインタフェース番号「#3」とに対応する記憶領域には属性のコスト「10」及び波長「任意」が格納されている。
【0168】
光XC装置Aの光XC装置番号「15」及びインタフェース番号「#3」と、光XC装置Bの光XC装置番号「34」及びインタフェース番号「#3」とに対応する記憶領域には属性のコスト「11」及び波長「任意」が格納されている。
【0169】
光XC装置Aの光XC装置番号「15」及びインタフェース番号「#3」と、光XC装置Bの光XC装置番号「35」及びインタフェース番号「#3」とに対応する記憶領域には属性のコスト「9」及び波長「任意」が格納されている。
【0170】
光XC装置Aの光XC装置番号「15」及びインタフェース番号「#3」と、光XC装置Bの光XC装置番号「36」及びインタフェース番号「#4」とに対応する記憶領域には属性のコスト「10」及び波長「任意」が格納されている。
【0171】
図25は図22のエリア境界光XC装置16がエリア#1へ公告するエリア#3のサマリ光リンク状態情報を示す図である。図25において、サマリ光リンク状態情報はエリア境界光XC装置16がエリア#1へ公告するエリア#3の光リンク状態情報の要約を示しており、光XC装置Aの光XC装置番号及びインタフェース(IF)番号、光XC装置Bの光XC装置番号及びインタフェース番号、属性のコスト及び波長の各項目を持ち、光XC装置A及び光XC装置Bは光リンクの両端の装置を示している。
【0172】
このサマリ光リンク状態情報についてさらに詳述すると、光XC装置Aの光XC装置番号「16」及びインタフェース番号「#3」と、光XC装置Bの光XC装置番号「31」及びインタフェース番号「#3」とに対応する記憶領域には属性のコスト「8」及び波長「任意」が格納されている。
【0173】
光XC装置Aの光XC装置番号「16」及びインタフェース番号「#3」と、光XC装置Bの光XC装置番号「32」及びインタフェース番号「#3」とに対応する記憶領域には属性のコスト「14」及び波長「任意」が格納されている。
【0174】
光XC装置Aの光XC装置番号「16」及びインタフェース番号「#3」と、光XC装置Bの光XC装置番号「33」及びインタフェース番号「#3」とに対応する記憶領域には属性のコスト「7」及び波長「任意」が格納されている。
【0175】
光XC装置Aの光XC装置番号「16」及びインタフェース番号「#3」と、光XC装置Bの光XC装置番号「34」及びインタフェース番号「#3」とに対応する記憶領域には属性のコスト「8」及び波長「任意」が格納されている。
【0176】
光XC装置Aの光XC装置番号「16」及びインタフェース番号「#3」と、光XC装置Bの光XC装置番号「35」及びインタフェース番号「#4」とに対応する記憶領域には属性のコスト「6」及び波長「任意」が格納されている。
【0177】
光XC装置Aの光XC装置番号「16」及びインタフェース番号「#3」と、光XC装置Bの光XC装置番号「36」及びインタフェース番号「#4」とに対応する記憶領域には属性のコスト「7」及び波長「任意」が格納されている。
【0178】
これら図22〜図25を参照して本発明の別の実施例による光通信ネットワークにおいてエリア境界光XC装置35から他の光XC装置へサマリ光リンク状態情報を公告する動作について説明する。
【0179】
エリア境界光XC装置35はエリア内ルーティングプロトコルのルーティングテーブルを基に、エリア#3内の到達可能な全ての光XC装置の一覧と中継経路のエリア内での総コストを記載したエリア#3のサマリ光リンク状態情報を構成する(図22の処理a)。次に、エリア#3のサマリ光リンク状態情報をバックボーンエリア内の全てのエリア境界光XC装置へ公告する(図22の処理b)。
【0180】
エリア#3のサマリ光リンク状態情報を受信したエリア境界光XC装置は、バックボーンエリア内ルーティングプロトコルのルーティングテーブルと結合してエリア#3のサマリ光リンク状態情報を再構成する(図22の処理c)。エリア境界光XC装置15,16は再構成したエリア#3のサマリ光リンク状態情報をエリア#1内部の全ての光XC装置へ公告する(図22の処理d)。
【0181】
エリア境界光XC装置15,16におけるサマリ光リンク状態情報の再構成は、バックボーンエリア内ルーティングプロトコルのルーティングテーブルを使用してエリア境界光XC装置15,16からエリア#3の光XC装置への経路の総コストを再計算するか、エリア境界光XC装置15,16の仮想隣接光リンク状態データベースと光リンク状態データベースとに記載された光リンク状態情報とエリア#3のサマリ光リンク状態情報とを使用して最適経路の計算をやり直すかのいずれかによって実現される。サマリ光リンク状態情報は光リンク状態データベースに追加して記載してもよい。
【0182】
再構成したエリア#3のサマリ光リンク状態を受信した光XC装置11は光XC装置16を経由して光XC装置32へ至る光パスが設定可能であることがわかり、光パス設定の失敗を回避することができる。これは、始点エリア、バックボーンエリア、終点エリア全ての接続制限を考慮したことと等価である。また、光XC装置32へ至る経路全体のコスト最小化を行うことができる。上記の一連の処理の中で処理cまでを行い、処理dを省略してもよい。
【0183】
図26は本発明のさらに別の実施例によるエリア境界光XC装置35がバックボーンエリアへ公告するエリア#3のサマリ光リンク状態情報を示す図である。図24において、サマリ光リンク状態情報はエリア境界光XC装置35がバックボーンエリアへ公告するエリア#3の光リンク状態情報の要約を示しており、光XC装置Aの光XC装置番号、光XC装置Bの光XC装置番号、属性のコストの各項目を持ち、光XC装置A及び光XC装置Bは光リンクの両端の装置を示している。
【0184】
このサマリ光リンク状態情報についてさらに詳述すると、光XC装置Aの光XC装置番号「36」と、光XC装置Bの光XC装置番号「31,33,34,36」とに対応する記憶領域には属性のコストが格納されている。
【0185】
本発明のさらに別の実施例による光通信ネットワークの構成は、上述した本発明の一実施例による構成と同様であるが、サマリ光リンク状態情報についてさらに工夫している。
【0186】
上記のサマリ光リンク状態情報ではコストを光XC装置毎に個別に記載するのではなく、代表としてコストの最大値を記載する。その結果、サマリ光リンク状態情報の情報量が減り、光XC装置はより多数のサマリ光リンク状態情報を処理することができるようになるので、制御チャネルの負荷を軽くし、光通信ネットワークのスケーラビリティの向上にも有効である。上記いずれの実施例においても予め光リンク状態情報から最適経路を計算してルーティングテーブルを作成したが、ユーザ装置から光パスの設定要求が発生した時点で初めて最適経路を計算してルーティングテーブルを作成する方法もある。また、キャッシュメモリとして機能する小容量のルーティングテーブルを用意し、ルーティングテーブルに記載されていない終点光XC装置への最適経路は光パスの設定要求が発生した時点で計算する方法もある。
【0187】
このように、各領域#1〜#4内部での光XC装置間の接続性の制限に関する全ての情報を全ての光XC装置で共有せずに、計算した経路に沿った光パスの設定が中継領域内部での接続性の制限に依存して失敗することのない光通信ネットワークを提供することができる。
【0188】
また、中継領域内部での接続性の制限を考慮した上での光パスの経路の最適化を行うことができ、高速に光パス設定を行うことができる光通信ネットワークが実現可能となる。
【0189】
【発明の効果】
以上説明したように本発明の光通信ネットワークは、各々光パスのクロスコネクト機能を実行する複数のノード装置が相互接続された複数の領域から構成され、光パスを動的に設定・開放するサービスを提供する光通信ネットワークにおいて、領域の境界に位置する領域境界ノード装置と各領域内部の接続性の制限を表現する領域境界ノード装置間の仮想隣接光リンクとからなるバックボーンエリアに接続されたエリアに複数の領域を再構成することによって、各領域内部での光XC装置間の接続性の制限に関するすべての情報をすべての光XC装置で共有することなく、かつ計算した経路に沿った光パスの設定が中継領域内部での接続性の制限に依存して失敗するのを防ぐことができるという効果が得られる。
【0190】
本発明の他の光通信ネットワークは、上記の構成において、始点エリアとバックボーンエリアと終点エリアとにまたがった最適経路の計算を行うためにエリア内の各ノード装置への経路コストがノード装置毎に個別に記載されたサマリ光リンク状態情報を領域境界ノード装置からバックボーンエリアへ公告することによって、中継領域内部での接続性の制限まで考慮した光パスの経路の最適化を行うことができるという効果が得られる。
【0191】
本発明の別の光通信ネットワークは、領域境界ノード装置が、光パスの設定を要求する制御メッセージの受信時に終点ノード装置が到達不可能と判断した場合に設定失敗を通知する制御メッセージを始点ノード装置に返送することによって、高速に光パス設定を行うことができるという効果が得られる。
【図面の簡単な説明】
【図1】本発明の一実施例による光通信ネットワークの構成を示すブロック図である。
【図2】本発明の一実施例による光通信ネットワークの構成を示すブロック図である。
【図3】図2の光XC装置の構成を示すブロック図である。
【図4】図2のエリア境界光XC装置の構成を示すブロック図である。
【図5】図4のエリア境界光XC装置のエリア内ルーティングプロトコルの光リンク状態データベースの構成例を示す図である。
【図6】図4のエリア境界光XC装置のエリア内ルーティングプロトコルのルーティングテーブルの構成例を示す図である。
【図7】図3の光XC装置のエリア内ルーティングプロトコルのルーティングテーブルの構成例を示す図である。
【図8】図4のエリア境界光XC装置のバックボーンエリア内ルーティングプロトコルの装置登録テーブルの構成例を示す図である。
【図9】図4のエリア境界光XC装置のバックボーンエリア内ルーティングプロトコルの仮想隣接光リンク状態データベースの構成例を示す図である。
【図10】図4のエリア境界光XC装置のバックボーンエリア内ルーティングプロトコルの光リンク状態データベースの構成例を示す図である。
【図11】図4のエリア境界光XC装置のバックボーンエリア内ルーティングプロトコルのルーティングテーブルの構成例を示す図である。
【図12】図2のエリア境界光XC装置のバックボーンエリア内ルーティングプロトコルのルーティングテーブルの構成例を示す図である。
【図13】図3及び図4のエリア内ルーティングプロトコル処理部の処理動作を示すフローチャートである。
【図14】図4のバックボーンエリア内ルーティングプロトコル処理部の処理動作を示すフローチャートである。
【図15】図4のバックボーンエリア内ルーティングプロトコル処理部の処理動作を示すフローチャートである。
【図16】本発明の一実施例による光通信ネットワークにおける光パスの設定を説明するための図である。
【図17】本発明の一実施例による光XC装置の処理動作を示すフローチャートである。
【図18】本発明の一実施例によるエリア境界光XC装置の処理動作を示すフローチャートである。
【図19】本発明の一実施例によるエリア境界光XC装置の処理動作を示すフローチャートである。
【図20】本発明の他の実施例によるエリア境界光XC装置の装置登録テーブルの構成例を示す図である。
【図21】本発明の他の実施例による光通信ネットワークにおける光パスの設定を説明するための図である。
【図22】本発明の別の実施例による光通信ネットワークの動作を説明するための図である。
【図23】図22のエリア境界光XC装置35がバックボーンエリアへ公告するエリア#3のサマリ光リンク状態情報を示す図である。
【図24】図22のエリア境界光XC装置15がエリア#1へ公告するエリア#3のサマリ光リンク状態情報を示す図である。
【図25】図22のエリア境界光XC装置16がエリア#1へ公告するエリア#3のサマリ光リンク状態情報を示す図である。
【図26】本発明のさらに別の実施例によるエリア境界光XC装置35がバックボーンエリアへ公告するエリア#3のサマリ光リンク状態情報を示す図である。
【図27】従来例による光通信システムの構成を示すブロック図である。
【図28】(a)は図27の領域#1のルーティングテーブルの構成例を示す図、(b)は図27の領域#2のルーティングテーブルの構成例を示す図、(c)は図27の領域#3のルーティングテーブルの構成例を示す図、(d)は図27の領域#4のルーティングテーブルの構成例を示す図である。
【符号の説明】
1 光通信ネットワーク
11〜16,
21〜26,
31〜36,
41〜46 光XC装置
51,71,
72,81,82 クライアント装置
111〜113,
211〜213 入力インタフェース
114,214 3×3光スイッチ
115〜117,
215〜217 出力インタフェース
118,218 スイッチ制御部
119,219 制御メッセージ処理部
120,220 エリア内ルーティングプロトコル処理部
121,221 ルーティングテーブル
122,222 光リンク状態データベース
223 バックボーンエリア内ルーティングプロトコル処理部
224 ルーティングテーブル
225 光リンク状態データベース
226 仮想隣接光リンク状態データベース
227 装置登録テーブル

Claims (26)

  1. 各々光パスのクロスコネクト機能を実行する複数のノード装置が相互接続された複数の領域から構成され、前記光パスを動的に設定・開放するサービスを提供する光通信ネットワークであって、前記領域の境界に位置する領域境界ノード装置と各領域内部の接続性の制限を表現する領域境界ノード装置間の仮想隣接光リンクとからなるバックボーンエリアを有し、前記複数の領域を前記バックボーンエリアに接続されたエリアに再構成することを特徴とする光通信ネットワーク。
  2. 始点エリアから前記バックボーンエリアを経由して終点エリアへと前記光パスを設定することを特徴とする請求項1記載の光通信ネットワーク。
  3. 前記バックボーンエリア内の最適経路の計算する際に、経路上で前記仮想隣接光リンクの連続使用及び前記経路の両端における前記仮想隣接光リンクの使用の禁止を制約としたことを特徴とする請求項1または請求項2記載の光通信ネットワーク。
  4. 各エリアに属するノード装置の一覧を保持する装置登録テーブルを前記領域境界ノード装置に含み、前記装置登録テーブルを用いて前記光パスの終点ノード装置の所属エリアを検索することを特徴とする請求項1から請求項3のいずれか記載の光通信ネットワーク。
  5. 前記領域境界ノード装置毎にその領域境界ノード装置から到達可能なノード装置を一覧を保持する装置登録テーブルを前記領域境界ノード装置に含み、前記装置登録テーブルを用いて前記光パスの終点ノード装置の所属エリア及び到達可能性を検索することを特徴とする請求項1から請求項3のいずれか記載の光通信ネットワーク。
  6. 前記始点エリアと前記バックボーンエリアと前記終点エリアとにまたがった最適経路の計算を行うために前記エリア内の各ノード装置への経路コストが前記ノード装置毎に個別に記載されたサマリ光リンク状態情報を前記領域境界ノード装置から前記バックボーンエリアへ公告することを特徴とする請求項1から請求項5のいずれか記載の光通信ネットワーク。
  7. 前記始点エリアと前記バックボーンエリアと前記終点エリアとにまたがった最適経路の計算を行うために前記エリア内の各ノード装置への経路コストの最大値が記載されたサマリ光リンク状態情報を前記領域境界ノード装置から前記バックボーンエリアへ公告することを特徴とする請求項1から請求項5のいずれか記載の光通信ネットワーク。
  8. 前記領域境界ノード装置は、前記光パスの設定を要求する制御メッセージの受信時に前記装置登録テーブルを用いて終点ノード装置及びその中継経路を検索することを特徴とする請求項4から請求項7のいずれか記載の光通信ネットワーク。
  9. 前記領域境界ノード装置は、前記光パスの設定を要求する制御メッセージの受信時に前記終点ノード装置が到達不可能と判断した場合に設定失敗を通知する制御メッセージを始点ノード装置に返送することを特徴とする請求項8記載の光通信ネットワーク。
  10. 光パスを動的に設定・開放するサービスを提供する光通信ネットワークにおいて、前記光パスのクロスコネクト機能を実行しかつ隣接する装置に相互接続されることで領域を構成するノード装置であって、
    前記領域の境界に位置する領域境界ノード装置と各領域内部の接続性の制限を表現する領域境界ノード装置間の仮想隣接光リンクとからなるバックボーンエリアを経由して各々当該バックボーンエリアに接続された始点エリアから終点エリアへと前記光パスを設定することを特徴とするノード装置。
  11. 前記バックボーンエリア内の最適経路の計算する際に、経路上で前記仮想隣接光リンクの連続使用及び前記経路の両端における前記仮想隣接光リンクの使用の禁止を制約としたことを特徴とする請求項10記載のノード装置。
  12. 自装置が前記領域の境界に位置する場合に、各エリアに属するノード装置の一覧を保持する装置登録テーブルを用いて前記光パスの終点ノード装置の所属エリアを検索することを特徴とする請求項10または請求項11記載のノード装置。
  13. 自装置が前記領域の境界に位置する場合に、前記領域境界ノード装置毎にその領域境界ノード装置から到達可能なノード装置を一覧を保持する装置登録テーブルを用いて前記光パスの終点ノード装置の所属エリア及び到達可能性を検索することを特徴とする請求項10または請求項11記載のノード装置。
  14. 自装置が前記領域の境界に位置する場合に、前記始点エリアと前記バックボーンエリアと前記終点エリアとにまたがった最適経路の計算を行うために前記エリア内の各ノード装置への経路コストが前記ノード装置毎に個別に記載されたサマリ光リンク状態情報を前記バックボーンエリアへ公告することを特徴とする請求項10から請求項13のいずれか記載のノード装置。
  15. 自装置が前記領域の境界に位置する場合に、前記始点エリアと前記バックボーンエリアと前記終点エリアとにまたがった最適経路の計算を行うために前記エリア内の各ノード装置への経路コストの最大値が記載されたサマリ光リンク状態情報を前記バックボーンエリアへ公告することを特徴とする請求項10から請求項13のいずれか記載のノード装置。
  16. 自装置が前記領域の境界に位置する場合に、前記光パスの設定を要求する制御メッセージの受信時に前記装置登録テーブルを用いて終点ノード装置及びその中継経路を検索することを特徴とする請求項12から請求項15のいずれか記載のノード装置。
  17. 自装置が前記領域の境界に位置する場合に、前記光パスの設定を要求する制御メッセージの受信時に前記終点ノード装置が到達不可能と判断した場合に設定失敗を通知する制御メッセージを始点ノード装置に返送することを特徴とする請求項16記載のノード装置。
  18. 各々光パスのクロスコネクト機能を実行する複数のノード装置が相互接続された複数の領域から構成され、前記光パスを動的に設定・開放するサービスを提供する光通信ネットワークのパス経路計算方法であって、前記領域の境界に位置する領域境界ノード装置と各領域内部の接続性の制限を表現する領域境界ノード装置間の仮想隣接光リンクとからなるバックボーンエリアに接続されたエリアに前記複数の領域を再構成するステップを有することを特徴とするパス経路計算方法。
  19. 始点エリアから前記バックボーンエリアを経由して終点エリアへと前記光パスを設定することを特徴とする請求項18記載のパス経路計算方法。
  20. 前記バックボーンエリア内の最適経路の計算する際に、経路上で前記仮想隣接光リンクの連続使用及び前記経路の両端における前記仮想隣接光リンクの使用の禁止を制約としたことを特徴とする請求項18または請求項19記載のパス経路計算方法。
  21. 各エリアに属するノード装置の一覧を保持する装置登録テーブルを用いて前記光パスの終点ノード装置の所属エリアを検索することを特徴とする請求項18から請求項20のいずれか記載のパス経路計算方法。
  22. 前記領域境界ノード装置毎にその領域境界ノード装置から到達可能なノード装置を一覧を保持する装置登録テーブルを用いて前記光パスの終点ノード装置の所属エリア及び到達可能性を検索することを特徴とする請求項18から請求項20のいずれか記載のパス経路計算方法。
  23. 前記始点エリアと前記バックボーンエリアと前記終点エリアとにまたがった最適経路の計算を行うために前記エリア内の各ノード装置への経路コストが前記ノード装置毎に個別に記載されたサマリ光リンク状態情報を前記領域境界ノード装置から前記バックボーンエリアへ公告することを特徴とする請求項18から請求項22のいずれか記載のパス経路計算方法。
  24. 前記始点エリアと前記バックボーンエリアと前記終点エリアとにまたがった最適経路の計算を行うために前記エリア内の各ノード装置への経路コストの最大値が記載されたサマリ光リンク状態情報を前記領域境界ノード装置から前記バックボーンエリアへ公告することを特徴とする請求項18から請求項22のいずれか記載のパス経路計算方法。
  25. 前記光パスの設定を要求する制御メッセージの受信時に前記領域境界ノード装置によって前記装置登録テーブルを用いて終点ノード装置及びその中継経路を検索することを特徴とする請求項21から請求項24のいずれか記載のパス経路計算方法。
  26. 前記光パスの設定を要求する制御メッセージの受信時に前記領域境界ノード装置によって前記終点ノード装置が到達不可能と判断された場合に設定失敗を通知する制御メッセージを始点ノード装置に返送することを特徴とする請求項25記載のパス経路計算方法。
JP2001398723A 2001-07-19 2001-12-28 光通信ネットワーク、ノード装置及びそれに用いるパス経路計算方法 Expired - Lifetime JP3832342B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001398723A JP3832342B2 (ja) 2001-12-28 2001-12-28 光通信ネットワーク、ノード装置及びそれに用いるパス経路計算方法
US10/196,985 US7397802B2 (en) 2001-07-19 2002-07-18 Communications network with routing tables for establishing a path without failure by avoiding unreachable nodes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001398723A JP3832342B2 (ja) 2001-12-28 2001-12-28 光通信ネットワーク、ノード装置及びそれに用いるパス経路計算方法

Publications (2)

Publication Number Publication Date
JP2003198609A JP2003198609A (ja) 2003-07-11
JP3832342B2 true JP3832342B2 (ja) 2006-10-11

Family

ID=27604027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001398723A Expired - Lifetime JP3832342B2 (ja) 2001-07-19 2001-12-28 光通信ネットワーク、ノード装置及びそれに用いるパス経路計算方法

Country Status (1)

Country Link
JP (1) JP3832342B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4491998B2 (ja) * 2001-07-19 2010-06-30 日本電気株式会社 通信ネットワーク、光クロスコネクト装置及びパス経路計算方法
JP4494357B2 (ja) 2006-03-08 2010-06-30 富士通株式会社 パス経路計算方法及び,この方法を適用する光通信ネットワーク
JP2008153727A (ja) * 2006-12-14 2008-07-03 Fujitsu Access Ltd 伝送装置間のネットワ−クシステムのパス設定方法及び通信ネットワ−クシステムとその制御装置

Also Published As

Publication number Publication date
JP2003198609A (ja) 2003-07-11

Similar Documents

Publication Publication Date Title
US7031299B2 (en) Control of optical connections in an optical network
US7039009B2 (en) Control of optical connections in an optical network
Rajagopalan et al. IP over optical networks: Architectural aspects
US7881183B2 (en) Recovery from control plane failures in the LDP signalling protocol
US9559944B2 (en) Method and related apparatus for establishing link-diverse traffic paths in a telecommunications network
JP3895360B2 (ja) 光ネットワーク、光エッジルータ及びそのプログラム
JP3823867B2 (ja) 通信ネットワーク制御システム、制御方法、ノード及びプログラム
JP2002057697A (ja) パケット転送経路制御装置及びそれに用いるパケット転送経路制御方法
CN103477612A (zh) 经扩展以连接网络层级的云服务控制和管理架构
US7414985B1 (en) Link aggregation
JP2003318899A (ja) シグナリング制御方法及びシグナリング対応通信装置及びネットワーク管理システム
US20100128640A1 (en) Apparatus and method for calculating an optimum route between a pair of nodes in a communication network
JP3832342B2 (ja) 光通信ネットワーク、ノード装置及びそれに用いるパス経路計算方法
JP3925468B2 (ja) パス容量及びパス経路変更方法、及びノード装置
US7706383B2 (en) Minimum contention distributed wavelength assignment in optical transport networks
JP2003051836A (ja) 通信ネットワーク、パス設定方法及びネットワーク管理装置並びにノード
JP2005223522A (ja) 経路計算方法、経路計算制御装置および経路計算プログラム。
Koo et al. Cost efficient LSP protection in IP/MPLS-over-WDM overlay networks
Xu et al. Multicarrier-collaboration-based emergency packet transport network construction in disaster recovery
JP4491998B2 (ja) 通信ネットワーク、光クロスコネクト装置及びパス経路計算方法
Martínez et al. ADRENALINE Testbed: architecture and implementation of GMPLS-based network resource manager and routing controller
Xin et al. On design and architecture of an IP over WDM optical network control plane
Khalil et al. A novel IP-over-optical network interconnection model for the next-generation optical internet
Paggi Network Core
Berde et al. Service-oriented transparent optical backbone networks in the ITEA TBONES project

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060710

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3832342

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

EXPY Cancellation because of completion of term