JP3831582B2 - プラズマ処理装置の制御方法およびプラズマ処理装置 - Google Patents

プラズマ処理装置の制御方法およびプラズマ処理装置 Download PDF

Info

Publication number
JP3831582B2
JP3831582B2 JP2000190220A JP2000190220A JP3831582B2 JP 3831582 B2 JP3831582 B2 JP 3831582B2 JP 2000190220 A JP2000190220 A JP 2000190220A JP 2000190220 A JP2000190220 A JP 2000190220A JP 3831582 B2 JP3831582 B2 JP 3831582B2
Authority
JP
Japan
Prior art keywords
electrostatic chuck
substrate
heater
galden
registered trademark
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000190220A
Other languages
English (en)
Other versions
JP2002004051A (ja
Inventor
正 嶋津
隆之 入江
和人 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000190220A priority Critical patent/JP3831582B2/ja
Publication of JP2002004051A publication Critical patent/JP2002004051A/ja
Application granted granted Critical
Publication of JP3831582B2 publication Critical patent/JP3831582B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、バイアスイオンアタック条件において、成膜中の基板の温度を一定に保つことができるプラズマ処理装置の制御方法およびプラズマ処理装置に関する。
【0002】
【従来の技術】
図6は、従来のプラズマCVD装置の一例を示す構成図である。このプラズマCVD装置50は、真空チャンバー1内にアルミニウム製或いはステンレス製の基板支持台2を設置し、この基板支持台2に窒化アルミニウム製の静電チャック3を設けた構造である。真空チャンバー1の側面には、水平磁場を発生させる水平磁場用コイル4、上部にはプラズマを励起するための高周波用アンテナ5が設置されている。また、静電チャック3内には、基板Wを加熱するためのヒーター8、および静電チャック内設電極15が埋設されている。この静電チャック内設電極15には、整合器6を介して低周波用電源7が接続されている。
【0003】
静電チャック3の上面には、ヘリウムガスを通す溝9が形成されている。ヘリウムガスは、図示しないヘリウムガス供給系から供給される。前記ヒーター8は、ヒーター用電源10に接続されている。また、ヒーター用電源10は、制御部11によってオン/オフ制御される。つぎに、基板支持台2の内部にはガルデン(登録商標)通路(図示省略)が形成されており、このガルデン(登録商標)通路は、ガルデン(登録商標)の配管12を介してガルデン(登録商標)循環装置13に連結している。なお、真空チャンバー1には、原料ガスを供給するガス供給系、真空排気系などが設置されている(図示省略)。
【0004】
基板上に薄膜を形成するには、まず、ヒーター8に電力を供給して静電チャック3を加熱することで基板温度を200℃程度まで上昇させる。続いて、真空チャンバー1内にガス供給系から原料ガスを導入し、高周波用アンテナ5によってこれを励起し、プラズマを生成する。また、水平磁場用コイル4によって真空チャンバー1内に水平磁場を発生させ、当該水平磁場によってプラズマをトラップする。そして、低周波用電源7により静電チャック内設電極15に基板支持台2に所定のバイアスを印加し、基板Wに荷電粒子を搬送する。
【0005】
また、基板支持台2には、ガルデン(登録商標)循環装置13から200℃のガルデン(登録商標)が供給循環されており、このガルデン(登録商標)の熱が静電チャック3を介して基板Wに伝導する。成膜中は、基板Wに対するイオンアタックによって基板温度が上昇する。基板Wの温度は、ヘリウムガスの圧力を調整することによって制御する。ヘリウムガスは、静電チャック3と基板Wとの間の熱伝導に寄与する。
【0006】
【発明が解決しようとする課題】
しかしながら、上記従来のプラズマCVD装置50では、赤外線温度計により基板Wの温度を測定し、ヘリウムガスの圧力を調整することで温度制御を行うようにしていたが、基板Wの主な冷却はガルデン(登録商標)単独で行っていた。このため、バイアスイオンアタックによる入熱を伴う成膜条件では、基板Wの初期温度を保つことが難しいという問題点があった。一方、ガルデン(登録商標)の温度を例えば150℃程度まで下げると、基板Wの冷却効率は向上するが、静電チャック3の吸着力が極端に低下するという問題点があった。
【0007】
そこで、この発明は、上記に鑑みてなされたものであって、基板の温度を一定に保つことができるプラズマ処理装置の制御方法およびプラズマ処理装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
上述の目的を達成するために、請求項1にかかるプラズマ処理装置の制御方法は、基板支持台を循環するガルデン(登録商標)による加熱と、このガルデン(登録商標)による加熱の底上げを基板保持用の静電チャック内に設けたヒーターにより行うことで基板温度を昇温し、静電チャック内に設けた電極にバイアスを印加することに基づき、前記ヒーターを切った後、ガルデン(登録商標)を基板支持台内に循環させるようにし、バイアス印加を止めることに基づき、前記ヒーターの電源を入れると共にガルデン(登録商標)の循環を止めるようにし、静電チャックの温度を一定になるように制御することを特徴とする。
【0009】
この発明では、ガルデン(登録商標)の加熱をヒーターにより底上げして所定の基板温度を確保し、基板に対する入熱が発生するときにヒーターをオフするようにする。これにより、ヒーターによる底上げ分の温度差が発生し、ガルデン(登録商標)による基板の冷却が効率的に行われる。また、バイアス印加を止めるときには、再びヒーターをオンして基板の加熱を行う。これにより、基板を保持する静電チャックの温度を吸着力が低下しない限度で維持することができる。なお、このプラズマ処理装置には、下記実施の形態に示すようなプラズマCVD装置他、RIE(Reactive Ion Etching)装置などを含むものとする。
【0010】
また、請求項にかかるプラズマ処理装置の制御方法は、ヒーターを内設した基板支持台上に静電チャックを設置し、この静電チャック上に基板を保持し、静電チャック内に設けた電極にバイアスを印加して前記基板に薄膜を形成するものであり、ヒーターと基板支持台内を循環するガルデン(登録商標)とを用いて基板温度を昇温し、静電チャック内に設けた電極にバイアスを印加することに基づき、前記ヒーターの電源を切った後、ガルデン(登録商標)を基板支持台内に循環させるようにし、バイアス印加を止めることに基づき、前記ヒーターの電源を入れると共にガルデン(登録商標)の循環を止めるようにし、静電チャックの温度を一定になるように制御することを特徴とする。
また、請求項にかかるプラズマ処理装置の制御方法は、プラズマを生成している状態において、静電チャック内に設けた電極に対するバイアス印加することを特徴とする。
【0011】
この発明は、ヒーターを基板支持台に設けることで、基板支持台と静電チャックとの温度差を小さくするようにしている。また、基板支持台にヒーターを設けることにより、バイアス印加時のみガルデン(登録商標)を循環させるようにする。これにより、基板を保持する静電チャックの温度を吸着力が低下しない限度で維持することができる。
【0018】
【発明の実施の形態】
以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、この発明の構成要素には、この技術に関する当業者が設計変更し得る内容を含むものとする。
【0019】
(実施の形態1)
図1は、この発明の実施の形態1にかかるプラズマCVD装置を示す構成図である。このプラズマCVD装置100のハード構成は、上記従来のプラズマCVD装置50と同様であるが、基板支持台2と静電チャック3との間に熱伝導率を向上させるためのカーボンシート14を設けた点が異なる。このため、その他のハード構成については説明を省略する。なお、前記カーボンシート14は、本願発明の制御方法を実施するにあたり必須ではないが、熱伝導を向上させることによって本願発明をさらに効果的に実施することができる。
【0020】
図2は、図1に示したプラズマCVD装置の動作を示すタイミングチャートである。まず、ガルデン(登録商標)循環装置13によりガルデン(登録商標)の温度を150℃に設定しておく。続いて、ヒーター8をオンにして基板温度を200℃に底上げする。基板温度は、図示しない赤外線温度計によって測定する。
【0021】
つぎに、静電チャック内設電極15にバイアスを印加して成膜を行う。バイアスを印加するとイオンアタックによる入熱で基板Wの温度が上昇する。このバイアス印加と略同じタイミングでヒーター用電源10をオフにする。これにより、ヒーター8による加熱がなくなり、基板温度よりも低い温度のガルデン(登録商標)により、基板Wが冷却される。なお、基板支持台2と静電チャック3との間にはカーボンシート14が介在しているから、熱交換が効率的に行われる。
【0022】
つぎに、静電チャック内設電極15のバイアスを切る場合には、ヒーター8の電源をオンに切り換える。バイアスによる入熱がなくなると、静電チャック3の温度が低下することになるが、ヒーター8により再び加熱することで当該静電チャック3を200℃以上に保つことができる。このように静電チャック3の温度が略常時、200℃以上になっているので、当該静電チャック3の吸着力が良好に維持される。
【0023】
図3は、静電チャックの温度と成膜時間との関係を示すグラフ図である。この成膜条件は、低周波用電源7の周波数を2MHz、出力を1kwとし、ヒーター用電源10の出力を0.5kwとした。また、基板Wの径は、150mmとした。従来のように200℃のガルデン(登録商標)単独で冷却を行う場合には、成膜時間が経つにつれて静電チャック3の温度が上昇し、基板Wが初期温度を保つことができなかった。一方、150℃のガルデン(登録商標)とヒーター8とを併用する場合には、成膜時間が経っても静電チャック3の温度上昇が極めて小さく抑えられた。このため、基板Wの温度上昇は極めて小さく抑えられるという結果となった。
【0024】
以上、このプラズマCVD装置100によれば、ガルデン(登録商標)による冷却を行うにあたり、ヒーター8によって静電チャック3の温度を底上げし、バイアス印加時にヒーター8をオフするようにしたので、静電チャック3の温度上昇を抑制できる。このため、バイアスイオンアタック条件においても、基板Wの初期温度を維持できるようになる。
【0025】
(実施の形態2)
図4は、この発明の実施の形態にかかるプラズマCVD装置を示す構成図である。このプラズマCVD装置200は、基板支持台2にヒーター20を設けた点に特徴がある。また、ガルデン(登録商標)循環装置13と基板支持台2とを接続する配管12にバイパス通路21を設け、バルブ22によってガルデン(登録商標)の循環経路を切り換えるようにしている。その他の構成は、上記実施の形態1のプラズマCVD装置100と同様であるから、その説明を省略する。
【0026】
実施の形態1のように静電チャック3にヒーター8を設けた場合、静電チャック3と基板支持台2との間に約50℃の温度差が生じ、この温度差によって窒化アルミニウム製の静電チャック3が破損するおそれがある。そこで、基板支持台2側にヒーター20を設けることで、当該基板支持台2および静電チャック3を一体として温度上昇させるようにした。これにより、静電チャック3と基板支持台2との間の温度差が極めて小さくなるから、静電チャック3の破損を有効に防止することができるようになる。
【0027】
また、基板支持台2にヒーター20を設けた場合、ガルデン(登録商標)の温度を実施の形態1の場合に比べて低温にする必要がある。なお、上記のようにガルデン(登録商標)循環装置13のオン・オフではなく、バイパス通路21とバルブ22によりガルデン(登録商標)の循環経路を切り換えるようにしたのは、後者が基板支持台2に対するガルデン(登録商標)の供給を短時間で行えるからである。
【0028】
つぎに、このプラズマCVD装置200の動作について説明する。図5は、図4に示したプラズマCVD装置の動作を示すタイミングチャートである。まず、ヒーター用電源10をオンして基板支持台2を加熱し、静電チャック3を介して基板Wにヒーター熱を伝導させる。これによって、基板Wの温度が初期温度まで上昇する。つぎに、静電チャック内設電極15にバイアスを印加して成膜を行う。バイアスを印加するとイオンアタックによる入熱で基板Wの温度が上昇する。
【0029】
このバイアス印加と略同じタイミングでヒーター用電源10をオフにする。また、バルブ22を作動させて、バイパス通路21から基板支持台2に循環経路を切り換える。これにより、ガルデン(登録商標)により基板Wが冷却される。なお、基板支持台2と静電チャック3との間にはカーボンシート14が介在しているから、熱交換が効率的に行われる。
【0030】
続いて、基板支持台2のバイアスを切る場合には、ヒーター用電源10をオンに切り換えると共にガルデン(登録商標)の循環をバイパス通路21側に切り換える。バイアスによる入熱がなくなると、静電チャック3の温度が低下することになるが、ヒーター20により加熱することで当該静電チャック3を200℃以上に保つことができる。このため、静電チャック3の吸着力が維持される。
【0031】
以上、このプラズマCVD装置200によれば、ヒーター20によって基板支持台2および静電チャック3を一体として加熱し、バイアス印加時にはヒーター20をオフすると共にガルデン(登録商標)の循環経路をバイパス側から基板支持台2側に切り換えるようにしたので、静電チャック3の温度上昇を抑制できる。このため、バイアスイオンアタック条件においても、基板Wの初期温度を維持できるようになる。また、ヒーター20を基板支持台2に設けたので静電チャック3に生じる温度勾配を小さくすることができる。このため、静電チャック3の破損を効果的に防止できるようになる。
【0032】
【発明の効果】
以上説明したように、この発明のプラズマ処理装置(請求項1)では、基板支持台を循環するガルデン(登録商標)による加熱と、このガルデン(登録商標)による加熱の底上げを基板保持用の静電チャック内に設けたヒーターにより行うことで基板温度を昇温し、静電チャック内に設けた電極にバイアスを印加することに基づき、前記ヒーターを切った後、ガルデン(登録商標)を基板支持台内に循環させるようにし、バイアス印加を止めることに基づき、前記ヒーターの電源を入れると共にガルデン(登録商標)の循環を止めるようにし、静電チャックの温度を一定になるように制御するので、バイアスイオンアタック条件において、成膜中の基板の温度を一定に保つことができる。
【0033】
また、この発明のプラズマ処理方法(請求項)では、ヒーターを内設した基板支持台上に静電チャックを設置し、この静電チャック上に基板を保持し、静電チャック内設電極にバイアスを印加して前記基板に薄膜を形成するものであり、ヒーターと基板支持台内を循環するガルデン(登録商標)とを用いて基板温度を昇温し、静電チャック内設電極にバイアスを印加することに基づき、前記ヒーターを切ると共にガルデン(登録商標)を基板支持台内に循環させるようにし、バイアス印加を止めることに基づき、前記ヒーターを入れると共にガルデン(登録商標)の循環を止めるようにしたので、バイアスイオンアタック条件において、成膜中の基板の温度を一定に保つことができる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1にかかるプラズマCVD装置を示す構成図である。
【図2】 図1に示したプラズマCVD装置の動作を示すタイミングチャートである。
【図3】 静電チャックの温度と成膜時間との関係を示すグラフ図である。
【図4】 この発明の実施の形態にかかるプラズマCVD装置を示す構成図である。
【図5】 図4に示したプラズマCVD装置の動作を示すタイミングチャートである。
【図6】 従来のプラズマCVD装置の一例を示す構成図である。
【符号の説明】
1 真空チャンバー
2 基板支持台
3 静電チャック
4 水平磁場用コイル
5 高周波用アンテナ
6 整合器
7 低周波用電源
8 ヒーター
9 溝
10 ヒーター用電源
11 制御部
12 配管
13 ガルデン(登録商標)循環装置
14 カーボンシート
20 ヒーター
21 バイパス通路
22 バルブ
15 静電チャック内設電極

Claims (3)

  1. 基板支持台を循環するガルデン(登録商標)による加熱と、このガルデン(登録商標)による加熱の底上げを基板保持用の静電チャック内に設けたヒーターにより行うことで基板温度を昇温し、
    静電チャック内に設けた電極にバイアスを印加することに基づき、前記ヒーターを切った後、ガルデン(登録商標)を基板支持台内に循環させるようにし、
    バイアス印加を止めることに基づき、前記ヒーターの電源を入れると共にガルデン(登録商標)の循環を止めるようにし、静電チャックの温度を一定になるように制御することを特徴とするプラズマ処理装置の制御方法。
  2. ヒーターを内設した基板支持台上に静電チャックを設置し、この静電チャック上に基板を保持し、静電チャック内に設けた電極にバイアスを印加して前記基板に薄膜を形成するものであり、ヒーターと基板支持台内を循環するガルデン(登録商標)とを用いて基板温度を昇温し、
    静電チャック内に設けた電極にバイアスを印加することに基づき、前記ヒーターの電源を切った後、ガルデン(登録商標)を基板支持台内に循環させるようにし、
    バイアス印加を止めることに基づき、前記ヒーターの電源を入れると共にガルデン(登録商標)の循環を止めるようにし、静電チャックの温度を一定になるように制御することを特徴とするプラズマ処理装置の制御方法。
  3. プラズマを生成している状態において、静電チャック内に設けた電極に対するバイアス印加することを特徴とする請求項1又は2に記載のプラズマ処理装置の制御方法。
JP2000190220A 2000-06-23 2000-06-23 プラズマ処理装置の制御方法およびプラズマ処理装置 Expired - Fee Related JP3831582B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000190220A JP3831582B2 (ja) 2000-06-23 2000-06-23 プラズマ処理装置の制御方法およびプラズマ処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000190220A JP3831582B2 (ja) 2000-06-23 2000-06-23 プラズマ処理装置の制御方法およびプラズマ処理装置

Publications (2)

Publication Number Publication Date
JP2002004051A JP2002004051A (ja) 2002-01-09
JP3831582B2 true JP3831582B2 (ja) 2006-10-11

Family

ID=18689726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000190220A Expired - Fee Related JP3831582B2 (ja) 2000-06-23 2000-06-23 プラズマ処理装置の制御方法およびプラズマ処理装置

Country Status (1)

Country Link
JP (1) JP3831582B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5237151B2 (ja) * 2009-02-23 2013-07-17 三菱重工業株式会社 プラズマ処理装置の基板支持台
WO2013050243A1 (en) * 2011-10-06 2013-04-11 Asml Netherlands B.V. Chuck, lithography apparatus and method of using a chuck

Also Published As

Publication number Publication date
JP2002004051A (ja) 2002-01-09

Similar Documents

Publication Publication Date Title
JP4236329B2 (ja) プラズマ処理装置
TWI521589B (zh) An electrode unit, a substrate processing device, and an electrode unit
JP5320171B2 (ja) 基板処理装置
US20100122774A1 (en) Substrate mounting table and substrate processing apparatus having same
JPH06158361A (ja) プラズマ処理装置
TW201523786A (zh) 溫度控制機構、溫度控制方法及基板處理裝置
JP2011187758A (ja) 温度制御システム、温度制御方法、プラズマ処理装置及びコンピュータ記憶媒体
JP2002009064A (ja) 試料の処理装置及び試料の処理方法
KR20100005683A (ko) 플라즈마 처리 장치의 챔버내 부재의 온도 제어 방법, 챔버내 부재 및 기판 탑재대와 그것을 구비한 플라즈마 처리 장치
JP2010118551A (ja) 静電チャック及び基板処理装置
JPH1014266A (ja) 静電チャック装置及び静電チャックを用いたウエハの保持方法及び静電チャックからのウエハの脱着方法
JP2019067846A (ja) 温度制御方法
US6024828A (en) Spin-on-glass etchback uniformity improvement using hot backside helium
JP3831582B2 (ja) プラズマ処理装置の制御方法およびプラズマ処理装置
US20200312695A1 (en) Substrate processing method and substrate processing apparatus
JP4295490B2 (ja) 処理装置並びに処理装置用のチラー制御方法及びチラー制御装置
JP4330737B2 (ja) 真空処理方法
TW201322302A (zh) 真空處理裝置及真空處理方法
JP2002319577A5 (ja) プラズマ処理装置用のプレート
JP2004193360A (ja) プラズマ処理装置
JP6142305B2 (ja) 静電吸着方法及び静電吸着装置
JP2011084770A (ja) 静電チャックを備えた基板ホルダを用いた基板温度制御方法
JPH05226289A (ja) 被処理体用載置装置及びそれを用いた処理装置
KR100902619B1 (ko) 기판 처리장치 및 그 방법
JP2001237222A (ja) 真空処理装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees