JP3832331B2 - 電子線分析装置 - Google Patents
電子線分析装置 Download PDFInfo
- Publication number
- JP3832331B2 JP3832331B2 JP2001387010A JP2001387010A JP3832331B2 JP 3832331 B2 JP3832331 B2 JP 3832331B2 JP 2001387010 A JP2001387010 A JP 2001387010A JP 2001387010 A JP2001387010 A JP 2001387010A JP 3832331 B2 JP3832331 B2 JP 3832331B2
- Authority
- JP
- Japan
- Prior art keywords
- electron beam
- ray
- acceleration voltage
- energy
- converter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
- Measurement Of Radiation (AREA)
Description
【発明の属する技術分野】
本発明は、電子線を試料に照射して、この試料から放射されるX線をエネルギー分散型X線検出器(以下、EDXという)により検出して試料表面の分析を行う電子線分析装置に関する。電子線分析装置としては走査型電子顕微鏡(SEM)や電子線マイクロアナライザ(EPMA)などが含まれる。
【0002】
【従来の技術】
例えば、電子線分析装置の一種であるSEMでは、電子銃から発生した電子ビームを1kV程度から数十kVの電圧で加速するとともに電磁レンズなどで細く絞って試料表面に照射する。このとき試料からは試料に含まれる元素に応じて特性X線や反射電子、二次電子などが発生し、この各種の信号を検出しデータ処理を施すことによって、試料の形状をはじめとして、試料に含まれる元素の種類や含まれる濃度、化合形態や結晶状態などさまざまな情報を得ることができる。通常、電子ビームは走査手段により試料表面上で2次元的に走査され、試料から発生する2次電子の強度をこの走査に同期してCRTなどの表示装置に輝度として表示することで試料表面の2次電子像が得られる。また、試料からのX線をEDXにより検出し、その検出信号を所定の回路で処理し、ソフトウェア的なデータ処理を施すことにより電子ビームが当たった部分に含まれる元素を特定し定量することができる。
【0003】
EDXはシリコン半導体を主体として構成され、入射したX線フォトンのエネルギーに比例した高さのパルス信号を発生する。このパルス信号を増幅器により増幅したのちA/D変換器によりパルス高さをデジタルデータに変換し、パルス高さ毎にX線フォトンの数をカウントする。そうすることでX線エネルギー(波長)に応じたX線の強度が計測され、試料の定性分析や定量分析に利用される。
【0004】
電子線を試料に照射した場合に、試料から発生するX線の最大エネルギーは電子線の加速電圧によって制限されている。試料からは照射された電子線の加速電圧に相当するエネルギーより高いエネルギーのX線は発生しないため、試料から発生するX線スペクトルの高エネルギー側の端、すなわち、X線スペクトルのうち連続X線の最も高いエネルギー(最も短い波長)は電子線の加速電圧に一致する。
【0005】
一方、EDX測定システムは半導体検出器から出力されるパルスを電気的に増幅し、そのパルス高さをA/D変換することでX線のエネルギーを求めるとともにパルスの数をカウントし、X線エネルギー毎のパルス数を表示することによってX線スペクトルを得ている。X線スペクトルの全体を測定するためには最高エネルギーのX線がきちんと計測できるように電気的増幅器の増幅度やA/D変換器の作動範囲を定めておくことが必要である。
【0006】
【発明が解決しようとする課題】
EDX測定システムでは検出器から出力されるパルスの高さをA/D変換してX線のエネルギーを求めているため、パルスの高さを測る分解能はA/D変換器のビット数により制限される。このため、A/D変換器の分解能を無駄なく利用するためにスペクトル測定範囲で最高のエネルギーを持つX線を検出したときのパルス高さがA/D変換器の受け入れる最大電圧に一致するようにA/D変換器の前段の増幅回路の増幅率を調整することが望ましい。
【0007】
しかし従来の電子線分析装置では、パルス増幅回路の増幅率設定が加速電圧の最高値に合せて固定されているか、数段階に切り換えられるようになっているのみであり、A/D変換器にとっての最適な設定にはできていない。
【0008】
本発明は、このような事情に鑑みてなされたもので、パルス信号の高さをデジタルデータに変換するA/D変換器の分解能を有効に利用でき、結果としてX線信号のエネルギー分解能を高くして計測できる電子線分析装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、上述した課題を解決するために、設定される加速電圧により加速された電子線を試料表面に照射し試料から放射されるX線をエネルギー分散型X線検出器により検出する電子線分析装置おいて、前記エネルギー分散型X線検出器からのパルス出力を増幅する増幅率可変の増幅器と、この増幅器の出力パルス高さをデジタルデータに変換するA/D変換器と、前記加速電圧において発生するX線の最大エネルギーに対応する前記出力パルス高さが前記A/D変換器の最大入力値となるよう前記加速電圧に連動して前記増幅器の増幅率を制御する増幅率制御手段を備えることを特徴とする。
【0010】
本発明の電子線分析装置においては、増幅率制御手段が電子線の加速電圧において発生するX線の最大エネルギーに対応する出力パルス高さがA/D変換器の最大入力値となるよう加速電圧に連動して増幅器の増幅率を制御するので、A/D変換器のダイナミックレンジを無駄な高エネルギー範囲に割り当てることがなく、分解能の高いA/D変換を実現できる。
【0011】
なお、本発明の増幅率制御は電子線の加速電圧の可変範囲のすべてにおいて一律に行うというだけでなく、加速電圧の所定の範囲においてのみ加速電圧に連動して増幅率を制御する場合もある。例えば、電子線の加速電圧が10kV以下のときのみに増幅率の連動制御を行い、それ以上の加速電圧のときには一定の増幅率に設定する場合も本発明に含まれる。
【0012】
【発明の実施の形態】
本発明の一実施の形態を図面を参照しながら説明する。図1に本発明の電子線分析装置の概略図を示す。
【0013】
電子線分析装置1は電子線を試料に照射しながら試料に含まれる元素に由来する各種信号を検出して定性分析や定量分析などを行う。電子発生源から発生し加速された電子は電磁レンズや軸調節のための各種電子光学素子の作用により細く絞られる。図1ではこれらの電子線の発生に関わる部分を電子源2としてまとめて表示してある。この中には電子を設定された電圧で加速する加速電極も含まれる。電子源2から出てくる電子線3は偏向器により周期的に偏向されて試料4の表面を二次元的に走査される。電子線3が照射された試料表面からは電子線やX線、光などの各種信号が発生する。このうちX線はX線検出装置により検出され、電子は電子検出器により検出される。
【0014】
これらの信号は最終的に制御装置に取り込まれ、周知の方法によりX線スペクトルあるいは2次電子像などとしてCRTなどの表示器に表示される。X線スペクトルとはX線検出装置で検出される測定値をグラフ化したものであって、横軸にX線の波長またはエネルギーをとり縦軸にX線強度をとったグラフであり、これから試料にどのような元素がどの程度含まれているかが分析できる。また2次電子像または反射電子像は電子検出器で検出される電子の強度を表示器上の輝度として電子ビームの走査に同期して表示したものであり試料表面の形状や組成分布を表している。
【0015】
図1において電子検出器14によって得られた電子信号は制御器10に送られて、これに基づいて画像表示器11に2次電子像または反射電子像などが表示される。電子検出器14としてはシンチレータと光電子増倍管からなる2次電子検出器または半導体素子からなる反射電子検出器を使用することができる。本明細書においてはそれらを総称して電子検出器14という言葉を用いている。
【0016】
図1においてX線検出装置としてエネルギー分散型のX線検出器(EDX)5を使用している。EDXは半導体を利用してX線の各波長成分を同時に検出できる検出器であり、短時間で広いエネルギー範囲のX線を検出できるので迅速な分析に適している。EDX5によって検出されたX線パルス信号は信号を増幅するための増幅器6を介してA/D変換器7に送られ、パルス高さ毎に弁別されてカウントされたX線パルスの数がヒストグラムメモリ12に記憶される。この記憶されたデータは横軸をX線エネルギー、縦軸をX線カウント数としたグラフとしてスペクトル表示器13に表示される。なお、ヒストグラムメモリ12およびスペクトル表示器13は、上述の制御器10および画像表示器11が兼ねるようにしてもよい。
【0017】
図4にEDXで検出したX線スペクトルの例を示す。横軸はX線フォトンのエネルギーであり、縦軸はX線のカウント数である。一般的に、スペクトルは連続したエネルギーを持つ連続X線Cの上に特定のエネルギーを持つ特性X線Sが乗った形をしている。この特性X線Sのエネルギー値と得られた強度を測定することで試料に含まれる元素の定性分析および定量分析を行うことができる。
【0018】
図4でEmとして示したエネルギーは発生した連続X線のうちの最もエネルギーの大きなものであり、これは励起源である電子線のエネルギー(加速電圧)と一致している。これ以上大きなエネルギーのX線は試料から発生しない。
【0019】
図1において、EDX5で一つのX線フォトンが検出されるとEDX5は電気的なパルスを発生する。このパルスは増幅器6により増幅されそのパルス高さがA/D変換器7によりデジタル値に変換されヒストグラムメモリ12に取り込まれる。EDX5で発生したパルスの高さは検出されたX線のエネルギーに比例しているから、A/D変換器7のデジタル出力がX線のエネルギーを表し、一方で単位時間あたりのX線の数を数えることでX線の強度が測定される。すなわちEDX5、増幅器6、A/D変換器7およびヒストグラムメモリ12などによってEDXシステムが構成され、このシステムによって試料4で発生したX線のスペクトルが測定される。
【0020】
電子源2に与えられる電子を加速するための加速電圧は加速電源9を介して制御器10から制御される。その加速電圧に関わるデータは増幅率制御器8にも与えられていて、増幅率制御器8は、この加速電圧に関わるデータに基づいて、増幅率が設定できるよう構成された増幅器6の増幅率を所定の値に設定することができる。加速電圧に関わるデータとしては、加速電圧に比例するアナログ的な電気信号を利用でき、あるいは加速電圧と関連づけられたデジタルデータでもよい。
【0021】
図2はEDXシステムにおけるX線パルスの高さに関して説明する図である。ある加速電圧において発生する最大エネルギーのX線、すなわち、図4におけるエネルギーEmに対応するX線フォトンがEDX5で検出されるとEDX5は高さがHmの電気的パルスを発生するとする。このパルスは増幅率Gをもつ増幅器6によって増幅され、その出力はG・Hmの高さを持つパルスとなる。このパルス高さがそのときに最も大きいパルス高さであるから、これがA/D変換器7で許容されるもっとも大きい入力電圧Vmと一致していれば、発生したX線を全て検出する目的においてA/D変換器7のダイナミックレンジを全て利用することになる。すなわち、Vm=G・Hmとすることがダイナミックレンジを無駄なく利用する観点から最適である。A/D変換器7における最大入力電圧Vmは、A/D変換器7のデジタル出力としてフルビットとなる値である。
【0022】
ここで増幅器6の増幅率Gは増幅率制御器8によって制御可能である。電子線の加速電圧Pを変化させると上述のパルス高さHmが加速電圧Pに比例して変化する(比例係数をαとしてHm=α・Pと表現する)から、増幅器6の出力パルス高さG・Hmを常にVmと等しくするためには増幅率Gを加速電圧Pと反比例の関係で制御すればよいことがわかる。すなわち、G=(Vm/α)/Pとなるように制御すれば、電子線の加速電圧Pにかかわらず最大エネルギーのX線よるパルス高さがA/D変換器7の最大許容入力電圧と一致して、ダイナミックレンジを最大限利用することになる。
【0023】
上述した電子線の加速電圧Pと増幅器6の増幅率Gとの関係を図3にグラフで示す。通常使用される加速電圧P1からP2(P1<P2)までの間において増幅率GはPに反比例しG1とG2間(G1>G2)を変化するように制御される。加速電圧がP1以下の領域は増幅器6の回路的な制限のために増幅率はG1以上には増加させず、一定とすることが現実的である。また、加速電圧がP2以上の領域においては最大の加速電圧PmまでP1からP2までの間と同様に反比例関係の制御をしてもよいが、やはり増幅器6の回路的な制限のために増幅率はG2に固定してもよい。
【0024】
さらに図3におけるP2(増幅率と加速電圧の反比例制御を行う限界)の値およびそのときの増幅率Gは増幅器6の回路的制限からでなく分析上の要請で決定してもよい。例えば、電子線の加速電圧は10kV以上に設定するけれども、検出するX線のエネルギーは0kV〜10kVの範囲を分解能よく検出したい場合がある。このような場合は加速電圧が10kV以上の場合には常に10kVのX線フォトンによるパルス高さがA/D変換器の最大許容電圧Vmと一致するように増幅率Gを固定的に設定する。そして、この場合においても加速電圧が10kV以下にした場合には上述した反比例関係で増幅率Gを制御するようにする。本発明はこのような制御も包含するものである。
【0025】
【発明の効果】
本発明によれば、励起源である電子線の加速電圧に連動してパルス増幅器の増幅率を設定し、パルス高さをデジタルデータに変換するA/D変換器のダイナミックレンジを無駄なく利用するので、測定データをデジタル化する際に起こりうる測定システムに起因する誤差が少なくなり、パルス高さすなわちX線エネルギーの測定分解能が高いデータを得ることができる。
【図面の簡単な説明】
【図1】本発明の電子線分析装置の概略図である。
【図2】EDX検出システムを説明する図である。
【図3】増幅率と加速電圧の関係を示す図である。
【図4】X線スペクトルを説明する図である。
【符号の説明】
1…電子線分析装置 2…電子源
3…電子線 4…試料
5…EDX 6…増幅器
7…A/D変換器 8…増幅率制御器
9…加速電源 10…制御器
11…画像表示器 12…ヒストグラムメモリ
13…スペクトル表示器 14…電子検出器
Claims (1)
- 設定される加速電圧により加速された電子線を試料表面に照射し試料から放射されるX線をエネルギー分散型X線検出器により検出する電子線分析装置おいて、前記エネルギー分散型X線検出器からのパルス出力を増幅する増幅率可変の増幅器と、この増幅器の出力パルス高さをデジタルデータに変換するA/D変換器と、前記加速電圧において発生するX線の最大エネルギーに対応する前記出力パルス高さが前記A/D変換器の最大入力値となるよう前記加速電圧に連動して前記増幅器の増幅率を制御する増幅率制御手段を備えることを特徴とする電子線分析装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001387010A JP3832331B2 (ja) | 2001-12-20 | 2001-12-20 | 電子線分析装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001387010A JP3832331B2 (ja) | 2001-12-20 | 2001-12-20 | 電子線分析装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003187736A JP2003187736A (ja) | 2003-07-04 |
JP3832331B2 true JP3832331B2 (ja) | 2006-10-11 |
Family
ID=27595973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001387010A Expired - Fee Related JP3832331B2 (ja) | 2001-12-20 | 2001-12-20 | 電子線分析装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3832331B2 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2866713B1 (fr) * | 2004-02-24 | 2006-03-24 | Commissariat Energie Atomique | Circuit electronique de diagnostic de spectrometrie et chaine de comptage associee |
CN116802485A (zh) * | 2021-01-27 | 2023-09-22 | 株式会社岛津制作所 | 荧光x射线分析装置 |
-
2001
- 2001-12-20 JP JP2001387010A patent/JP3832331B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003187736A (ja) | 2003-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6352529B2 (ja) | 光量検出装置、それを用いた免疫分析装置および荷電粒子線装置 | |
US9322711B2 (en) | Light signal detecting circuit, light amount detecting device, and charged particle beam device | |
US20060020400A1 (en) | Detector with increased dynamic range | |
JP6267529B2 (ja) | 荷電粒子線装置及び画像生成方法 | |
US20060011869A1 (en) | Measurement method of electron beam current, electron beam lithography method and system | |
JP2594200B2 (ja) | 蛍光x線分析装置 | |
US6960771B1 (en) | Optical measurement apparatus and method for optical measurement | |
JP3832331B2 (ja) | 電子線分析装置 | |
JP6808700B2 (ja) | 元素マップの生成方法および表面分析装置 | |
JP2009206001A (ja) | 荷電粒子線装置 | |
JP2001084946A (ja) | 二次粒子検出器系の評価方法および粒子線装置 | |
JP2001148230A (ja) | 走査形電子顕微鏡 | |
US4804840A (en) | Apparatus for detecting focused condition of charged particle beam | |
JP3790643B2 (ja) | エネルギー分散形x線検出器を備えた表面分析装置 | |
JP6298601B2 (ja) | 荷電粒子線装置 | |
JP2839732B2 (ja) | 走査電子顕微鏡等における自動輝度・コントラスト調整装置 | |
JP2000133193A (ja) | 荷電粒子線照射装置 | |
JP2834466B2 (ja) | イオンビーム装置及びその制御方法 | |
JP2674010B2 (ja) | 電子線照射装置 | |
US20230109124A1 (en) | Particle beam system | |
JPH02145950A (ja) | X線光電子分析装置 | |
JPH09210907A (ja) | 走査型蛍光検出装置 | |
JP2003098130A (ja) | 電子顕微鏡 | |
WO2024163516A2 (en) | Methods and systems for event modulated electron microscopy | |
JP2001202914A (ja) | 集束イオンビーム装置による二次荷電粒子像の観察方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040806 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060601 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060627 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060710 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3832331 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100728 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100728 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110728 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110728 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120728 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120728 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130728 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |