JP4270049B2 - Fluid filled vibration isolator - Google Patents

Fluid filled vibration isolator Download PDF

Info

Publication number
JP4270049B2
JP4270049B2 JP2004205107A JP2004205107A JP4270049B2 JP 4270049 B2 JP4270049 B2 JP 4270049B2 JP 2004205107 A JP2004205107 A JP 2004205107A JP 2004205107 A JP2004205107 A JP 2004205107A JP 4270049 B2 JP4270049 B2 JP 4270049B2
Authority
JP
Japan
Prior art keywords
fluid
elastic body
rubber elastic
main rubber
pocket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004205107A
Other languages
Japanese (ja)
Other versions
JP2004347124A (en
Inventor
達也 鈴木
和彦 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2004205107A priority Critical patent/JP4270049B2/en
Publication of JP2004347124A publication Critical patent/JP2004347124A/en
Application granted granted Critical
Publication of JP4270049B2 publication Critical patent/JP4270049B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Combined Devices Of Dampers And Springs (AREA)
  • Vibration Prevention Devices (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Description

本発明は、内部に封入された非圧縮性流体の流動作用に基づいて防振効果を得るようにした流体封入式防振装置であって、例えば自動車用エンジンマウントやボデーマウント,デフマウント等に有利に採用され得る流体封入式防振装置に関するものである。   The present invention is a fluid-filled vibration isolator that obtains a vibration-proof effect based on the flow action of an incompressible fluid sealed inside, and is used in, for example, an automobile engine mount, body mount, and differential mount. The present invention relates to a fluid filled type vibration damping device that can be advantageously employed.

従来から、振動伝達系を構成する部材間に介装される防振連結体や防振支持体等の一種として、第一の取付部材と、該第一の取付部材に向かって開口する筒状部を備えた第二の取付部材とを、互いに離間して対向配置すると共に、それら第一の取付部材と第二の取付部材を本体ゴム弾性体で連結せしめて、該本体ゴム弾性体で第二の取付部材における筒状部の開口を流体密に覆蓋することにより、該第二の取付部材の筒状部内において該本体ゴム弾性体で壁部の一部が構成されて非圧縮性流体が封入された流体室を形成せしめて、振動入力時における封入流体の共振作用等の流動作用に基づいて防振効果を得るようにした流体封入式の防振装置が、知られている。更に、かかる流体封入式防振装置では、その流体室内において、第二の取付部材における筒状部の中心軸に対して略直交する方向に広がる傘部材を配設して、前記第一の取付部材によって支持せしめることにより、流体室を傘部材を挟んだ両側に位置する分割室に仕切ると共に、それら両分割室を相互に連通する狭窄流路を、傘部材によって流体室内に形成した構造のものが、提案されている。   Conventionally, as a kind of anti-vibration coupling body or anti-vibration support body interposed between members constituting the vibration transmission system, a first mounting member and a cylindrical shape opening toward the first mounting member A second mounting member provided with a portion is arranged opposite to each other, and the first mounting member and the second mounting member are connected by a main rubber elastic body. By covering the opening of the cylindrical portion of the second mounting member in a fluid-tight manner, a part of the wall portion is formed by the main rubber elastic body in the cylindrical portion of the second mounting member, so that the incompressible fluid is 2. Description of the Related Art There is known a fluid-filled vibration isolator that forms a sealed fluid chamber and obtains a vibration-proof effect based on a fluid action such as a resonance action of the sealed fluid at the time of vibration input. Further, in the fluid-filled vibration isolator, an umbrella member extending in a direction substantially orthogonal to the central axis of the cylindrical portion of the second mounting member is disposed in the fluid chamber, and the first mounting A structure in which the fluid chamber is divided into divided chambers located on both sides of the umbrella member by being supported by the member, and a narrow channel that connects the two divided chambers to each other is formed in the fluid chamber by the umbrella member. Has been proposed.

このような傘部材を設けた流体封入式防振装置では、第一の取付部材と第二の取付部材の間に、主たる振動入力方向としての第一の取付部材と第二の取付部材の略対向方向(第二の取付部材における筒状部の略中心軸方向)に振動が入力された際、流体室内を傘部材が変位して、狭窄流路を通じての流体流動が生ぜしめられるのであり、この流体の共振作用等の流動作用を利用することによって、有効な防振効果を得ることが出来るのである。   In the fluid-filled vibration isolator provided with such an umbrella member, the first mounting member and the second mounting member as the main vibration input direction between the first mounting member and the second mounting member. When vibration is input in the opposite direction (substantially central axis direction of the cylindrical portion in the second mounting member), the umbrella member is displaced in the fluid chamber, and fluid flow through the constricted flow path is generated. By utilizing the fluid action such as the resonance action of the fluid, an effective vibration isolation effect can be obtained.

ところが、従来構造のものでは、傘部材によって形成された狭窄流路を通じて流動せしめられる流体の流動作用に基づく防振効果が、未だ充分に発揮され難く、特に要求される程の低動ばね効果を達成することが難しい場合があった。   However, in the conventional structure, the vibration-proofing effect based on the fluid action of the fluid that is caused to flow through the constricted flow path formed by the umbrella member is still not sufficiently exerted, and the low dynamic spring effect as particularly required is achieved. Sometimes it was difficult to achieve.

ここにおいて、本発明は、上述の如き事情を背景として為されたものであって、その解決課題とするところは、流体室内における流体の流動作用に基づく防振効果が、より効果的に発揮され得る、改良された構造の流体封入式防振装置を提供することにある。   Here, the present invention has been made in the background as described above, and the problem to be solved is that the vibration isolation effect based on the fluid flow action in the fluid chamber is more effectively exhibited. An object of the present invention is to provide a fluid-filled vibration isolator having an improved structure.

以下、このような課題を解決するために為された本発明の態様を記載する。なお、以下に記載の各態様は、任意の組み合わせで採用可能である。また、本発明の態様乃至は技術的特徴は、以下に記載のものに限定されることなく、明細書全体の記載および図面に記載の発明思想に基づいて認識されることが理解されるべきである。   Hereinafter, the aspect of this invention made | formed in order to solve such a subject is described. In addition, each aspect described below can be employed in any combination. In addition, it should be understood that the aspects and technical features of the present invention are not limited to those described below, but are recognized based on the description of the entire specification and the inventive concept described in the drawings. is there.

本発明の第一の態様は、第一の取付部材と、該第一の取付部材に向かって開口する筒状部を備えた第二の取付部材とを、互いに離間して対向配置すると共に、それら第一の取付部材と第二の取付部材を本体ゴム弾性体で連結せしめて、該本体ゴム弾性体で該第二の取付部材における筒状部の開口を流体密に覆蓋することにより、該第二の取付部材の筒状部内において該本体ゴム弾性体で壁部の一部が構成されて、0.1Pa・s以下の低粘性流体からなる非圧縮性流体が封入された流体室を形成した流体封入式防振装置において、前記本体ゴム弾性体に前記流体室に向かって開口するポケット状凹部を少なくとも一つ形成し、該ポケット状凹部の底壁によって、薄肉化されて弾性変形容易とされた薄肉部を構成して、かかる薄肉部の弾性変形に伴って、該ポケット状凹部と前記流体室との間での流体流動が生ぜしめられるようにすると共に、該ポケット状凹部を、前記本体ゴム弾性体の周方向において、該本体ゴム弾性体の径方向外方に行くに従って次第に寸法が大きくなる略扇形状と為し、更に該薄肉部を、前記本体ゴム弾性体によって構成された前記流体室の壁部に対して、該本体ゴム弾性体の中心軸方向における投影面積比で一つ当たり2〜15%の大きさとしたことを、特徴とする。 According to a first aspect of the present invention, a first mounting member and a second mounting member having a cylindrical portion that opens toward the first mounting member are arranged to be spaced apart from each other and opposed to each other. The first attachment member and the second attachment member are connected by a main rubber elastic body, and the opening of the cylindrical portion of the second attachment member is fluid-tightly covered with the main rubber elastic body. In the cylindrical part of the second mounting member, a part of the wall part is constituted by the main rubber elastic body to form a fluid chamber in which an incompressible fluid composed of a low viscosity fluid of 0.1 Pa · s or less is enclosed. In the fluid-filled vibration isolator, at least one pocket-shaped recess opening toward the fluid chamber is formed in the main rubber elastic body, and the bottom wall of the pocket-shaped recess reduces the thickness and facilitates elastic deformation. Of the thinned portion, and elastic deformation of the thinned portion Accordingly, fluid flow between the pocket-shaped recess and the fluid chamber is generated, and the pocket-shaped recess is formed in the circumferential direction of the main rubber elastic body with a diameter of the main rubber elastic body. The shape of the main body rubber elastic body is made to be substantially fan-shaped with the dimensions gradually increasing outward in the direction, and the thin wall portion is further centered on the wall portion of the fluid chamber formed by the main body rubber elastic body. The projected area ratio in the axial direction is 2 to 15% in size .

このような第の態様に係る流体封入式防振装置においては、振動入力時に、薄肉壁部の弾性変形に伴い、ポケット状凹部を通路としての流体流動が生ぜしめられることから、該ポケット状凹部を流動せしめられる流体の共振作用等の流動作用を利用して、有効な防振効果を得ることが出来るのである。特に、かかる流体封入式防振装置においては、特別な部品点数の増加を伴うことなく、簡単な構造をもって、流体流動作用を利用した防振性能の向上効果を得ることが出来るという利点がある。 In such a fluid-filled vibration isolator according to the first aspect, the fluid flow with the pocket-shaped recess as a passage is caused by the elastic deformation of the thin wall portion at the time of vibration input. An effective anti-vibration effect can be obtained by utilizing a fluid action such as a resonance action of the fluid that is caused to flow in the recess. In particular, in such a fluid filled type vibration damping device, without increasing special parts, with a simple structure, Ru advantage there that it is possible to obtain the effect of improving the vibration damping ability using fluid flow action can .

お、上記本体ゴム弾性体の具体的形状等、要求される防振特性等に応じて適宜に決定されるものであって、何等限定されるものでなく、例えば、厚肉円板形状の本体ゴム弾性体を採用して、その外周面に第二の取付部材における筒状部を固着したり、第二の取付部材における筒状部から開口方向外方に向かって突出する円錐台形状乃至は厚肉のテーパ筒形状の本体ゴム弾性体を採用し、その小径側端面に第一の取付部材を固着すると共に、その大径側端部外周面に第二の取付部材における筒状部を固着した構造等が、好適に採用され得る。 Na us, specific shape of the main rubber elastic body, be one that is suitably determined depending on the required vibration damping characteristics, not restrictive. There may be many other, for example, thick disk shape The cylindrical rubber part of the second mounting member is fixed to the outer peripheral surface of the main body rubber elastic body, or the shape of the truncated cone protrudes outward in the opening direction from the cylindrical part of the second mounting member. Or, a thick tapered cylindrical main body rubber elastic body is adopted, and the first mounting member is fixed to the small-diameter end face, and the cylindrical portion of the second mounting member is attached to the large-diameter end peripheral face. The structure etc. which adhered can be used suitably.

また、本発明の上記の態様では、前記薄肉部が、前記本体ゴム弾性体の中心軸から軸直角方向外方に行くに従って周方向に次第に広がる略扇形状をもって形成されている。このような形状の薄肉部を採用することにより、本体ゴム弾性体のばね剛性の低下を抑えつつ、薄肉部の面積を有利に確保することが可能となるのであるFurther, in the first aspect of the present invention, before Symbol thin portion, Ru Tei is formed with a substantially fan shape that spreads gradually in the circumferential direction toward the axis-perpendicular direction outward from the central axis of the main rubber elastic body. By employing the thin portion having such a shape, while suppressing the decrease in the spring stiffness of the main rubber elastic body, it become possible to advantageously ensure the area of the thin portion.

特に、本発明の前記したの態様は、前記流体室側に向かって開口するポケット状凹部を形成し、該ポケット状凹部の底壁によって前記薄肉部を構成したことを、特徴としている。このような態様に係る流体封入式防振装置においては、振動入力時に、薄肉壁部の弾性変形に伴い、ポケット状凹部を通じて、該ポケット状凹部と流体室の間での流体流動が生ぜしめられることとなる。それ故、この流体の流動通路としてのポケット状凹部における通路断面積(開口面積)と通路長さ(深さ)を、薄肉部のばね特性等を考慮して適当に調節することにより、該ポケット状凹部を流動せしめられる流体の共振作用等の流動作用を利用して、一層優れた防振効果を得ることが可能となるのである。 In particular, a first aspect mentioned above of the present invention, prior Symbol toward the fluid chamber side to form a pocket-like recess that opens the by the bottom wall of the pocket-like recess that constitutes the thin wall portion, characterized Tei Ru. In the fluid filled type vibration damping device according to this state-like, at the time of vibration input, along with the elastic deformation of the thin wall portion, through pocket-like recess, caused fluid flow between said pocket-like recess and the fluid chamber Will be. Therefore, by appropriately adjusting the cross-sectional area (opening area) and the passage length (depth) of the pocket-shaped recess as the fluid flow passage in consideration of the spring characteristics of the thin-walled portion, the pocket By using a fluid action such as a resonance action of a fluid that is caused to flow in the concave portion, it is possible to obtain a further excellent vibration isolation effect.

なお、このようにポケット状凹部を流体の流動通路として利用し、該流動通路における流体の共振作用に基づく防振効果を得る場合には、該流動通路における流体の共振周波数を、例えば、傘部材によって形成された狭窄流路における流体の共振周波数よりも高周波数域にチューニングすることが有効である。それにより、それら流動通路と狭窄流路による低動ばね作用に基づく防振特性の向上効果を、より広い周波数域に亘って得ることが可能となる。 In this way using the pocket-like recess as a flow passage for fluid, in the case of obtaining a vibration damping effect based on resonance of the fluid in flowable passage, the resonance frequency of the fluid in the flow path, for example, umbrella member it is effective to tune to a frequency range higher than the resonance frequency of the fluid in the formed narrow flow path or the like by. Thereby, the effect of improving vibration damping characteristics thereof based on the low dynamic spring effect due to the flow passage and narrow flow path, etc., it is possible to obtained over a wider frequency range.

さらに、本発明の前記したの態様は、前記薄肉部を、前記本体ゴム弾性体によって構成された前記流体室の壁部に対して、該本体ゴム弾性体の中心軸方向における投影面積比で一つ当たり2〜15%の大きさとしたことを、特徴としている。薄肉部を、このような大きさで形成することにより、本体ゴム弾性体における耐久性の大幅な低下を回避しつつ、薄肉部による防振特性の向上効果をより有効に得ることが可能となる。なお、薄肉部の投影面積比が2%より小さいと、薄肉部による防振性能特性の向上効果を充分に発揮され難くなる一方、15%を越えると、本体ゴム弾性体の耐久性に影響が出るおそれがある。特に、ポケット状凹部を設けて、該ポケット状凹部を流動せしめられる流体の共振作用を利用する場合には、薄肉部の投影面積比を2〜15%とすることにより、流体の共振作用に基づく低動ばね効果を一層有利に得ることが可能となる。 Furthermore, the first aspect described above of the present invention, the projected area of the front Symbol thin part, to the wall of the fluid chamber constituted by the main rubber elastic body, in the central axis direction of the rubber elastic body that it has a size of 2-15% per one ratio, that has features. By forming the thin portion with such a size, it is possible to more effectively obtain the effect of improving the anti-vibration characteristics by the thin portion while avoiding a significant decrease in the durability of the main rubber elastic body. . If the projected area ratio of the thin wall portion is smaller than 2%, it will be difficult to sufficiently improve the anti-vibration performance characteristics by the thin wall portion. On the other hand, if it exceeds 15%, the durability of the main rubber elastic body will be affected. There is a risk of getting out. In particular, by providing a pocket-like recess, in the case of utilizing the resonance of the fluid flowing the pocket-like recess, by the projected area ratio of the thin portion and 2-15%, the resonance action of the fluid Thus, the low dynamic spring effect based on the above can be obtained more advantageously.

また、本発明の第二の態様は、前記第一の態様に係る流体封入式防振装置において、前記薄肉部を、前記本体ゴム弾性体の中心軸回りで略等間隔に複数設けたことを、特徴とする。このような第二の態様に係る流体封入式防振装置においては、薄肉部を複数設けたことによって、流体の流動作用に基づく防振特性の向上効果を一層有利に得ることが出来ると共に、かかる薄肉部を分割配置したことにより、本体ゴム弾性体による支持ばね強度も有利に確保することが出来る。また、特に、複数の薄肉部を本体ゴム弾性体の中心軸回りに等間隔に配したことにより、流体の流動が安定化すると共に、本体ゴム弾性体における局部的な応力集中等も有利に抑えられて安定した弾性変形が生ぜしめられることとなり、以て、目的とする防振性能をより安定して得ることが可能となる。 Further, according to a second aspect of the present invention, in the fluid filled type vibration damping device according to the first aspect, a plurality of the thin portions are provided at substantially equal intervals around the central axis of the main rubber elastic body. , Feature. Such fluid-filled vibration damping device according to the second embodiment, by the fact that a plurality of thin portions, it is possible to obtain the effect of improving the vibration damping characteristics based on flow action of the fluid body to more advantageous At the same time, since the thin wall portion is divided and arranged, the supporting spring strength by the main rubber elastic body can be advantageously ensured. In particular, Ri by the fact that arranged at equal intervals a plurality of thin portions to the central axis of the main rubber elastic body, the flow is stabilized the flow body, also local stress concentration or the like in the main rubber elastic body Stable elastic deformation that is advantageously suppressed is generated, and thus the target vibration-proof performance can be obtained more stably.

なお、上記第二の態様に係る流体封入式防振装置において、好ましくは、前記薄肉部が、前記本体ゴム弾性体の中心軸上で互いに直交する軸直角方向で対向位置して2対(全部で4つ)形成される。このような配置形態で薄肉部を形成することにより、本体ゴム弾性体において、薄肉部が形成されない部分が、薄肉部の対向方向に対して周方向に45度だけずれた方向で、本体ゴム弾性体の中心軸上で互いに直交する軸直角方向に対向位置して2対形成されることから、軸直角方向のばね剛性も有利に確保することが可能となる。   In the fluid-filled type vibration damping device according to the second aspect, preferably, the thin wall portion is opposed to each other in a direction perpendicular to the axis perpendicular to each other on the central axis of the main rubber elastic body. 4). By forming the thin wall portion in such an arrangement, in the main rubber elastic body, the portion where the thin wall portion is not formed is displaced by 45 degrees in the circumferential direction with respect to the opposing direction of the thin wall portion. Since two pairs are formed on the central axis of the body so as to face each other in the direction perpendicular to the axis perpendicular to each other, the spring rigidity in the direction perpendicular to the axis can be advantageously ensured.

また、本発明の第の態様は、前記第一又は二の態様に係る流体封入式防振装置において、前記本体ゴム弾性体の外周部分から前記第二の取付部材における筒状部の内周面に沿って軸方向に延び出し、該筒状部に固着されて該筒状部の内周面を覆う筒壁ゴムを、該本体ゴム弾性体と一体的に形成すると共に、該筒壁ゴムを、前記薄肉部の形成部位を除く部分において、該薄肉部の外周縁部よりも内周側に突出位置せしめたことを、特徴とする。このような第の態様に係る流体封入式防振装置においては、本体ゴム弾性体の外周部分から筒状部の内周面に沿って延びるように形成された筒壁ゴムによって、本体ゴム弾性体の外周部分に対して補強的な支持力が及ぼされるのであり、それによって、薄肉部を設けたことによる本体ゴム弾性体のばね剛性の低下が軽減乃至は解消され得ることとなる。しかも、筒壁ゴムは、本体ゴム弾性体に薄肉部が形成された部分では、厚さ寸法が小さくされていることから、薄肉部の面積も充分に確保することが出来、薄肉部による防振特性の向上効果も有利に得ることが出来る。 A third aspect of the present invention, the first or second fluid-filled vibration damping device according to the state-like, said body from an outer peripheral portion of the rubber elastic body of the tubular portion of the second mounting member A cylindrical wall rubber that extends in the axial direction along the inner peripheral surface and is fixed to the cylindrical portion and covers the inner peripheral surface of the cylindrical portion is formed integrally with the main rubber elastic body, and the cylinder It is characterized in that the wall rubber is positioned so as to protrude from the outer peripheral edge portion of the thin wall portion toward the inner peripheral side in the portion excluding the formation portion of the thin wall portion. In such a fluid-filled vibration isolator according to the third aspect, the main body rubber elasticity is provided by the cylindrical wall rubber formed so as to extend from the outer peripheral portion of the main rubber elastic body along the inner peripheral surface of the cylindrical portion. A reinforcing support force is exerted on the outer peripheral portion of the body, whereby the decrease in the spring rigidity of the main rubber elastic body due to the provision of the thin portion can be reduced or eliminated. Moreover, since the cylindrical wall rubber has a small thickness dimension in the part where the thin rubber part is formed on the main rubber elastic body, the area of the thin wall part can be sufficiently secured, and the vibration isolation by the thin wall part is possible. The effect of improving the characteristics can also be obtained advantageously.

なお、上記第の態様に係る流体封入式防振装置においては、好ましくは、本体ゴム弾性体から第二の取付部材における筒壁部の内周面に沿って軸方向に延び出して形成された筒壁ゴムに対して、その軸方向の延び出し先端面(本体ゴム弾性体とは軸方向反対側の端面)に当接せしめられて、該筒壁ゴムを支持する剛性支持部材を、該第二の取付部材に対して固定的に設けてなる構造が採用される。このような剛性支持部材を採用すれば、筒壁ゴムによって本体ゴム弾性体に及ぼされる補強的な支持効果が、より効果的に発揮されることとなるThe fluid-filled vibration isolator according to the third aspect is preferably formed by extending from the main rubber elastic body in the axial direction along the inner peripheral surface of the cylindrical wall portion of the second mounting member. A rigid support member that supports the cylindrical wall rubber by contacting the cylindrical wall rubber with an axially extending front end surface (an end surface opposite to the main rubber elastic body in the axial direction). A structure that is fixedly provided with respect to the second mounting member is employed. By employing such a rigid support member, the reinforcing specific support effects exerted on the rubber elastic body by the cylindrical wall rubber, and thus be more effectively exhibited.

また、本発明の第の態様は、前記第一乃至第の何れかの態様に係る流体封入式防振装置において、前記第一の取付部材と前記第二の取付部材の間への振動入力により、前記流体室に対して相対的な内圧差が生ぜしめられる副流体室を形成すると共に、それら流体室と副流体室を相互に連通する流体流路を設けたことを、特徴とする。このような第の態様に係る流体封入式防振装置によれば、流体流路を流動せしめられる流体の共振作用等の流動作用に基づいて有効な防振効果を得ることが出来るのであり、かかる流体流路を、傘部材によって形成された狭窄流路とは異なる周波数域にチューニングすることによって、一層広い周波数域の振動に対して優れた防振効果を得ることが可能となる。なお、流体流路による防振効果と、傘部材で形成された狭窄流路による防振効果とをより有効に得るためには、流体流路を狭窄流路よりも低周波数域にチューニングすることが望ましい。 According to a fourth aspect of the present invention, in the fluid filled type vibration damping device according to any one of the first to third aspects, vibration between the first mounting member and the second mounting member is provided. A sub-fluid chamber in which an internal pressure difference relative to the fluid chamber is generated by the input is formed, and a fluid flow path that connects the fluid chamber and the sub-fluid chamber is provided. . According to such a fluid-filled vibration isolator according to the fourth aspect, an effective vibration isolating effect can be obtained based on a fluid action such as a resonance action of a fluid that is caused to flow in the fluid flow path. such fluid flow path, by tuning to a different frequency range than the narrow flow path or the like formed by the bevel member, it is possible to obtain a vibration damping effect superior to the vibration of the wider frequency range. Incidentally, tuning and vibration damping action by the fluid flow path, in order to obtain a vibration damping effect by formed umbrella member narrow flow path and the like more effectively, the fluid flow path to a lower frequency range than the narrow flow path and the like It is desirable to do.

なお、上記流体流路としては、例えば、常時連通状態で形成されたものの他、バルブ等の開閉手段によって開閉可能とされたものや、或いは流路上に配設された仕切板の変位や変形によって流体流動が許容されると共に、該仕切板の変位量や変形量が制限されることにより流体流動量が制限されるようにされたもの等、各種の構造の流体流路が採用され得る。   As the fluid flow path, for example, in addition to those formed in a continuous communication state, the fluid flow path can be opened and closed by opening / closing means such as a valve, or the partition plate disposed on the flow path is displaced or deformed. A fluid flow path having various structures such as a fluid flow that is allowed and a fluid flow amount is restricted by restricting a displacement amount and a deformation amount of the partition plate may be employed.

更に、前記副流体室としては、例えば、壁部の一部が薄肉ゴム膜等の可撓性膜で構成されて容積変化が容易に許容される平衡室が、好適に採用され得る。   Further, as the auxiliary fluid chamber, for example, an equilibrium chamber in which a part of the wall portion is formed of a flexible film such as a thin rubber film and the volume change is easily allowed can be suitably employed.

また、本発明の第の態様は、前記第の態様に係る流体封入式防振装置において、前記第二の取付部材における筒状部に剛性の仕切部材を内装固定し、該仕切部材を挟んだ一方の側に前記流体室を形成、他方の側に前記副流体室を形成すると共に、該仕切部材によって、前記流体流路を形成したことを、特徴とする。このような構成を採用すれば、流体室と副流体室、更には流体流路を、より簡単な構造をもって形成することが可能となる。 According to a fifth aspect of the present invention, in the fluid-filled vibration isolator according to the fourth aspect, a rigid partition member is internally fixed to the cylindrical portion of the second mounting member, and the partition member The fluid chamber is formed on one side of the substrate, the sub fluid chamber is formed on the other side, and the fluid flow path is formed by the partition member. By adopting such a configuration, the fluid chamber and the auxiliary fluid chamber, and further a fluid flow path, with a simpler structure, it is possible to form.

上述の如き本発明に従う構造とされた流体封入式防振装置においては、流体室の壁部を構成する本体ゴム弾性体に対してポケット状凹部を形成し、その底壁部によって、薄肉部を構成したことにより、振動入力時に、かかる底壁部の弾性変形に基づいて流体室の大幅な内圧上昇を回避し、またポケット状凹部を流体流路として作用させることにより、優れた防振効果を得ることが可能となる。   In the fluid-filled vibration isolator having the structure according to the present invention as described above, a pocket-shaped recess is formed in the main rubber elastic body constituting the wall portion of the fluid chamber, and the thin wall portion is formed by the bottom wall portion. By configuring, when vibration is input, a significant increase in internal pressure of the fluid chamber is avoided based on the elastic deformation of the bottom wall, and the pocket-shaped recess acts as a fluid flow path, resulting in excellent vibration isolation effects. Can be obtained.

先ず、図1及び図2には、本発明の参考例としての自動車用エンジンマウント10が、示されている。このエンジンマウント10は、第一の取付部材としての第一の取付金具12と第二の取付部材としての第二の取付金具14が、本体ゴム弾性体15で弾性的に連結されてなる構造を有している。そして、第一の取付金具12がパワーユニット側に取り付けられる一方、第二の取付金具14がボデー側に取り付けられることにより、パワーユニットをボデーに対して防振支持するようになっている。また、そのような装着状態下、かかるエンジンマウント10には、第一の取付金具12と第二の取付金具14の間に対して、それら第一の取付金具12と第二の取付金具14の略対向方向となる、図1中の略上下方向に、防振すべき主たる振動が入力されることとなる。 First, FIGS. 1 and 2 show an automobile engine mount 10 as a reference example of the present invention. The engine mount 10 has a structure in which a first mounting bracket 12 as a first mounting member and a second mounting bracket 14 as a second mounting member are elastically connected by a main rubber elastic body 15. Have. The first mounting bracket 12 is mounted on the power unit side, while the second mounting bracket 14 is mounted on the body side, so that the power unit is supported in a vibration-proof manner with respect to the body. Further, under such a mounted state, the engine mount 10 has the first mounting bracket 12 and the second mounting bracket 14 interposed between the first mounting bracket 12 and the second mounting bracket 14. The main vibration to be shaken is input in the substantially vertical direction in FIG.

より詳細には、第一の取付金具12は、金属等の剛性材で形成されており、円板形状を有している。また、第一の取付金具12には、軸方向下方に向かって突出する略逆円錐形状の支持金具20が溶着されており、この支持金具20の突出先端部に対して、傘部材としての傘金具22がかしめ固定されている。この傘金具22は、略円板形状を有しており、中央に貫設された取付孔に支持金具20の先端部が挿入されてかしめ固定されることにより、支持金具20の中心軸に対して直交する方向に広がって支持されている。更に、第一の取付金具12の中央部分には、ボルト装着孔16が設けられており、このボルト装着孔16に対して取付ボルト18が圧入固定されて、第一の取付金具12から図1中の上方に向かって突設されている。そして、この取付ボルト18によって、第一の取付金具12が、図示しない自動車のパワーユニット側に取り付けられるようになっている。   More specifically, the first mounting bracket 12 is formed of a rigid material such as metal and has a disk shape. The first mounting bracket 12 is welded with a substantially inverted conical support bracket 20 that protrudes downward in the axial direction. An umbrella as an umbrella member is attached to the protruding tip of the support bracket 20. The metal fitting 22 is fixed by caulking. The umbrella fitting 22 has a substantially disc shape, and the tip of the support fitting 20 is inserted into a mounting hole penetrating in the center and fixed by caulking, whereby the umbrella fitting 22 is fixed to the central axis of the support fitting 20. Are spread and supported in the orthogonal direction. Further, a bolt mounting hole 16 is provided in the central portion of the first mounting bracket 12, and a mounting bolt 18 is press-fitted and fixed to the bolt mounting hole 16 from the first mounting bracket 12. It protrudes upward in the middle. The first mounting bracket 12 is attached to the power unit side of an automobile (not shown) by the mounting bolt 18.

一方、第二の取付金具14は、金属等の剛性材で形成されており、全体として大径の略円筒形状を有している。そして、この第二の取付金具14は、第一の取付金具12の中心軸上で、下方に離間して配設されている。また、かかる第二の取付金具14には、軸方向一方(第一の取付金具12側に位置せしめられた、図1中の上方)の開口周縁部に対して、径方向外方に向かって広がるフランジ状部24が一体形成されていると共に、軸方向他方(図1中、下方)の開口周縁部には、径方向内方に向かってわずかに曲折された係止部26が一体形成されている。そして、この第二の取付金具14は、厚肉の大径円筒形状を有する剛性のブラケット28に圧入固定されており、該ブラケット28を介して、図示しない自動車のボデー側に対して、例えばボルト等によって取り付けられるようになっている。なお、ブラケット28には、軸方向一方の開口周縁部に外向きのフランジ状部30が一体形成されており、このフランジ状部30に対して、第二の取付金具14のフランジ状部24が重ね合わされることにより、パワーユニットの荷重入力方向での耐荷重強度が大きく設定されている。   On the other hand, the second mounting bracket 14 is formed of a rigid material such as metal and has a large cylindrical shape with a large diameter as a whole. The second mounting bracket 14 is disposed on the central axis of the first mounting bracket 12 so as to be spaced downward. Further, the second mounting bracket 14 is directed radially outward with respect to the opening peripheral edge on one axial direction (the upper side in FIG. 1 positioned on the first mounting bracket 12 side). An expanding flange-shaped portion 24 is integrally formed, and a locking portion 26 that is slightly bent inward in the radial direction is integrally formed at the peripheral edge of the opening in the other axial direction (downward in FIG. 1). ing. The second mounting member 14 is press-fitted and fixed to a rigid bracket 28 having a thick large-diameter cylindrical shape, and a bolt, for example, is attached to the body side of the automobile (not shown) via the bracket 28. It can be attached by, for example. The bracket 28 is integrally formed with an outward flange-like portion 30 at one peripheral edge of the opening in the axial direction. The flange-like portion 24 of the second mounting bracket 14 is formed with respect to the flange-like portion 30. By being superimposed, the load bearing strength in the load input direction of the power unit is set large.

さらに、前記第一の取付金具12と第二の取付金具14の間には、本体ゴム弾性体15が介装されている。この本体ゴム弾性体15は、略厚肉のテーパ付き円環形状乃至は円筒形状とされており、中央部分が次第に小径化しつつ軸方向上方に向かって突出せしめられていることによって、外周面が、略円錐台形状とされている。そして、かかる本体ゴム弾性体15には、軸方向上方に突出せしめられた小径側端面に第一の取付金具12が重ね合わされた状態で加硫接着されている一方、大径側端部外周面に対して、第二の取付金具14が、その上方開口端部の内周面において加硫接着されている。また、第一の取付金具12に溶着された支持金具20は、本体ゴム弾性体15の中心孔32を貫通して配されており、支持金具20が本体ゴム弾性体15の中心孔32の内周面に加硫接着されている。要するに、本参考例では、図3に示されているように、本体ゴム弾性体15が、第一及び第二の取付金具12,14を有する一体加硫成形品21として形成されているのである。 Furthermore, a main rubber elastic body 15 is interposed between the first mounting bracket 12 and the second mounting bracket 14. The main rubber elastic body 15 has a substantially thick tapered ring shape or a cylindrical shape, and the outer peripheral surface is protruded upward in the axial direction while gradually reducing the diameter of the central portion. The shape is substantially a truncated cone. The main rubber elastic body 15 is vulcanized and bonded in a state where the first mounting bracket 12 is superposed on the small-diameter side end surface protruding upward in the axial direction, while the large-diameter side end outer peripheral surface. On the other hand, the second mounting bracket 14 is vulcanized and bonded on the inner peripheral surface of the upper opening end. Further, the support fitting 20 welded to the first attachment fitting 12 is disposed so as to penetrate the center hole 32 of the main rubber elastic body 15, and the support metal fitting 20 is located in the center hole 32 of the main rubber elastic body 15. It is vulcanized and bonded to the peripheral surface. In short, in this reference example , as shown in FIG. 3, the main rubber elastic body 15 is formed as an integrally vulcanized molded product 21 having the first and second mounting brackets 12 and 14. .

また、本体ゴム弾性体15は、第二の取付金具14の内周面に沿って、第二の取付金具14の内周面の略全面に亘って延び出している。これにより、第二の取付金具14の内周面には、軸方向略中央部分よりも上側部分を全体に亘って覆う厚肉の筒壁ゴム34が、本体ゴム弾性体15と一体的に形成されており、これら本体ゴム弾性体15と筒壁ゴム34によって、下方に開口する円形の凹所36が協働して形成されている。また、この凹所36内には、上底面の中央から支持金具20の先端部分が突出しており、該支持金具20で支持された傘金具22が、かかる凹所36内に位置せしめられている。更に、第二の取付金具14の内周面における軸方向略中央部分よりも下側部分は、本体ゴム弾性体15および筒壁ゴム34と一体的に形成された薄肉のシールゴム層38で覆われている。   The main rubber elastic body 15 extends along substantially the entire inner peripheral surface of the second mounting bracket 14 along the inner peripheral surface of the second mounting bracket 14. Thereby, on the inner peripheral surface of the second mounting member 14, a thick cylindrical wall rubber 34 that covers the entire upper part of the substantially central part in the axial direction is formed integrally with the main rubber elastic body 15. The main rubber elastic body 15 and the cylindrical wall rubber 34 cooperate to form a circular recess 36 that opens downward. Further, in the recess 36, the tip end portion of the support fitting 20 protrudes from the center of the upper bottom surface, and the umbrella fitting 22 supported by the support fitting 20 is positioned in the recess 36. . Further, the lower portion of the inner peripheral surface of the second mounting member 14 below the substantially central portion in the axial direction is covered with a thin seal rubber layer 38 formed integrally with the main rubber elastic body 15 and the cylindrical wall rubber 34. ing.

更にまた、本体ゴム弾性体15には、第一の取付金具12と第二の取付金具14の間に位置せしめられた、そのテーパ状の部分において、内方(図1中の下方)に向かって開口する所定深さのポケット状凹部31が形成されている。そして、このポケット状凹部31の形成部位において、本体ゴム弾性体15が薄肉化されて、ポケット状凹部31の底壁部33だけの厚さとされている。なお、ここでは、ポケット状凹部31の底壁部33が、本体ゴム弾性体15の筒壁部の肉厚の略1/4〜1/3の厚さ寸法を有する、略一定肉厚とされている。 Furthermore, the main rubber elastic body 15 is directed inwardly (downward in FIG. 1) at its tapered portion positioned between the first mounting bracket 12 and the second mounting bracket 14. A pocket-shaped recess 31 having a predetermined depth is formed. The main rubber elastic body 15 is thinned at the site where the pocket-shaped recess 31 is formed, and the thickness is only the bottom wall 33 of the pocket-shaped recess 31. Here , the bottom wall portion 33 of the pocket-shaped recess 31 has a substantially constant thickness having a thickness dimension of about 1/4 to 1/3 of the thickness of the cylindrical wall portion of the main rubber elastic body 15. ing.

しかも、本参考例では、ポケット状凹部31が、互いに同一形状をもって、本体ゴム弾性体15の中心軸まわりの周方向に略等間隔に4つ形成されている。換言すれば、本体ゴム弾性体15に対して、互いに直交する軸直角方向で対向位置して2対のポケット状凹部31が設けられている。また、各ポケット状凹部31は、本体ゴム弾性体15の径方向略全長に亘る径方向寸法を有していると共に、周方向では、本体ゴム弾性体15の径方向外方に行くに従って次第に寸法が大きくなる略扇形状とされている。更に、各ポケット状凹部31は、それぞれの開口面積(本体ゴム弾性体15の軸方向の投影面積)が、本体ゴム弾性体15によって構成された筒壁部の軸方向投影面積、換言すれば円形の凹所36の底面の軸方向投影面積に対して、好ましくは2〜15%、より好ましくは5〜10%の面積比率をもって形成されている。 In addition, in the present reference example , four pocket-shaped recesses 31 are formed in the same shape as each other at substantially equal intervals in the circumferential direction around the central axis of the main rubber elastic body 15. In other words, two pairs of pocket-shaped recesses 31 are provided to be opposed to the main rubber elastic body 15 in a direction perpendicular to the axis perpendicular to each other. Each pocket-shaped recess 31 has a radial dimension over substantially the entire length of the main rubber elastic body 15 in the radial direction, and gradually increases in the circumferential direction as it goes outward in the radial direction of the main rubber elastic body 15. It is made into the substantially fan shape where becomes large. Further, each pocket-like recess 31 has an opening area (projected area in the axial direction of the main rubber elastic body 15) in the axial direction of the cylindrical wall portion formed by the main rubber elastic body 15, in other words, a circular shape. The area ratio is preferably 2 to 15%, more preferably 5 to 10% with respect to the axial projected area of the bottom surface of the recess 36.

また、特に、本参考例では、ポケット状凹部31における開口部の外周縁部が、筒壁ゴム34の内周面よりも径方向外方に位置せしめられており、ポケット状凹部31が、筒壁ゴム34にまで延び出し、該筒壁ゴム34の内周部分が該ポケット状凹部31によって部分的に切り取られた形状とされている。要するに、筒壁ゴム34は、その肉厚寸法が、ポケット状凹部31の形成部位において小さくされているのであり、換言すれば、ポケット状凹部31が形成されていない部分では、筒壁ゴム34の肉厚寸法が大きくされており、この肉厚寸法が大きくされた筒壁ゴム34によって本体ゴム弾性体15の外周部分が補強された構造となっている。 In particular, in this reference example , the outer peripheral edge of the opening in the pocket-shaped recess 31 is positioned radially outward from the inner peripheral surface of the cylindrical wall rubber 34, and the pocket-shaped recess 31 is It extends to the wall rubber 34, and the inner peripheral portion of the cylindrical wall rubber 34 is partially cut out by the pocket-shaped recess 31. In short, the wall thickness of the cylindrical wall rubber 34 is reduced at the site where the pocket-shaped recess 31 is formed. In other words, in the portion where the pocket-shaped recess 31 is not formed, The wall thickness is increased, and the outer peripheral portion of the main rubber elastic body 15 is reinforced by the cylindrical wall rubber 34 having the increased wall thickness.

しかも、本参考例では、上述の如く、ポケット状凹部31が、互いに直交する径方向で対向位置して2対形成されていることから、本体ゴム弾性体15において、ポケット状凹部31が形成されずに厚肉とされた部分39も、ポケット状凹部31の対向方向に対して略45度だけ周方向に変位した方向で対向位置して2対形成されている。それ故、これら2対の厚肉部分39によって、軸直角方向のばね剛性を、各方向での差を殆ど生ずることなく、且つ有利に得ることが出来るのである。特に、例えばこれら2対の厚肉部分39を、自動車の前後方向と左右方向など、比較的大きな軸直角方向荷重が入力される方向で対向位置せしめることによって、エンジンマウントに要求される軸直角方向のばね剛性を有利に確保することが可能となるのである。 Moreover, in the present reference example , as described above, the pocket-shaped recesses 31 are formed in two pairs facing each other in the radial direction orthogonal to each other, so that the pocket-shaped recesses 31 are formed in the main rubber elastic body 15. The pair of thickened portions 39 are also formed in two pairs facing each other in the direction displaced in the circumferential direction by about 45 degrees with respect to the facing direction of the pocket-shaped recess 31. Therefore, the spring rigidity in the direction perpendicular to the axis can be advantageously obtained by these two pairs of thick portions 39 with little difference in each direction. In particular, for example, these two pairs of thick portions 39 are opposed to each other in a direction in which a relatively large axial perpendicular load is input, such as the longitudinal direction and the lateral direction of the automobile. This makes it possible to advantageously secure the spring rigidity.

さらに、かくの如き一体加硫成形品には、第二の取付金具14の軸方向下方の開口部側から、仕切部材40とダイヤフラム42が、順次、挿入されて組み付けられている。仕切部材40は、合成樹脂材やアルミニウム合金等の金属材の如き硬質材で形成されており、全体として略円板形状を有している。また、ダイヤフラム42は、弾性変形が容易に許容される薄肉のゴム膜で構成されており、その外周面には円筒形状の嵌着リング44が加硫接着されている。そして、これら仕切部材40とダイヤフラム42を、第二の取付金具14に挿入して、シールゴム層38が形成された軸方向下側部分に内挿配置した後、第二の取付金具14に八方絞り等の縮径加工を施すことにより、仕切部材40とダイヤフラム42(嵌着リング44)が、第二の取付金具14に対して嵌着固定されている。   Further, the partition member 40 and the diaphragm 42 are sequentially inserted and assembled in such an integrally vulcanized molded product from the axially lower opening side of the second mounting bracket 14. The partition member 40 is formed of a hard material such as a metal material such as a synthetic resin material or an aluminum alloy, and has a substantially disk shape as a whole. The diaphragm 42 is formed of a thin rubber film that can easily be elastically deformed, and a cylindrical fitting ring 44 is vulcanized and bonded to the outer peripheral surface thereof. Then, the partition member 40 and the diaphragm 42 are inserted into the second mounting bracket 14 and arranged in the lower portion in the axial direction where the seal rubber layer 38 is formed. The partition member 40 and the diaphragm 42 (the fitting ring 44) are fitted and fixed to the second mounting member 14 by performing a diameter reduction process such as the above.

そして、これにより、第二の取付金具14の軸方向下側の開口部が、ダイヤフラム42によって流体密に覆蓋されて、第二の取付金具14の内部に、外部空間に対して密閉されて非圧縮性流体が封入された流体封入領域が画成されている。なお、封入流体としては、水やアルキレングリコール,ポリアルキレングリコール,シリコーン油、或いはそれらの混合流体等が何れも採用されるが、特に、流体の共振作用に基づく防振効果を有効に得るためには、0.1Pa・s以下の低粘性流体を採用することが望ましい。また、非圧縮性流体の注入と充填は、例えば、一体加硫成形品として与えられた第二の取付金具14に対する仕切部材40とダイヤフラム42の組み付けを、かかる非圧縮性流体中で実施すること等によって、有利に為され得る。   As a result, the opening on the lower side in the axial direction of the second mounting bracket 14 is covered with the diaphragm 42 in a fluid-tight manner, and is hermetically sealed with respect to the external space inside the second mounting bracket 14. A fluid enclosure region in which a compressible fluid is enclosed is defined. As the sealing fluid, water, alkylene glycol, polyalkylene glycol, silicone oil, or a mixed fluid thereof may be used. In particular, in order to effectively obtain a vibration isolation effect based on the resonance action of the fluid. Is preferably a low-viscosity fluid of 0.1 Pa · s or less. In addition, injecting and filling the incompressible fluid is performed, for example, by assembling the partition member 40 and the diaphragm 42 to the second mounting bracket 14 given as an integrally vulcanized molded product in the incompressible fluid. Etc., which can be done advantageously.

さらに、かかる流体封入領域は、仕切部材40によって上下に二分されており、以て、該仕切部材40を挟んだ上側には、壁部の一部が本体ゴム弾性体15で構成されて、第一の取付金具12と第二の取付金具14の間への振動入力時に内圧変化が生ぜしめられる流体室としての受圧室46が形成されている。また、仕切部材40を挟んで下側には、壁部の一部がダイヤフラム42で構成されて、該ダイヤフラム42の変形に基づいて容積変化が容易に許容されて圧力変化が吸収される副流体室としての平衡室48が形成されている。即ち、仕切部材40は、第二の取付金具14に内挿されて、筒壁ゴム34の軸方向下端面に対して、略全面に亘って当接せしめられている。それにより、筒壁ゴム34の軸方向下端面が仕切部材40によって支持されて、該筒壁ゴム34による本体ゴム弾性体15に対する補強効果の向上が図られていると共に、凹所36の開口部が仕切部材40によって流体密に覆蓋されて、そこに受圧室46が形成されているのである。   Further, the fluid sealing region is vertically divided into two by the partition member 40. Therefore, a part of the wall portion is composed of the main rubber elastic body 15 on the upper side across the partition member 40. A pressure receiving chamber 46 is formed as a fluid chamber in which a change in internal pressure is generated when vibration is input between the one mounting bracket 12 and the second mounting bracket 14. Further, on the lower side across the partition member 40, a part of the wall portion is constituted by a diaphragm 42, and a subfluid in which a change in volume is easily allowed based on the deformation of the diaphragm 42 and a pressure change is absorbed. An equilibrium chamber 48 as a chamber is formed. That is, the partition member 40 is inserted into the second mounting member 14 and is brought into contact with the lower end surface in the axial direction of the cylindrical wall rubber 34 over substantially the entire surface. As a result, the lower end surface in the axial direction of the cylindrical wall rubber 34 is supported by the partition member 40, and the reinforcing effect of the cylindrical wall rubber 34 on the main rubber elastic body 15 is improved. Is covered fluid-tightly by the partition member 40, and a pressure receiving chamber 46 is formed there.

また、この仕切部材40には、外周面に開口して周方向に略螺旋状に連続して延びる周溝50が形成されており、この周溝50が第二の取付金具14で覆蓋されることによって、受圧室46と平衡室48を相互に連通するオリフィス通路52が形成されている。そして、振動入力時に、受圧室46と平衡室48の間に生ぜしめられる圧力差に基づき、オリフィス通路52を通じて流動する流体の流動作用によって、所定の防振効果が発揮されるようになっている。なお、ここでは、オリフィス通路52を流動せしめられる流体の共振作用に基づいて、シェイク等の低周波振動に対して有効な防振効果が発揮されるように、オリフィス通路52の流路断面積や長さ等が設定されている。 Further, the partition member 40 is formed with a circumferential groove 50 that is open on the outer peripheral surface and extends substantially spirally in the circumferential direction, and the circumferential groove 50 is covered with the second mounting member 14. Thus, an orifice passage 52 is formed which communicates the pressure receiving chamber 46 and the equilibrium chamber 48 with each other. Then, based on the pressure difference generated between the pressure receiving chamber 46 and the equilibrium chamber 48 at the time of vibration input, a predetermined vibration isolating effect is exhibited by the fluid action of the fluid flowing through the orifice passage 52. . Here , based on the resonance action of the fluid flowing through the orifice passage 52, the flow passage cross-sectional area of the orifice passage 52 and the effective vibration-proofing effect against low-frequency vibration such as shake are exhibited. Length etc. are set.

更にまた、仕切部材40の中央部分には、上方に開口する円形の中央凹部54が形成されており、この中央凹部54内に仕切板としての可動ゴム板56が収容配置されている。この可動ゴム板56は、外周部分を、中央凹部54の底壁と、該中央凹部54の開口部に嵌入固定された円環形状の押えリング58で軸方向に流体密に挟圧保持されることによって、仕切部材40に組み付けられている。また、そのような組付状態下で、可動ゴム板56の中央部分の上面は、押えリング58の中央透孔60を通じて受圧室46に露呈されている一方、可動ゴム板56の中央部分の下面は、中央凹部54の底壁に貫設された複数の連通孔62を通じて平衡室48に露呈されている。かくの如く配設された可動ゴム板56には、受圧室46と平衡室48の内圧が上下面に及ぼされるのであり、それ故、振動入力時には、受圧室46と平衡室48の圧力差に基づいて弾性変形せしめられる。そして、この可動ゴム板56の弾性変形に基づいて、仕切部材40の中央透孔60や連通孔62を通じての流体流動が生ぜしめられることにより、流体の共振作用や受圧室46の圧力吸収作用に基づいて、所定周波数域の入力振動に対する低動ばね効果が発揮されるようになっている。なお、本参考例では、仕切部材40の弾性変形に伴う流体の流動作用に基づいて、アイドリング振動や低速こもり音等の中乃至高周波振動に対して有効な防振効果が発揮されるように、可動ゴム板56のばね特性や流体流路の長さと断面積等が設定されている。また、可動ゴム板56は、それ自体の弾性と中央凹部54の底部への当接によって、弾性変形量が制限されるようになっており、シェイク等の低周波大振幅振動の入力時には、可動ゴム板56の弾性変形に伴う流体流動量が制限されて、オリフィス通路52を通じての流体流動量が十分に確保されるようになっている。 Furthermore, a circular central recess 54 that opens upward is formed in the central portion of the partition member 40, and a movable rubber plate 56 as a partition plate is accommodated in the central recess 54. The movable rubber plate 56 is clamped and held in a fluid-tight manner in the axial direction by an annular retainer ring 58 fitted and fixed to the bottom wall of the central recess 54 and the opening of the central recess 54. Thus, it is assembled to the partition member 40. In such an assembled state, the upper surface of the central portion of the movable rubber plate 56 is exposed to the pressure receiving chamber 46 through the central through hole 60 of the presser ring 58, while the lower surface of the central portion of the movable rubber plate 56 is exposed. Is exposed to the equilibrium chamber 48 through a plurality of communication holes 62 penetrating the bottom wall of the central recess 54. The movable rubber plate 56 arranged in this way is subjected to the internal pressures of the pressure receiving chamber 46 and the equilibrium chamber 48 on the upper and lower surfaces. Therefore, when a vibration is input, the pressure difference between the pressure receiving chamber 46 and the equilibrium chamber 48 is increased. Based on the elastic deformation. Then, based on the elastic deformation of the movable rubber plate 56, fluid flow through the central through hole 60 and the communication hole 62 of the partition member 40 is generated, so that the resonance action of the fluid and the pressure absorption action of the pressure receiving chamber 46 are achieved. Based on this, the low dynamic spring effect with respect to the input vibration in the predetermined frequency range is exhibited. In addition, in this reference example , based on the fluid flow action accompanying the elastic deformation of the partition member 40, an anti-vibration effect effective against medium to high-frequency vibration such as idling vibration and low-speed booming noise is exhibited. The spring characteristics of the movable rubber plate 56, the length and cross-sectional area of the fluid flow path, etc. are set. Further, the elastic amount of elastic deformation of the movable rubber plate 56 is limited by its own elasticity and contact with the bottom of the central concave portion 54. When the low-frequency large-amplitude vibration such as a shake is input, the movable rubber plate 56 is movable. The amount of fluid flow associated with the elastic deformation of the rubber plate 56 is limited, and a sufficient amount of fluid flow through the orifice passage 52 is ensured.

一方、壁部の一部が本体ゴム弾性体15で画成された受圧室46の内部には、主たる振動入力方向(図1中、上下方向に延びるマウント中心軸方向)に対して直交する方向に広がって、傘金具22が配設されている。そして、エンジンマウント10の装着状態下では、図1中に仮想線で示されているように、パワーユニット重量の入力で本体ゴム弾性体15が圧縮変形することにより、傘金具22が、図1中に実線で示された状態から下方に変位し、受圧室46内の略中央部分に位置せしめられる。これにより、受圧室46の内部が、傘金具22によって二分されているのであり、以て、傘金具22を主たる振動入力方向(軸方向)に挟んだ両側に上側分割室70と下側分割室72が形成されている。そして、これら上側分割室70と下側分割室72は、傘金具22の外周面66と、受圧室46の内周面68(筒壁ゴム34の内周面)との対向面間に形成された、周方向に連続して延びる環状間隙64によって、相互に連通されている。   On the other hand, in the pressure receiving chamber 46 in which a part of the wall is defined by the main rubber elastic body 15, a direction orthogonal to the main vibration input direction (the mount center axis direction extending in the vertical direction in FIG. 1). Umbrella fittings 22 are arranged. Under the mounted state of the engine mount 10, as indicated by the phantom line in FIG. 1, the main rubber elastic body 15 is compressed and deformed by the input of the power unit weight, so that the umbrella bracket 22 is Are displaced downward from the state indicated by the solid line, and are positioned at a substantially central portion in the pressure receiving chamber 46. As a result, the interior of the pressure receiving chamber 46 is divided into two parts by the umbrella bracket 22, so that the upper divided chamber 70 and the lower divided chamber are arranged on both sides of the umbrella bracket 22 in the main vibration input direction (axial direction). 72 is formed. The upper divided chamber 70 and the lower divided chamber 72 are formed between opposing surfaces of the outer peripheral surface 66 of the umbrella bracket 22 and the inner peripheral surface 68 of the pressure receiving chamber 46 (the inner peripheral surface of the cylindrical wall rubber 34). Further, they are communicated with each other by an annular gap 64 extending continuously in the circumferential direction.

ここにおいて、本参考例では、傘金具22として、本体ゴム弾性体15で構成された受圧室46の内周面形状に略対応して、支持金具20にかしめ固定される中央部分から斜め下方に向かってテーパ状乃至はスカート状に広がり、更に外周部分が軸方向下方に向かって短い円筒状に延びる形状のものが採用されており、その最外周面66は、支持金具20による支持中心軸(受圧室46の中心軸)に対して同心的な円形形状とされている。また、傘金具22が収容配置される受圧室46の周壁部の内周面68も、受圧室46の中心軸に対して同心的な略円形形状とされている。これにより、傘金具22の外周面66と受圧室46の内周面68との径方向対向面間における環状空間64が、略一定の径方向寸法をもって周方向全周に亘って連続して延びる円環形状とされているのである。 Here, in this reference example , as the umbrella fitting 22, substantially corresponding to the inner peripheral surface shape of the pressure receiving chamber 46 formed of the main rubber elastic body 15, the umbrella fitting 22 is obliquely downward from the central portion that is caulked and fixed to the support fitting 20. A taper or skirt is formed, and the outer peripheral portion extends in a short cylindrical shape downward in the axial direction. The outermost peripheral surface 66 has a support central axis ( A circular shape concentric with the central axis of the pressure receiving chamber 46). Further, the inner peripheral surface 68 of the peripheral wall portion of the pressure receiving chamber 46 in which the umbrella fitting 22 is accommodated is also formed in a substantially circular shape concentric with the central axis of the pressure receiving chamber 46. As a result, the annular space 64 between the radially opposed surfaces of the outer peripheral surface 66 of the umbrella bracket 22 and the inner peripheral surface 68 of the pressure receiving chamber 46 extends continuously over the entire circumferential direction with a substantially constant radial dimension. It has an annular shape.

このように環状間隙64で連通された上側分割室70と下側分割室72を、傘金具22で形成した、上述の如き構造のエンジンマウント10においては、第一の取付金具12と第二の取付金具14の略対向方向に防振すべき振動が入力されると、受圧室46内で傘金具22が変位せしめられることにより、上下の分割室70,72間で、環状間隙64を通じての流体流動が生ぜしめられる。要するに、本参考例では、かかる環状間隙64によって狭窄流路が構成されているのであり、該環状間隙64を通じての流体の流動作用に基づいて、所定の防振効果が発揮されることとなる。なお、環状間隙64を流動せしめられる流体の共振作用に基づく低動ばね効果が発揮される周波数域は、受圧室46の壁ばね剛性や封入流体の密度等を考慮しつつ、環状間隙64における流路断面積と流路長さの比を調節することによってチューニングすることが出来る。特に、本参考例では、可動ゴム板56の弾性変形に伴う流体流動作用に基づく防振効果が発揮される周波数域よりも更に高周波数域(例えば、高速こもり音等)にチューニングされることが望ましく、それによって、オリフィス通路52および可動ゴム板56等と協働して、より広い周波数域の入力振動に対して有効な防振効果を得ることが可能となる。 In the engine mount 10 having the above-described structure in which the upper divided chamber 70 and the lower divided chamber 72 communicated by the annular gap 64 are formed by the umbrella bracket 22, the first mounting bracket 12 and the second mounting bracket 12 are connected. When vibration to be vibrated is input in a direction substantially opposite to the mounting bracket 14, the umbrella bracket 22 is displaced in the pressure receiving chamber 46, so that fluid flows through the annular gap 64 between the upper and lower divided chambers 70 and 72. Flow is produced. In short, in this reference example , the narrow channel is constituted by the annular gap 64, and a predetermined vibration isolating effect is exhibited based on the fluid flow action through the annular gap 64. It should be noted that the frequency range in which the low dynamic spring effect based on the resonance action of the fluid flowing through the annular gap 64 is taken into consideration is the flow in the annular gap 64 while considering the wall spring rigidity of the pressure receiving chamber 46 and the density of the enclosed fluid. Tuning can be achieved by adjusting the ratio of the channel cross-sectional area to the channel length. In particular, in this reference example , tuning may be performed in a higher frequency range (for example, high-speed booming noise) than the frequency range where the vibration isolation effect based on the fluid flow action accompanying the elastic deformation of the movable rubber plate 56 is exhibited. Desirably, it is possible to obtain an effective vibration-proofing effect against input vibrations in a wider frequency range in cooperation with the orifice passage 52 and the movable rubber plate 56 and the like.

しかも、振動入力によって傘金具22が変位せしめられる際、上側分割室70にあっては、その壁部の一部を構成するポケット状凹部31の底壁部33において、上側分割室70の内圧変動に伴う弾性変形が比較的容易に生ぜしめられることとなる。それ故、受圧室46内での傘金具22の変位が有利に生ぜしめられると共に、上側分割室70と下側分割室72の間での相対的な容積変化が有利に惹起されることとなり、その結果、環状間隙64を通じての流体の流動量が有利に確保され得る。それ故、環状間隙64を通じて流動せしめられる流体の共振作用に基づく低動ばね効果が、より有効に発揮されて、より優れた防振性能が発揮されるのである。   In addition, when the umbrella bracket 22 is displaced by vibration input, in the upper divided chamber 70, the internal pressure fluctuation of the upper divided chamber 70 is changed at the bottom wall portion 33 of the pocket-shaped recess 31 constituting a part of the wall portion. Accordingly, the elastic deformation accompanying the above can be generated relatively easily. Therefore, the displacement of the umbrella fitting 22 within the pressure receiving chamber 46 is advantageously caused, and a relative volume change between the upper divided chamber 70 and the lower divided chamber 72 is advantageously caused. As a result, the amount of fluid flowing through the annular gap 64 can be advantageously ensured. Therefore, the low dynamic spring effect based on the resonance action of the fluid that is caused to flow through the annular gap 64 is more effectively exhibited, and more excellent vibration isolation performance is exhibited.

特に、本参考例においては、受圧室46が、オリフィス通路52と可動ゴム板56を介して、平衡室48に連通されていると共に、環状間隙64が、それらオリフィス通路52や可動ゴム板56のチューニング周波数よりも高周波数域にチューニングされていることから、環状間隙64による防振効果が要求される高周波数域の振動入力時において、ポケット状凹部31の底壁部33の弾性変形によって上側分割室70と下側分割室72の間での流体流動が有利に生ぜしめられる結果、オリフィス通路52や可動ゴム板56を介しての、受圧室46から平衡室48への流体の逃げが軽減乃至は防止されることとなる。それ故、オリフィス通路52や可動ゴム板56の作用に基づいて発揮される低乃至中周波数域の入力振動に対する防振効果を充分に確保しつつ、環状間隙64を通じての流体流動量を有利に確保して、環状間隙64を通じて流動せしめられる流体の共振作用による高周波振動に対する防振効果を一層有利に得ることが可能となるのである。 In particular, in the present reference example , the pressure receiving chamber 46 is communicated with the equilibrium chamber 48 via the orifice passage 52 and the movable rubber plate 56, and the annular gap 64 is provided between the orifice passage 52 and the movable rubber plate 56. Since the tuning frequency is tuned to a higher frequency range than the tuning frequency, when the vibration is input in a high frequency range where an anti-vibration effect by the annular gap 64 is required, the upper wall is divided by elastic deformation of the bottom wall 33 of the pocket-shaped recess 31 As a result of the fluid flow between the chamber 70 and the lower divided chamber 72 being advantageously generated, fluid escape from the pressure receiving chamber 46 to the equilibrium chamber 48 via the orifice passage 52 and the movable rubber plate 56 is reduced. Will be prevented. Therefore, the amount of fluid flow through the annular gap 64 is advantageously ensured while sufficiently ensuring the anti-vibration effect against the input vibration in the low to medium frequency range that is exhibited based on the action of the orifice passage 52 and the movable rubber plate 56. Thus, it is possible to more advantageously obtain an anti-vibration effect against high-frequency vibration due to the resonance action of the fluid flowing through the annular gap 64.

さらに、本参考例では、底壁部33の弾性変形に伴って、受圧室46(上側分室室70)との間で、ポケット状凹部31を通じての流体流動が生ぜしめられる。ここにおいて、このポケット状凹部31の流路断面積と流路長さを、底壁部33の拡張ばね剛性や封入流体の密度等を考慮して調節することにより、該ポケット状凹部31を流動せしめられる流体の共振作用に基づく低動ばね効果が、防振すべき振動周波数域で発揮されるようにチューニングされている。 Furthermore, in the present reference example , fluid flow through the pocket-shaped recess 31 is generated between the pressure receiving chamber 46 (upper chamber 70) with the elastic deformation of the bottom wall 33. Here, by adjusting the cross-sectional area and the flow path length of the pocket-shaped recess 31 in consideration of the expansion spring rigidity of the bottom wall portion 33, the density of the sealed fluid, etc., the pocket-shaped recess 31 flows. The low dynamic spring effect based on the resonance action of the fluid to be damped is tuned so as to be exhibited in the vibration frequency range to be damped.

具体的には、例えば、このポケット状凹部31を流動せしめられる流体の共振作用に基づく低動ばね効果が、環状間隙64を流動せしめられる流体の共振作用に基づく低動ばね効果と、略同一の周波数域で発揮されるようにチューニングすれば、かかるチューニング周波数域において、環状間隙64を通じての流体流動量を一層有利に確保することが出来、それによって、特定のチューニング周波数域においてより一層優れた防振効果を得ることが可能となる。   Specifically, for example, the low dynamic spring effect based on the resonance action of the fluid flowing through the pocket-shaped recess 31 is substantially the same as the low dynamic spring effect based on the resonance action of the fluid flowing through the annular gap 64. If tuning is performed in such a frequency range, the fluid flow amount through the annular gap 64 can be more advantageously secured in the tuning frequency range, thereby further improving prevention in a specific tuning frequency range. A vibration effect can be obtained.

或いはまた、ポケット状凹部31を流動せしめられる流体の共振作用に基づく低動ばね効果が、環状間隙64を流動せしめられる流体の共振作用に基づく低動ばね効果とは、例えば数十〜数百Hz程度異なる周波数域で発揮されるようにチューニングすれば、それら各チューニング周波数域間の広い周波数域に亘って、全体として流体の共振作用に基づく低動ばね効果を得ることが出来、それによって、より広い周波数域の振動に対して有効な防振効果を得ることが可能となる。なお、その場合には、ポケット状凹部31を流動せしめられる流体のチューニング周波数を、環状間隙64を流動せしめられる流体のチューニング周波数よりも高周波数域に設定することが望ましい。   Alternatively, the low dynamic spring effect based on the resonance action of the fluid flowing through the pocket-shaped concave portion 31 and the low dynamic spring effect based on the resonance action of the fluid flowing through the annular gap 64 are, for example, several tens to several hundreds Hz. If the tuning is performed so that the frequency bands are different, the low dynamic spring effect based on the resonance action of the fluid can be obtained as a whole over a wide frequency range between these tuning frequency ranges. It is possible to obtain an effective anti-vibration effect against vibrations in a wide frequency range. In this case, it is desirable to set the tuning frequency of the fluid that is allowed to flow in the pocket-shaped recess 31 to be higher than the tuning frequency of the fluid that is allowed to flow in the annular gap 64.

次に、図4及び図5には、本発明の一つの実施形態としての自動車用エンジンマウント80が、示されている。なお、本実施形態において、前述した参考例としての図1に示されたエンジンマウント10と同様な構造とされた部材および部位については、図中に、かかる参考例のエンジンマウント10と同一の符号を付することにより、それらの詳細な説明省略することとするNext, FIGS. 4 and 5 show an automobile engine mount 80 as one embodiment of the present invention. In the present embodiment, members and parts having the same structure as the engine mount 10 shown in FIG. 1 as the reference example described above are denoted by the same reference numerals as those of the engine mount 10 of the reference example . by referring to, their detailed description and it will be omitted.

すなわち、本実施形態のエンジンマウント80は、先の参考例のものに比して、受圧室46内に傘金具(22)を備えておらず、受圧室46が単一の流体室構造をもって形成されており、その内部に狭窄流路(環状間隙64)も形成されていない。 That is, the engine mount 80 of this embodiment does not include the umbrella fitting (22) in the pressure receiving chamber 46 as compared to the reference example , and the pressure receiving chamber 46 is formed with a single fluid chamber structure. The constricted flow path (annular gap 64) is not formed in the inside.

このような構造のエンジンマウント80においては、オリフィス通路52や可動ゴム板56の作用に基づいて発揮される低乃至中周波数域の入力振動に対する防振効果は、前記参考例と同様に、何れも有効に発揮され得るのである。また、高周波数域の振動入力時には、ポケット状凹部31の底壁部33の弾性変形に基づいて、受圧室46の大幅な内圧上昇が回避され得ることから、急激なばね定数の増大が回避されて、良好な防振効果が維持され得ることとなる。 In the engine mount 80 having such a structure, the anti-vibration effect against the input vibration in the low to medium frequency range, which is exhibited based on the action of the orifice passage 52 and the movable rubber plate 56, is the same as in the reference example. it is as it can be effectively exhibited. In addition, when a vibration is input in a high frequency range, a significant increase in the internal pressure of the pressure receiving chamber 46 can be avoided based on the elastic deformation of the bottom wall portion 33 of the pocket-shaped recess 31, so that a sudden increase in spring constant is avoided. Thus, a good anti-vibration effect can be maintained.

特に、ポケット状凹部31が流体流路として作用することから、このポケット状凹部31の断面積や流路長さを適当に調節して、該ポケット状凹部31を流動せしめられる流体の共振作用に基づく低動ばね効果が、防振すべき振動周波数域で発揮されるようにチューニングすることによって、特定の高周波数域の入力振動に対して、特に優れた防振効果を得ることが可能となるのである。   In particular, since the pocket-shaped recess 31 acts as a fluid flow path, the cross-sectional area and the flow path length of the pocket-shaped recess 31 are appropriately adjusted so that the resonant action of the fluid that allows the pocket-shaped recess 31 to flow. By tuning so that the low dynamic spring effect is exerted in the vibration frequency range to be vibration-isolated, it becomes possible to obtain a particularly excellent vibration-proof effect for the input vibration in a specific high-frequency region. It is.

因みに、前記参考例に従う構造とされたエンジンマウント10(図1)の実施形態に従う構造とされたエンジンマウント80(図4)について、それぞれの防振特性を実測し、その結果を、図6に併せ示す。また、参考例に従う構造とされたエンジンマウント10において、本体ゴム弾性体15にポケット状凹部31を設けない構造のマウントであって、参考例と同じ傘金具22を装着したものを、比較例として製造し、かかる比較例について、同じ防振特性の測定を行った結果を、図6に併せ示す。 Incidentally, the vibration isolation characteristics of the engine mount 10 (FIG. 1) configured according to the reference example and the engine mount 80 (FIG. 4) configured according to the previous embodiment were measured, and the results are shown in FIG. This is also shown in FIG. Further, in the engine mount 10 having a structure according to the reference example , a mount having a structure in which the main rubber elastic body 15 is not provided with the pocket-shaped concave portion 31 and the same umbrella fitting 22 as that of the reference example is mounted is used as a comparative example. FIG. 6 shows the results of manufacturing and measuring the same anti-vibration characteristics for such a comparative example.

かかる図6に示す結果から、特に、本発明に従う実施形態のエンジンマウント80においては、傘金具を設けなくても、傘金具を設けた比較例と略同様に有効な低動ばね効果を得ることが出来ること、および傘金具によって低動ばね効果が発揮される周波数域よりも、高周波域において低動ばね効果を発揮するチューニングも可能であることが、理解される。また、参考例のエンジンマウント10においては、比較例に示された傘金具だけを設けたものと、本発明に従う実施形態に示されたポケット状凹部だけを設けたものとの、何れに比べても、充分に広い周波数域に亘って、低動ばね効果が有利に達成され得ることが、理解される。 From the results shown in FIG. 6, in particular, in the engine mount 80 of the embodiment according to the present invention , an effective low dynamic spring effect is obtained in substantially the same manner as the comparative example in which the umbrella bracket is provided without the umbrella bracket. It can be understood that tuning can be performed to exhibit the low dynamic spring effect in the high frequency range rather than the frequency range in which the low dynamic spring effect is exhibited by the umbrella fitting. In addition, in the engine mount 10 of the reference example , compared with any of the one provided with only the umbrella bracket shown in the comparative example and the one provided only with the pocket-shaped recess shown in the embodiment according to the present invention. However, it is understood that a low dynamic spring effect can be advantageously achieved over a sufficiently wide frequency range.

以上、本発明の実施形態について詳述してきたが、これらはあくまでも例示であって、本発明は、そのような実施形態における具体的記載によって、何等、限定的に解釈されるものでない。 As mentioned above, although embodiment of this invention has been explained in full detail, these are illustrations to the last, Comprising: This invention is not limited at all by the specific description in such embodiment.

例えば、前記実施形態では、低周波振動の防振用のオリフィス通路52と、中周波振動の防振用の可動ゴム板56が採用されていたが、それらオリフィス通路52や可動ゴム板56は、要求される防振特性等に応じて適宜に採用されるものであって、本発明において必須のものではない。 For example , in the above-described embodiment, the vibration-proof orifice passage 52 for low-frequency vibration and the movable rubber plate 56 for vibration prevention for medium-frequency vibration are used. However, the orifice passage 52 and the movable rubber plate 56 are It is appropriately employed according to the required vibration isolation characteristics and the like, and is not essential in the present invention.

また、本発明は、自動車用エンジンマウントの他、自動車用ボデーマウントやデフマウント,サスペンションブッシュ、或いは自動車以外に用いられる各種の防振装置に対しても、同様に適用可能であり、それによって、本発明の効果が、何れも、有効に発揮され得ることとなる。 Further , the present invention can be similarly applied to various types of vibration isolators used other than automobile engine mounts, automobile body mounts, differential mounts, suspension bushings, or automobiles, thereby Any of the effects of the present invention can be effectively exhibited.

その他、一々列挙はしないが、本発明は、当業者に知識に基づいて、種々なる変更,修正,改良等を加えた形態において実施され得るものであり、そして、そのような実施形態が、本発明の趣旨を逸脱しない限り、何れも、本発明の範囲内に含まれるものであることは、言うまでもない。   In addition, although not listed one by one, the present invention can be implemented in a form added with various changes, modifications, improvements, etc. based on the knowledge of those skilled in the art. It goes without saying that all are included in the scope of the present invention without departing from the spirit of the invention.

本発明の参考例としてのエンジンマウントを示す縦断面図であって、図2におけるI−I断面に相当する図である。It is a longitudinal cross-sectional view which shows the engine mount as a reference example of this invention, Comprising: It is a figure equivalent to the II cross section in FIG. 図1におけるII−II断面図である。It is II-II sectional drawing in FIG. 図1に示されたエンジンマウントを構成する一体加硫成形品を、図1に対応した縦断面で示す図である。It is a figure which shows the integral vulcanization molded product which comprises the engine mount shown by FIG. 1 with the longitudinal cross-section corresponding to FIG. 本発明の一つの実施形態としてのエンジンマウントを示す縦断面図であって、図5におけるIV−IV断面図である。It is a longitudinal cross-sectional view which shows the engine mount as one Embodiment of this invention, Comprising: It is IV-IV sectional drawing in FIG. 図4におけるV−V断面図である。It is VV sectional drawing in FIG. 図1および図4に従う構造とされたエンジンマウントの防振特性の実測結果を、比較例と共に示すグラフである。It is a graph which shows the measurement result of the vibration proof characteristic of the engine mount made into the structure according to FIG . 1 and FIG. 4 with a comparative example.

符号の説明Explanation of symbols

10 エンジンマウント
12 第一の取付金具
14 第二の取付金具
15 本体ゴム弾性体
22 傘金具
31 ポケット状凹部
33 底壁部
40 仕切部材
42 ダイヤフラム
46 受圧室
48 平衡室
52 オリフィス通路
56 可動ゴム板
64 環状間隙
70 上側分割室
72 下側分割室
DESCRIPTION OF SYMBOLS 10 Engine mount 12 1st mounting bracket 14 2nd mounting bracket 15 Main body rubber elastic body 22 Umbrella bracket 31 Pocket-shaped recessed part 33 Bottom wall part 40 Partition member 42 Diaphragm 46 Pressure receiving chamber 48 Equilibrium chamber 52 Orifice passage 56 Movable rubber plate 64 Annular gap 70 Upper partition chamber 72 Lower partition chamber

Claims (6)

第一の取付部材と、該第一の取付部材に向かって開口する筒状部を備えた第二の取付部材とを、互いに離間して対向配置すると共に、それら第一の取付部材と第二の取付部材を本体ゴム弾性体で連結せしめて、該本体ゴム弾性体で該第二の取付部材における筒状部の開口を流体密に覆蓋することにより、該第二の取付部材の筒状部内において該本体ゴム弾性体で壁部の一部が構成されて、0.1Pa・s以下の低粘性流体からなる非圧縮性流体が封入された流体室を形成した流体封入式防振装置において、
前記本体ゴム弾性体に前記流体室に向かって開口するポケット状凹部を少なくとも一つ形成し、該ポケット状凹部の底壁によって、薄肉化されて弾性変形容易とされた薄肉部を構成して、かかる薄肉部の弾性変形に伴って、該ポケット状凹部と前記流体室との間での流体流動が生ぜしめられるようにすると共に、該ポケット状凹部を、前記本体ゴム弾性体の周方向において、該本体ゴム弾性体の径方向外方に行くに従って次第に寸法が大きくなる略扇形状と為し、更に該薄肉部を、前記本体ゴム弾性体によって構成された前記流体室の壁部に対して、該本体ゴム弾性体の中心軸方向における投影面積比で一つ当たり2〜15%の大きさとしたことを特徴とする流体封入式防振装置。
A first mounting member and a second mounting member having a cylindrical portion that opens toward the first mounting member are arranged to be spaced apart from each other, and the first mounting member and the second mounting member. The attachment member of the second attachment member is connected with a rubber elastic body and the opening of the tubular portion of the second attachment member is fluid-tightly covered with the rubber elastic body. In the fluid-filled vibration isolator, in which a part of the wall portion is formed of the main rubber elastic body and a fluid chamber is formed in which an incompressible fluid composed of a low-viscosity fluid of 0.1 Pa · s or less is sealed.
Forming at least one pocket-shaped recess opening toward the fluid chamber in the main rubber elastic body, and forming a thin-walled portion that is thinned and easily elastically deformed by a bottom wall of the pocket-shaped recess ; With the elastic deformation of the thin-walled portion, fluid flow between the pocket-shaped recess and the fluid chamber is generated , and the pocket-shaped recess is arranged in the circumferential direction of the main rubber elastic body. The main rubber elastic body has a substantially fan shape that gradually increases in size as it goes outward in the radial direction, and further, the thin wall portion is formed with respect to the wall portion of the fluid chamber constituted by the main rubber elastic body. A fluid-filled vibration isolator having a size of 2 to 15% per projected area ratio in the central axis direction of the main rubber elastic body.
前記薄肉部を、前記本体ゴム弾性体の中心軸回りで略等間隔に複数設けた請求項1に記載の流体封入式防振装置。   The fluid-filled vibration isolator according to claim 1, wherein a plurality of the thin portions are provided at substantially equal intervals around the central axis of the main rubber elastic body. 前記本体ゴム弾性体の外周部分から前記第二の取付部材における筒状部の内周面に沿って軸方向に延び出し、該筒状部に固着されて該筒状部の内周面を覆う筒壁ゴムを、該本体ゴム弾性体と一体的に形成すると共に、該筒壁ゴムを、前記薄肉部の形成部位を除く部分において、該薄肉部の外周縁部よりも内周側に突出位置せしめた請求項1又は請求項2に記載の流体封入式防振装置。 It extends in the axial direction from the outer peripheral portion of the main rubber elastic body along the inner peripheral surface of the cylindrical portion of the second mounting member, and is fixed to the cylindrical portion to cover the inner peripheral surface of the cylindrical portion. The cylindrical wall rubber is formed integrally with the main rubber elastic body, and the cylindrical wall rubber is positioned so as to protrude from the outer peripheral edge of the thin portion to the inner peripheral side in a portion excluding the portion where the thin portion is formed. fluid-filled vibration damping device according to claim 1 or claim 2 was allowed. 前記第一の取付部材と前記第二の取付部材の間への振動入力により、前記流体室に対して相対的な内圧差が生ぜしめられる副流体室を形成すると共に、それら流体室と副流体室を相互に連通する流体流路を設けた請求項1乃至請求項3の何れか一つに記載の流体封入式防振装置。 A vibration input between the first mounting member and the second mounting member forms a secondary fluid chamber in which a relative internal pressure difference is generated with respect to the fluid chamber, and the fluid chamber and the secondary fluid. The fluid-filled vibration isolator according to any one of claims 1 to 3, further comprising a fluid flow path that communicates the chambers with each other. 前記第二の取付部材における筒状部に剛性の仕切部材を内装固定し、該仕切部材を挟んだ一方の側に前記流体室を形成、他方の側に前記副流体室を形成すると共に、該仕切部材によって、前記流体流路を形成した請求項4に記載の流体封入式防振装置。 Said second partition member of the rigid tubular portion of the mounting member with interior fixed, the fluid chamber is formed on one side of sandwiching the partition member, together forming the secondary fluid chamber on the other side The fluid filled type vibration damping device according to claim 4, wherein the fluid flow path is formed by the partition member. 前記ポケット状凹部の2対が、前記ゴム弾性体に対して、互いに直交する軸直角方向で対向位置するように、設けられている請求項1乃至請求項5の何れか一つに記載の流体封入式防振装置。The fluid according to any one of claims 1 to 5, wherein two pairs of the pocket-shaped concave portions are provided so as to face each other in a direction perpendicular to an axis perpendicular to the rubber elastic body. Enclosed vibration isolator.
JP2004205107A 2004-07-12 2004-07-12 Fluid filled vibration isolator Expired - Fee Related JP4270049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004205107A JP4270049B2 (en) 2004-07-12 2004-07-12 Fluid filled vibration isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004205107A JP4270049B2 (en) 2004-07-12 2004-07-12 Fluid filled vibration isolator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP36524198A Division JP3702683B2 (en) 1998-12-22 1998-12-22 Fluid filled vibration isolator

Publications (2)

Publication Number Publication Date
JP2004347124A JP2004347124A (en) 2004-12-09
JP4270049B2 true JP4270049B2 (en) 2009-05-27

Family

ID=33535887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004205107A Expired - Fee Related JP4270049B2 (en) 2004-07-12 2004-07-12 Fluid filled vibration isolator

Country Status (1)

Country Link
JP (1) JP4270049B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4676293B2 (en) * 2005-09-26 2011-04-27 山下ゴム株式会社 Vibration isolator
JP4392667B2 (en) 2005-10-05 2010-01-06 東海ゴム工業株式会社 Fluid filled vibration isolator
JP4644103B2 (en) * 2005-11-18 2011-03-02 財団法人鉄道総合技術研究所 Vibration isolator
JP5290121B2 (en) * 2009-10-21 2013-09-18 東海ゴム工業株式会社 Fluid filled vibration isolator
JP5802472B2 (en) * 2011-08-04 2015-10-28 株式会社ブリヂストン Vibration isolator

Also Published As

Publication number Publication date
JP2004347124A (en) 2004-12-09

Similar Documents

Publication Publication Date Title
JP3702683B2 (en) Fluid filled vibration isolator
JP4228219B2 (en) Fluid filled vibration isolator
JP4842086B2 (en) Fluid filled vibration isolator
WO2007116976A1 (en) Vibration damper
JP5542565B2 (en) Fluid filled vibration isolator
JP3826768B2 (en) Fluid filled vibration isolator
JP2006064119A (en) Fluid sealed-type vibration control device
JP2002227921A (en) Vibration control equipment
JP2001343045A (en) Air pressure excited and fluid-filled vibration isolator
JP3915531B2 (en) Fluid filled anti-vibration mount
JP3603631B2 (en) Fluid-filled anti-vibration device
JP3729107B2 (en) Fluid filled vibration isolator
JP2007085523A (en) Fluid-enclosed type vibration isolator
JP3743304B2 (en) Fluid filled vibration isolator
JP3767323B2 (en) Fluid filled vibration isolator
JP4270049B2 (en) Fluid filled vibration isolator
JP2005337299A (en) Pneumatic switching type fluid-filled engine mount
JP4236095B2 (en) Suspended fluid filled anti-vibration mount
JP4075066B2 (en) Fluid filled engine mount
JPH05272575A (en) Fluid-sealed mounting device
JP2007255442A (en) Liquid filled vibration isolation device
JP5386289B2 (en) Fluid filled vibration isolator
JPH11101294A (en) Fluid-filled mount device
JP2008240890A (en) Fluid-filling type vibration-proof device
JP2007155033A (en) Suspended fluid filled vibration control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees