JP4751740B2 - Fluid filled vibration isolator - Google Patents

Fluid filled vibration isolator Download PDF

Info

Publication number
JP4751740B2
JP4751740B2 JP2006061112A JP2006061112A JP4751740B2 JP 4751740 B2 JP4751740 B2 JP 4751740B2 JP 2006061112 A JP2006061112 A JP 2006061112A JP 2006061112 A JP2006061112 A JP 2006061112A JP 4751740 B2 JP4751740 B2 JP 4751740B2
Authority
JP
Japan
Prior art keywords
orifice passage
fluid
opening window
lid plate
pressure receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006061112A
Other languages
Japanese (ja)
Other versions
JP2007239824A (en
Inventor
顕 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2006061112A priority Critical patent/JP4751740B2/en
Publication of JP2007239824A publication Critical patent/JP2007239824A/en
Application granted granted Critical
Publication of JP4751740B2 publication Critical patent/JP4751740B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Combined Devices Of Dampers And Springs (AREA)

Description

本発明は、内部に封入された非圧縮性流体の流動作用に基づいて防振効果を得るようにした流体封入式防振装置に係り、例えば、自動車用のエンジンマウントやボデーマウント、デフマウント等として好適に採用され得る流体封入式防振装置に関するものである。   The present invention relates to a fluid-filled vibration isolator that obtains a vibration-proof effect based on the flow action of an incompressible fluid enclosed therein, such as an engine mount, body mount, diff mount, and the like for an automobile. The present invention relates to a fluid-filled vibration isolator that can be suitably employed.

従来から、振動伝達系を構成する部材間に介装される防振装置において、封入された非圧縮性流体の共振作用等の流動作用に基づく防振効果を利用することが提案されており、その一種として、防振連結される一方の部材に取り付けられる第一の取付部材と、防振連結される他方の部材に取り付けられる第二の取付部材を、互いに離隔配置せしめて、それら第一及び第二の取付部材を互いに本体ゴム弾性体で連結せしめる一方、該本体ゴム弾性体で壁部の一部が構成されて振動入力に際して圧力変動が生ぜしめられる受圧室と、壁部の一部が可撓性膜で構成されて容積変化が容易に許容される平衡室を形成すると共に、それら受圧室と平衡室を相互に連通するオリフィス通路を設けた流体封入式防振装置が、知られている。かかる流体封入式防振装置としては、例えば、特許文献1(実開平7−18046号公報)がある。   Conventionally, in a vibration isolator interposed between members constituting a vibration transmission system, it has been proposed to use a vibration isolation effect based on a flow action such as a resonance action of an enclosed incompressible fluid, As one type, a first attachment member attached to one member to be anti-vibration connected and a second attachment member attached to the other member to be anti-vibration connected are separated from each other, and the first and While the second mounting member is connected to each other by the main rubber elastic body, a part of the wall portion is constituted by the main rubber elastic body, and a pressure receiving chamber in which a pressure fluctuation is generated upon vibration input, and a part of the wall portion 2. Description of the Related Art A fluid-filled vibration damping device is known which is formed of a flexible membrane and forms an equilibrium chamber that easily allows volume change, and has an orifice passage that communicates the pressure receiving chamber and the equilibrium chamber with each other. Yes. An example of such a fluid-filled vibration isolator is Patent Document 1 (Japanese Utility Model Laid-Open No. 7-18046).

このような流体封入式防振装置においては、オリフィス通路を通じて流動せしめられる流体の共振作用に基づいて有効な防振効果を得ることが出来ると共に、装着状態下でパワーユニット支持荷重等の静的な初期荷重が及ぼされる場合でも、封入された非圧縮性流体の圧力変化が平衡室の容積変化に基づいて軽減乃至は回避され得て、流体の共振作用に基づく所期の防振効果が安定して発揮されること等から、例えば自動車用のエンジンマウント等に有利に採用され得るのである。   In such a fluid-filled vibration isolator, an effective vibration isolating effect can be obtained based on the resonance action of the fluid flowing through the orifice passage, and a static initial load such as a power unit support load can be obtained in the mounted state. Even when a load is applied, the pressure change of the enclosed incompressible fluid can be reduced or avoided based on the volume change of the equilibrium chamber, and the desired vibration isolation effect based on the resonance action of the fluid can be stabilized. For example, it can be advantageously employed in an engine mount for automobiles.

ところで、流体封入式防振装置では、オリフィス通路が主たる入力振動の振動周波数に合わせて予めチューニングされており、設定された特定の周波数域の振動に対して優れた防振効果が発揮されることが知られている。かかるオリフィス通路の周波数チューニングは、その通路長さ:Lと通路断面積:Aの比であるA/Lを適当に調節することによって実現されている。   By the way, in the fluid filled type vibration isolator, the orifice passage is tuned in advance according to the vibration frequency of the main input vibration, and an excellent vibration isolation effect is exhibited against vibrations in a set specific frequency range. It has been known. Such frequency tuning of the orifice passage is realized by appropriately adjusting A / L which is a ratio of passage length: L and passage cross-sectional area: A.

ところが、一般的に知られている流体封入式防振装置では、入力振動の振幅に応じてオリフィス通路のチューニング周波数が変化するチューニング周波数(共振周波数)の振幅依存性が問題として指摘されている。例えば、自動車用エンジンマウントとして流体封入式防振装置を採用して、オリフィス通路がエンジンシェイク振動に対して有効な防振効果を発揮するように10Hz前後の低周波数域にチューニングされている場合において、同じ周波数のエンジンシェイク振動が入力された場合であっても、それらの入力振動は路面状況等に応じて互いに異なる振幅を有している場合がある。その際、振幅が大きくなると、オリフィス通路のチューニング周波数は低周波数域にシフトする傾向にある。なお、この現象は、振幅が大きくなることで受圧室の壁部の一部を構成する本体ゴム弾性体の変形量が大きくなってばね特性が変化することにより、受圧室の壁ばね特性が変化すること等に起因すると考えられる。   However, in the generally known fluid-filled vibration isolator, the amplitude dependency of the tuning frequency (resonance frequency) at which the tuning frequency of the orifice passage changes according to the amplitude of the input vibration has been pointed out as a problem. For example, when a fluid-filled vibration isolator is used as an engine mount for an automobile and the orifice passage is tuned to a low frequency range of about 10 Hz so as to exhibit an effective anti-vibration effect against engine shake vibration. Even when engine shake vibrations having the same frequency are input, these input vibrations may have different amplitudes depending on the road surface condition or the like. At that time, when the amplitude increases, the tuning frequency of the orifice passage tends to shift to a low frequency region. Note that this phenomenon is caused by the fact that the amount of deformation of the main rubber elastic body that forms a part of the wall portion of the pressure receiving chamber increases as the amplitude increases, and the spring characteristics change, thereby changing the wall spring characteristics of the pressure receiving chamber. This is considered to be caused by the

このようなチューニング周波数の振幅依存性によって、オリフィス通路のチューニング周波数にずれが生じると、流体の共振作用等の流動作用に基づく所期の防振性能が安定して有効に発揮されないおそれがある。   If the tuning frequency of the orifice passage is deviated due to the amplitude dependency of the tuning frequency as described above, there is a possibility that the desired vibration isolation performance based on the fluid action such as the resonance action of the fluid is not stably and effectively exhibited.

なお、特許文献1には、オリフィス通路の流路長さを変化させることにより、オリフィス通路のチューニング周波数を任意に変化せしめることが可能とされた流体封入式マウントが示されている。しかしながら、特許文献1に示された流体封入式マウントでは、アクチュエータ等によって外部からオリフィス通路の通路長を制御する構造とされていることから、入力振動の振幅が外部の路面状況等に応じて刻々と変化するような場合に対応することが困難となるおそれがあると共に、複雑な構造を有するが故に信頼性の低下等が問題となり易い。   Patent Document 1 discloses a fluid-filled mount in which the tuning frequency of the orifice passage can be arbitrarily changed by changing the flow path length of the orifice passage. However, since the fluid-filled mount disclosed in Patent Document 1 has a structure in which the passage length of the orifice passage is controlled from the outside by an actuator or the like, the amplitude of the input vibration is constantly changed according to the external road surface condition and the like. It may be difficult to cope with such a case, and since it has a complicated structure, a decrease in reliability tends to be a problem.

実開平7−18046号公報Japanese Utility Model Publication No. 7-18046

ここにおいて、本発明は、上述の如き事情を背景として為されたものであって、その解決課題とするところは、簡易な構造によって、オリフィス通路のチューニング周波数の、入力振動の振幅に応じた変化を低減乃至は回避することが出来る、新規な構造の流体封入式防振装置を提供することを目的とする。   The present invention has been made in the background as described above, and the problem to be solved is to change the tuning frequency of the orifice passage according to the amplitude of the input vibration by a simple structure. An object of the present invention is to provide a fluid-filled vibration isolator having a novel structure that can reduce or avoid the above.

以下、このような課題を解決するために為された本発明の態様を記載する。なお、以下に記載の各態様において採用される構成要素は、可能な限り任意な組み合わせで採用可能である。また、本発明の態様乃至は技術的特徴は、以下に記載のものに限定されることなく、明細書全体および図面に記載されたもの、或いはそれらの記載から当業者が把握することの出来る発明思想に基づいて認識されるものであることが理解されるべきである。   Hereinafter, the aspect of this invention made | formed in order to solve such a subject is described. In addition, the component employ | adopted in each aspect as described below is employable by arbitrary combinations as much as possible. Further, aspects or technical features of the present invention are not limited to those described below, but are described in the entire specification and drawings, or an invention that can be understood by those skilled in the art from those descriptions. It should be understood that it is recognized based on thought.

すなわち、本発明の特徴とするところは、防振連結される一方の部材に取り付けられる第一の取付部材と防振連結される他方の部材に取り付けられる第二の取付部材を本体ゴム弾性体で連結せしめて該本体ゴム弾性体で壁部の一部が構成されて非圧縮性流体が封入された受圧室と、壁部の一部が可撓性膜で構成されて非圧縮性流体が封入された平衡室を形成すると共に、それら受圧室と平衡室を相互に連通せしめるオリフィス通路を設けた流体封入式防振装置において、前記オリフィス通路の壁部の少なくとも一部において前記受圧室に開口する開口窓が形成されると共に、弾性を有する蓋プレート部材が該開口窓を閉塞するように配設されて、該蓋プレート部材がその弾性によって該開口窓を覆蓋する状態で保持されている一方、該蓋プレート部材における該オリフィス通路の前記平衡室への開口部側が固定的に支持されていると共に、該蓋プレート部材における該受圧室への開口部側が該開口窓に対して相対的に変位可能とされて開口するようになっており、振動入力時に該受圧室の圧力変動に基づいて該蓋プレート部材が弾性変形することにより該開口窓が開口せしめられて、該オリフィス通路が該開口窓を通じて該受圧室に連通されるようになっていることにある。   That is, a feature of the present invention is that the first attachment member attached to one member to be anti-vibration connected and the second attachment member attached to the other member to be anti-vibration connected are made of a main rubber elastic body. A pressure receiving chamber in which a part of the wall part is formed by sealing the main rubber elastic body and enclosed with an incompressible fluid, and a part of the wall part is formed of a flexible film to contain the incompressible fluid. In the fluid-filled vibration isolator provided with the orifice passage for forming the balanced chamber and communicating the pressure receiving chamber and the balance chamber with each other, the pressure receiving chamber opens at least at a part of the wall of the orifice passage. While an opening window is formed, an elastic lid plate member is disposed so as to close the opening window, and the lid plate member is held in a state of covering the opening window by its elasticity, The lid pre The opening side of the orifice passage of the orifice member to the equilibrium chamber is fixedly supported, and the opening side of the lid plate member to the pressure receiving chamber can be displaced relative to the opening window. When the vibration is input, the lid plate member is elastically deformed based on the pressure fluctuation of the pressure receiving chamber to open the opening window, and the orifice passage is opened through the opening window. It is in communication with the room.

このような本発明に従う構造とされた流体封入式防振装置においては、入力振動の振幅に応じて蓋プレート部材が弾性変形して、開口窓の開口量が変化するようになっている。これによって、オリフィス通路の通路長さが実質的に変化し、それに伴って、オリフィス通路のチューニング周波数が変化する。それ故、入力振動の振幅の大きさに応じたオリフィス通路のチューニング周波数のずれを、オリフィス通路の形状変化によるチューニング周波数の変化によって相殺的に解消することが出来て、振幅依存性に基づくオリフィス通路のチューニング周波数のずれに起因する防振性能の低下を低減乃至は回避することが可能となるのである。   In the fluid-filled vibration isolator having the structure according to the present invention, the lid plate member is elastically deformed according to the amplitude of the input vibration, and the opening amount of the opening window is changed. As a result, the passage length of the orifice passage changes substantially, and the tuning frequency of the orifice passage changes accordingly. Therefore, the deviation of the tuning frequency of the orifice passage according to the magnitude of the amplitude of the input vibration can be canceled out by the change of the tuning frequency due to the shape change of the orifice passage, and the orifice passage based on the amplitude dependency Therefore, it is possible to reduce or avoid the deterioration of the vibration proof performance due to the deviation of the tuning frequency.

さらに、本発明では、オリフィス通路の壁部に形成される開口窓の開口量が、受圧室に発生する負圧の大きさ、換言すれば、入力振動の振幅の大きさに応じて変化する。それ故、多様な振幅の振動に対して柔軟に対応して何れも好適な防振性能を発揮することが出来る。しかも、入力振動の振幅に伴って受圧室が昇圧と減圧を繰り返すことにより、開口窓が蓋プレート部材の弾性変形によって開口と閉塞を繰り返すことも考えられる。これらの結果、防振性能のブロード化が達成されて、幅広い周波数域の振動に対してオリフィス通路を流動せしめられる流体の共振作用等(流動作用)に基づく防振効果が有効に発揮されることとなる。   Furthermore, in the present invention, the opening amount of the opening window formed in the wall portion of the orifice passage changes according to the magnitude of the negative pressure generated in the pressure receiving chamber, in other words, the magnitude of the amplitude of the input vibration. Therefore, it is possible to flexibly respond to vibrations of various amplitudes and to exhibit suitable vibration isolation performance. In addition, it is conceivable that the pressure receiving chamber repeatedly increases and decreases pressure according to the amplitude of the input vibration, so that the opening window repeatedly opens and closes due to elastic deformation of the lid plate member. As a result, the anti-vibration performance is broadened and the anti-vibration effect based on the resonance action (flow action) of the fluid that can flow through the orifice passage against vibrations in a wide frequency range is effectively exhibited. It becomes.

また、本発明に係る流体封入式防振装置においては、前記蓋プレート部材が金属ばねを含んで形成されていることが望ましい。これによれば、繰返し弾性変形せしめられる蓋プレート部材の耐久性を有利に確保して、開口窓の開閉作動の信頼性向上を図ることが出来る。   In the fluid-filled vibration isolator according to the present invention, it is desirable that the lid plate member is formed including a metal spring. According to this, it is possible to advantageously ensure the durability of the lid plate member that is repeatedly elastically deformed, and to improve the reliability of the opening / closing operation of the opening window.

また、本発明に係る流体封入式防振装置においては、前記蓋プレート部材と前記開口窓の開口周縁部との当接部分の少なくとも一部に当接による衝撃を緩和する当接緩衝材が配設されている構造が、好適に採用される。これによれば、蓋プレート部材の閉鎖作動時において、蓋プレート部材が開口窓の開口周縁部に当接することによる打音や振動等の発生を、当接緩衝材による衝撃力の緩和によって有利に防ぐことが出来る。なお、当接緩衝材は、例えば、蓋プレート部材の開口側先端部分等に部分的に配設されていても良いが、より有利に当接時の衝撃による振動や異音の発生を防ぐためには、蓋プレート部材とオリフィス通路の壁部との当接部分の略全体に配設されていることが望ましい。   In the fluid-filled vibration isolator according to the present invention, a contact cushioning material that reduces the impact caused by the contact is disposed on at least a part of the contact portion between the lid plate member and the opening peripheral edge of the opening window. The provided structure is preferably employed. According to this, during the closing operation of the lid plate member, the occurrence of sound and vibration due to the lid plate member coming into contact with the opening peripheral edge of the opening window can be advantageously achieved by reducing the impact force by the contact cushioning material. Can be prevented. The contact cushioning material may be partially disposed, for example, at the opening end portion of the lid plate member, etc., but more advantageously to prevent the occurrence of vibration and abnormal noise due to impact at the time of contact. Is preferably disposed on substantially the entire contact portion between the lid plate member and the wall of the orifice passage.

また、本発明に係る流体封入式防振装置においては、前記オリフィス通路が前記受圧室を周方向に延びるように形成されており、該オリフィス通路の内周側の壁部に前記開口窓が形成されていると共に、該オリフィス通路の内周側の壁部に前記蓋プレート部材が配設されている構造が、好適に採用される。これによれば、周方向に延びるようにオリフィス通路を形成することにより、限られたスペースの中でオリフィス通路の通路長を有利に確保することが出来て、オリフィス通路のチューニングを高い自由度で実現できる。更に、蓋プレート部材をオリフィス通路の内周側の壁部に配設することにより、蓋プレート部材の可動領域を受圧室の内周側において有利に確保することが出来る。   In the fluid filled type vibration damping device according to the present invention, the orifice passage is formed so as to extend in the circumferential direction of the pressure receiving chamber, and the opening window is formed in a wall portion on the inner peripheral side of the orifice passage. In addition, a structure in which the lid plate member is disposed on the inner peripheral wall of the orifice passage is preferably employed. According to this, by forming the orifice passage so as to extend in the circumferential direction, the passage length of the orifice passage can be advantageously ensured in a limited space, and tuning of the orifice passage can be performed with a high degree of freedom. realizable. Furthermore, by disposing the lid plate member on the wall portion on the inner circumferential side of the orifice passage, the movable region of the lid plate member can be advantageously ensured on the inner circumferential side of the pressure receiving chamber.

以下、本発明を更に具体的に明らかにするために、本発明の実施形態について、図面を参照しつつ、詳細に説明する。   Hereinafter, in order to clarify the present invention more specifically, embodiments of the present invention will be described in detail with reference to the drawings.

先ず、図1には、本発明の第一の実施形態としての自動車用エンジンマウント10が示されている。このエンジンマウント10は、第一の取付部材としての第一の取付金具12と第二の取付部材としての第二の取付金具14が離隔配置されていると共に、それら第一の取付金具12と第二の取付金具14が本体ゴム弾性体16で弾性連結された構造を有しており、第一の取付金具12が自動車のパワーユニット側に取り付けられる一方、第二の取付金具14が自動車のボデー側に取り付けられることによって、パワーユニットをボデーに対して防振支持せしめるようになっている。なお、以下の説明中、上下方向とは、原則として、図1中の上下方向をいうものとする。   First, FIG. 1 shows an automobile engine mount 10 as a first embodiment of the present invention. The engine mount 10 includes a first mounting bracket 12 as a first mounting member and a second mounting bracket 14 as a second mounting member that are spaced apart from each other. The second mounting bracket 14 has a structure in which the main rubber elastic body 16 is elastically connected. The first mounting bracket 12 is mounted on the power unit side of the automobile, while the second mounting bracket 14 is on the body side of the automobile. By attaching the power unit to the body, the power unit is supported to be vibration-proof with respect to the body. In the following description, the vertical direction means the vertical direction in FIG. 1 in principle.

より詳細には、第一の取付金具12は、全体として略円板形状を有しており、その上面には、円形ブロック形状の中央突部18が一体形成されている。また、中央突部18には、上方に向かって突出する取付ネジ20が一体形成されており、かかる取付ネジ20によって、第一の取付金具12がパワーユニット側に取り付けられるようになっている。   More specifically, the first mounting bracket 12 has a substantially disk shape as a whole, and a circular block-shaped central protrusion 18 is integrally formed on the upper surface thereof. Further, a mounting screw 20 projecting upward is integrally formed on the central protrusion 18, and the first mounting bracket 12 is attached to the power unit side by the mounting screw 20.

一方、第二の取付金具14は、筒状部としての筒金具22と底金具24によって構成されている。筒金具22は、大径の段付円筒形状を有しており、軸方向中間部分に形成された段差部26を挟んで軸方向上側が小径部28とされていると共に、軸方向下側が大径部30とされている。また、小径部28の上側開口部には、径方向外方に広がるフランジ部32が一体形成されている。一方、底金具24は、全体として大径の浅底有底円筒形状を有しており、その開口周縁部には、径方向外方に広がるフランジ状部34が一体形成されている。そして、筒金具22の大径部30に底金具24が内挿されて、底金具24のフランジ状部34に対して大径部30の開口周縁部がかしめ固定されることにより、第二の取付金具14が全体として深底の略有底円筒形状をもって形成されている。また、底金具24の底部中央には、下方に向かって突出する取付ボルト36が固設されており、この取付ボルト36によって、第二の取付金具14が、図示しない自動車のボデー側に取り付けられるようになっている。   On the other hand, the second mounting bracket 14 is composed of a cylindrical bracket 22 and a bottom bracket 24 as cylindrical portions. The cylindrical metal fitting 22 has a large-diameter stepped cylindrical shape, the small axial portion 28 is formed on the upper side in the axial direction with the step portion 26 formed in the intermediate portion in the axial direction, and the lower side in the axial direction is large. The diameter portion 30 is used. A flange portion 32 that extends radially outward is integrally formed in the upper opening of the small diameter portion 28. On the other hand, the bottom metal fitting 24 has a large-diameter shallow bottomed cylindrical shape as a whole, and a flange-like portion 34 that extends outward in the radial direction is integrally formed at the peripheral edge of the opening. And the bottom metal fitting 24 is inserted in the large diameter part 30 of the cylindrical metal fitting 22, and the opening peripheral part of the large diameter part 30 is caulked and fixed to the flange-like part 34 of the bottom metal fitting 24, so that the second The mounting bracket 14 is formed with a substantially bottomed cylindrical shape with a deep bottom as a whole. Further, a mounting bolt 36 that protrudes downward is fixed at the center of the bottom of the bottom bracket 24, and the second mounting bracket 14 is attached to the body side of an automobile (not shown) by the mounting bolt 36. It is like that.

そして、第一の取付金具12は、第二の取付金具14の軸方向上方に所定距離を隔てて略同一中心軸上に配設されており、これら第一の取付金具12と第二の取付金具14の間に本体ゴム弾性体16が介装されている。この本体ゴム弾性体16は、全体として大径の略円錐台形状を呈していると共に、その大径側の端面に開口する逆すり鉢形状の凹所38を有している。また、本体ゴム弾性体16の大径側端面の外周縁部には、軸方向下方に向かって延び出すように円筒形状のシールゴム層40が一体形成されている。そして、本体ゴム弾性体16の小径側端面に第一の取付金具12が重ね合せられて加硫接着されている一方、大径側端部外周部分には、第二の取付金具14を構成する筒金具22の小径部28が埋設された状態で加硫接着されている。これによって、筒金具22の軸方向上側の開口部が本体ゴム弾性体16で流体密に閉塞されている。なお、本体ゴム弾性体16と一体形成されるシールゴム層40は、その外周面が筒金具22の大径部の内周面に固着されており、筒金具22の上部内周面がシールゴム層40で覆われている。   The first mounting bracket 12 is disposed on the substantially same central axis at a predetermined distance above the second mounting bracket 14 in the axial direction, and the first mounting bracket 12 and the second mounting bracket 12 are attached to each other. A main rubber elastic body 16 is interposed between the metal fittings 14. The main rubber elastic body 16 has a generally frustoconical shape with a large diameter as a whole, and has a concave mortar-shaped recess 38 that opens at the end face on the large diameter side. A cylindrical sealing rubber layer 40 is integrally formed on the outer peripheral edge of the large-diameter side end face of the main rubber elastic body 16 so as to extend downward in the axial direction. The first mounting bracket 12 is superimposed on the end surface on the small diameter side of the main rubber elastic body 16 and vulcanized and bonded, while the second mounting bracket 14 is formed on the outer peripheral portion of the large diameter end portion. The small-diameter portion 28 of the tube fitting 22 is vulcanized and bonded in a state where it is embedded. As a result, the opening on the upper side in the axial direction of the cylindrical fitting 22 is fluid-tightly closed by the main rubber elastic body 16. The seal rubber layer 40 formed integrally with the main rubber elastic body 16 has its outer peripheral surface fixed to the inner peripheral surface of the large-diameter portion of the cylindrical metal fitting 22, and the upper inner peripheral surface of the cylindrical metal fitting 22 is the seal rubber layer 40. Covered with.

また、筒金具22の大径部30内には、仕切部材42と、可撓性膜としてのダイヤフラム44が、順次挿入されて、配設されている。仕切部材42は、硬質の合成樹脂材や金属材等の硬質材によって形成されており、全体として厚肉の円板形状を有している。特に本実施形態では、剛性等を考慮して、仕切部材42がアルミニウム合金等の金属材で形成されている。また、仕切部材42の中央部分には、上側に開口する円形凹所46が略一定深さで広がって形成されていると共に、外周部分には、外周面に開口して周方向に所定の長さに亘って連続して延びる凹溝48が形成されている。一方、ダイヤフラム44は、変形容易な薄肉のゴム膜で形成されており、外周部分には、容易に変形するように弛みがもたせてある。そして、仕切部材42とダイヤフラム44は、筒金具22の大径部30に順次挿入されて、仕切部材42の外周部分が本体ゴム弾性体16の下端面に重ね合わされると共に、ダイヤフラム44の外周縁部が仕切部材42の下面外周縁部に重ね合わされて、底金具24のフランジ状部34と共に大径部30の開口周縁部でかしめ固定されている。これにより、仕切部材42が筒金具22の中心軸に対して略直交して広がる状態で、第二の取付金具14に対して固定的に支持されていると共に、ダイヤフラム44が筒金具22の下側開口部を流体密に閉塞する状態で、第二の取付金具14に取り付けられている。なお、仕切部材42の外周面が筒金具22の内周面に被着形成されたシールゴム層40を介して筒金具22に重ね合わされていると共に、ダイヤフラム44の外周面が直接に筒金具22の内周面に重ね合わされている。   In addition, a partition member 42 and a diaphragm 44 as a flexible film are sequentially inserted and arranged in the large-diameter portion 30 of the tubular fitting 22. The partition member 42 is formed of a hard material such as a hard synthetic resin material or a metal material, and has a thick disk shape as a whole. In particular, in the present embodiment, the partition member 42 is formed of a metal material such as an aluminum alloy in consideration of rigidity and the like. In addition, a circular recess 46 opened upward is formed at the central portion of the partition member 42 so as to expand at a substantially constant depth, and the outer peripheral portion is opened to the outer peripheral surface and has a predetermined length in the circumferential direction. A concave groove 48 extending continuously is formed. On the other hand, the diaphragm 44 is formed of a thin rubber film that can be easily deformed, and the outer peripheral portion is slackened so as to be easily deformed. The partition member 42 and the diaphragm 44 are sequentially inserted into the large-diameter portion 30 of the cylindrical metal member 22 so that the outer peripheral portion of the partition member 42 is superimposed on the lower end surface of the main rubber elastic body 16 and the outer peripheral edge of the diaphragm 44. The portion is overlapped with the outer peripheral edge of the lower surface of the partition member 42, and is caulked and fixed at the opening peripheral edge of the large-diameter portion 30 together with the flange-shaped portion 34 of the bottom fitting 24. As a result, the partition member 42 is fixedly supported to the second mounting bracket 14 in a state where the partition member 42 spreads substantially perpendicular to the central axis of the cylindrical bracket 22, and the diaphragm 44 is below the cylindrical bracket 22. It is attached to the second mounting bracket 14 in a state in which the side opening is closed fluid-tightly. The outer peripheral surface of the partition member 42 is superimposed on the cylindrical metal member 22 via a seal rubber layer 40 that is attached to the inner peripheral surface of the cylindrical metal member 22, and the outer peripheral surface of the diaphragm 44 is directly connected to the cylindrical metal member 22. It is superimposed on the inner surface.

かかる仕切部材42およびダイヤフラム44の組付けによって、筒金具22の軸方向両側の開口部が本体ゴム弾性体16とダイヤフラム44によって流体密に閉塞されており、本体ゴム弾性体16とダイヤフラム44の対向面間で外部空間から遮断された密閉領域が形成されている。また、かかる密閉領域は、仕切部材42によって流体密に二分されており、それによって、仕切部材42の上側には、壁部の一部が本体ゴム弾性体16で構成されて非圧縮性流体が封入された受圧室50が形成されている一方、仕切部材42の下側には、壁部の一部がダイヤフラム44によって構成されて非圧縮性流体が封入された平衡室52が形成されている。なお、受圧室50及び平衡室52に封入される非圧縮性流体としては、例えば、水やアルキレングリコール,ポリアルキレングリコール,シリコーン油等が採用可能であるが、特に、後述する流体の共振作用に基づく防振効果を有効に得るためには、粘度が0.1Pa・s以下の低粘性流体が好適に採用される。   As a result of the assembly of the partition member 42 and the diaphragm 44, the openings on both sides in the axial direction of the tubular fitting 22 are closed fluid-tightly by the main rubber elastic body 16 and the diaphragm 44, and the main rubber elastic body 16 and the diaphragm 44 are opposed to each other. A sealed region is formed between the surfaces that is blocked from the external space. Further, the sealed region is fluid-divided into two by the partition member 42, whereby a part of the wall portion is formed of the main rubber elastic body 16 on the upper side of the partition member 42, and the incompressible fluid is supplied. While the enclosed pressure receiving chamber 50 is formed, an equilibrium chamber 52 in which a part of the wall portion is configured by the diaphragm 44 and incompressible fluid is enclosed is formed below the partition member 42. . As the incompressible fluid sealed in the pressure receiving chamber 50 and the equilibrium chamber 52, for example, water, alkylene glycol, polyalkylene glycol, silicone oil, or the like can be used. In order to effectively obtain the anti-vibration effect based on this, a low-viscosity fluid having a viscosity of 0.1 Pa · s or less is preferably employed.

また、仕切部材42の外周面は、シールゴム層40を介して周方向の全周に亘って筒金具22の大径部30の内周面に重ね合わされている。それによって、仕切部材42に設けられた凹溝48の外周側開口部がシールゴム層40によって流体密に閉塞されて、仕切部材42の外周部分を周方向に所定の長さに亘って連続して延びるトンネル状の通路が形成されている。更に、図2に示すように、そのトンネル状の通路の一方の端部が仕切部材42の内周壁面に開口する連通孔54を通じて受圧室50に接続されていると共に、他方の端部が底壁部に開口する連通孔56を通じて平衡室52に接続されている。これにより、上記トンネル状の通路を利用して受圧室50と平衡室52を相互に連通するオリフィス通路58が形成されている。なお、本実施形態では、オリフィス通路58が10Hz前後の低周波数域にチューニングされており、エンジンシェイク等の低周波大振幅振動に対して流体の流動作用に基づく防振効果が発揮されるようになっている。また、上記の説明からも明らかなように、オリフィス通路58は、受圧室50の一部を構成する円形凹所46の周囲を囲むように周方向で延びており、オリフィス通路58が受圧室50の外周部分を周方向に延びるように形成されている。   Further, the outer peripheral surface of the partition member 42 is overlapped with the inner peripheral surface of the large-diameter portion 30 of the cylindrical metal member 22 over the entire circumference in the circumferential direction via the seal rubber layer 40. As a result, the opening on the outer peripheral side of the groove 48 provided in the partition member 42 is fluid-tightly closed by the seal rubber layer 40, and the outer peripheral portion of the partition member 42 is continuously extended in a circumferential direction over a predetermined length. An extending tunnel-shaped passage is formed. Further, as shown in FIG. 2, one end of the tunnel-shaped passage is connected to the pressure receiving chamber 50 through a communication hole 54 opened in the inner peripheral wall surface of the partition member 42, and the other end is bottom. It is connected to the equilibrium chamber 52 through a communication hole 56 that opens to the wall. As a result, an orifice passage 58 that connects the pressure receiving chamber 50 and the equilibrium chamber 52 to each other is formed using the tunnel-like passage. In the present embodiment, the orifice passage 58 is tuned to a low frequency range of around 10 Hz so that a vibration isolation effect based on the fluid flow action is exhibited against low frequency large amplitude vibration such as engine shake. It has become. Further, as is clear from the above description, the orifice passage 58 extends in the circumferential direction so as to surround the circular recess 46 constituting a part of the pressure receiving chamber 50, and the orifice passage 58 is formed in the pressure receiving chamber 50. Is formed so as to extend in the circumferential direction.

ここにおいて、図2に示すように、オリフィス通路58の内周側壁部の一部には、開口窓60が形成されている。この開口窓60は、オリフィス通路58の受圧室50側端部付近に形成されており、オリフィス通路58の内周側壁面を径方向に貫通して形成されている。また、開口窓60は、周方向に所定の長さで形成されており、特に本実施形態では、周方向でオリフィス通路58の1/4程度の長さで形成されている。   Here, as shown in FIG. 2, an opening window 60 is formed in a part of the inner peripheral side wall portion of the orifice passage 58. The opening window 60 is formed in the vicinity of the end of the orifice passage 58 on the pressure receiving chamber 50 side, and is formed so as to penetrate the inner peripheral side wall surface of the orifice passage 58 in the radial direction. Further, the opening window 60 is formed with a predetermined length in the circumferential direction. In particular, in this embodiment, the opening window 60 is formed with a length of about ¼ of the orifice passage 58 in the circumferential direction.

また、開口窓60を覆うように蓋プレート部材としての蓋板金具62が配設されている。この蓋板金具62は、弾性を有し薄肉のプレート形状を呈する金属製の板ばねであって、オリフィス通路58の内周側壁部の湾曲形状に沿うように湾曲せしめられている。そして、オリフィス通路58の受圧室50側に位置する蓋板金具62の端部が、オリフィス通路58の内周側壁部に対して自由に離隔可能とされた状態でオリフィス通路58の内周側壁部の内周面に重ね合わされていると共に、オリフィス通路58の平衡室52側に位置する蓋板金具62の端部が、オリフィス通路58の内周側壁部の内周面に重ね合わされて、開口窓60の開口縁部にリベット等によって固定されている。要するに、蓋板金具62は、その周方向一方の端部が固定的に支持された片持状態で仕切部材42におけるオリフィス通路58の内周側壁部に配設されていると共に、かかる固定端がオリフィス通路58の平衡室52側に位置せしめられている。なお、特に本実施形態では、オリフィス通路58の受圧室50側に位置する蓋板金具62の端部が、蓋板金具62自体の弾性によって、オリフィス通路58の内周側壁部に対して付勢されて押し付けられており、振動の非入力時において、開口窓60が蓋板金具62によって流体密に覆蓋された状態に保持されている。   Further, a cover plate metal member 62 as a cover plate member is disposed so as to cover the opening window 60. The lid plate fitting 62 is a metal leaf spring that has elasticity and has a thin plate shape, and is bent so as to follow the curved shape of the inner peripheral side wall portion of the orifice passage 58. Then, the inner peripheral side wall portion of the orifice passage 58 in a state in which the end portion of the lid plate fitting 62 located on the pressure receiving chamber 50 side of the orifice passage 58 can be freely separated from the inner peripheral side wall portion of the orifice passage 58. And the end of the lid plate fitting 62 located on the equilibrium chamber 52 side of the orifice passage 58 is overlaid on the inner peripheral surface of the inner peripheral side wall portion of the orifice passage 58 to open the opening window. It is fixed to the opening edge of 60 by rivets or the like. In short, the lid plate fitting 62 is disposed on the inner peripheral side wall portion of the orifice passage 58 in the partition member 42 in a cantilever state in which one end portion in the circumferential direction is fixedly supported, and the fixed end is not provided. The orifice passage 58 is positioned on the equilibrium chamber 52 side. In particular, in this embodiment, the end of the cover plate fitting 62 located on the pressure receiving chamber 50 side of the orifice passage 58 is urged against the inner peripheral side wall portion of the orifice passage 58 by the elasticity of the cover plate fitting 62 itself. When the vibration is not input, the opening window 60 is held in a state of being covered fluid-tightly by the cover plate fitting 62.

このような構造とされたエンジンマウント10において、自動車への装着状態下で第一の取付金具12と第二の取付金具14の間に略上下方向の振動が入力されると、受圧室50と平衡室52の間に相対的な圧力差が生ぜしめられることに基づいて、それら両室50,52間において、オリフィス通路58を通じての流体流動が生ぜしめられることとなる。特にオリフィス通路58がチューニングされたエンジンシェイク等の低周波大振幅振動が入力された際には、オリフィス通路58を通じて流動せしめられる流体の共振作用に基づいて、エンジンシェイク等の低周波大振幅振動に対して、有効な防振効果が発揮されることとなる。なお、蓋板金具62には十分な付勢力が作用せしめられており、エンジンシェイク振動等の通常の振動入力時には、開口窓60を流体密に閉塞した状態に保持することが可能とされている。   In the engine mount 10 having such a structure, when vibration in a substantially vertical direction is input between the first mounting bracket 12 and the second mounting bracket 14 in a state of being mounted on an automobile, the pressure receiving chamber 50 Based on the fact that a relative pressure difference is generated between the balance chambers 52, fluid flow through the orifice passage 58 is generated between the two chambers 50 and 52. In particular, when low-frequency large-amplitude vibration such as engine shake with the orifice passage 58 tuned in is inputted, low-frequency large-amplitude vibration such as engine shake is caused based on the resonance action of the fluid flowing through the orifice passage 58. On the other hand, an effective anti-vibration effect is exhibited. In addition, a sufficient urging force is applied to the cover plate fitting 62 so that the opening window 60 can be held fluid-tightly closed during normal vibration input such as engine shake vibration. .

また、自動車のクランキングや急加減速等に際して、エンジンマウント10に衝撃的な大荷重振動が入力された場合には、蓋板金具62に弾性変形が生ぜしめられて、開口窓60が開閉作動せしめられる。   Further, when a shocking heavy load vibration is input to the engine mount 10 at the time of cranking or sudden acceleration / deceleration of the automobile, the cover plate metal member 62 is elastically deformed, and the opening window 60 is opened / closed. To be sedated.

すなわち、第一の取付金具12と第二の取付金具14が軸方向で相対変位せしめられて、相互に離隔せしめられると、受圧室50内の圧力が平衡室52内の圧力に比して低くなる。ここにおいて、エンジンマウント10に衝撃的な大荷重振動が入力された場合には、これら両室50,52の相対的な圧力差によって、蓋板金具62が予め作用せしめられた付勢力よりも大きな力で受圧室50側に引かれることとなり、蓋板金具62が弾性変形せしめられる。これにより、図3に示すように、蓋板金具62の自由端(オリフィス通路58の受圧室50側に位置する端部)がオリフィス通路58の内周側壁部から軸直角方向内方に離隔するように変位せしめられて、オリフィス通路58が、長さ方向で連通孔54よりも平衡室52側の部分において開口窓60を通じて受圧室50に連通されることとなる。従って、オリフィス通路58の通路長さを実質的に短くすることが可能となっている。   That is, when the first mounting bracket 12 and the second mounting bracket 14 are relatively displaced in the axial direction and separated from each other, the pressure in the pressure receiving chamber 50 is lower than the pressure in the equilibrium chamber 52. Become. Here, when a shocking heavy load vibration is input to the engine mount 10, the relative pressure difference between the two chambers 50 and 52 is greater than the urging force with which the lid plate fitting 62 is applied in advance. The lid plate metal 62 is elastically deformed by being pulled toward the pressure receiving chamber 50 by force. As a result, as shown in FIG. 3, the free end of the lid plate fitting 62 (the end located on the pressure receiving chamber 50 side of the orifice passage 58) is separated from the inner peripheral side wall portion of the orifice passage 58 in the direction perpendicular to the axis. Thus, the orifice passage 58 is communicated with the pressure receiving chamber 50 through the opening window 60 at a portion closer to the equilibrium chamber 52 than the communication hole 54 in the length direction. Therefore, the passage length of the orifice passage 58 can be substantially shortened.

一方、第一の取付金具12と第二の取付金具14が軸方向で相対変位せしめられて、相互に接近せしめられると、受圧室50内の圧力が平衡室52内の圧力に比して高くなる。これら両室50,52の圧力差によって、蓋板金具62には、オリフィス通路58の内周側壁部に押し付ける方向に圧力が作用せしめられる。それ故、蓋板金具62が開口窓60の開口を流体密に覆う状態で保持されて、オリフィス通路58が低周波数域にチューニングされた所期の通路長さとされている。   On the other hand, when the first mounting bracket 12 and the second mounting bracket 14 are displaced relative to each other in the axial direction and brought closer to each other, the pressure in the pressure receiving chamber 50 is higher than the pressure in the equilibrium chamber 52. Become. Due to the pressure difference between the two chambers 50, 52, pressure is applied to the lid plate fitting 62 in the direction of pressing against the inner peripheral side wall portion of the orifice passage 58. Therefore, the lid plate fitting 62 is held in a state of fluidly covering the opening of the opening window 60, and the orifice passage 58 has an intended passage length tuned to a low frequency region.

ここにおいて、オリフィス通路58のチューニング周波数は、入力振動の振幅が大きくなるに従って次第に低周波数側にずれる振幅依存性を有することが知られている。また、本実施形態に係るエンジンマウント10では、入力振動の振幅が大きくなるのに従って蓋板金具62の弾性変形が大きくなり、開口窓60の開口量が増すことから、入力振動の振幅が大きくなるのに従ってオリフィス通路58の実質的な通路長さが短くなる。それ故、オリフィス通路58の通路長:Lと通路断面積:Aの比(A/L)で設定されるオリフィス通路58のチューニング周波数が入力振動の振幅が大きくなるのに伴って次第に高周波数側に変化することとなる。従って、入力振動の振幅に応じたオリフィス通路58のチューニング周波数のずれが、オリフィス通路58の通路長の変化によるチューニング周波数の変化によって相殺的に解消されることとなって、入力振動の振幅の違いに関らず、オリフィス通路58を通じての流体流動に基づく防振効果を防振対象振動に対して有効に発揮させることが可能となるのである。   Here, it is known that the tuning frequency of the orifice passage 58 has an amplitude dependency that gradually shifts to a lower frequency side as the amplitude of the input vibration increases. Further, in the engine mount 10 according to the present embodiment, the elastic deformation of the cover plate metal 62 increases as the amplitude of the input vibration increases, and the opening amount of the opening window 60 increases, so that the amplitude of the input vibration increases. Accordingly, the substantial passage length of the orifice passage 58 is shortened. Therefore, the tuning frequency of the orifice passage 58 set by the ratio (A / L) of the passage length of the orifice passage 58: L and the passage cross-sectional area: A gradually increases as the amplitude of the input vibration increases. Will change. Therefore, the deviation of the tuning frequency of the orifice passage 58 according to the amplitude of the input vibration is canceled out by the change of the tuning frequency due to the change of the passage length of the orifice passage 58, and the difference in the amplitude of the input vibration Regardless, the vibration isolation effect based on the fluid flow through the orifice passage 58 can be effectively exerted against the vibration subject to vibration isolation.

特に、本実施形態における開口窓60は、オリフィス通路58の長さ方向にある程度の長さで延びるように形成されており、同じくオリフィス通路58の長さ方向に延びて、受圧室50側の開口である連通孔54側が自由端となるように片持状態でオリフィス通路58の内周側壁部に固定された蓋板金具62によって、覆われている。これにより、蓋板金具62の弾性変形を利用した開口窓60の開閉は、単なるON/OFF制御の如き開口状態と閉塞状態の切替ではなく、入力振動の振幅に応じて開口窓60の開度が異なる多段的乃至は連続的な開口状態を備えたものとなっている。それ故、入力振動の振幅に応じてオリフィス通路58のチューニング周波数を高精度に変化させることが可能となって、オリフィス通路58を通じて流動する流体の共振作用等に基づく防振効果を有利に得ることが出来る。   In particular, the opening window 60 in the present embodiment is formed so as to extend to a certain length in the length direction of the orifice passage 58, and similarly extends in the length direction of the orifice passage 58 to open the opening on the pressure receiving chamber 50 side. The communication hole 54 side is covered with a cover plate fitting 62 fixed to the inner peripheral side wall portion of the orifice passage 58 in a cantilever state so as to be a free end. As a result, the opening and closing of the opening window 60 utilizing the elastic deformation of the cover plate fitting 62 is not switching between the opening state and the closing state as in simple ON / OFF control, but the opening degree of the opening window 60 according to the amplitude of the input vibration. Are provided with multistage or continuous open states. Therefore, the tuning frequency of the orifice passage 58 can be changed with high accuracy in accordance with the amplitude of the input vibration, and a vibration isolation effect based on the resonance action of the fluid flowing through the orifice passage 58 can be advantageously obtained. I can do it.

さらに、第一の取付金具12と第二の取付金具14が軸方向で離隔するように相対変位せしめられた場合に、上述の如く蓋板金具62が弾性変形して、オリフィス通路58の通路長が変化せしめられ、オリフィス通路58のチューニング周波数が変化せしめられる一方、第一の取付金具12と第二の取付金具14が軸方向で接近するように相対変位せしめられた場合には、蓋板金具62が開口窓60を流体密に覆蓋した状態に保持されることから、オリフィス通路58の通路長が初期の長さに保持されることとなる。それ故、オリフィス通路58を通じて流動せしめられる流体の共振作用に基づく防振効果を、複数の乃至は広い周波数域で得ることが可能となり得る。   Further, when the first mounting member 12 and the second mounting member 14 are relatively displaced so as to be separated from each other in the axial direction, the cover plate member 62 is elastically deformed as described above, and the passage length of the orifice passage 58 is increased. Is changed, and the tuning frequency of the orifice passage 58 is changed. On the other hand, when the first mounting bracket 12 and the second mounting bracket 14 are relatively displaced so as to approach each other in the axial direction, the lid plate bracket Since 62 is held in a state in which the opening window 60 is covered fluid-tightly, the passage length of the orifice passage 58 is maintained at the initial length. Therefore, it may be possible to obtain a vibration isolation effect based on the resonance action of the fluid flowing through the orifice passage 58 in a plurality of or a wide frequency range.

また、受圧室50内に著しい負圧が生じた場合には、キャビテーションによる異音や振動の発生が問題となり易い。このキャビテーションによる異音や振動は、受圧室50内が負圧状態となることによって封入流体中の溶存気体が分離して気泡が生じ、かかる気泡の崩壊に際して形成される爆発的な微小噴流(マイクロジェット)が、水撃圧となって第一の取付部材や第二の取付部材に伝播し、自動車のボデー等に伝達されることによって発生すると考えられている。更に、キャビテーション気泡は、オリフィス通路58の受圧室50側開口部付近で主として発生していることが確認されており、オリフィス通路58の受圧室50側開口部付近で発生する負圧を速やかに解消することがキャビテーションに起因する異音や振動を低減乃至は回避するために有効であろうと考えられている。ここにおいて、本実施形態では、オリフィス通路58の受圧室50側の開口部付近に開口窓60が形成されていると共に、かかる開口窓60を塞ぐように蓋板金具62が配設されており、蓋板金具62が受圧室50内の負圧によって吸引されて開くようになっている。それ故、受圧室50内に著しい負圧が生じると、オリフィス通路58の通路長が短くなって、流体の流動が有利に確保されることとなる。従って、オリフィス通路58を通じて流動せしめられる流体によってオリフィス通路58の受圧室50側開口部付近における負圧が速やかに解消されて、気相分離に起因する異音や振動の発生を有効に低減乃至は回避することが可能となるのである。   Further, when a significant negative pressure is generated in the pressure receiving chamber 50, abnormal noise or vibration due to cavitation tends to be a problem. The abnormal noise and vibration due to the cavitation are caused by the pressure inside the pressure-receiving chamber 50 being in a negative pressure state, so that the dissolved gas in the sealed fluid is separated and bubbles are generated, and an explosive micro jet (micro) formed when the bubbles collapse. Jet) is considered to be generated by water hammer pressure being propagated to the first mounting member and the second mounting member and transmitted to the body of the automobile. Furthermore, it has been confirmed that cavitation bubbles are mainly generated in the vicinity of the pressure receiving chamber 50 side opening of the orifice passage 58, and the negative pressure generated in the vicinity of the pressure receiving chamber 50 side opening of the orifice passage 58 is quickly eliminated. This is considered to be effective for reducing or avoiding abnormal noise and vibration caused by cavitation. Here, in the present embodiment, an opening window 60 is formed in the vicinity of the opening of the orifice passage 58 on the pressure receiving chamber 50 side, and a cover plate fitting 62 is disposed so as to close the opening window 60. The lid plate fitting 62 is sucked and opened by the negative pressure in the pressure receiving chamber 50. Therefore, when a significant negative pressure is generated in the pressure receiving chamber 50, the passage length of the orifice passage 58 is shortened, and the fluid flow is advantageously ensured. Therefore, the negative pressure in the vicinity of the opening on the pressure receiving chamber 50 side of the orifice passage 58 is quickly eliminated by the fluid flowing through the orifice passage 58, and the generation of abnormal noise and vibration due to gas phase separation is effectively reduced or reduced. This can be avoided.

次に、図4には、本発明の第二の実施形態としてのエンジンマウント64が示されている。なお、以下の説明において、前記第一の実施形態と実質的に同一の部材乃至は部位については、図中に同一の符号を付すことにより、説明を省略する。   Next, FIG. 4 shows an engine mount 64 as a second embodiment of the present invention. In the following description, members or parts that are substantially the same as those of the first embodiment are denoted by the same reference numerals in the drawings, and the description thereof is omitted.

すなわち、本実施形態に係るエンジンマウント64においては、蓋板金具62の外周面(オリフィス通路58の内周側壁部に重ね合わされる側の面)に当接緩衝材としての緩衝ゴム部材66が被着形成されている。緩衝ゴム部材66は、蓋板金具62において、オリフィス通路58の内周側壁部における開口窓60の開口周縁部と重ね合わされる部分に固着されており、薄肉のゴム弾性体で形成された略矩形枠形状の部材とされている。   In other words, in the engine mount 64 according to the present embodiment, the shock absorbing rubber member 66 serving as the contact shock absorbing material is covered with the outer peripheral surface of the lid plate fitting 62 (the surface on the side overlapped with the inner peripheral side wall portion of the orifice passage 58). It is formed. The shock absorbing rubber member 66 is fixed to a portion of the lid plate metal 62 that overlaps with the opening peripheral edge of the opening window 60 in the inner peripheral side wall of the orifice passage 58, and is substantially rectangular formed of a thin rubber elastic body. It is a frame-shaped member.

また、オリフィス通路58の内周側壁部において、緩衝ゴム部材66が当接せしめられる部分には、当接段差部68が形成されている。この当接段差部68は、開口窓60の開口周縁部を全周に亘って囲むように形成されており、かかる当接段差部68によって、オリフィス通路58の内周側の壁部において緩衝ゴム部材66が重ね合わされる部分の厚さが、オリフィス通路58の内周側壁部における他の部分に比して、緩衝ゴム部材66の厚さ寸法と略同じ寸法だけ薄肉とされている。なお、本実施形態では、開口窓60の高さ寸法がオリフィス通路58の内周側壁部の高さ寸法に比して小さくされて、オリフィス通路58の内周側壁部で形成された腰壁やたれ壁の如き態様の壁部が開口窓60の上下に位置せしめられていると共に、開口窓60と連通孔54の間には、袖壁状の壁部が形成されている。これにより、開口窓60の開口周縁部に全周に亘って垂直方向で広がる壁部が形成されており、かかる壁部に当接段差部68が形成されることによって、開口窓60の開口周縁部を全周に亘って囲むように当接段差部68が形成されている。また、本実施形態では、緩衝ゴム部材66が開口窓60の開口周縁部の全周に亘って重ね合わされるように形成されることから、当接段差部68が開口窓68を全周に亘って囲むように形成されているが、当接段差部68は必ずしも全周に亘って形成されていなくても良く、緩衝ゴム部材66の形成位置に応じた場所に形成されていれば良い。更に、このような当接段差部68は必須ではなく、蓋板金具62や緩衝ゴム部材66の形状等によっては、なくても良い。   Further, a contact stepped portion 68 is formed in a portion where the shock absorbing rubber member 66 is brought into contact with the inner peripheral side wall portion of the orifice passage 58. The abutting step portion 68 is formed so as to surround the entire periphery of the opening edge of the opening window 60, and the abutting step portion 68 forms a buffer rubber on the inner peripheral side wall portion of the orifice passage 58. The thickness of the portion where the member 66 is overlapped is thinner than the other portion of the inner peripheral side wall portion of the orifice passage 58 by substantially the same dimension as the thickness of the shock absorbing rubber member 66. In the present embodiment, the height dimension of the opening window 60 is made smaller than the height dimension of the inner peripheral side wall portion of the orifice passage 58, and the waist wall formed on the inner peripheral side wall portion of the orifice passage 58 Wall portions of a form such as a leaning wall are positioned above and below the opening window 60, and a sleeve-like wall portion is formed between the opening window 60 and the communication hole 54. As a result, a wall portion that extends in the vertical direction over the entire periphery is formed at the opening periphery of the opening window 60, and the contact stepped portion 68 is formed on the wall portion, whereby the opening periphery of the opening window 60 is formed. A contact stepped portion 68 is formed so as to surround the portion over the entire circumference. Further, in the present embodiment, since the buffer rubber member 66 is formed so as to be overlapped over the entire periphery of the opening peripheral edge of the opening window 60, the contact stepped portion 68 extends over the entire opening window 68. However, the contact stepped portion 68 does not necessarily have to be formed over the entire circumference, and may be formed at a location corresponding to the position where the cushioning rubber member 66 is formed. Furthermore, such a contact stepped portion 68 is not essential, and may be omitted depending on the shape of the cover plate fitting 62 and the shock absorbing rubber member 66.

そして、緩衝ゴム部材66が固着された蓋板金具62は、当接段差部68を備えたオリフィス通路58の内周側壁部に対して、リベットやボルト等によって組み付けられている。かかる取付状態下において、緩衝ゴム部材66は、蓋板金具62とオリフィス通路58の内周側壁部の間で挟圧されて、蓋板金具62とオリフィス通路58の重ね合わせ面間を流体密にシールしている。なお、緩衝ゴム部材66は、蓋板金具62の固定端側において、リベットやボルト等の締結力によって蓋板金具62とオリフィス通路58の内周側壁部の間で挟圧されるようになっていると共に、蓋板金具62の自由端側においては、蓋板金具62自体の弾性に基づく付勢力によって挟圧されるようになっている。   The lid metal fitting 62 to which the shock-absorbing rubber member 66 is fixed is assembled to the inner peripheral side wall portion of the orifice passage 58 provided with the contact step portion 68 by rivets, bolts, or the like. Under such an attached state, the shock absorbing rubber member 66 is clamped between the cover plate fitting 62 and the inner peripheral side wall portion of the orifice passage 58 to fluidly seal between the overlapping surfaces of the cover plate fitting 62 and the orifice passage 58. It is sealed. The buffer rubber member 66 is clamped between the lid plate metal 62 and the inner peripheral side wall portion of the orifice passage 58 by a fastening force such as a rivet or a bolt on the fixed end side of the lid plate metal 62. In addition, the free end side of the cover plate fitting 62 is clamped by an urging force based on the elasticity of the cover plate fitting 62 itself.

このような本実施形態に従う構造とされたエンジンマウント64では、蓋板金具62が開口窓60を閉塞する閉作動時において、蓋板金具62とオリフィス通路58の内周側壁部の間で発生する打音や衝撃等を低減乃至は回避することが可能となる。また、蓋板金具62とオリフィス通路58の内周側壁部の対向面間に緩衝ゴム部材66を配することにより、開口窓60の閉塞状態をより流体密性を高めて有利に実現することが出来る。   In the engine mount 64 having the structure according to this embodiment, the lid plate fitting 62 is generated between the lid plate fitting 62 and the inner peripheral side wall portion of the orifice passage 58 when the lid plate fitting 62 closes the opening window 60. It is possible to reduce or avoid hitting sound and impact. Further, by providing the shock absorbing rubber member 66 between the opposed surfaces of the lid plate fitting 62 and the inner peripheral side wall of the orifice passage 58, the closed state of the opening window 60 can be advantageously realized with higher fluid tightness. I can do it.

以上、本発明の幾つかの実施形態について説明してきたが、これはあくまでも例示であって、本発明は、かかる実施形態における具体的な記載によって、何等、限定的に解釈されるものではない。   As mentioned above, although some embodiment of this invention has been described, this is an illustration to the last, Comprising: This invention is not limited at all by the specific description in this embodiment.

例えば、前記第一,第二の実施形態では、オリフィス通路58の内周側壁部に開口窓60が形成されており、かかる開口窓60を覆うように配設された蓋板金具62が軸直角方向で開閉作動するようになっている。しかしながら、開口窓の形成位置は、必ずしもオリフィス通路58の内周側壁部でなくても良い。具体的には、例えば、オリフィス通路58の上側壁部に開口する貫通孔として開口窓を形成すると共に、かかる開口窓を覆うように蓋板金具62をオリフィス通路58の上側壁部に重ね合わせて配設しても良い。これによれば、仕切部材42の中央部分を蓋板金具62の開閉スペースとして利用する必要が無くなることにより、円形凹所46を利用して液圧を吸収する可動板を配設する等して高周波数域の振動に対する防振性能の向上を図ることも可能となる。なお、上記の構造からも明らかなように、蓋板金具は、前記第一,第二の実施形態に示されているような湾曲板形状である必要はなく、平板形状等であっても良い。   For example, in the first and second embodiments, the opening window 60 is formed on the inner peripheral side wall portion of the orifice passage 58, and the cover plate fitting 62 disposed so as to cover the opening window 60 is perpendicular to the axis. It opens and closes depending on the direction. However, the formation position of the opening window does not necessarily have to be the inner peripheral side wall portion of the orifice passage 58. Specifically, for example, an opening window is formed as a through hole opening in the upper wall portion of the orifice passage 58, and the lid plate metal fitting 62 is overlapped on the upper wall portion of the orifice passage 58 so as to cover the opening window. It may be arranged. According to this, it is not necessary to use the central portion of the partition member 42 as an opening / closing space for the cover plate fitting 62, and a movable plate that absorbs the hydraulic pressure is disposed using the circular recess 46. It is also possible to improve the anti-vibration performance against vibrations in the high frequency range. As is clear from the above structure, the lid plate metal fitting need not be a curved plate shape as shown in the first and second embodiments, but may be a flat plate shape or the like. .

また、前記第一,第二の実施形態に示すように、通常の防振対象振動に対する優れた防振性能を安定して実現するために、蓋板金具62は開口窓60の開口周縁部(オリフィス通路58の内周側壁部)に押し付けられるように予め付勢されていることが望ましいが、このような付勢力は必須ではない。例えば、蓋板金具62が押し付けられることなくオリフィス通路58の内周側壁部に重ね合わされていても良い。なお、蓋板金具62は振動の非入力時には開口窓60を閉塞するようにオリフィス通路58の壁部に重ね合わされている。   In addition, as shown in the first and second embodiments, in order to stably realize excellent vibration isolation performance with respect to normal vibration isolation target vibration, the lid plate metal fitting 62 is provided with an opening peripheral edge ( Although it is desirable that the urging force is applied in advance so as to be pressed against the inner peripheral side wall portion of the orifice passage 58, such an urging force is not essential. For example, the lid plate fitting 62 may be superimposed on the inner peripheral side wall portion of the orifice passage 58 without being pressed. The lid plate metal 62 is overlapped with the wall portion of the orifice passage 58 so as to close the opening window 60 when vibration is not input.

また、剪断方向で繰返し弾性変形せしめられる蓋板金具62は、耐久性等の観点から、ステンレス鋼等の金属材料で形成されていることが望ましいが、何等限定されるものではなく、例えばゴム弾性体等の、他の材料を採用することも可能である。   Further, the lid metal fitting 62 that is repeatedly elastically deformed in the shearing direction is preferably formed of a metal material such as stainless steel from the viewpoint of durability or the like, but is not limited thereto, for example, rubber elasticity It is also possible to employ other materials such as a body.

また、前記第二の実施形態において示した緩衝ゴム部材66は、前記実施形態における具体的な記載によって何等限定的に解釈されるものではない。即ち、緩衝ゴム部材は、蓋板金具とオリフィス通路の壁部の当接による衝撃を有利に緩和せしめるために、蓋板金具とオリフィス通路の内周側壁部との当接面全体に介在するように配設されていることが望ましいが、必ずしもかかる当接面の全体に配設されている必要はなく、部分的に配設されていても良い。具体的には、例えば、前記第二の実施形態で示した枠体形状の緩衝ゴム部材66をより狭幅として突条の如き形状で蓋板金具62の当接面に被着形成しても良いし、オリフィス通路58の内周側壁部からの離隔距離が最も大きくなる蓋板金具62の自由端側の先端部分にのみ緩衝ゴム部材を配設しても良い。なお、前記第二の実施形態では、緩衝ゴム部材66が重ね合わされる部分である開口窓60の開口周縁部全周に亘って延びるように当接段差部68が形成されていたが、このような当接段差部68は、必須ではなく、形成されていなくても良いし、上記の如く、例えば、蓋板金具62の自由端側にのみ緩衝ゴム部材が配設されている場合には、かかる緩衝ゴム部材が重ね合わされる部分にのみ形成されていても良い。   Further, the buffer rubber member 66 shown in the second embodiment is not construed as being limited in any way by the specific description in the embodiment. In other words, the shock absorbing rubber member is interposed on the entire contact surface between the cover plate metal fitting and the inner peripheral side wall portion of the orifice passage in order to reduce the impact caused by the contact between the cover plate metal fitting and the wall portion of the orifice passage. However, it is not always necessary to be disposed on the entire contact surface, and may be partially disposed. Specifically, for example, even if the frame-shaped shock absorbing rubber member 66 shown in the second embodiment is made narrower and attached to the contact surface of the lid plate metal fitting 62 in a shape like a ridge. Alternatively, the cushioning rubber member may be disposed only at the free end side end portion of the lid plate fitting 62 where the separation distance from the inner peripheral side wall portion of the orifice passage 58 is the largest. In the second embodiment, the contact stepped portion 68 is formed so as to extend over the entire periphery of the opening peripheral portion of the opening window 60 where the buffer rubber member 66 is superimposed. The abutting stepped portion 68 is not essential and may not be formed. As described above, for example, when the shock absorbing rubber member is disposed only on the free end side of the lid plate fitting 62, You may form only in the part with which this buffer rubber member is piled up.

また、本発明は、互いに同心的に若しくは偏心して配された第一の取付部材と第二の取付部材が本体ゴム弾性体で連結されていると共に、それら第一の取付部材と第二の取付部材の間を軸方向に貫通して延びる肉抜空所が周方向に略半周に亘って形成されている一方、第一の取付部材と第二の取付部材の間において本体ゴム弾性体により壁部の一部が構成されて振動入力時に圧力変化が生ぜしめられる受圧室が形成されていると共に、肉抜空所内に可撓性膜が配設されて可撓性膜と第二の取付部材の間において容積変化が容易に許容される平衡室が形成されており、それら受圧室と平衡室に非圧縮性流体が封入されていると共に、それら受圧室と平衡室を相互に連通するオリフィス通路が形成されている流体封入式防振装置に適用することも可能である。このような流体封入式防振装置に本発明を適用する場合には、オリフィス通路として、受圧室の壁部に沿って蛇行するように延びるものや周方向1周以上の長さに亘って延びるものを採用することが望ましく、それによって、オリフィス通路の壁部の一部に開口窓を形成すると共に、蓋板金具を配設することが出来て、入力振動の振幅に応じたオリフィス通路の通路長さの変化を実現することが出来る。   Further, according to the present invention, the first mounting member and the second mounting member arranged concentrically or eccentrically with each other are connected by the main rubber elastic body, and the first mounting member and the second mounting member are connected. A hollow space extending through the members in the axial direction is formed over a substantially half circumference in the circumferential direction, and a wall is formed by the main rubber elastic body between the first mounting member and the second mounting member. And a pressure receiving chamber in which a pressure change is generated when a vibration is input is formed, and a flexible film is disposed in the empty space, and the flexible film and the second mounting member Are formed with an equilibrium chamber in which volume change is easily allowed, an incompressible fluid is sealed in the pressure receiving chamber and the equilibrium chamber, and an orifice passage that communicates the pressure receiving chamber and the equilibrium chamber with each other. It can also be applied to fluid filled vibration isolator It is a function. When the present invention is applied to such a fluid-filled vibration isolator, the orifice passage extends so as to meander along the wall of the pressure receiving chamber or extends over a length of one or more circumferences in the circumferential direction. It is desirable to employ a material for the orifice passage so that an opening window can be formed in a part of the wall portion of the orifice passage, and a cover plate can be provided so that the passage of the orifice passage according to the amplitude of the input vibration can be provided. A change in length can be realized.

また、前記第一,第二の実施形態では、オリフィス通路が一つの流体封入式防振装置に対して、本発明を適用したものの具体例が示されていたが、オリフィス通路が複数設けられた流体封入式防振装置に対して、本発明を適用することも、勿論、可能である。なお、複数のオリフィス通路を有する流体封入式防振装置に本発明を適用する場合には、各オリフィス通路にそれぞれ開口窓を形成すると共に蓋板金具を配設しても良いし、複数のオリフィス通路の内の一つ乃至は選択された幾つかに対して開口窓を形成し、蓋板金具を配設しても良い。   In the first and second embodiments, specific examples of applying the present invention to the fluid-filled vibration isolator having one orifice passage are shown, but a plurality of orifice passages are provided. Of course, the present invention can also be applied to a fluid-filled vibration isolator. When the present invention is applied to a fluid-filled vibration isolator having a plurality of orifice passages, an opening window may be formed in each orifice passage, and a cover plate metal fitting may be provided. An opening window may be formed for one or some of the passages, and a cover plate fitting may be provided.

加えて、前記第一又は第二の実施形態では、本発明を自動車用のエンジンマウントに適用したものの具体例を示したが、本発明は、その他、自動車のボデーマウントや、或いは自動車以外の各種装置に用いられる防振装置に対して、何れも、有利に適用され得る。   In addition, in the first or second embodiment, specific examples of the present invention applied to an engine mount for automobiles have been shown. However, the present invention is not limited to body mounts for automobiles or various types other than automobiles. Any of the vibration isolator used in the apparatus can be advantageously applied.

その他、一々列挙はしないが、本発明は、当業者の知識に基づいて種々なる変更,修正,改良等を加えた態様において実施され得るものであり、また、そのような実施態様が、本発明の趣旨を逸脱しない限り、何れも、本発明の範囲内に含まれるものであることは、言うまでもない。   In addition, although not enumerated one by one, the present invention can be carried out in a mode to which various changes, modifications, improvements and the like are added based on the knowledge of those skilled in the art. It goes without saying that all are included in the scope of the present invention without departing from the spirit of the present invention.

本発明の第一の実施形態としての自動車用エンジンマウントを示す縦断面図であって、図2におけるI−I線断面図。It is a longitudinal cross-sectional view which shows the engine mount for motor vehicles as 1st embodiment of this invention, Comprising: The II sectional view taken on the line in FIG. 同エンジンマウントの図1におけるII−II線断面図。The II-II sectional view taken on the line of the engine mount in FIG. 同エンジンマウントの図1におけるIII−III線断面図であって、蓋板金具の開作動状態を示す図。It is the III-III sectional view taken on the line of the engine mount in FIG. 1, Comprising: The figure which shows the open operation state of a cover plate metal fitting. 本発明の第二の実施形態としての自動車用エンジンマウントを示す横断面図であって、図2に対応する図。FIG. 4 is a cross-sectional view showing an automobile engine mount as a second embodiment of the present invention, corresponding to FIG. 2.

符号の説明Explanation of symbols

10 エンジンマウント、12 第一の取付金具、14 第二の取付金具、16
本体ゴム弾性体、50 受圧室、52 平衡室、58 オリフィス通路、60 開口窓、62 蓋板金具、66 緩衝ゴム部材
10 engine mount, 12 first mounting bracket, 14 second mounting bracket, 16
Rubber elastic body of main body, 50 pressure receiving chamber, 52 equilibrium chamber, 58 orifice passage, 60 opening window, 62 lid plate metal fitting, 66 shock absorbing rubber member

Claims (4)

防振連結される一方の部材に取り付けられる第一の取付部材と防振連結される他方の部材に取り付けられる第二の取付部材を本体ゴム弾性体で連結せしめて該本体ゴム弾性体で壁部の一部が構成されて非圧縮性流体が封入された受圧室と、壁部の一部が可撓性膜で構成されて非圧縮性流体が封入された平衡室を形成すると共に、それら受圧室と平衡室を相互に連通せしめるオリフィス通路を設けた流体封入式防振装置において、
前記オリフィス通路の壁部の少なくとも一部において前記受圧室に開口する開口窓が形成されると共に、弾性を有する蓋プレート部材が該開口窓を閉塞するように配設されて、該蓋プレート部材がその弾性によって該開口窓を覆蓋する状態で保持されている一方、該蓋プレート部材における該オリフィス通路の前記平衡室への開口部側が固定的に支持されていると共に、該蓋プレート部材における該受圧室への開口部側が該開口窓に対して相対的に変位可能とされて開口するようになっており、振動入力時に該受圧室の圧力変動に基づいて該蓋プレート部材が弾性変形することにより該開口窓が開口せしめられて、該オリフィス通路が該開口窓を通じて該受圧室に連通されるようになっていることを特徴とする流体封入式防振装置。
A wall portion is formed by connecting a first mounting member attached to one member to be anti-vibrated and a second attachment member attached to the other member to be anti-vibrated and connected by a main rubber elastic body. And a pressure receiving chamber in which an incompressible fluid is enclosed, and a wall portion in which a part of the wall is formed of a flexible film form an equilibrium chamber in which the incompressible fluid is enclosed. In a fluid-filled vibration isolator having an orifice passage that allows the chamber and the equilibrium chamber to communicate with each other,
An opening window that opens to the pressure receiving chamber is formed in at least a part of the wall of the orifice passage, and an elastic lid plate member is disposed so as to close the opening window. While being held in a state of covering the opening window by its elasticity, the opening side to the equilibrium chamber of the orifice passage in the lid plate member is fixedly supported, and the pressure receiving force in the lid plate member The opening side to the chamber is configured to be relatively displaceable with respect to the opening window, and the lid plate member is elastically deformed based on the pressure fluctuation of the pressure receiving chamber at the time of vibration input. A fluid-filled vibration damping device, wherein the opening window is opened, and the orifice passage is communicated with the pressure receiving chamber through the opening window.
前記蓋プレート部材が金属ばねを含んで形成されている請求項1に記載の流体封入式防振装置。   The fluid-filled vibration isolator according to claim 1, wherein the lid plate member includes a metal spring. 前記蓋プレート部材と前記開口窓の開口周縁部との当接部分の少なくとも一部に当接による衝撃を緩和する当接緩衝材が配設されている請求項1又は2に記載の流体封入式防振装置。   The fluid-filled type according to claim 1, wherein a contact cushioning material that reduces an impact caused by contact is disposed on at least a part of a contact portion between the lid plate member and the opening peripheral edge of the opening window. Anti-vibration device. 前記オリフィス通路が前記受圧室を周方向に延びるように形成されており、該オリフィス通路の内周側の壁部に前記開口窓が形成されていると共に、該オリフィス通路の内周側の壁部に前記蓋プレート部材が配設されている請求項1乃至3の何れか一項に記載の流体封入式防振装置。
The orifice passage is formed so as to extend in the circumferential direction of the pressure receiving chamber, the opening window is formed in the inner peripheral wall portion of the orifice passage, and the inner peripheral wall portion of the orifice passage The fluid-filled vibration isolator according to any one of claims 1 to 3, wherein the lid plate member is disposed on the lid.
JP2006061112A 2006-03-07 2006-03-07 Fluid filled vibration isolator Expired - Fee Related JP4751740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006061112A JP4751740B2 (en) 2006-03-07 2006-03-07 Fluid filled vibration isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006061112A JP4751740B2 (en) 2006-03-07 2006-03-07 Fluid filled vibration isolator

Publications (2)

Publication Number Publication Date
JP2007239824A JP2007239824A (en) 2007-09-20
JP4751740B2 true JP4751740B2 (en) 2011-08-17

Family

ID=38585570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006061112A Expired - Fee Related JP4751740B2 (en) 2006-03-07 2006-03-07 Fluid filled vibration isolator

Country Status (1)

Country Link
JP (1) JP4751740B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4473302B2 (en) 2007-11-28 2010-06-02 東洋ゴム工業株式会社 Liquid-filled vibration isolator
JP4974925B2 (en) * 2008-02-15 2012-07-11 株式会社ブリヂストン Vibration isolator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3737252A1 (en) * 1987-11-03 1989-05-24 Wolf Woco & Co Franz J HYDRAULIC DAMPED ELASTOMER METAL BEARING
JPH08177963A (en) * 1994-12-28 1996-07-12 Nissan Motor Co Ltd Engine mount
DE29602330U1 (en) * 1996-02-10 1996-05-30 Ing. Walter Hengst GmbH & Co KG, 48147 Münster Filter drain with spring lock
JP3826768B2 (en) * 2001-11-08 2006-09-27 東海ゴム工業株式会社 Fluid filled vibration isolator
JP3959716B2 (en) * 2002-08-07 2007-08-15 東海ゴム工業株式会社 Actively controlled fluid-filled vibration isolator

Also Published As

Publication number Publication date
JP2007239824A (en) 2007-09-20

Similar Documents

Publication Publication Date Title
JP4228219B2 (en) Fluid filled vibration isolator
JP5448928B2 (en) Fluid filled vibration isolator
JP4842086B2 (en) Fluid filled vibration isolator
JP5535958B2 (en) Liquid-filled vibration isolator
JP4392667B2 (en) Fluid filled vibration isolator
JP4741540B2 (en) Fluid filled vibration isolator
JP2007139024A (en) Fluid-sealed vibration control device
JP5060846B2 (en) Fluid filled vibration isolator
JP5829135B2 (en) Fluid filled vibration isolator
JP4751740B2 (en) Fluid filled vibration isolator
JP2008185152A (en) Fluid filled vibration absorbing device and engine mount using the same
JP2013160265A (en) Fluid-sealed vibration-damping device
JP2005337299A (en) Pneumatic switching type fluid-filled engine mount
JP2008232315A (en) Fluid-sealed type vibration control device
JP4181163B2 (en) Liquid-filled vibration isolator
JP4075066B2 (en) Fluid filled engine mount
JP2008106895A (en) Fluid-sealed vibration isolating device
JP2008121716A (en) Fluid-sealed vibration isolator
JP5114799B2 (en) Vibration isolator
JP4088836B2 (en) Fluid filled vibration isolator
JP4210851B2 (en) Fluid-filled engine mount for vehicles
JP2007139158A (en) Fluid-sealed vibration control device
JP5027093B2 (en) Fluid filled vibration isolator
JP2008249076A (en) Fluid sealed type vibration damper
JP5108349B2 (en) Fluid filled vibration isolator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110516

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110523

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees