JP3826768B2 - Fluid filled vibration isolator - Google Patents

Fluid filled vibration isolator Download PDF

Info

Publication number
JP3826768B2
JP3826768B2 JP2001343691A JP2001343691A JP3826768B2 JP 3826768 B2 JP3826768 B2 JP 3826768B2 JP 2001343691 A JP2001343691 A JP 2001343691A JP 2001343691 A JP2001343691 A JP 2001343691A JP 3826768 B2 JP3826768 B2 JP 3826768B2
Authority
JP
Japan
Prior art keywords
pressure receiving
fluid
receiving chamber
opening
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001343691A
Other languages
Japanese (ja)
Other versions
JP2003148548A (en
Inventor
真彰 濱田
英揮 大嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2001343691A priority Critical patent/JP3826768B2/en
Publication of JP2003148548A publication Critical patent/JP2003148548A/en
Application granted granted Critical
Publication of JP3826768B2 publication Critical patent/JP3826768B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Description

【0001】
【技術分野】
本発明は、内部に封入された非圧縮性流体の流動作用に基づいて防振効果を得るようにした流体封入式防振装置に係り、例えば自動車用のエンジンマウントやボデーマウント,デフマウント等として好適に採用され得る流体封入式防振装置に関するものである。
【0002】
【背景技術】
従来から、振動伝達系を構成する部材間に介装される防振装置において、封入された非圧縮性流体の共振作用等の流動作用に基づく防振効果を利用することが提案されており、その一種として、例えば特公平4−17291号公報や特公平5−55739号公報等に開示されているように、防振連結される一方の部材に取り付けられる第一の取付部材と、防振連結される他方の部材に取り付けられる第二の取付部材を、互いに離隔配置せしめて、それら第一及び第二の取付部材を互いに本体ゴム弾性体で連結せしめる一方、該本体ゴム弾性体で壁部の一部が構成されて振動入力に際して圧力変動が生ぜしめられる受圧室と、壁部の一部が可撓性膜で構成されて容積変化が容易に許容される平衡室を形成すると共に、それら受圧室と平衡室を相互に連通するオリフィス通路を設けた流体封入式防振装置が、知られている。
【0003】
このような流体封入式防振装置においては、オリフィス通路を通じて流動せしめられる流体の共振作用に基づいて有効な防振効果を得ることが出来ると共に、装着状態下でパワーユニット支持荷重等の静的な初期荷重が及ぼされる場合でも、封入された非圧縮性流体の圧力変化が平衡室の容積変化に基づいて軽減乃至は回避され得て、流体の共振作用に基づく所期の防振効果が安定して発揮されること等から、例えば自動車用のエンジンマウント等に有利に採用され得るのである。
【0004】
ところで、かかる従来構造の流体封入式防振装置においては、衝撃的な大荷重振動が入力された際に、比較的大きな振動伝達が発生したり衝撃的な異音が発生する場合がある。例えば、自動車用エンジンマウントに適用した場合には、エンジンクランキング時や急加減速時等において、そのような振動や異音の発生が確認されている。従来、このような現象は、受圧室と平衡室の間での流体流動がオリフィス通路で制限されることに起因する受圧室の圧力増大が原因である、という考えがあり、そのような考えに基づいて、例えば特公平7−107416号公報等に記載されているように、受圧室の圧力を逃す構造が提案されている。
【0005】
しかしながら、このような構造の流体封入式防振装置においては、防振すべき振動入力時にも、受圧室の圧力変動を逃してしまい、その結果、オリフィス通路を通じての流体流動量が減少して、流体の流動作用に基づく所期の防振効果が低下してしまうという問題があり、必ずしも有効な方策ではなかった。
【0006】
【解決課題】
ここにおいて、本発明は、上述の如き事情を背景として為されたものであって、その解決課題とするところは、防振すべき振動入力時におけるオリフィス通路を通じての流体流動量を十分に確保しつつ、衝撃的な大荷重振動が入力された際の異音や衝撃の軽減を、簡単な構造で実現することが出来る、新規な構造の流体封入式防振装置を提供することにある。
【0007】
【解決手段】
以下、このような課題を解決するために為された本発明の態様を記載する。なお、以下に記載の各態様において採用される構成要素は、可能な限り任意の組み合わせで採用可能である。また、本発明の態様乃至は技術的特徴は、以下に記載のものに限定されることなく、明細書全体および図面に記載され、或いはそれらの記載から当業者が把握することの出来る発明思想に基づいて認識されるものであることが理解されるべきである。
【0008】
先ず、従来構造の流体封入式防振装置において問題となっていた衝撃的な大荷重振動入力時の比較的大きな振動伝達や衝撃的な異音が発生するメカニズムについて、本発明者等が多数の実験を行い、検討を加えた結果、受圧室内の急激な圧力増大が問題ではなく、受圧室内に発生する過大な負圧が問題になるということを新たに見出したのである。そして、本発明者等は、多数の実験,検討を行った結果、オリフィス通路を通じての流体流動が制限されて受圧室に生ぜしめられる過大な負圧によって封入流体から分離された気体が再び封入流体に溶けこむ際に発生する比較的大きな振動伝達や衝撃的な異音が問題となるのであろうという新たな知見を得たのであり、本発明は、このようにして得られた新たな知見に基づいて更なる検討を加えたことによって、完成されたものである。
【0009】
すなわち、本発明の第一の態様は、防振連結される一方の部材に取り付けられる第一の取付部材と防振連結される他方の部材に取り付けられる第二の取付部材を本体ゴム弾性体で連結せしめて、該本体ゴム弾性体で壁部の一部が構成されて非圧縮性流体が封入された受圧室と、壁部の一部が可撓性膜で構成されて非圧縮性流体が封入された平衡室を形成すると共に、それら受圧室と平衡室を相互に連通せしめるオリフィス通路を設けた流体封入式防振装置において、前記オリフィス通路を短絡する短絡通路を形成すると共に、該短絡通路を遮断せしめて予め定められた設定負圧よりも大きな負圧が前記受圧室に生ぜしめられた場合にだけ該短絡通路を連通せしめて該オリフィス通路を短絡させる弁手段を設け、且つ、該短絡通路として、該オリフィス通路における通路長手方向の中間部分を該受圧室に短絡せしめる短絡通孔を少なくとも一つ形成したことを、特徴とする。
【0010】
このような本態様に従う構造とされた流体封入式防振装置においては、通常の振動入力時、即ち、予め定められた設定負圧以下の負圧(絶対値が設定負圧より小さい負圧)が受圧室に生ぜしめられる場合には、弁手段によって短絡通路が遮断せしめられてオリフィス通路を流動せしめられる流体の共振作用に基づく防振効果が有効に発揮され得る一方、衝撃的な大荷重振動が入力されて受圧室の負圧が予め定められた設定負圧よりも大きくなった場合には、弁手段によって短絡通路が連通せしめられてオリフィス通路が短絡せしめられることにより、受圧室と平衡室との間の流体流動が流通抵抗の小さい短絡通路を通じて許容されることとなり、受圧室に生ぜしめられた設定負圧よりも大きな負圧が可及的速やかに解消されて、大きな振動伝達や異音の主たる発生原因である受圧室での気体分離を抑えることが出来るのである。
【0011】
また、本態様においては、受圧室と平衡室の流体流動がオリフィス通路を短絡せしめる短絡通路を通じて許容されることにより、受圧室に生ぜしめられた設定負圧よりも大きな負圧が速やかに解消されるようになっていることから、例えば、特公平4−17291号公報等に記載されているような可動板や、実開平1−106651号公報等に記載されているような可動膜等の液圧吸収機構を配設するスペース、或いは、オリフィス通路と異なるチューニングが施された別のオリフィス通路を形成するスペース等を有利に確保することが可能となり、それによって、防振特性のチューニング自由度の大きい流体封入式防振装置が容易に実現可能となる。
【0012】
なお、本態様における設定負圧は、受圧室に封入された非圧縮性流体から気体が分離せしめられる負圧よりも小さい値、即ち絶対値で小さな負圧値に設定することが望ましい。また、本態様における弁手段は、例えば、受圧室内に配設された圧力検出手段による非圧縮性流体の圧力検出値が設定負圧よりも大きな負圧(絶対値で大きい負圧)である場合において短絡通路を連通せしめる電磁制御弁によって構成することも可能であるが、コイルスプリングやゴム板等のように金属ばねやゴム弾性体を利用した弾性部材によって弁手段を構成して弾性部材自体の有する弾性力に基づいて設定負圧を設定することも可能であり、それによって、弁手段ひいては流体封入式防振装置の構造が簡略化されると共に、弾性部材の材料や寸法を調節してばね特性を変更することによって設定負圧の大きさを容易に変更することも可能となる。
【0013】
また、本態様に従えば、短絡通路を簡単な構造によって有利に実現することが出来る。
【0014】
また、本発明の第の態様は、前記第の態様に係る流体封入式防振装置において、前記オリフィス通路の通路長手方向で相互に離隔した複数箇所に位置するように、前記短絡通孔を複数設けたことを、特徴とする。このような本態様に従う構造とされた流体封入式防振装置においては、短絡通路の開口面積を大きくすることが可能となり、それによって、受圧室に生ぜしめられた設定負圧よりも大きな負圧を一層速やかに解消することが出来るのである。なお、複数の短絡通孔の通孔断面積を相互に異ならせて防振特性を調節しても良い。
【0015】
また、本発明の第の態様は、前記第の態様に係る流体封入式防振装置において、前記複数の短絡通孔を遮断する複数の前記弁手段において、開口状態となる前記設定負圧を複数の異なる値に設定したことを、特徴とする。このような本態様に従う構造とされた流体封入式防振装置においては、設定負圧が大きくなるに従って、例えば、開口状態となる短絡通孔を、オリフィス通路における平衡室側の開口部に近づけていくことにより、オリフィス通路の通路長さが短くなるように設定したり、或いは、設定負圧が大きくなるに従って、例えば、開口状態となる短絡通孔の数を増やしていくことにより、短絡通路の開口面積が大きくなるように設定することも可能であり、それによって、設定負圧を複数段階に設定し、受圧室に生ぜしめられる負圧の大きさに応じて、短絡通路の流通抵抗を調節してオリフィス通路の流体流動量を有利に確保しつつ、受圧室における大きな負圧を一層効率的に解消することが可能となるのである。
【0016】
また、本発明の第の態様は、前記第一乃至第の何れかの態様に係る流体封入式防振装置において、前記短絡通路における前記受圧室側の開口部を覆蓋すると共に、該受圧室に対して前記設定負圧よりも大きな負圧が生ぜしめられた場合に該短絡通路の開口部から弾性的に離隔せしめられる弁体によって、前記弁手段を構成したことを、特徴とする。このような本態様に従う構造とされた流体封入式防振装置においては、設定負圧以下の負圧が受圧室に生ぜしめられる通常の振動入力時において、短絡通路における受圧室側の開口部を安定して覆蓋すると共に、受圧室における設定負圧より大きい負圧を速やかに解消せしめ得る弁手段が簡単な構造で有利に実現され得る。なお、本態様における弁体としては、例えば、受圧室側の開口部を覆蓋するゴム弾性体で形成された蓋体の周縁部を部分的に短絡通路の形成部材に固着せしめて該蓋体自体の弾性に基づいて受圧室側の開口部を覆蓋せしめるようにしたり、或いは、受圧室側の開口部を覆蓋する蓋体をコイルスプリング等の付勢手段によって覆蓋する方向に付勢すること等によって、有利に構成され得る。
【0017】
また、本発明の第の態様は、前記第の態様に係る流体封入式防振装置において、前記受圧室側に開口して延びる凹溝の開口部に弾性蓋体を重ね合わせて、該弾性蓋体を該凹溝の幅方向一方の側で固定的に支持せしめると共に、該弾性蓋体を該凹溝の幅方向他方の側に延び出させて該凹溝の開口部を覆蓋せしめることにより、前記オリフィス通路の少なくとも一部を構成せしめて、該受圧室に対して前記設定負圧よりも大きな負圧が生ぜしめられた場合に該弾性蓋体における該凹溝の幅方向他方の側に延び出した部分が該凹溝の長手方向の少なくとも一部において該凹溝の開口部から弾性的に離隔せしめられるようにして前記弁体を構成したことを、特徴とする。このような本態様に従う構造とされた流体封入式防振装置においては、オリフィス通路を構成する弾性蓋体を巧く利用することによって、設定負圧よりも大きな負圧が受圧室に生ぜしめられた際に負圧を解消するようになっていると共に、通常の振動入力時には、弾性蓋体自身が有する弾性力に基づいて凹溝の開口部が覆蓋されて、オリフィス通路が形成されているのであり、オリフィス通路の壁部を利用して弁体が一層有利に構成されることとなる。
【0018】
また、本態様においては、例えば、弾性蓋体の形成材料や厚さ寸法等を変更することにより、弾性蓋体が凹溝の開口部から弾性的に離隔せしめられる際に受圧室に生ぜしめられる負圧、即ち、予め定められた設定負圧の大きさを容易に設定,変更することが出来る。
【0019】
また、本発明の第の態様は、前記第一乃至第の何れかの態様に係る流体封入式防振装置において、前記短絡通路によって短絡された前記オリフィス通路よりも更に短い通路長さで前記受圧室と前記平衡室を連通せしめる透孔を、該オリフィス通路から独立して形成すると共に、該透孔を通じての該受圧室と該平衡室の間での流体流動量を制限する可動板部材を設けたことを、特徴とする。このような本態様に従う構造とされた流体封入式防振装置においては、オリフィス通路のチューニング周波数よりも高周波数域の振動入力時におけるオリフィス通路の流通抵抗の著しい増大に起因する受圧室の圧力増大が可動板部材の変位に基づく透孔を通じての流体圧の逃げによって回避されることとなり、それによって、複数の乃至は広い周波数域で有効な防振効果を得ることが可能となる。
【0020】
また、本発明の第の態様は、前記第一乃至第の態様に係る流体封入式防振装置において、前記第二の取付部材に形成された筒状部の一方の開口部側に離隔して前記第一の取付部材を配設せしめて、それら第一の取付部材と第二の取付部材を連結する前記本体ゴム弾性体で該筒状部の該一方の開口部を流体密に閉塞すると共に、該筒状部の他方の開口部を前記可撓性膜で流体密に閉塞する一方、該筒状部の中心軸に対して略直交して広がる仕切部材を該第二の取付部材で固定的に支持せしめて、該仕切部材を挟んだ一方の側に前記受圧室を他方の側に前記平衡室をそれぞれ形成すると共に、該仕切部材の外周部分を周方向に延びるように前記オリフィス通路を形成したことを、特徴とする。このような本態様に従う構造とされた流体封入式防振装置においては、オリフィス通路の通路長さを有利に確保することが可能となり、それによって、オリフィス通路の設計自由度が向上され得ると共に、かかるオリフィス通路と受圧室および平衡室を優れたスペース効率をもって形成することが可能となる。
【0021】
また、特に本第の態様は、前記第の態様と組み合わせて採用することが望ましく、それによって、可動板部材の配設面積も併せて有利に確保することが出来る。
【0022】
また、本発明の第の態様は、前記第の態様に係る流体封入式防振装置において、前記第二の取付部材に形成された筒状部の一方の開口部側に離隔して前記第一の取付部材を配設せしめて、それら第一の取付部材と第二の取付部材を連結する前記本体ゴム弾性体で該筒状部の該一方の開口部を流体密に閉塞すると共に、該筒状部の他方の開口部を前記可撓性膜で流体密に閉塞する一方、該筒状部の中心軸に対して略直交して広がる仕切部材を該第二の取付部材で固定的に支持せしめて、該仕切部材を挟んだ一方の側に前記受圧室を他方の側に前記平衡室をそれぞれ形成し、該仕切部材の外周部分において前記受圧室側に開口して周方向に所定長さで延びるように前記凹溝を形成すると共に、該筒状部から径方向内方に突設されて該凹溝の開口部に重ね合わせられることにより該開口部を覆蓋する弾性突出片によって前記弾性蓋体を構成したことを、特徴とする。このような本態様に従えば、簡単な構造によって目的とする流体封入式防振装置を有利に実現することが出来る。
【0023】
また、本発明の第の態様は、前記第の態様に係る流体封入式防振装置において、前記仕切部材の中央部分に前記受圧室側に開口する収容凹所を形成すると共に、該収容凹所の底部を貫通して前記平衡室に至る透孔を設けて、前記短絡通路によって短絡された前記オリフィス通路よりも更に短い通路長さで前記受圧室と前記平衡室を該透孔を通じて連通せしめる一方、該収容凹所の略全体に亘って広がる可動板部材を該収容凹所に収容配置すると共に、前記弾性突出片の突出先端部分を該収容凹所まで延び出させて、該収容凹所の底部と該弾性突出片の対向面間で該可動板部材の板厚方向の変位量を制限することにより、前記透孔を通じての前記受圧室と前記平衡室の間での流体流動量を制限するようにしたことを、特徴とする。このような本態様に従う構造とされた流体封入式防振装置においては、凹溝の開口部を覆蓋する弾性突出片を巧く利用して、可動板部材の板厚方向の変位量を制限することが出来るのであり、それによって、目的とする流体封入式防振装置が、より簡単な構造で一層有利に実現可能となる。
【0024】
【発明の実施形態】
以下、本発明を更に具体的に明らかにするために、本発明の実施形態について、図面を参照しつつ、詳細に説明する。
【0025】
先ず、図1及び図2には、本発明の第一の実施形態としての自動車用エンジンマウント10が示されている。このエンジンマウント10は、第一の取付部材としての第一の取付金具12と第二の取付部材としての第二の取付金具14が離隔配置されていると共に、それら第一の取付金具12と第二の取付金具14が本体ゴム弾性体16で弾性連結された構造を有しており、第一の取付金具12が自動車のパワーユニット側に取り付けられる一方、第二の取付金具14が自動車のボデー側に取り付けられることによって、パワーユニットをボデーに対して防振支持せしめるようになっている。なお、以下の説明中、上下方向とは、原則として、図1中の上下方向をいうものとする。
【0026】
より詳細には、第一の取付金具12は、全体として略円板形状を有しており、その上面には、円形ブロック形状の中央突部18が一体形成されている。また、中央突部18には、上方に向かって突出する取付ネジ20が一体形成されており、かかる取付ネジ20によって、第一の取付金具12がパワーユニット側に取り付けられるようになっている。
【0027】
一方、第二の取付金具14は、筒状部としての筒金具22と底金具24によって構成されている。筒金具22は、大径の段付円筒形状を有しており、軸方向中間部分に形成された段差部26を挟んで軸方向上側が小径部28とされていると共に、軸方向下側が大径部30とされている。また、小径部28の上側開口部には、径方向外方に広がるフランジ部32が一体形成されている。一方、底金具24は、全体として大径の浅底有底円筒形状を有しており、その開口周縁部には、径方向外方に広がるフランジ状部34が一体形成されている。そして、筒金具22の大径部30に底金具24が内挿されて、底金具24のフランジ状部34に対して大径部30の開口周縁部がかしめ固定されることにより、第二の取付金具14が全体として深底の略有底円筒形状をもって形成されている。また、底金具24の底部中央には、下方に向かって突出する取付ボルト36が固設されており、この取付ボルト36によって、第二の取付金具14が、図示しない自動車のボデー側に取り付けられるようになっている。
【0028】
そして、第一の取付金具12は、第二の取付金具14の軸方向上方に所定距離を隔てて略同一中心軸上に配設されており、これら第一の取付金具12と第二の取付金具14の間に本体ゴム弾性体16が介装されている。この本体ゴム弾性体16は、大径の略中空円錐台形状を有しており、小径側端面に第一の取付金具12が重ね合せられて加硫接着されている一方、大径側端部外周部分には、第二の取付金具14を構成する筒金具22の小径部28が埋設された状態で加硫接着されている。これによって、筒金具22の軸方向上側の開口部が本体ゴム弾性体16で流体密に閉塞されている。なお、本体ゴム弾性体16の大径側端面には、筒金具22内に開口するすり鉢形状の凹所38が形成されている。
【0029】
また、筒金具22の大径部30の上端部分には、弾性突出片としての蓋ゴム40が径方向内方に突出して被着形成されている。この蓋ゴム40は、円環板形状を有しており、周方向全周に亘って略一定の断面形状とされている。そして、蓋ゴム40は、外周縁部の上面が段差部26の下面に加硫接着されていると共に、外周面が大径部30の内周面に加硫接着されており、それによって、段差部26の下方に位置して大径部30から径方向内方に突出するようにして配設されている。
【0030】
更にまた、蓋ゴム40の内径寸法は、筒金具22の小径部28の内径寸法よりも小さくされており、小径部28の下方において蓋ゴム40の内周部分42が径方向内方に向かって突出せしめられている。なお、蓋ゴム40は、軸方向下面が略軸直角方向に広がる平坦面とされていると共に、径方向内方に突出せしめられた内周部分42の上面が、径方向内方に向かって下傾する傾斜面とされており、内周側に行くに従って厚さ寸法が次第に小さくされている。特に本実施形態では、蓋ゴム40の内径寸法が、後述する仕切部材46の中央凹所50の開口部の内径寸法と同じか僅かに小さくされている。また、本実施形態では、本体ゴム弾性体16が筒金具22の小径部28の内周面に沿って薄膜状に段差部26まで延び出しており、蓋ゴム40が本体ゴム弾性体16と一体形成された一体加硫成形品として形成されている。
【0031】
そして、かかる蓋ゴム40は、凹所38の開口部において径方向内方に突出せしめられた内周部分42が主に剪断変形を伴って厚さ方向に弾性変形可能とされている。ここにおいて、本実施形態では、蓋ゴム40の弾性変形特性が後述する受圧室54の設定圧力を決定することとなり、それ故、例えば、蓋ゴム40の形成材料や内周部分42の厚さ寸法,形状等を変更することにより、蓋ゴム40の内周部分42が弾性変形せしめられる際の受圧室54に生ぜしめられる負圧(設定負圧)の大きさを設定,変更することが出来る。
【0032】
また、筒金具22の大径部26内には、仕切部材46と、可撓性膜としてのダイヤフラム48が、順次、挿入されて、配設されている。仕切部材46は、硬質の合成樹脂材や金属材等の硬質材によって形成されており、全体として厚肉の円板形状を有している。また、仕切部材46の中央部分には、上側に開口する円形凹所50が略一定深さで広がって形成されていると共に、外周部分には、上側に開口して周方向に所定の長さに亘って連続して延びる凹溝52が形成されている。そして、仕切部材46は、筒金具22の大径部26に挿入されて、外周部分が蓋ゴム40に重ね合せられて底金具24のフランジ状部34と共に、大径部26の開口周縁部でかしめ固定されることにより、筒金具22の中心軸に対して略直交して広がる状態で、第二の取付金具14に対して固定的に支持されている。一方、ダイヤフラム48は、変形容易な薄肉のゴム膜で形成されており、外周部分には、容易に変形するように弛みがもたせてある。そして、ダイヤフラム48は、筒金具22の大径部26に挿入されて、その外周縁部が仕切部材46の下面外周縁部に重ね合せられて、底金具24のフランジ状部34と共に、大径部26の開口周縁部でかしめ固定されることにより、筒金具22の下側開口部を流体密に閉塞する状態で、第二の取付金具14に取り付けられている。
【0033】
これにより、筒金具22の軸方向両側の開口部が本体ゴム弾性体16とダイヤフラム48によって流体密に閉塞されており、本体ゴム弾性体16とダイヤフラム48の対向面間で外部空間から遮断された密閉領域が形成されている。また、かかる密閉領域は、仕切部材46によって流体密に二分されており、それによって、仕切部材46の上側には、壁部の一部が本体ゴム弾性体16で構成されて非圧縮性流体が封入された受圧室54が形成されている一方、仕切部材46の下側には、壁部の一部がダイヤフラム48によって構成されて非圧縮性流体が封入された平衡室56が形成されている。なお、受圧室54及び平衡室56に封入される非圧縮性流体としては、例えば、水やアルキレングリコール,ポリアルキレングリコール,シリコーン油等が採用可能であるが、特に、後述する流体の共振作用に基づく防振効果を有効に得るためには、粘度が0.1Pa・s以下の低粘性流体が好適に採用される。
【0034】
また、仕切部材46の外周縁部は、周方向の全周に亘って、蓋ゴム40の下面に圧接されており、それによって、仕切部材46に設けられた凹溝52の上側開口部が蓋ゴム40によって流体密に閉塞されて、仕切部材46の外周部分を周方向に所定の長さに亘って連続して延びるオリフィス通路58が形成されている。このことから明らかなように、本実施形態では、蓋ゴム40によってオリフィス通路58の壁部の一部(上壁部)が構成されており、通常の振動入力時、即ち、オリフィス通路58のチューニング周波数域の振動入力時には、かかる蓋ゴム40自身が有する弾性力によって蓋ゴム40が凹溝52の上側開口部を覆蓋する状態に保持されることにより該凹溝52の上側開口部が流体密に覆蓋されて、オリフィス通路58が形成されている。そして、オリフィス通路58は、周方向一方の端部が蓋ゴム40の内周部分42における周上の一箇所に設けられた切欠60によって受圧室54に開口せしめられている一方、周方向他方の端部が仕切部材46に設けられた連通孔62によって平衡室56に開口せしめられており、それによって、受圧室54と平衡室56がオリフィス通路58によって相互に連通されているのである。
【0035】
このような構造とされたエンジンマウント10においては、自動車への装着状態下で第一の取付金具12と第二の取付金具14の間に略上下方向の振動が入力されると、受圧室54と平衡室56の間に相対的な圧力差が生ぜしめられることに基づいて、それら両室54,56間において、オリフィス通路58を通じての流体流動が生ぜしめられることとなる。特に、本実施形態では、オリフィス通路58がエンジンシェイク等の低周波数域にチューニングされており、エンジンシェイク等の低周波大振幅振動が入力された際には、蓋ゴム40自身の有する弾性力によって凹溝52の上側開口部が覆蓋状態に保持されて、オリフィス通路58が形成されており、かかるオリフィス通路58を通じて流動せしめられる流体の共振作用に基づいて、エンジンシェイク等の低周波大振幅振動に対して、有効な防振効果が発揮されることとなる。
【0036】
一方、自動車のクランキングや急加減速等に際して、エンジンマウント10に衝撃的な大荷重振動が入力されることにより、受圧室54に予め定められた設定負圧よりも大きな負圧が生ぜしめられた場合には、図3に示されているように、蓋ゴム40の内周部分42が捲れあがるようにして凹溝52の上側開口部から弾性的に離隔せしめられることとなり、それによって、凹溝52の上側開口部が開口せしめられることとなり、仕切部材46の外周部分を周方向に延びるように形成されていたオリフィス通路58が実質的に消失せしめられて、受圧室54と平衡室56との間での流体流動が仕切部材46の凹溝52の上側開口部を通じて生ぜしめられることとなる。その結果、受圧室54に生ぜしめられる大きな負圧が、可及的速やかに解消されて、受圧室54における気体の分離とそれに起因する衝撃的な音や振動が効果的に防止され得るのである。なお、このことから明らかなように、本実施形態では、凹溝52の上側開口部によって短絡通路としての短絡通孔が構成されていると共に、蓋ゴム40によって弁手段が構成されている。また、蓋ゴム40自体の有する弾性によって、該蓋ゴム40の材質や形状,寸法によって、蓋ゴム40が捲れあがって受圧室54と平衡室56が短絡状態となる設定負圧の大きさが設定されている。なお、この受圧室54の設定負圧は、受圧室54と平行室56の相対的な圧力差となるが、振動入力が瞬間的であることおよび平衡室56が略大気圧に保持されるようになっていること等から、一般に、受圧室54の圧力値と考えて差し支えない。
【0037】
また、図4及び5には、本発明の第二の実施形態としての自動車用エンジンマウント64が示されている。なお、以下の説明において、第一の実施形態と同様な構造とされた部材および部位については、図中に、第一の実施形態と同一の符号を付すことにより、それらの詳細な説明を省略する。
【0038】
すなわち、本実施形態のエンジンマウント64は、第一の実施形態のエンジンマウント(10)に比して、仕切部材46の凹所50に可動板部材としての可動板66が収容配置されている。
【0039】
より詳細には、可動板66は、ゴム弾性体によって形成されており、凹所50の深さ寸法よりも所定量だけ薄肉の厚さ寸法と、凹所50の内径寸法よりも僅かに小さな外径寸法を有する円板形状を有している。また、凹所50の底壁部には、複数の透孔68が形成されている。そして、可動板66は、凹所50の略全体に亘って広がるようにして、凹所50に収容配置されている。ここにおいて、本実施形態では、蓋ゴム40の内周部分42は、凹所50の上方まで延び出しており、それによって、蓋ゴム40の内周部分42と凹所50の底壁部との対向面間で、可動板66が板厚方向で所定量だけ変位可能とされていると共に、可動板66の板厚方向の変位量が制限されることとなり、複数の透孔68を通じての受圧室54と平衡室56の間での流体流動量が制限されるようになっている。このことから明らかなように、本実施形態では、凹所50によって収容凹所が形成されている。
【0040】
このような構造とされたエンジンマウント64においては、自動車への装着状態下で第一の取付金具12と第二の取付金具14の間に略上下方向の振動が入力されると、受圧室54と平衡室56の間に相対的な圧力差が生ぜしめられることに基づいて、それら両室54,56間において、オリフィス通路58を通じての流体流動や可動板66の変位に基づく複数の透孔を通じての実質的な流体流動が、生ぜしめられることとなる。特に、本実施形態では、オリフィス通路58がエンジンシェイク等の低周波数域にチューニングされており、エンジンシェイク等の低周波大振幅振動が入力された際には、蓋ゴム40自身が有する弾性力で凹溝52の開口部が覆蓋されることによって形成されたオリフィス通路58を通じて流動せしめられる流体の共振作用に基づいて、エンジンシェイク等の低周波大振幅振動に対して、有効な防振効果が発揮されることとなる。また、オリフィス通路58のチューニング周波数よりも高周波数域の走行こもり音等の高周波小振幅振動が入力された場合には、オリフィス通路58の流通抵抗が著しく増大することに伴って受圧室54に惹起される大きな圧力変動が可動板66の変位に基づいて平衡室56に逃されて軽減乃至は解消されることとなり、それによって、オリフィス通路58の実質的な閉塞化に起因する著しい高動ばね化が回避されて良好な防振性能が発揮され得ることとなる。
【0041】
一方、自動車のクランキングや急加減速等に際して、エンジンマウント10に衝撃的な大荷重が入力されることにより、受圧室54に予め定められた設定負圧より大きな負圧が生ぜしめられた場合には、蓋ゴム40の内周部分42が捲れあがって受圧室54と平衡室56の間での流体流動が凹溝52の上側開口部を通じて生ぜしめられることから、第一の実施形態と同様な効果を得ることが出来るのである。
【0042】
また、図6及び7には、本発明の第三の実施形態としてのエンジンマウント70が示されている。なお、以下の説明において、第一の実施形態と同様な構造とされた部材及び部位については、図中に、第一の実施形態と同一の符号を付すことにより、それらの詳細な説明を省略する。
【0043】
すなわち、本実施形態のエンジンマウント70は、第一の実施形態のエンジンマウント(10)に比して、蓋ゴム72が本体ゴム弾性体16と別体形成されている。この蓋ゴム72は、円環板形状を有しており、周方向全周に亘って略一定の断面形状とされている。また、蓋ゴム72の外径寸法は、大径部30の内径寸法と略同じとされていると共に、内径寸法は、凹所50の内径寸法と略同じとされている。更に、蓋ゴム72の外周部分には、リング金具74が埋設状態で加硫接着されている。なお、蓋ゴム72は、下面が平坦面とされていると共に、内周部分の上面が径方向内方に向かって下傾する傾斜面とされており、内周側に行くに従って厚さ寸法が次第に小さくされている。そして、蓋ゴム72は、段差部26と仕切部材46の外周部分との間で挟圧保持されることにより、段差部26の下面に沿って大径部30から径方向内方に突出する状態で配設されて、凹溝52の上側開口部を覆蓋することとなり、それによって、オリフィス通路58の壁部の一部が蓋ゴム72によって構成されている。このように蓋ゴム72が配設された状態下では、蓋ゴム72の内周部分73は、凹所38の下方において径方向内方に突出せしめられており、それによって、内周部分73が主に剪断変形を伴って厚さ方向に弾性変形可能とされている。また、本実施形態では、通常の振動入力時、即ち、オリフィス通路58のチューニング周波数域の振動入力時には、かかる蓋ゴム72自身が有する弾性力によって凹溝52の開口部が覆蓋されてオリフィス通路58が形成されており、それによって、オリフィス通路58による防振効果が有効に発揮されるようになっている。
【0044】
このような構造とされたエンジンマウント70においても、オリフィス通路58のチューニング周波数域の振動入力時には、蓋ゴム72自身が有する弾性力によって凹溝52が覆蓋されて形成されたオリフィス通路58による防振効果が発揮され得る一方、自動車のクランキングや急加減速等に際して、エンジンマウントに衝撃的な大荷重振動が入力されることにより、受圧室54に予め定められた設定負圧より大きな負圧が生ぜしめられた場合には、蓋ゴム72の内周部分73が上側に捲れて凹溝52の上側開口部が開口せしめられて、受圧室54と平衡室56の間での流体流動が凹溝52の上側開口部を通じて生ぜしめられることから、第一の実施形態と同様な効果を得ることが出来るのである。
【0045】
また、本実施形態では、蓋ゴム72が本体ゴム弾性体16と別体形成されていることから、蓋ゴム72の形成材料を本体ゴム弾性体16の形成材料と異ならせて蓋ゴム72のばね特性を変更することが可能となり、それによって、蓋ゴム72の内周部分73が捲れあがる際における受圧室54の負圧(設定負圧)の大きさを変更することが容易に出来る。
【0046】
また、図8及び9には、本発明の第四の実施形態としてのエンジンマウント76が示されている。なお、以下の説明において、第一の実施形態と同様な構造とされた部材及び部位については、図中に、第一の実施形態と同一の符号を付すことにより、それらの詳細な説明を省略する。
【0047】
すなわち、本実施形態のエンジンマウント76は、第一の実施形態のエンジンマウント(10)に比して、凹所50に可動部材としての可動板78が収容配置されていると共に、凹所50の上側開口部を閉塞するようにして蓋部材80が配設されている。また、蓋ゴム86が本体ゴム弾性体16と別体形成されている。更にまた、第二の取付金具14を構成する筒金具82が異なっている。
【0048】
より詳細には、可動板78は、第二の実施形態と同様に、ゴム弾性体によって形成されており、凹所50の深さ寸法よりも所定量だけ薄肉の厚さ寸法と、凹所50の内径寸法よりも僅かに小さな外径寸法を有する円板形状とされている。そして、可動板78は、凹所50の略全体に亘って広がるようにして、凹所50に収容配置されている。一方、蓋部材80は、硬質の合成樹脂材や金属等の硬質材によって形成された中央円板部84の外周面に対して、周方向全周に亘って略一定の断面形状を有する円環板形状の蓋ゴム86の内周面が加硫接着された構造とされている。また、蓋ゴム86の外径寸法は、仕切部材46の外径寸法よりも僅かに小さくされている。そして、蓋部材80は、仕切部材46の上面に対して同一中心軸上で重ね合せられて固着されており、それによって、凹溝52の上側開口部が凹溝52の溝幅方向内側で中央円板部84に固定的に支持されて凹溝52の溝幅方向内側から溝幅方向外側に向かって延び出すように配設された蓋ゴム86によって覆蓋されて、仕切部材46の外周部分に上壁部が蓋ゴム86によって構成されたオリフィス通路58が形成されており、かかるオリフィス通路58は、蓋ゴム86に形成された連通孔87によって受圧室54に開口せしめられている。ここにおいて、本実施形態では、蓋部材80を構成する中央円板部84が仕切部材46に固着されており、それによって、蓋ゴム86の外周部分が厚さ方向に弾性変形可能とされており、受圧室54に設定負圧より大きな負圧が生ぜしめられた際には、蓋ゴム86の外周部分が捲れあがるようになっていると共に、通常の振動入力時、即ち、オリフィス通路58のチューニング周波数域の振動入力時には、蓋ゴム86自身が有する弾性力によって凹溝52の開口部が覆蓋されてオリフィス通路58が形成されており、それによって、オリフィス通路58による防振効果が有効に発揮されるようになっている。また、凹所50の開口部が中央円板部84によって覆蓋されていることにより、中央円板部84と凹所50の底壁部との対向面間で可動板78が板厚方向で所定量だけ変位可能とされていると共に、可動板78の板厚方向の変位量が制限されることとなり、中央円板部84に形成された複数の上側透孔92と凹所50の底壁部に形成された複数の下側透孔94を通じての受圧室54と平衡室56の間での流体流動量が制限されるようになっている。また一方、筒金具82は、大径円筒形状の筒壁部88を備えており、筒壁部88の軸方向上端部には、径方向外方に広がるフランジ部90が一体形成された構造とされている。そして、仕切部材46は、可動板78が収容配置された凹所50の開口部を覆蓋するようにして蓋部材80が同一中心軸上で重ね合せられて固着された状態で、筒壁部88に圧入固定されることによって、筒壁部88の中心軸に対して略直交して広がる状態で第二の取付金具14を構成する筒金具82によって固定的に支持されている。このように筒金具82で固定的に支持された仕切部材46に対して、ダイヤフラム48と底金具24のフランジ状部34が、順次、重ね合せられて配設された後、筒壁部88の開口周縁部でかしめ固定されることによって、エンジンマウント76が構成されている。
【0049】
このような構造とされたエンジンマウント76においては、仕切部材46の凹所50に可動板78が配設されていると共に、凹溝52の上側開口部が蓋ゴム86によって流体密に閉塞されていることから、第二の実施形態と同様に、オリフィス通路58のチューニング周波数域の振動入力時には、蓋ゴム86自身が有する弾性力によって凹溝52の開口部が覆蓋されて形成されたオリフィス通路58による防振効果が発揮され得る一方、オリフィス通路58のチューニング周波数域よりも高周波側の振動入力時には、オリフィス通路58の流動抵抗が著しく増大することに伴って受圧室54に惹起される大きな圧力変動が可動板78の変位に基づいて平衡室56に逃されて軽減乃至は解消されることとなり、それによって、オリフィス通路58の実質的な閉塞化に起因する著しい高動ばね化が回避されて良好な防振性能が発揮され得ることとなる。
【0050】
一方、自動車のクランキングや急加減速等に際して、エンジンマウント76に衝撃的な大荷重振動が入力されることにより、受圧室54に予め定められた設定負圧より大きな負圧が生ぜしめられた場合には、図10に示されているように、蓋ゴム86の外側部分が捲れあがることにより、仕切部材46の外周部分に形成されているオリフィス通路58が実質的に消滅することとなり、受圧室54と平衡室56の間での流体流動が許容されることから、受圧室54に生ぜしめられる設定負圧よりも大きな負圧も、受圧室54と平衡室56の間での流体流動に基づいて、可及的速やかに解消されるのであり、それによって、受圧室54における気体の分離とそれに起因する衝撃的な音や振動が効果的に防止され得るのである。
【0051】
以上、本発明の幾つかの実施形態について詳述してきたが、これらはあくまでも例示であって、本発明は、かかる実施形態における具体的な記載によって、何等、限定的に解釈されるものではない。
【0052】
例えば、前記第一乃至第四の実施形態では、短絡通孔は、周方向に連続して延びる凹溝52の上側開口部によって構成されていたが、図11に示すように、オリフィス通路96の周上の一部分のみに設けられた通孔98で形成することも可能である。そのような場合には、蓋ゴム100は、通孔98の開口部を覆蓋する大きさを有していれば良い。
【0053】
また、本発明は、互いに同心的に若しくは偏心して配された第一の取付部材と第二の取付部材が本体ゴム弾性体で連結されていると共に、それら第一の取付部材と第二の取付部材の間を軸方向に貫通して延びる肉抜空所が周方向に略半周に亘って形成されている一方、第一の取付部材と第二の取付部材の間において本体ゴム弾性体により壁部の一部が構成されて振動入力時に圧力変化が生ぜしめられる受圧室が形成されていると共に、肉抜空所内に可撓性膜が配設されて可撓性膜と第二の取付部材の間において容積変化が容易に許容される平衡室が形成されており、それら受圧室と平衡室に非圧縮性流体が封入されていると共に、それら受圧室と平衡室を相互に連通するオリフィス通路が形成されている流体封入式防振装置に適用することも可能であり、このような流体封入式防振装置に本発明を適用する場合におけるオリフィス通路としては、受圧室の壁部に沿って蛇行するように延びるものや周方向1周以上の長さに亘って延びるものが望ましく、それによって、オリフィス通路の通路長手方向の中間部分を受圧室側に短絡せしめる短絡通路としての短絡通孔を形成することが可能となり、オリフィス通路を短絡する短絡通路を容易に形成することが出来る。
【0054】
また、前記第一乃至第四の実施形態では、オリフィス通路が一つの流体封入式防振装置に対して、本発明を適用したものの具体例が示されていたが、オリフィス通路が複数設けられた流体封入式防振装置に対して、本発明を適用することも、勿論、可能である。
【0055】
加えて、前記第一乃至第四の実施形態では、本発明を自動車用のエンジンマウントに適用したものの具体例を示したが、本発明は、その他、自動車のボデーマウントや、或いは自動車以外の各種装置に用いられる防振装置に対して、何れも、有利に適用され得る。
【0056】
その他、一々列挙はしないが、本発明は、当業者の知識に基づいて種々なる変更,修正,改良等を加えた態様において実施され得るものであり、また、そのような実施態様が、本発明の趣旨を逸脱しない限り、何れも、本発明の範囲内に含まれるものであることは、言うまでもない。
【0057】
【発明の効果】
上述の説明から明らかなように、本発明に従う構造とされた流体封入式防振装置においては、オリフィス通路を短絡せしめる弁手段によって短絡通路が連通せしめられることにより、衝撃的な大荷重の振動入力時に受圧室に惹起される設定負圧よりも大きな負圧が可及的速やかに解消され得て、受圧室での気体の分離に起因する大きな振動や異音の発生が防止され得る。
【図面の簡単な説明】
【図1】本発明の第一の実施形態としての自動車用エンジンマウントを示す縦断面図である。
【図2】図1におけるII−II断面図である。
【図3】図1に示されたエンジンマウントを構成する受圧室に設定負圧より大きな負圧が生ぜしめられた状態を示す要部拡大図である。
【図4】本発明の第二の実施形態としての自動車用エンジンマウントを示す縦断面図である。
【図5】図4におけるV−V断面図である。
【図6】本発明の第三の実施形態としての自動車用エンジンマウントを示す縦断面図である。
【図7】図6におけるVII−VII断面図である。
【図8】本発明の第四の実施形態としての自動車用エンジンマウントを示す縦断面図である。
【図9】図8におけるIX−IX断面図である。
【図10】図8に示されたエンジンマウントを構成する受圧室に設定負圧より大きな負圧が生ぜしめられた状態を示す要部拡大図である。
【図11】本発明における短絡通孔の他の実施形態を示す斜視図である。
【符号の説明】
10 エンジンマウント
12 第一の取付金具
14 第二の取付金具
16 本体ゴム弾性体
40 蓋ゴム
48 ダイヤフラム
54 受圧室
56 平衡室
58 オリフィス通路
[0001]
【Technical field】
The present invention relates to a fluid-filled vibration damping device that obtains a vibration-proofing effect based on the flow action of an incompressible fluid enclosed therein, for example, as an engine mount, body mount, differential mount, etc. for an automobile. The present invention relates to a fluid filled type vibration damping device that can be suitably employed.
[0002]
[Background]
Conventionally, in a vibration isolator interposed between members constituting a vibration transmission system, it has been proposed to use a vibration isolation effect based on a flow action such as a resonance action of an enclosed incompressible fluid, As one type, as disclosed in, for example, Japanese Patent Publication No. 4-17291 and Japanese Patent Publication No. 5-55739, a first attachment member attached to one member to be anti-vibration connected, and an anti-vibration connection The second mounting member to be attached to the other member is spaced apart from each other, and the first and second mounting members are connected to each other by the main rubber elastic body, while the main rubber elastic body has the wall portion A pressure receiving chamber in which a part is formed and pressure fluctuation is generated upon vibration input, and an equilibrium chamber in which a part of the wall part is formed of a flexible film and volume change is easily allowed are formed. Chamber and equilibrium chamber Fluid filled type vibration damping device provided with an orifice passage communicating with are known.
[0003]
In such a fluid-filled vibration isolator, an effective vibration isolating effect can be obtained based on the resonance action of the fluid flowing through the orifice passage, and a static initial load such as a power unit support load can be obtained in the mounted state. Even when a load is applied, the pressure change of the enclosed incompressible fluid can be reduced or avoided based on the volume change of the equilibrium chamber, and the desired vibration isolation effect based on the resonance action of the fluid can be stabilized. For example, it can be advantageously employed in an engine mount for automobiles.
[0004]
By the way, in such a fluid-filled vibration isolator having a conventional structure, when a shocking large load vibration is input, a relatively large vibration transmission may occur or shocking abnormal noise may occur. For example, when applied to an automobile engine mount, occurrence of such vibration and abnormal noise has been confirmed during engine cranking, sudden acceleration / deceleration, and the like. Conventionally, there has been an idea that such a phenomenon is caused by an increase in pressure in the pressure receiving chamber due to the fluid flow between the pressure receiving chamber and the equilibrium chamber being restricted by the orifice passage. Based on this, a structure for releasing the pressure in the pressure receiving chamber has been proposed as described in, for example, Japanese Patent Publication No. 7-107416.
[0005]
However, in the fluid-filled vibration isolator having such a structure, the pressure fluctuation in the pressure receiving chamber is missed even at the time of vibration input to be vibrated, and as a result, the amount of fluid flow through the orifice passage decreases, There is a problem that the desired vibration isolation effect based on the fluid flow action is lowered, and this is not always an effective measure.
[0006]
[Solution]
Here, the present invention has been made in the background as described above, and the problem to be solved is to ensure a sufficient amount of fluid flow through the orifice passage at the time of vibration input to be vibrated. On the other hand, it is an object of the present invention to provide a fluid-filled vibration isolator having a novel structure capable of reducing noise and impact when a shocking large load vibration is input with a simple structure.
[0007]
[Solution]
Hereinafter, the aspect of this invention made | formed in order to solve such a subject is described. In addition, the component employ | adopted in each aspect as described below is employable by arbitrary combinations as much as possible. In addition, aspects or technical features of the present invention are not limited to those described below, but are described in the entire specification and drawings, or can be understood by those skilled in the art from those descriptions. It should be understood that it is recognized on the basis of.
[0008]
First, the present inventors have made a number of studies on the mechanism that generates relatively large vibrations and shocking abnormal noises at the time of shocking heavy load vibration input, which has been a problem in fluid-filled vibration damping devices of the conventional structure. As a result of conducting experiments and studies, it was newly found out that a sudden increase in pressure in the pressure receiving chamber is not a problem, and that an excessive negative pressure generated in the pressure receiving chamber becomes a problem. As a result of many experiments and examinations, the inventors of the present invention have re-established the gas separated from the sealed fluid by the excessive negative pressure generated in the pressure receiving chamber by restricting the fluid flow through the orifice passage. We obtained new knowledge that relatively large vibration transmissions and shocking abnormal noises that occur when dissolved in water would be a problem, and the present invention is based on the new knowledge obtained in this way. It was completed by adding further consideration based on this.
[0009]
That is, according to the first aspect of the present invention, the first attachment member attached to one member to be vibration-isolated and the second attachment member attached to the other member to be anti-vibration connected are made of a main rubber elastic body. A pressure receiving chamber in which a part of the wall part is configured by the main rubber elastic body and incompressible fluid is enclosed, and a part of the wall part is configured by a flexible film so that the incompressible fluid is In a fluid-filled vibration isolator having an enclosed equilibrium chamber and an orifice passage that allows the pressure receiving chamber and the equilibrium chamber to communicate with each other, a short-circuit passage that short-circuits the orifice passage is formed, and the short-circuit passage Valve means is provided for connecting the short-circuit path and short-circuiting the orifice path only when a negative pressure greater than a preset negative pressure is generated in the pressure receiving chamber. And, as the short circuit passage, at least one short-circuit passage hole for short-circuiting the intermediate portion of the orifice passage in the longitudinal direction of the passage to the pressure receiving chamber is formed. This is a feature.
[0010]
In the fluid-filled vibration isolator having the structure according to this aspect, a negative pressure equal to or lower than a predetermined set negative pressure (a negative pressure whose absolute value is smaller than the set negative pressure) at the time of normal vibration input, that is, Is generated in the pressure receiving chamber, the short-circuit path is blocked by the valve means and the vibration isolation effect based on the resonance action of the fluid flowing through the orifice path can be effectively exhibited, while shocking heavy load vibration When the negative pressure in the pressure receiving chamber becomes larger than a predetermined set negative pressure, the pressure receiving chamber and the equilibrium chamber are connected by connecting the short-circuit passage by the valve means and short-circuiting the orifice passage. Fluid flow is allowed through the short-circuit passage with a small flow resistance, and the negative pressure larger than the set negative pressure generated in the pressure receiving chamber is eliminated as quickly as possible, resulting in a large vibration transmission. And it is that can suppress the gas separation in the pressure-receiving chamber which is a main cause of noise.
[0011]
Further, in this aspect, the fluid flow in the pressure receiving chamber and the equilibrium chamber is allowed through the short-circuit passage that short-circuits the orifice passage, so that the negative pressure larger than the set negative pressure generated in the pressure-receiving chamber is quickly eliminated. Therefore, for example, a liquid such as a movable plate as described in Japanese Patent Publication No. 4-17291 and a movable film as described in Japanese Utility Model Laid-Open No. 1-106651. It is possible to advantageously secure a space for disposing the pressure absorbing mechanism or a space for forming another orifice passage tuned differently from the orifice passage. A large fluid-filled vibration isolator can be easily realized.
[0012]
Note that the set negative pressure in this aspect is desirably set to a value smaller than the negative pressure at which the gas is separated from the incompressible fluid sealed in the pressure receiving chamber, that is, a negative pressure value that is small in absolute value. Further, the valve means in the present aspect is, for example, a case where the pressure detection value of the incompressible fluid by the pressure detection means disposed in the pressure receiving chamber is a negative pressure (a negative pressure having a large absolute value) greater than the set negative pressure. However, it is possible to configure the valve means by an elastic member using a metal spring or a rubber elastic body, such as a coil spring or a rubber plate. It is also possible to set the set negative pressure based on the elastic force possessed, thereby simplifying the structure of the valve means and thus the fluid-filled vibration isolator, and adjusting the material and dimensions of the elastic member to adjust the spring. It is possible to easily change the magnitude of the set negative pressure by changing the characteristics.
[0013]
Also ,Book According to the aspect, the short-circuit path can be advantageously realized by a simple structure.
[0014]
In addition, the first of the present invention two The aspect of the above one The fluid-filled vibration isolator according to the above aspect is characterized in that a plurality of the short-circuiting holes are provided so as to be located at a plurality of locations separated from each other in the longitudinal direction of the orifice passage. In the fluid-filled vibration isolator having the structure according to this aspect, it is possible to increase the opening area of the short-circuit passage, and thereby a negative pressure larger than the set negative pressure generated in the pressure receiving chamber. Can be resolved more quickly. The anti-vibration characteristics may be adjusted by making the through-hole cross-sectional areas of the plurality of short-circuit holes different from each other.
[0015]
In addition, the first of the present invention three The aspect of the above two In the fluid-filled vibration isolator according to the above aspect, in the plurality of valve means for blocking the plurality of short-circuit through holes, the set negative pressure that is in an open state is set to a plurality of different values. . In such a fluid-filled vibration isolator having a structure according to this aspect, as the set negative pressure increases, for example, the short-circuit hole that is opened is brought closer to the opening on the equilibrium chamber side in the orifice passage. By setting, the length of the orifice passage is shortened, or as the set negative pressure increases, for example, by increasing the number of short-circuit passage holes that are open, It is also possible to set the opening area to be large, thereby setting the set negative pressure in multiple stages and adjusting the flow resistance of the short circuit passage according to the magnitude of the negative pressure generated in the pressure receiving chamber Thus, it is possible to more efficiently eliminate the large negative pressure in the pressure receiving chamber while advantageously securing the fluid flow amount in the orifice passage.
[0016]
In addition, the first of the present invention Four The first to the second aspects three In the fluid-filled vibration isolator according to any one of the aspects, the opening on the pressure receiving chamber side in the short-circuit path is covered and a negative pressure larger than the set negative pressure is generated in the pressure receiving chamber. In this case, the valve means is constituted by a valve body that is elastically separated from the opening of the short-circuit passage. In the fluid-filled vibration isolator having the structure according to this aspect, the opening on the pressure receiving chamber side in the short-circuit path is formed at the time of normal vibration input in which a negative pressure equal to or lower than the set negative pressure is generated in the pressure receiving chamber. The valve means that stably covers and can quickly eliminate the negative pressure larger than the set negative pressure in the pressure receiving chamber can be advantageously realized with a simple structure. In addition, as a valve body in this aspect, for example, a peripheral part of a lid formed of a rubber elastic body that covers an opening on the pressure receiving chamber side is partially fixed to a member for forming a short circuit passage, and the lid itself Based on the elasticity of the cover, the opening on the pressure receiving chamber side is covered, or the cover that covers the opening on the pressure receiving chamber side is biased by a biasing means such as a coil spring in the direction of covering. Can be advantageously configured.
[0017]
In addition, the first of the present invention Five The aspect of the above Four In the fluid-filled vibration isolator according to the above aspect, an elastic lid is overlaid on the opening of the concave groove that opens and extends toward the pressure receiving chamber, and the elastic lid is placed on one side in the width direction of the concave groove. And at least a part of the orifice passage by covering the opening of the concave groove by extending the elastic lid body to the other side in the width direction of the concave groove, while supporting the elastic lid in a fixed manner. When a negative pressure larger than the set negative pressure is generated in the pressure receiving chamber, a portion of the elastic lid that extends to the other side in the width direction of the groove is at least in the longitudinal direction of the groove. The valve body is configured to be elastically separated from the opening of the concave groove in part. In such a fluid-filled vibration isolator having a structure according to this aspect, a negative pressure larger than the set negative pressure is generated in the pressure receiving chamber by skillfully using the elastic lid that forms the orifice passage. When the normal vibration is input, the opening of the concave groove is covered based on the elastic force of the elastic lid itself, and the orifice passage is formed. In other words, the valve body is more advantageously configured by utilizing the wall portion of the orifice passage.
[0018]
Further, in this aspect, for example, by changing the forming material or thickness dimension of the elastic lid, the elastic lid is generated in the pressure receiving chamber when the elastic lid is elastically separated from the opening of the concave groove. The negative pressure, that is, the predetermined set negative pressure can be easily set and changed.
[0019]
In addition, the first of the present invention Six The first to the second aspects Five In the fluid-filled vibration isolator according to any one of the aspects, a through-hole that connects the pressure-receiving chamber and the equilibrium chamber with a passage length shorter than the orifice passage short-circuited by the short-circuit passage is provided in the orifice passage. And a movable plate member that restricts the amount of fluid flow between the pressure receiving chamber and the equilibrium chamber through the through-hole. In the fluid-filled vibration isolator having the structure according to this aspect, the pressure increase in the pressure receiving chamber due to a significant increase in the flow resistance of the orifice passage at the time of vibration input in a frequency range higher than the tuning frequency of the orifice passage. Is avoided by the escape of the fluid pressure through the through hole based on the displacement of the movable plate member, thereby making it possible to obtain an effective vibration isolation effect in a plurality of or a wide frequency range.
[0020]
In addition, the first of the present invention Seven The first to the second aspects Six In the fluid-filled vibration isolator according to the above aspect, the first mounting member is disposed so as to be spaced apart from the one opening side of the cylindrical portion formed in the second mounting member. The main rubber elastic body connecting the mounting member and the second mounting member fluid-tightly closes the one opening of the cylindrical portion, and the other opening of the cylindrical portion is flexible. One side sandwiching the partitioning member is fluidly closed with a membrane while the partitioning member spreading substantially orthogonal to the central axis of the cylindrical portion is fixedly supported by the second mounting member The pressure receiving chamber is formed on the other side, and the equilibrium chamber is formed on the other side, and the orifice passage is formed so as to extend in the circumferential direction of the outer peripheral portion of the partition member. In the fluid-filled vibration isolator having the structure according to this aspect, it is possible to advantageously secure the passage length of the orifice passage, thereby improving the degree of freedom in designing the orifice passage, Such an orifice passage, a pressure receiving chamber and an equilibrium chamber can be formed with excellent space efficiency.
[0021]
In particular, this book Seven The aspect of the above Six It is desirable to employ in combination with this aspect, and thereby, the arrangement area of the movable plate member can also be advantageously ensured.
[0022]
In addition, the first of the present invention Eight The aspect of the above Five In the fluid-filled vibration isolator according to the above aspect, the first mounting member is disposed so as to be spaced apart from the one opening side of the cylindrical portion formed in the second mounting member. The main rubber elastic body connecting the mounting member and the second mounting member fluid-tightly closes the one opening of the cylindrical portion, and the other opening of the cylindrical portion is flexible. One side sandwiching the partitioning member is fluidly closed with a membrane while the partitioning member spreading substantially orthogonal to the central axis of the cylindrical portion is fixedly supported by the second mounting member Forming the pressure receiving chamber on the other side, forming the equilibration chamber on the other side, forming the concave groove so as to open to the pressure receiving chamber side at the outer peripheral portion of the partition member and extend in the circumferential direction by a predetermined length, By projecting radially inward from the cylindrical portion and overlapping the opening of the groove, the opening is formed. That constitutes the elastic cover member by an elastic protruding pieces for covering the part, characterized. According to this aspect, the target fluid-filled vibration isolator can be advantageously realized with a simple structure.
[0023]
In addition, the first of the present invention Nine The aspect of the above Eight In the fluid-filled vibration isolator according to the above aspect, a housing recess that opens to the pressure receiving chamber side is formed in the central portion of the partition member, and the penetrating through the bottom of the housing recess reaches the equilibrium chamber. A hole is provided to allow the pressure receiving chamber and the equilibrium chamber to communicate with each other through the through-hole with a path length shorter than the orifice path short-circuited by the short-circuit path, while spreading substantially over the entire accommodation recess. The movable plate member is housed in the housing recess, and the projecting tip portion of the elastic projecting piece extends to the housing recess so that the bottom of the housing recess and the opposing surface of the elastic projecting piece The amount of fluid flow between the pressure receiving chamber and the equilibrium chamber through the through hole is limited by limiting the amount of displacement of the movable plate member in the plate thickness direction. In the fluid-filled vibration isolator having the structure according to this aspect, the amount of displacement of the movable plate member in the thickness direction is limited by skillfully using the elastic protruding piece that covers the opening of the groove. Thus, the target fluid-filled vibration isolator can be realized more advantageously with a simpler structure.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, in order to clarify the present invention more specifically, embodiments of the present invention will be described in detail with reference to the drawings.
[0025]
First, FIG.1 and FIG.2 shows the engine mount 10 for motor vehicles as 1st embodiment of this invention. The engine mount 10 includes a first mounting bracket 12 as a first mounting member and a second mounting bracket 14 as a second mounting member that are spaced apart from each other. The second mounting bracket 14 has a structure in which the main rubber elastic body 16 is elastically connected. The first mounting bracket 12 is mounted on the power unit side of the automobile, while the second mounting bracket 14 is on the body side of the automobile. By attaching the power unit to the body, the power unit is supported to be vibration-proof with respect to the body. In the following description, the vertical direction means the vertical direction in FIG. 1 in principle.
[0026]
More specifically, the first mounting bracket 12 has a substantially disk shape as a whole, and a circular block-shaped central protrusion 18 is integrally formed on the upper surface thereof. Further, a mounting screw 20 projecting upward is integrally formed on the central protrusion 18, and the first mounting bracket 12 is attached to the power unit side by the mounting screw 20.
[0027]
On the other hand, the second mounting bracket 14 is composed of a cylindrical bracket 22 and a bottom bracket 24 as cylindrical portions. The cylindrical metal fitting 22 has a large-diameter stepped cylindrical shape, the small axial portion 28 is formed on the upper side in the axial direction with the step portion 26 formed in the intermediate portion in the axial direction, and the lower side in the axial direction is large. The diameter portion 30 is used. A flange portion 32 that extends radially outward is integrally formed in the upper opening of the small diameter portion 28. On the other hand, the bottom metal fitting 24 has a large-diameter shallow bottomed cylindrical shape as a whole, and a flange-like portion 34 that extends outward in the radial direction is integrally formed at the peripheral edge of the opening. And the bottom metal fitting 24 is inserted in the large diameter part 30 of the cylindrical metal fitting 22, and the opening peripheral part of the large diameter part 30 is caulked and fixed to the flange-like part 34 of the bottom metal fitting 24, so that the second The mounting bracket 14 is formed with a substantially bottomed cylindrical shape with a deep bottom as a whole. Further, a mounting bolt 36 that protrudes downward is fixed at the center of the bottom of the bottom bracket 24, and the second mounting bracket 14 is attached to the body side of an automobile (not shown) by the mounting bolt 36. It is like that.
[0028]
The first mounting bracket 12 is disposed on the substantially same central axis at a predetermined distance above the second mounting bracket 14 in the axial direction, and the first mounting bracket 12 and the second mounting bracket 12 are attached to each other. A main rubber elastic body 16 is interposed between the metal fittings 14. The main rubber elastic body 16 has a large-diameter, generally hollow frustoconical shape, and the first mounting bracket 12 is superimposed on the small-diameter side end surface and vulcanized and bonded, while the large-diameter side end portion The outer peripheral portion is vulcanized and bonded in a state where the small diameter portion 28 of the cylindrical fitting 22 constituting the second mounting fitting 14 is embedded. As a result, the opening on the upper side in the axial direction of the cylindrical fitting 22 is fluid-tightly closed by the main rubber elastic body 16. A mortar-shaped recess 38 that opens into the cylindrical metal fitting 22 is formed on the large-diameter side end face of the main rubber elastic body 16.
[0029]
Further, a cover rubber 40 as an elastic protruding piece is formed on the upper end portion of the large-diameter portion 30 of the cylindrical fitting 22 so as to protrude inward in the radial direction. The lid rubber 40 has an annular plate shape and has a substantially constant cross-sectional shape over the entire circumference in the circumferential direction. The lid rubber 40 has the upper surface of the outer peripheral edge portion vulcanized and bonded to the lower surface of the step portion 26, and the outer peripheral surface is vulcanized and bonded to the inner peripheral surface of the large diameter portion 30. It is located below the portion 26 so as to protrude radially inward from the large diameter portion 30.
[0030]
Furthermore, the inner diameter dimension of the cover rubber 40 is smaller than the inner diameter dimension of the small diameter portion 28 of the cylindrical metal fitting 22, and the inner peripheral portion 42 of the cover rubber 40 is directed radially inward below the small diameter portion 28. It is protruding. The cover rubber 40 is a flat surface whose axial lower surface extends in a direction substantially perpendicular to the axis, and the upper surface of the inner peripheral portion 42 that protrudes radially inward is directed downward in the radial direction. It is set as the inclined surface which inclines, and the thickness dimension is made small gradually as it goes to an inner peripheral side. In particular, in this embodiment, the inner diameter dimension of the cover rubber 40 is the same as or slightly smaller than the inner diameter dimension of the opening of the central recess 50 of the partition member 46 described later. Further, in the present embodiment, the main rubber elastic body 16 extends to the step portion 26 in a thin film shape along the inner peripheral surface of the small diameter portion 28 of the cylindrical metal member 22, and the cover rubber 40 is integrated with the main rubber elastic body 16. It is formed as a formed integrally vulcanized molded product.
[0031]
The lid rubber 40 is configured such that an inner peripheral portion 42 projected radially inward at the opening of the recess 38 can be elastically deformed in the thickness direction mainly with shear deformation. Here, in this embodiment, the elastic deformation characteristics of the cover rubber 40 determine the set pressure of the pressure receiving chamber 54 to be described later. Therefore, for example, the forming material of the cover rubber 40 and the thickness dimension of the inner peripheral portion 42 are determined. By changing the shape or the like, the magnitude of the negative pressure (set negative pressure) generated in the pressure receiving chamber 54 when the inner peripheral portion 42 of the cover rubber 40 is elastically deformed can be set and changed.
[0032]
In addition, a partition member 46 and a diaphragm 48 as a flexible film are sequentially inserted and arranged in the large-diameter portion 26 of the cylindrical fitting 22. The partition member 46 is formed of a hard material such as a hard synthetic resin material or a metal material, and has a thick disk shape as a whole. In addition, a circular recess 50 that opens upward is formed at the central portion of the partition member 46 so as to expand at a substantially constant depth, and the outer peripheral portion opens upward and has a predetermined length in the circumferential direction. A concave groove 52 extending continuously is formed. The partition member 46 is inserted into the large-diameter portion 26 of the cylindrical metal fitting 22, and the outer peripheral portion is overlapped with the cover rubber 40, along with the flange-shaped portion 34 of the bottom metal fitting 24, at the opening peripheral edge portion of the large-diameter portion 26. By caulking and fixing, the second mounting bracket 14 is fixedly supported in a state of spreading substantially perpendicular to the central axis of the cylindrical bracket 22. On the other hand, the diaphragm 48 is formed of a thin rubber film that can be easily deformed, and the outer peripheral portion is slackened so as to be easily deformed. The diaphragm 48 is inserted into the large-diameter portion 26 of the tubular metal fitting 22, and the outer peripheral edge portion thereof is overlapped with the outer peripheral edge portion of the lower surface of the partition member 46, together with the flange-shaped portion 34 of the bottom metal fitting 24. By being caulked and fixed at the peripheral edge of the opening of the portion 26, the lower opening of the cylindrical fitting 22 is attached to the second attachment fitting 14 in a state of fluidly closing.
[0033]
Thereby, the opening part of the axial direction both sides of the cylindrical metal fitting 22 is obstruct | occluded fluid-tightly by the main body rubber elastic body 16 and the diaphragm 48, and was interrupted | blocked from external space between the opposing surfaces of the main body rubber elastic body 16 and the diaphragm 48. A sealed region is formed. In addition, the sealed region is fluid-divided into two by the partition member 46, so that a part of the wall portion is configured by the main rubber elastic body 16 on the upper side of the partition member 46, so that the incompressible fluid flows. While the enclosed pressure receiving chamber 54 is formed, an equilibrium chamber 56 in which a part of the wall portion is constituted by a diaphragm 48 and incompressible fluid is enclosed is formed below the partition member 46. . As the incompressible fluid sealed in the pressure receiving chamber 54 and the equilibrium chamber 56, for example, water, alkylene glycol, polyalkylene glycol, silicone oil, or the like can be used. In order to effectively obtain the anti-vibration effect based on this, a low-viscosity fluid having a viscosity of 0.1 Pa · s or less is preferably employed.
[0034]
Further, the outer peripheral edge of the partition member 46 is in pressure contact with the lower surface of the lid rubber 40 over the entire circumference in the circumferential direction, so that the upper opening of the concave groove 52 provided in the partition member 46 is covered with the lid. An orifice passage 58 is formed that is fluid-tightly closed by the rubber 40 and extends continuously in the circumferential direction over a predetermined length in the circumferential direction of the partition member 46. As is clear from this, in this embodiment, a part of the wall portion (upper wall portion) of the orifice passage 58 is constituted by the cover rubber 40, and the tuning of the orifice passage 58 is performed during normal vibration input. At the time of vibration input in the frequency range, the upper opening of the groove 52 is fluid-tight because the elastic force of the cover rubber 40 itself holds the cover rubber 40 so as to cover the upper opening of the groove 52. An orifice passage 58 is formed by being covered. The orifice passage 58 has one end in the circumferential direction opened to the pressure receiving chamber 54 by a notch 60 provided at one place on the circumference of the inner peripheral portion 42 of the cover rubber 40, while the other end in the circumferential direction The end portion is opened to the equilibrium chamber 56 by a communication hole 62 provided in the partition member 46, whereby the pressure receiving chamber 54 and the equilibrium chamber 56 are communicated with each other by the orifice passage 58.
[0035]
In the engine mount 10 having such a structure, when vibration in a substantially vertical direction is input between the first mounting bracket 12 and the second mounting bracket 14 in a mounted state on the automobile, the pressure receiving chamber 54 is received. Based on the fact that a relative pressure difference is generated between the two chambers 54 and 56, fluid flow through the orifice passage 58 is generated between the two chambers 54 and 56. In particular, in the present embodiment, the orifice passage 58 is tuned to a low frequency region such as an engine shake, and when low frequency large amplitude vibration such as an engine shake is input, the elastic force of the lid rubber 40 itself is used. The upper opening of the recessed groove 52 is held in a cover state to form an orifice passage 58. Based on the resonance action of the fluid that flows through the orifice passage 58, low-frequency large-amplitude vibration such as engine shake is generated. On the other hand, an effective anti-vibration effect is exhibited.
[0036]
On the other hand, a negative pressure greater than a preset negative pressure is generated in the pressure receiving chamber 54 by inputting a shocking large load vibration to the engine mount 10 during cranking or sudden acceleration / deceleration of the automobile. In this case, as shown in FIG. 3, the inner peripheral portion 42 of the cover rubber 40 is elastically separated from the upper opening portion of the concave groove 52 so that the inner peripheral portion 42 of the lid rubber 40 is rolled up. The upper opening of the groove 52 is opened, and the orifice passage 58 formed so as to extend in the circumferential direction of the outer peripheral portion of the partition member 46 is substantially eliminated, so that the pressure receiving chamber 54 and the equilibrium chamber 56 The fluid flow between them is generated through the upper opening of the concave groove 52 of the partition member 46. As a result, the large negative pressure generated in the pressure receiving chamber 54 is eliminated as quickly as possible, and gas separation in the pressure receiving chamber 54 and impact sound and vibration resulting therefrom can be effectively prevented. . As is clear from this, in the present embodiment, a short-circuit passage hole as a short-circuit passage is formed by the upper opening portion of the concave groove 52, and a valve means is formed by the lid rubber 40. Also, the magnitude of the set negative pressure at which the cover rubber 40 is swollen and the pressure receiving chamber 54 and the equilibrium chamber 56 are short-circuited is set depending on the material, shape, and dimensions of the cover rubber 40 by the elasticity of the cover rubber 40 itself. Has been. The set negative pressure of the pressure receiving chamber 54 is a relative pressure difference between the pressure receiving chamber 54 and the parallel chamber 56. However, the vibration input is instantaneous and the equilibrium chamber 56 is maintained at a substantially atmospheric pressure. Therefore, in general, it can be considered as the pressure value of the pressure receiving chamber 54.
[0037]
4 and 5 show an automobile engine mount 64 as a second embodiment of the present invention. In the following description, members and parts having the same structure as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and detailed descriptions thereof are omitted. To do.
[0038]
That is, in the engine mount 64 of this embodiment, a movable plate 66 as a movable plate member is accommodated in the recess 50 of the partition member 46 as compared with the engine mount (10) of the first embodiment.
[0039]
More specifically, the movable plate 66 is formed of a rubber elastic body, and has an outer thickness slightly smaller than a depth dimension of the recess 50 and a thickness dimension that is thinner than the depth dimension of the recess 50 and an inner diameter dimension of the recess 50. It has a disk shape with a radial dimension. A plurality of through holes 68 are formed in the bottom wall portion of the recess 50. The movable plate 66 is accommodated in the recess 50 so as to spread over substantially the entire recess 50. Here, in the present embodiment, the inner peripheral portion 42 of the cover rubber 40 extends to the upper side of the recess 50, whereby the inner peripheral portion 42 of the cover rubber 40 and the bottom wall portion of the recess 50. Between the opposing surfaces, the movable plate 66 can be displaced by a predetermined amount in the plate thickness direction, and the amount of displacement of the movable plate 66 in the plate thickness direction is limited, so that the pressure receiving chambers through the plurality of through holes 68 are limited. The amount of fluid flow between 54 and the equilibrium chamber 56 is limited. As is clear from this, in the present embodiment, the accommodation recess is formed by the recess 50.
[0040]
In the engine mount 64 having such a structure, when a vibration in a substantially vertical direction is input between the first mounting bracket 12 and the second mounting bracket 14 in a mounted state on the automobile, the pressure receiving chamber 54 is received. Between the two chambers 54 and 56, through the plurality of through holes based on the fluid flow through the orifice passage 58 and the displacement of the movable plate 66. Substantial fluid flow will be generated. In particular, in this embodiment, the orifice passage 58 is tuned to a low frequency region such as an engine shake, and when low frequency large amplitude vibration such as an engine shake is input, the elastic force of the lid rubber 40 itself is used. Based on the resonance action of the fluid flowing through the orifice passage 58 formed by covering the opening of the concave groove 52, an effective vibration-proofing effect is exhibited against low-frequency large-amplitude vibration such as engine shake. Will be. Further, when high-frequency small amplitude vibration such as a running-over noise in a frequency range higher than the tuning frequency of the orifice passage 58 is input, it is caused in the pressure receiving chamber 54 as the flow resistance of the orifice passage 58 increases remarkably. The large pressure fluctuation is released to the equilibrium chamber 56 on the basis of the displacement of the movable plate 66 and is reduced or eliminated, so that a significant high dynamic spring due to substantial obstruction of the orifice passage 58 is achieved. Can be avoided and good vibration-proof performance can be exhibited.
[0041]
On the other hand, when a shocking large load is input to the engine mount 10 during the cranking or sudden acceleration / deceleration of the automobile, a negative pressure greater than a preset negative pressure is generated in the pressure receiving chamber 54. Since the inner peripheral portion 42 of the lid rubber 40 is rolled up, the fluid flow between the pressure receiving chamber 54 and the equilibrium chamber 56 is generated through the upper opening of the concave groove 52, so that the same as in the first embodiment. It is possible to obtain a special effect.
[0042]
6 and 7 show an engine mount 70 as a third embodiment of the present invention. In the following description, members and parts having the same structure as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and detailed descriptions thereof are omitted. To do.
[0043]
That is, the engine mount 70 of this embodiment has a lid rubber 72 formed separately from the main rubber elastic body 16 as compared with the engine mount (10) of the first embodiment. The lid rubber 72 has an annular plate shape and has a substantially constant cross-sectional shape over the entire circumference in the circumferential direction. The outer diameter of the lid rubber 72 is substantially the same as the inner diameter of the large-diameter portion 30, and the inner diameter is substantially the same as the inner diameter of the recess 50. Further, a ring metal fitting 74 is vulcanized and bonded to the outer peripheral portion of the lid rubber 72 in an embedded state. The lid rubber 72 has a flat bottom surface and an inclined surface in which the upper surface of the inner peripheral portion is inclined downward inward in the radial direction, and the thickness dimension increases toward the inner peripheral side. It is gradually getting smaller. The cover rubber 72 is held between the step portion 26 and the outer peripheral portion of the partition member 46 so as to protrude radially inward from the large-diameter portion 30 along the lower surface of the step portion 26. Thus, the upper opening of the concave groove 52 is covered, whereby a part of the wall portion of the orifice passage 58 is constituted by the cover rubber 72. In the state in which the cover rubber 72 is disposed in this way, the inner peripheral portion 73 of the cover rubber 72 is protruded radially inward below the recess 38, whereby the inner peripheral portion 73 is formed. It can be elastically deformed in the thickness direction mainly with shear deformation. In the present embodiment, at the time of normal vibration input, that is, at the time of vibration input in the tuning frequency range of the orifice passage 58, the opening of the concave groove 52 is covered by the elastic force of the cover rubber 72 itself, and the orifice passage 58. Thus, the vibration isolation effect by the orifice passage 58 is effectively exhibited.
[0044]
Even in the engine mount 70 having such a structure, when the vibration in the tuning frequency region of the orifice passage 58 is input, the vibration is prevented by the orifice passage 58 formed by covering the concave groove 52 by the elastic force of the lid rubber 72 itself. While the effect can be exhibited, a negative pressure larger than a preset negative pressure is set in the pressure receiving chamber 54 by inputting a shocking large load vibration to the engine mount when the vehicle is cranked or suddenly accelerated or decelerated. When generated, the inner peripheral portion 73 of the cover rubber 72 is turned upward to open the upper opening of the groove 52, and the fluid flow between the pressure receiving chamber 54 and the equilibrium chamber 56 is recessed. Since it is generated through the upper opening 52, the same effect as in the first embodiment can be obtained.
[0045]
In this embodiment, since the cover rubber 72 is formed separately from the main rubber elastic body 16, the cover rubber 72 is made of a material different from that of the main rubber elastic body 16 and the spring of the cover rubber 72. It becomes possible to change the characteristics, and thereby, it is possible to easily change the magnitude of the negative pressure (set negative pressure) in the pressure receiving chamber 54 when the inner peripheral portion 73 of the lid rubber 72 rises.
[0046]
8 and 9 show an engine mount 76 as a fourth embodiment of the present invention. In the following description, members and parts having the same structure as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and detailed descriptions thereof are omitted. To do.
[0047]
That is, the engine mount 76 of this embodiment has a movable plate 78 as a movable member accommodated in the recess 50 as compared with the engine mount (10) of the first embodiment. A lid member 80 is disposed so as to close the upper opening. The lid rubber 86 is formed separately from the main rubber elastic body 16. Furthermore, the cylinder fitting 82 which comprises the 2nd attachment bracket 14 differs.
[0048]
More specifically, the movable plate 78 is formed of a rubber elastic body as in the second embodiment, and has a thickness dimension that is thinner than the depth dimension of the recess 50 by a predetermined amount, and the recess 50. It is made into the disc shape which has an outer diameter dimension slightly smaller than the inner diameter dimension of. The movable plate 78 is accommodated in the recess 50 so as to spread over substantially the entire recess 50. On the other hand, the lid member 80 is an annular ring having a substantially constant cross-sectional shape over the entire circumference in the circumferential direction with respect to the outer circumferential surface of the central disc portion 84 formed of a hard synthetic resin material or a hard material such as metal. The inner peripheral surface of the plate-shaped lid rubber 86 is vulcanized and bonded. Further, the outer diameter of the cover rubber 86 is slightly smaller than the outer diameter of the partition member 46. The lid member 80 is overlapped and fixed on the same central axis with respect to the upper surface of the partition member 46, whereby the upper opening of the concave groove 52 is centered on the inner side in the groove width direction of the concave groove 52. Covered by a cover rubber 86 that is fixedly supported by the disk portion 84 and extends from the inner side in the groove width direction of the concave groove 52 toward the outer side in the groove width direction. An orifice passage 58 having an upper wall portion made of a cover rubber 86 is formed. The orifice passage 58 is opened in the pressure receiving chamber 54 by a communication hole 87 formed in the cover rubber 86. Here, in this embodiment, the central disk part 84 which comprises the cover member 80 is being fixed to the partition member 46, and, thereby, the outer peripheral part of the cover rubber 86 is made elastically deformable in the thickness direction. When the negative pressure larger than the set negative pressure is generated in the pressure receiving chamber 54, the outer peripheral portion of the cover rubber 86 is swollen and at the time of normal vibration input, that is, the tuning of the orifice passage 58. At the time of vibration input in the frequency range, the opening of the concave groove 52 is covered by the elastic force of the cover rubber 86 itself to form the orifice passage 58, thereby effectively exhibiting the vibration isolation effect by the orifice passage 58. It has become so. Further, since the opening of the recess 50 is covered with the central disk portion 84, the movable plate 78 is positioned in the thickness direction between the opposed surfaces of the central disk portion 84 and the bottom wall portion of the recess 50. The amount of displacement of the movable plate 78 in the thickness direction is limited, and the plurality of upper through holes 92 formed in the central disk portion 84 and the bottom wall portion of the recess 50 The amount of fluid flow between the pressure receiving chamber 54 and the equilibrium chamber 56 through the plurality of lower through holes 94 formed in the above is limited. On the other hand, the cylindrical fitting 82 includes a cylindrical wall portion 88 having a large-diameter cylindrical shape, and a flange portion 90 that extends radially outward is integrally formed at the axial upper end portion of the cylindrical wall portion 88. Has been. The partition member 46 is in a state where the cover member 80 is overlapped and fixed on the same central axis so as to cover the opening of the recess 50 in which the movable plate 78 is accommodated and disposed, and the cylindrical wall portion 88. By being press-fitted and fixed to the cylindrical wall portion 88, it is fixedly supported by the cylindrical fitting 82 constituting the second mounting fitting 14 in a state of spreading substantially perpendicularly to the central axis of the cylindrical wall portion 88. After the diaphragm 48 and the flange-like portion 34 of the bottom fitting 24 are sequentially stacked on the partition member 46 fixedly supported by the tubular fitting 82 in this manner, The engine mount 76 is configured by caulking and fixing at the periphery of the opening.
[0049]
In the engine mount 76 having such a structure, the movable plate 78 is disposed in the recess 50 of the partition member 46, and the upper opening of the groove 52 is fluid-tightly closed by the lid rubber 86. Therefore, similarly to the second embodiment, when vibration is input in the tuning frequency range of the orifice passage 58, the orifice passage 58 formed by covering the opening of the groove 52 with the elastic force of the lid rubber 86 itself. On the other hand, at the time of vibration input at a frequency higher than the tuning frequency range of the orifice passage 58, a large pressure fluctuation caused in the pressure receiving chamber 54 due to a significant increase in the flow resistance of the orifice passage 58. Is released to the equilibrium chamber 56 based on the displacement of the movable plate 78 and is reduced or eliminated, whereby the orifice passage 5 Significant high dynamic spring due to the substantial blockage of is that good vibration damping ability is avoided can be exhibited in.
[0050]
On the other hand, when a car is cranked, suddenly accelerated or decelerated, a shocking large load vibration is input to the engine mount 76, so that a negative pressure larger than a predetermined negative pressure is generated in the pressure receiving chamber 54. In this case, as shown in FIG. 10, when the outer portion of the cover rubber 86 is rolled up, the orifice passage 58 formed in the outer peripheral portion of the partition member 46 is substantially extinguished, and the pressure receiving pressure is received. Since fluid flow between the chamber 54 and the equilibrium chamber 56 is allowed, a negative pressure larger than the set negative pressure generated in the pressure receiving chamber 54 is also caused in the fluid flow between the pressure receiving chamber 54 and the equilibrium chamber 56. Based on this, it is eliminated as quickly as possible, whereby the separation of the gas in the pressure receiving chamber 54 and the impulsive sound and vibration resulting therefrom can be effectively prevented.
[0051]
As mentioned above, although several embodiment of this invention has been explained in full detail, these are illustrations to the last, Comprising: This invention is not limited at all by the specific description in this embodiment. .
[0052]
For example, in the first to fourth embodiments, the short-circuit passage hole is constituted by the upper opening portion of the concave groove 52 continuously extending in the circumferential direction. However, as shown in FIG. It is also possible to form the through hole 98 provided only in a part on the circumference. In such a case, the lid rubber 100 may have a size that covers the opening of the through hole 98.
[0053]
Further, according to the present invention, the first mounting member and the second mounting member arranged concentrically or eccentrically with each other are connected by the main rubber elastic body, and the first mounting member and the second mounting member are connected. A hollow space extending through the members in the axial direction is formed over a substantially half circumference in the circumferential direction, and a wall is formed by the main rubber elastic body between the first mounting member and the second mounting member. And a pressure receiving chamber in which a pressure change is generated when a vibration is input is formed, and a flexible film is disposed in the empty space, and the flexible film and the second mounting member Are formed with an equilibrium chamber in which volume change is easily allowed, an incompressible fluid is sealed in the pressure receiving chamber and the equilibrium chamber, and an orifice passage that communicates the pressure receiving chamber and the equilibrium chamber with each other. It can also be applied to fluid filled vibration isolator In the case where the present invention is applied to such a fluid-filled type vibration isolator, the orifice passage extends so as to meander along the wall of the pressure receiving chamber, or has a length of at least one circumference in the circumferential direction. It is desirable to extend over the entire length of the orifice passage, thereby making it possible to form a short-circuit passage hole as a short-circuit passage for short-circuiting the intermediate portion in the longitudinal direction of the orifice passage to the pressure receiving chamber side, thereby facilitating the short-circuit passage for short-circuiting the orifice passage Can be formed.
[0054]
In the first to fourth embodiments, specific examples of applying the present invention to the fluid-filled vibration isolator having one orifice passage are shown, but a plurality of orifice passages are provided. Of course, the present invention can also be applied to a fluid-filled vibration isolator.
[0055]
In addition, in the first to fourth embodiments, specific examples of applying the present invention to an engine mount for an automobile have been shown. However, the present invention is not limited to the body mount of an automobile or various other than an automobile. Any of the vibration isolator used in the apparatus can be advantageously applied.
[0056]
In addition, although not enumerated one by one, the present invention can be carried out in a mode to which various changes, modifications, improvements and the like are added based on the knowledge of those skilled in the art. It goes without saying that all are included in the scope of the present invention without departing from the spirit of the present invention.
[0057]
【The invention's effect】
As is apparent from the above description, in the fluid filled type vibration isolator constructed in accordance with the present invention, the short-circuit path is connected by the valve means for short-circuiting the orifice path, so that a shock input of a heavy load is received. A negative pressure larger than a set negative pressure sometimes caused in the pressure receiving chamber can be eliminated as quickly as possible, and generation of large vibrations and abnormal noise due to gas separation in the pressure receiving chamber can be prevented.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an automobile engine mount as a first embodiment of the present invention.
FIG. 2 is a cross-sectional view taken along the line II-II in FIG.
FIG. 3 is an enlarged view of a main part showing a state in which a negative pressure larger than a set negative pressure is generated in a pressure receiving chamber constituting the engine mount shown in FIG. 1;
FIG. 4 is a longitudinal sectional view showing an automobile engine mount as a second embodiment of the present invention.
5 is a cross-sectional view taken along line VV in FIG.
FIG. 6 is a longitudinal sectional view showing an automobile engine mount as a third embodiment of the present invention.
7 is a cross-sectional view taken along the line VII-VII in FIG.
FIG. 8 is a longitudinal sectional view showing an automobile engine mount as a fourth embodiment of the present invention.
9 is a cross-sectional view taken along line IX-IX in FIG.
10 is an enlarged view of a main part showing a state in which a negative pressure larger than a set negative pressure is generated in a pressure receiving chamber constituting the engine mount shown in FIG. 8;
FIG. 11 is a perspective view showing another embodiment of the short-circuit hole in the present invention.
[Explanation of symbols]
10 Engine mount
12 First mounting bracket
14 Second mounting bracket
16 Body rubber elastic body
40 lid rubber
48 Diaphragm
54 Pressure receiving chamber
56 Equilibrium room
58 Orifice passage

Claims (7)

防振連結される一方の部材に取り付けられる第一の取付部材と防振連結される他方の部材に取り付けられる第二の取付部材を本体ゴム弾性体で連結せしめて、該本体ゴム弾性体で壁部の一部が構成されて非圧縮性流体が封入された受圧室と、壁部の一部が可撓性膜で構成されて非圧縮性流体が封入された平衡室を形成すると共に、それら受圧室と平衡室を相互に連通せしめるオリフィス通路を設けた流体封入式防振装置において、
前記オリフィス通路を短絡する短絡通路を形成すると共に、該短絡通路を遮断せしめて予め定められた設定負圧よりも大きな負圧が前記受圧室に生ぜしめられた場合にだけ該短絡通路を連通せしめて該オリフィス通路を短絡させる弁手段を設け、且つ、該短絡通路として、該オリフィス通路における通路長手方向の中間部分を該受圧室に短絡せしめる短絡通孔を少なくとも一つ形成したことを特徴とする流体封入式防振装置。
A first attachment member attached to one member to be anti-vibration connected and a second attachment member attached to the other member to be anti-vibration connected are connected by a main rubber elastic body, and the main rubber elastic body is used as a wall. A pressure receiving chamber in which a part of the portion is configured and sealed with an incompressible fluid, and an equilibrium chamber in which a part of the wall is configured with a flexible film and in which the incompressible fluid is sealed. In the fluid-filled vibration isolator having an orifice passage that allows the pressure receiving chamber and the equilibrium chamber to communicate with each other,
A short-circuit path for short-circuiting the orifice path is formed, and the short-circuit path is closed only when a negative pressure larger than a preset negative pressure is generated in the pressure receiving chamber by blocking the short-circuit path. Valve means for short-circuiting the orifice passage , and at least one short-circuit passage hole for short-circuiting the intermediate portion in the longitudinal direction of the orifice passage to the pressure receiving chamber is formed as the short-circuit passage. Fluid-filled vibration isolator.
前記短絡通路における前記受圧室側の開口部を覆蓋すると共に、該受圧室に対して前記設定負圧よりも大きな負圧が生ぜしめられた場合に該短絡通路の開口部から弾性的に離隔せしめられる弁体によって、前記弁手段を構成した請求項1に記載の流体封入式防振装置。The opening on the pressure receiving chamber side in the short circuit passage is covered, and when a negative pressure larger than the set negative pressure is generated in the pressure receiving chamber, the opening is elastically separated from the opening of the short circuit passage. the valve body to be a fluid-filled vibration damping device according to claim 1 which constitute the valve means. 前記受圧室側に開口して延びる凹溝の開口部に弾性蓋体を重ね合わせて、該弾性蓋体を該凹溝の溝幅方向一方の側で固定的に支持せしめると共に、該弾性蓋体を該凹溝の溝幅方向他方の側に延び出させて該凹溝の開口部を覆蓋せしめることにより、前記オリフィス通路の少なくとも一部を構成せしめて、該受圧室に対して前記設定負圧よりも大きな負圧が生ぜしめられた場合に該弾性蓋体における該凹溝の溝幅方向他方の側に延び出した部分が該凹溝の溝長方向の少なくとも一部において該凹溝の開口部から弾性的に離隔せしめられるようにして前記弁体を構成した請求項に記載の流体封入式防振装置。An elastic lid is overlaid on the opening of the concave groove that opens and extends toward the pressure receiving chamber, and the elastic lid is fixedly supported on one side in the groove width direction of the concave groove, and the elastic lid Is extended to the other side in the groove width direction of the concave groove to cover the opening of the concave groove, thereby forming at least a part of the orifice passage, and the set negative pressure with respect to the pressure receiving chamber When a larger negative pressure is generated, a portion of the elastic lid that extends to the other side in the groove width direction of the groove is an opening of the groove in at least a part of the groove length direction. The fluid filled type vibration damping device according to claim 2 , wherein the valve body is configured to be elastically separated from a portion. 前記短絡通路によって短絡された前記オリフィス通路よりも更に短い通路長さで前記受圧室と前記平衡室を連通せしめる透孔を、該オリフィス通路から独立して形成すると共に、該透孔を通じての該受圧室と該平衡室の間での流体流動量を制限する可動板部材を設けた請求項1乃至の何れかに記載の流体封入式防振装置。The pressure receiving chamber and the equilibrium chamber having a passage length shorter than the orifice passage short-circuited by the short-circuiting passage are formed independently from the orifice passage, and the pressure receiving through the through-hole is formed. The fluid-filled vibration isolator according to any one of claims 1 to 3 , further comprising a movable plate member that limits a fluid flow amount between the chamber and the equilibrium chamber. 前記第二の取付部材に形成された筒状部の一方の開口部側に離隔して前記第一の取付部材を配設せしめて、それら第一の取付部材と第二の取付部材を連結する前記本体ゴム弾性体で該筒状部の該一方の開口部を流体密に閉塞すると共に、該筒状部の他方の開口部を前記可撓性膜で流体密に閉塞する一方、該筒状部の中心軸に対して略直交して広がる仕切部材を該第二の取付部材で固定的に支持せしめて、該仕切部材を挟んだ一方の側に前記受圧室を他方の側に前記平衡室をそれぞれ形成すると共に、該仕切部材の外周部分を周方向に延びるように前記オリフィス通路を形成した請求項1乃至の何れかに記載の流体封入式防振装置。The first mounting member is disposed so as to be spaced apart from one opening side of the cylindrical portion formed in the second mounting member, and the first mounting member and the second mounting member are connected to each other. The main rubber elastic body closes the one opening of the tubular portion in a fluid-tight manner, and the other opening portion of the tubular portion is fluid-tightly closed in the flexible film, while the tubular portion A partition member that spreads substantially perpendicular to the central axis of the portion is fixedly supported by the second mounting member, and the pressure receiving chamber is placed on one side of the partition member and the equilibrium chamber is placed on the other side. together with formed respectively, the fluid-filled vibration damping device according to any one of claims 1 to 4 to form the orifice passage so as to extend the peripheral portion of the partition member in the circumferential direction. 前記第二の取付部材に形成された筒状部の一方の開口部側に離隔して前記第一の取付部材を配設せしめて、それら第一の取付部材と第二の取付部材を連結する前記本体ゴム弾性体で該筒状部の該一方の開口部を流体密に閉塞すると共に、該筒状部の他方の開口部を前記可撓性膜で流体密に閉塞する一方、該筒状部の中心軸に対して略直交して広がる仕切部材を該第二の取付部材で固定的に支持せしめて、該仕切部材を挟んだ一方の側に前記受圧室を他方の側に前記平衡室をそれぞれ形成し、該仕切部材の外周部分において前記受圧室側に開口して周方向に所定長さで延びるように前記凹溝を形成すると共に、該筒状部から径方向内方に突設されて該凹溝の開口部に重ね合わせられることにより該開口部を覆蓋する弾性突出片によって前記弾性蓋体を構成した請求項に記載の流体封入式防振装置。The first mounting member is disposed so as to be spaced apart from one opening side of the cylindrical portion formed in the second mounting member, and the first mounting member and the second mounting member are connected to each other. The main rubber elastic body closes the one opening of the tubular portion in a fluid-tight manner, and the other opening portion of the tubular portion is fluid-tightly closed in the flexible film, while the tubular portion A partition member that spreads substantially perpendicular to the central axis of the portion is fixedly supported by the second mounting member, and the pressure receiving chamber is placed on one side of the partition member and the equilibrium chamber is placed on the other side. Are formed in the outer peripheral portion of the partition member so as to open to the pressure receiving chamber side and extend by a predetermined length in the circumferential direction, and project radially inward from the cylindrical portion. And the elastic protrusion piece that covers the opening by being overlapped with the opening of the groove. Fluid-filled vibration damping device according to claim 3 which constitute the body. 前記仕切部材の中央部分に前記受圧室側に開口する収容凹所を形成すると共に、該収容凹所の底部を貫通して前記平衡室に至る透孔を設けて、前記短絡通路によって短絡された前記オリフィス通路よりも更に短い通路長さで前記受圧室と前記平衡室を該透孔を通じて連通せしめる一方、該収容凹所の略全体に亘って広がる可動板部材を該収容凹所に収容配置すると共に、前記弾性突出片の突出先端部分を該収容凹所まで延び出させて、該収容凹所の底部と該弾性突出片の対向面間で該可動板部材の板厚方向の変位量を制限することにより、前記透孔を通じての前記受圧室と前記平衡室の間での流体流動量を制限するようにした請求項に記載の流体封入式防振装置。A housing recess that opens to the pressure receiving chamber side is formed in the central portion of the partition member, and a through hole that penetrates through the bottom of the housing recess to reach the equilibrium chamber is short-circuited by the short-circuit passage. The pressure receiving chamber and the equilibrium chamber are communicated through the through hole with a passage length shorter than the orifice passage, and a movable plate member that extends over substantially the whole of the accommodation recess is accommodated in the accommodation recess. In addition, the protruding tip portion of the elastic protruding piece extends to the receiving recess, and the displacement in the plate thickness direction of the movable plate member is limited between the bottom of the receiving recess and the opposing surface of the elastic protruding piece. The fluid-filled vibration isolator according to claim 6 , wherein the fluid flow amount between the pressure receiving chamber and the equilibrium chamber through the through hole is limited.
JP2001343691A 2001-11-08 2001-11-08 Fluid filled vibration isolator Expired - Fee Related JP3826768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001343691A JP3826768B2 (en) 2001-11-08 2001-11-08 Fluid filled vibration isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001343691A JP3826768B2 (en) 2001-11-08 2001-11-08 Fluid filled vibration isolator

Publications (2)

Publication Number Publication Date
JP2003148548A JP2003148548A (en) 2003-05-21
JP3826768B2 true JP3826768B2 (en) 2006-09-27

Family

ID=19157335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001343691A Expired - Fee Related JP3826768B2 (en) 2001-11-08 2001-11-08 Fluid filled vibration isolator

Country Status (1)

Country Link
JP (1) JP3826768B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4228219B2 (en) 2004-03-22 2009-02-25 東海ゴム工業株式会社 Fluid filled vibration isolator
JP4265613B2 (en) * 2005-09-14 2009-05-20 東海ゴム工業株式会社 Fluid filled vibration isolator
CN100543338C (en) * 2005-09-14 2009-09-23 东海橡胶工业株式会社 Fluid filled type vibration damping device
JP4392667B2 (en) 2005-10-05 2010-01-06 東海ゴム工業株式会社 Fluid filled vibration isolator
JP4657120B2 (en) * 2006-02-15 2011-03-23 東洋ゴム工業株式会社 Liquid-filled vibration isolator
JP4751740B2 (en) * 2006-03-07 2011-08-17 東海ゴム工業株式会社 Fluid filled vibration isolator
WO2008069131A1 (en) 2006-12-05 2008-06-12 Honda Motor Co., Ltd. Liquid-sealed antivibration device
JP5108349B2 (en) * 2007-03-23 2012-12-26 東海ゴム工業株式会社 Fluid filled vibration isolator
JP5325780B2 (en) * 2007-06-21 2013-10-23 株式会社ブリヂストン Vibration isolator
JP5060846B2 (en) 2007-06-29 2012-10-31 東海ゴム工業株式会社 Fluid filled vibration isolator
JP4354503B2 (en) 2007-08-09 2009-10-28 東海ゴム工業株式会社 Fluid-filled vibration isolator and cover member used therefor
US9249857B2 (en) 2007-12-12 2016-02-02 Bridgestone Corporation Anti-vibration apparatus
US8672304B2 (en) 2008-06-17 2014-03-18 Bridgestone Corporation Anti-vibration device
WO2010143444A1 (en) 2009-06-10 2010-12-16 株式会社ブリヂストン Vibrationproof device
JP5256152B2 (en) * 2009-09-16 2013-08-07 東海ゴム工業株式会社 Fluid filled vibration isolator
DE102012205228B4 (en) * 2012-03-30 2021-09-30 Boge Elastmetall Gmbh Hydraulic aggregate bearing
JP6173741B2 (en) * 2013-03-29 2017-08-02 山下ゴム株式会社 Shock absorber
JP6448926B2 (en) 2014-06-23 2019-01-09 住友理工株式会社 Fluid filled vibration isolator
DE102017103603B4 (en) 2017-02-22 2023-03-16 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Hydraulic mount for mounting an assembly of a motor vehicle
EP3617546A4 (en) 2017-04-27 2021-01-20 Bridgestone Corporation Vibration damping device

Also Published As

Publication number Publication date
JP2003148548A (en) 2003-05-21

Similar Documents

Publication Publication Date Title
JP3826768B2 (en) Fluid filled vibration isolator
JP4228219B2 (en) Fluid filled vibration isolator
JP5154579B2 (en) Fluid filled vibration isolator
JP5977141B2 (en) Fluid filled vibration isolator
JP3603651B2 (en) Manufacturing method of fluid filled type vibration damping device
WO1989012184A1 (en) Fluid seal type mounting apparatus
JP3729107B2 (en) Fluid filled vibration isolator
JP3743304B2 (en) Fluid filled vibration isolator
JP2007085523A (en) Fluid-enclosed type vibration isolator
JP3740980B2 (en) Fluid-filled vibration isolator and manufacturing method thereof
JP2007139024A (en) Fluid-sealed vibration control device
JP3729120B2 (en) Fluid filled vibration isolator
JP3767323B2 (en) Fluid filled vibration isolator
JP2008185152A (en) Fluid filled vibration absorbing device and engine mount using the same
JP3198603B2 (en) Fluid-filled mounting device
JPH0229897B2 (en)
JP2006177530A (en) Fluid sealed vibration isolator
JP4270049B2 (en) Fluid filled vibration isolator
JP2000274480A (en) Fluid sealed vibration isolating device
JP3603653B2 (en) Fluid-filled anti-vibration device
JPH03288036A (en) Fluid filled-type mount device
JPH0389043A (en) Fluid-filled vibration isolating mount
JP2009228688A (en) Fluid sealed type vibration damping device
JPH03292431A (en) Fluid sealing mounting device
JPH0716126Y2 (en) Fluid-filled mounting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051219

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20051222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060626

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3826768

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees