JP4088836B2 - Fluid filled vibration isolator - Google Patents

Fluid filled vibration isolator Download PDF

Info

Publication number
JP4088836B2
JP4088836B2 JP2003403893A JP2003403893A JP4088836B2 JP 4088836 B2 JP4088836 B2 JP 4088836B2 JP 2003403893 A JP2003403893 A JP 2003403893A JP 2003403893 A JP2003403893 A JP 2003403893A JP 4088836 B2 JP4088836 B2 JP 4088836B2
Authority
JP
Japan
Prior art keywords
pressure
receiving chamber
pressure receiving
mounting member
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003403893A
Other languages
Japanese (ja)
Other versions
JP2005163919A (en
Inventor
明雄 佐伯
高伸 南野
雄一 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2003403893A priority Critical patent/JP4088836B2/en
Publication of JP2005163919A publication Critical patent/JP2005163919A/en
Application granted granted Critical
Publication of JP4088836B2 publication Critical patent/JP4088836B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、内部に封入された非圧縮性流体の流動作用に基づいて防振効果を得るようにした流体封入式防振装置に係り、例えば、自動車用のエンジンマウント等として好適に採用される流体封入式防振装置に関するものである。   The present invention relates to a fluid-filled vibration isolator that obtains a vibration-proof effect based on the flow action of an incompressible fluid enclosed therein, and is suitably employed, for example, as an engine mount for an automobile. The present invention relates to a fluid-filled vibration isolator.

従来から、振動伝達系を構成する部材間に介装される防振連結体乃至は防振支持体として、第一の取付部材と第二の取付部材を本体ゴム弾性体で連結した防振装置が各種分野に広く採用されている。その一種として、第一の取付部材と第二の取付部材を本体ゴム弾性体で連結する一方、本体ゴム弾性体で壁部の一部が構成されて第一の取付部材と第二の取付部材の間への振動入力時に圧力変動が生ぜしめられる受圧室と、可撓性膜で壁部の一部が構成されて可撓性膜の変形に基づいて容積変化が生ぜしめられる平衡室を形成して、それら受圧室と平衡室に非圧縮性流体を封入すると共に、それら受圧室と平衡室を相互に連通するオリフィス通路を設けた流体封入式防振装置が提案されている(例えば、特許文献1参照)。   Conventionally, an anti-vibration device in which a first attachment member and a second attachment member are connected by a main rubber elastic body as an anti-vibration coupling body or an anti-vibration support body interposed between members constituting a vibration transmission system. Is widely adopted in various fields. As one type, the first mounting member and the second mounting member are connected by the main rubber elastic body, while the main rubber elastic body forms a part of the wall portion, and the first mounting member and the second mounting member. A pressure receiving chamber in which pressure fluctuations are generated when vibration is input between them, and a balance chamber in which a part of the wall is formed by a flexible membrane and volume change is generated based on deformation of the flexible membrane. In addition, a fluid-filled vibration isolator has been proposed in which an incompressible fluid is sealed in the pressure receiving chamber and the equilibrium chamber, and an orifice passage that communicates the pressure receiving chamber and the equilibrium chamber is provided (for example, a patent). Reference 1).

このような流体封入式防振装置では、封入した非圧縮性流体の共振作用等の流動作用を利用して防振効果を得ることが出来るのであり、本体ゴム弾性体の防振作用だけでは得られない程の低動ばね効果や高減衰効果を、オリフィス通路のチューニング周波数域で容易に得ることが出来ることから、例えば、特定の周波数域で高度な防振性能が要求される自動車用のエンジンマウントやボデーマウント等への適用が検討されている。   In such a fluid-filled vibration isolator, the vibration-proof effect can be obtained by utilizing the fluid action such as the resonance action of the enclosed incompressible fluid, and only by the vibration-proof action of the main rubber elastic body. Low dynamic spring effect and high damping effect that can not be obtained can be easily obtained in the tuning frequency range of the orifice passage. For example, an automobile engine that requires high vibration isolation performance in a specific frequency range Application to mounts and body mounts is under consideration.

ところが、このような流体封入式防振装置について本発明者が検討を加えたところ、クランキング時などにおいて第一の取付部材と第二の取付部材の間に衝撃的に大きな振動荷重が入力されると、防振装置から異音や振動が発せられる場合のあることが確認された。   However, when the present inventors have examined such a fluid-filled vibration isolator, a large vibration load is applied between the first mounting member and the second mounting member during cranking or the like. As a result, it was confirmed that abnormal vibration and vibration may be emitted from the vibration isolator.

このような流体封入式防振装置における異音や振動の発生現象について本発明者が多くの実験を行って検討したところ、第一の取付部材と第二の取付部材の間に衝撃的に大きな振動荷重が入力されると、受圧室内に大きな負圧が生ずることに起因して、封入流体に溶存している空気が分離して気泡が発生することを確認した。そして、かかる気泡が受圧室内で崩壊する際に生ぜしめられる爆発的な微小噴流(マイクロジェット)が水撃圧となって第一の取付部材や第二の取付部材に伝播することにより、前述の如き問題となる異音や振動が生ぜしめられるに至るというのが、従来からこの種の流体封入式防振装置において問題となっている異音や振動の発生メカニズムであろうとの知見を得た。   When the present inventor conducted many experiments on the occurrence of abnormal noise and vibration in such a fluid-filled vibration isolator, the impact between the first mounting member and the second mounting member is large. It was confirmed that when a vibration load was input, a large negative pressure was generated in the pressure receiving chamber, so that air dissolved in the sealed fluid was separated and bubbles were generated. Then, the explosive micro jet (micro jet) generated when the bubbles collapse in the pressure receiving chamber propagates to the first mounting member and the second mounting member as a water hammer pressure, thereby Acquired knowledge that abnormal noise and vibration, which are problematic in this type of fluid-filled vibration isolator, have been the cause of such abnormal noise and vibration. .

また、本発明者が更なる検討を加えた結果、問題となっている異音や振動の原因となる気泡は、受圧室に惹起される衝撃的な負圧が大きくなる程、大きく成長することとなり、それに伴って、発生する異音や振動が大きくなる傾向のあることまで確認できた。   In addition, as a result of further studies by the inventor, bubbles that cause abnormal noise and vibration in question grow larger as the shocking negative pressure induced in the pressure receiving chamber increases. As a result, it was confirmed that the abnormal noise and vibration generated tend to increase.

特開2000−274480号公報JP 2000-274480 A

本発明は上述の如き事情を背景として為されたものであって、その解決課題とするところは、封入された非圧縮性流体の流動作用に基づいて発揮される防振効果を有効に確保しつつ、衝撃的に大きな振動や荷重が及ぼされた場合における異音や衝撃の発生を軽減乃至は防止することが出来る、新規な構造の流体封入式防振装置を提供することにある。   The present invention has been made in the background as described above, and the problem to be solved is to effectively secure the vibration-proofing effect exhibited based on the flow action of the enclosed incompressible fluid. On the other hand, it is an object of the present invention to provide a fluid-filled vibration isolator having a novel structure capable of reducing or preventing the generation of abnormal noise and shock when a large vibration or load is applied.

以下、このような課題を解決するために為された本発明の態様を記載する。なお、以下に記載の各態様において採用される構成要素は、可能な限り任意の組み合わせで採用可能である。また、本発明の態様乃至は技術的特徴は、以下に記載のものに限定されることなく、明細書全体および図面に記載され、或いはそれらの記載から当業者が把握することの出来る発明思想に基づいて認識されるものであることが理解されるべきである。   Hereinafter, the aspect of this invention made | formed in order to solve such a subject is described. In addition, the component employ | adopted in each aspect as described below is employable by arbitrary combinations as much as possible. In addition, aspects or technical features of the present invention are not limited to those described below, but are described in the entire specification and drawings, or can be understood by those skilled in the art from those descriptions. It should be understood that it is recognized on the basis of.

(本発明の態様1)
本発明の態様1の特徴とするところは、互いに離隔配置された第一の取付部材と第二の取付部材を本体ゴム弾性体で連結する一方、該本体ゴム弾性体で壁部の一部が構成された受圧室と可撓性膜で壁部の一部が構成された平衡室を形成して、該受圧室と該平衡室にそれぞれ非圧縮性流体を封入すると共に、それら受圧室と平衡室をオリフィス通路で相互に連通せしめた流体封入式防振装置において、前記受圧室における前記本体ゴム弾性体とは別の壁部の一部を薄肉の受圧ゴム板で構成すると共に、該受圧ゴム板を挟んで該受圧室と反対側には、該受圧ゴム板に沿って広がる剛性壁面を形成して、該受圧ゴム板と該剛性壁面との対向面間において外部空間から遮断されて密閉された微小空間を形成し、該受圧室の内圧が0.6MPaに達することにより該受圧ゴム板の該受圧室から外方への弾性変形が該剛性壁面に対する実質的な当接によって阻止されるようにする一方、該受圧ゴム板の該受圧室に向かう内方への弾性変形が該微小空間の容積膨張に基づいて許容されるようにした流体封入式防振装置にある。
(Aspect 1 of the present invention)
A feature of the first aspect of the present invention is that the first mounting member and the second mounting member that are spaced apart from each other are connected by the main rubber elastic body, while a part of the wall portion is connected by the main rubber elastic body. The pressure receiving chamber configured and a flexible membrane form an equilibrium chamber in which a part of the wall portion is formed, and an incompressible fluid is sealed in each of the pressure receiving chamber and the equilibrium chamber, and the pressure receiving chamber is balanced. In the fluid-filled vibration isolator in which the chambers are communicated with each other through an orifice passage, a part of the wall portion different from the main rubber elastic body in the pressure receiving chamber is constituted by a thin pressure receiving rubber plate, and the pressure receiving rubber A rigid wall surface extending along the pressure-receiving rubber plate is formed on the opposite side of the pressure-receiving chamber across the plate, and is sealed from an external space between the opposing surfaces of the pressure-receiving rubber plate and the rigid wall surface. A small space is formed, and the internal pressure of the pressure receiving chamber reaches 0.6 MPa. The elastic deformation of the pressure-receiving rubber plate from the pressure-receiving chamber to the outside is prevented by substantial contact with the rigid wall surface, while the pressure-receiving rubber plate is inwardly directed toward the pressure-receiving chamber. In the fluid-filled vibration isolator, elastic deformation is allowed based on the volume expansion of the minute space.

このような本態様に従う構造とされた流体封入式防振装置においては、受圧ゴム板と剛性壁面の対向面間に形成された微小空間に僅かな空気が封入されている。従って、受圧室に急激な負圧が発生した場合に、微小空間における空気の膨張を利用して、受圧ゴム板が速やかに追従して変形し、衝撃的な圧力変動を軽減することが出来る。その結果、受圧室内での非圧縮性流体における気相分離が抑えられて、大きな気泡の発生が回避されることとなり、気泡の消失に際して発生するエネルギ量の軽減が図られて、気泡消失に伴う異音や振動を抑えることが出来るのである。   In the fluid-filled vibration isolator having the structure according to this embodiment, a small amount of air is sealed in a minute space formed between the pressure-receiving rubber plate and the opposing surface of the rigid wall surface. Therefore, when an abrupt negative pressure is generated in the pressure receiving chamber, the pressure receiving rubber plate quickly follows and deforms by utilizing the expansion of air in the minute space, and shock pressure fluctuation can be reduced. As a result, gas phase separation in the incompressible fluid in the pressure receiving chamber is suppressed, and generation of large bubbles is avoided, and the amount of energy generated when the bubbles disappear is reduced. Abnormal noise and vibration can be suppressed.

特に、微小空間に封入された空気量は微量であり、0.6MPaの圧力増大で直ちに受圧ゴム板が剛性壁面に対して実質的に当接して拘束されて、その膨出変形が防止されることにより、受圧室の特に正圧側への圧力変動が有効に生ぜしめられるようになっている。それ故、防振すべき振動の入力時には、受圧室の圧力変動が受圧ゴム板の変形によって過度に吸収されてしまうようなこともなく、受圧室と平衡室の間に有効な圧力変動が生ぜしめられるのであり、それによって、オリフィス通路を通じての流体流動量が効率的に確保されて、かかる流体の共振作用等の流動作用に基づく防振効果が効果的に発揮され得るのである。   In particular, the amount of air enclosed in the minute space is very small, and immediately after the pressure increase of 0.6 MPa, the pressure-receiving rubber plate is substantially in contact with and restrained against the rigid wall surface to prevent its bulging deformation. As a result, the pressure fluctuation particularly toward the positive pressure side of the pressure receiving chamber is effectively generated. Therefore, when a vibration to be damped is input, the pressure fluctuation in the pressure receiving chamber is not excessively absorbed by the deformation of the pressure receiving rubber plate, and an effective pressure fluctuation occurs between the pressure receiving chamber and the equilibrium chamber. As a result, the amount of fluid flow through the orifice passage is efficiently ensured, and the vibration isolation effect based on the fluid action such as the resonance action of the fluid can be effectively exhibited.

なお、本態様において、受圧ゴム板や剛性壁面、微小空間の形状や大きさ、構造等は、何等限定されるものでないが、例えば、剛性壁面を受圧室の内方に向かって開口する凹所の内周面で構成すると共に、受圧ゴム板を剛性壁面の形状に沿って受圧室の内方に向かって凹所状に開口する袋形状としたり、或いは剛性壁面を受圧室の内方に向かって突出する凸部の外周面で構成すると共に、受圧ゴム板を剛性壁面の形状に沿って受圧室の内方に向かって突出する袋形状としたりすること等が好適に採用される。これにより、受圧ゴム板や剛性壁面の配設スペースが小さい場合等にも、受圧ゴム板の表面積を効率的に確保することが可能となり、受圧ゴム板の弾性変形に基づく圧力変動の軽減がより有効に為され得る。また、本態様では、剛性壁面と受圧ゴム板の対向面間に全体に亘って略一定の大きさの隙間が形成されていること、即ち、微小空間における剛性壁面と受圧ゴム板の対向面間の距離が全体に亘って略一定とされていることが望ましい。これにより、受圧室の圧力が大きくなった際に、受圧ゴム板を、その全体に亘って速やかに剛性壁面に対して実質的に当接させることができ、受圧ゴム板の拘束が一層安定して実現され得る。   In this aspect, the pressure-receiving rubber plate, the rigid wall surface, and the shape, size, and structure of the minute space are not limited in any way. For example, a recess that opens the rigid wall surface toward the inside of the pressure-receiving chamber. The pressure-receiving rubber plate is formed into a bag shape that opens in a concave shape toward the inside of the pressure receiving chamber along the shape of the rigid wall surface, or the rigid wall surface faces the inside of the pressure receiving chamber. For example, it is preferable that the pressure receiving rubber plate has a bag shape protruding toward the inside of the pressure receiving chamber along the shape of the rigid wall surface. This makes it possible to efficiently secure the surface area of the pressure-receiving rubber plate even when the pressure-receiving rubber plate or the rigid wall surface is small, and to reduce pressure fluctuations based on the elastic deformation of the pressure-receiving rubber plate. Can be done effectively. Further, in this aspect, a substantially constant gap is formed between the opposing surfaces of the rigid wall surface and the pressure-receiving rubber plate, that is, between the opposing surfaces of the rigid wall surface and the pressure-receiving rubber plate in a minute space. It is desirable that the distance is substantially constant throughout. As a result, when the pressure in the pressure receiving chamber increases, the pressure receiving rubber plate can be brought into substantial contact with the rigid wall surface quickly throughout the whole, and the restraint of the pressure receiving rubber plate is further stabilized. Can be realized.

(本発明の態様2)
本発明の態様2の特徴とするところは、本発明の前記態様1に係る流体封入式防振装置において、前記微小空間の容積が、前記受圧室の内部圧力が略大気圧に等しくされた状態下で1cc以下とされていることにある。
(Aspect 2 of the present invention)
A feature of aspect 2 of the present invention is that, in the fluid filled type vibration damping device according to aspect 1 of the present invention, the volume of the minute space is such that the internal pressure of the pressure receiving chamber is substantially equal to the atmospheric pressure. It is that it is 1 cc or less below.

このような本態様においては、微小空間の容積膨張が小さくされることにより、振動入力時に受圧室の圧力が増大した際に、受圧ゴム板が剛性壁面によって一層速やかに且つ強固に拘束され得ることとなり、受圧室の圧力変動に伴うオリフィス通路を通じての流体流動量がより効果的に確保され得る。   In this aspect, the volume expansion of the minute space is reduced, so that the pressure-receiving rubber plate can be more quickly and firmly restrained by the rigid wall surface when the pressure in the pressure-receiving chamber increases during vibration input. Thus, the amount of fluid flow through the orifice passage accompanying the pressure variation in the pressure receiving chamber can be more effectively ensured.

(本発明の態様3)
本発明の態様3の特徴とするところは、本発明の前記態様1又は2に係る流体封入式防振装置において、前記剛性壁面が、前記受圧室に向かって開口する有底の凹所とされている一方、該剛性壁面の形状に沿って該受圧室から外方に向かって凸となる形状をもって前記受圧ゴム板を構成して、有底凹所形状とされた該剛性壁面に沿って該受圧ゴム板を配設したことにある。
(Aspect 3 of the present invention)
A feature of aspect 3 of the present invention is that in the fluid filled type vibration damping device according to aspect 1 or 2 of the present invention, the rigid wall surface is a bottomed recess that opens toward the pressure receiving chamber. On the other hand, the pressure-receiving rubber plate is configured with a shape that protrudes outward from the pressure-receiving chamber along the shape of the rigid wall surface, and along the rigid wall surface that has a bottomed recess shape, The pressure receiving rubber plate is provided.

このような本態様においては、受圧ゴム板における受圧室の外方への弾性変形が、受圧ゴム板の引張方向への拡張剛性と剛性壁面への実質的な当接によって効果的に制限されて、振動入力時における受圧室の圧力変動が効率的に生ぜしめられる一方、衝撃的なリバウンド方向への荷重入力に際して受圧室に負圧が生ぜしめられた場合には、受圧ゴム板の圧縮方向への変形だけでなく、内方に潰れるような変形が生ぜしめられることとなり、この潰れ変形により、受圧室における負圧の発生が可及的速やかに解消されることとなる。それ故、受圧ゴム板のサイズを大きくしなくても、受圧室内の負圧に起因する気泡の発生を有効に抑えることが出来るのである。   In this embodiment, the elastic deformation of the pressure-receiving rubber plate toward the outside of the pressure-receiving chamber is effectively limited by the expansion rigidity in the tensile direction of the pressure-receiving rubber plate and the substantial contact with the rigid wall surface. The pressure fluctuation of the pressure receiving chamber at the time of vibration input is efficiently generated, but when negative pressure is generated in the pressure receiving chamber when a load is applied in the shocking rebound direction, the pressure receiving rubber plate is moved in the compression direction. In addition to this deformation, a deformation that collapses inward is generated, and the generation of the negative pressure in the pressure receiving chamber is eliminated as quickly as possible due to this deformation. Therefore, it is possible to effectively suppress the generation of bubbles due to the negative pressure in the pressure receiving chamber without increasing the size of the pressure receiving rubber plate.

(本発明の態様4)
本発明の態様4の特徴とするところは、本発明の前記態様1乃至3の何れかに係る流体封入式防振装置において、前記第一の取付部材の一部が前記受圧室に露呈されており、この第一の取付部材の該受圧室への露呈面上に前記受圧ゴム板が配設されていることにある。
(Aspect 4 of the present invention)
A feature of aspect 4 of the present invention is that in the fluid-filled vibration isolator according to any one of aspects 1 to 3 of the present invention, a part of the first mounting member is exposed to the pressure receiving chamber. The pressure-receiving rubber plate is disposed on the exposed surface of the first mounting member to the pressure-receiving chamber.

このような本態様においては、受圧ゴム板を挟んで受圧室と反対側に設けられる剛性壁面が、別部材を配設等することなく、第一の取付部材の受圧室に露呈された面を利用して容易に確保され得て、構造の簡略化が図られ得る。   In such a mode, the rigid wall surface provided on the opposite side of the pressure receiving chamber across the pressure receiving rubber plate is the surface exposed to the pressure receiving chamber of the first mounting member without providing another member. It can be easily secured by use, and the structure can be simplified.

(本発明の態様5)
本発明の態様5の特徴とするところは、本発明の前記態様1乃至4の何れかに係る流体封入式防振装置において、前記第二の取付部材を円筒形状として、その一方の開口部側に前記第一の取付部材を配設すると共に該一方の開口部を前記本体ゴム弾性体で流体密に覆蓋せしめる一方、該第二の取付部材の他方の開口部を前記可撓性膜で流体密に覆蓋し、更に、該第二の取付部材によって支持された仕切部材を該本体ゴム弾性体と該可撓性膜の対向面間に配設して該仕切部材を挟んだ軸方向一方の側に前記受圧室を形成すると共に軸方向他方の側に前記平衡室を形成すると共に、それら受圧室と平衡室を連通する前記オリフィス通路を該仕切部材によって形成して、該第一の取付部材を該受圧室に露呈させて、該第一の取付部材の露呈部分に前記受圧ゴム板を配設したことにある。
(Aspect 5 of the present invention)
A feature of aspect 5 of the present invention is that, in the fluid filled type vibration damping device according to any one of aspects 1 to 4 of the present invention, the second mounting member is formed in a cylindrical shape, and one opening side thereof The first mounting member is disposed on the one side and the one opening is fluid-tightly covered with the main rubber elastic body, while the other opening of the second mounting member is fluidized with the flexible membrane. Further, the partition member supported by the second mounting member is disposed between the opposing surfaces of the main rubber elastic body and the flexible membrane, and one axial direction sandwiching the partition member is provided. The pressure receiving chamber is formed on the side and the equilibrium chamber is formed on the other side in the axial direction, and the orifice passage communicating the pressure receiving chamber and the equilibrium chamber is formed by the partition member, and the first mounting member Is exposed to the pressure receiving chamber and is exposed to the exposed portion of the first mounting member. It lies in the disposed pressure rubber plate.

このような本態様においては、仕切部材を利用して、受圧室や平衡室,オリフィス通路を少ない部品点数でコンパクトに形成することが可能となる。しかも、受圧室に露呈された第一の取付部材の露呈部分を巧く利用して受圧ゴム板の配設スペースが確保され得る。   In this embodiment, the pressure receiving chamber, the equilibrium chamber, and the orifice passage can be formed compactly with a small number of parts by using the partition member. In addition, a space for arranging the pressure-receiving rubber plate can be secured by skillfully utilizing the exposed portion of the first mounting member exposed to the pressure-receiving chamber.

上述の説明からも明らかなように、本発明に従う構造とされた流体封入式防振装置においては、受圧室に急激な負圧が及ぼされた場合に受圧ゴム板が速やかに追従して変形することにより、発生する負圧が抑えられて受圧室内での気泡の発生が効果的に抑えられ得る。しかも、かかる受圧ゴム板は、膨出方向への弾性変形量が剛性壁面によって十分に小さく抑えられることから、振動入力時には、受圧室の圧力変動が有効に生ぜしめられて、オリフィス通路を流動せしめられる流体の流動作用に基づく防振効果が有効に発揮され得るのである。   As is clear from the above description, in the fluid-filled vibration isolator constructed according to the present invention, the pressure-receiving rubber plate quickly follows and deforms when a sudden negative pressure is applied to the pressure-receiving chamber. Thus, the generated negative pressure can be suppressed, and the generation of bubbles in the pressure receiving chamber can be effectively suppressed. In addition, since the amount of elastic deformation in the bulging direction is sufficiently suppressed by the rigid wall surface, the pressure-receiving rubber plate effectively causes pressure fluctuations in the pressure-receiving chamber to flow through the orifice passage during vibration input. Therefore, the vibration isolation effect based on the fluid action of the fluid can be effectively exhibited.

以下、本発明を更に具体的に明らかにするために、本発明の実施形態について、図面を参照しつつ、詳細に説明する。先ず、図1には、本発明の一実施形態としての自動車用エンジンマウント10が示されている。このエンジンマウント10は、第一の取付部材としての第一の取付金具12と第二の取付部材としての第二の取付金具14が本体ゴム弾性体16で弾性的に連結された構造とされており、第一の取付金具12が自動車のパワーユニットに取り付けられる一方、第二の取付金具14が自動車のボデーに取り付けられることにより、パワーユニットをボデーに対して防振支持せしめるようになっている。なお、そのような装着状態下では、パワーユニット重量が及ぼされることにより、本体ゴム弾性体16が弾性変形して、第一の取付金具12と第二の取付金具14が相互に接近位置せしめられる。また、かかる装着状態下、防振すべき主たる振動が、第一の取付金具12と第二の取付金具14の接近/離隔方向(マウント中心軸である図1中の右斜め方向)に入力されることとなる。   Hereinafter, in order to clarify the present invention more specifically, embodiments of the present invention will be described in detail with reference to the drawings. First, FIG. 1 shows an automobile engine mount 10 as an embodiment of the present invention. The engine mount 10 has a structure in which a first mounting bracket 12 as a first mounting member and a second mounting bracket 14 as a second mounting member are elastically connected by a main rubber elastic body 16. The first mounting bracket 12 is attached to the power unit of the automobile while the second mounting bracket 14 is attached to the body of the automobile so that the power unit is supported on the body against vibration. Note that, in such a mounted state, the main rubber elastic body 16 is elastically deformed due to the weight of the power unit, and the first mounting bracket 12 and the second mounting bracket 14 are positioned close to each other. Further, under such a mounted state, main vibrations to be vibrated are input in the approaching / separating direction of the first mounting bracket 12 and the second mounting bracket 14 (in the right diagonal direction in FIG. 1 which is the mount center axis). The Rukoto.

より詳細には、第一の取付金具12は、略逆円錐台のブロック形状を有していると共に、大径側端面から上方に向かって突出する螺着部18が一体形成されており、この螺着部18に設けられたねじ穴によって、第一の取付金具12が、図示しないパワーユニットに固定的に取り付けられるようになっている。また、第一の取付金具12の大径側端部外周面には、径方向外方に向かって突出する鍔状のストッパ部20が一体形成されている。   More specifically, the first mounting bracket 12 has a substantially inverted truncated conical block shape, and is integrally formed with a threaded portion 18 protruding upward from the end surface on the large diameter side. The first mounting bracket 12 is fixedly attached to a power unit (not shown) through a screw hole provided in the screwing portion 18. Further, a flange-like stopper portion 20 that protrudes radially outward is integrally formed on the outer peripheral surface of the large-diameter end portion of the first mounting member 12.

また、第二の取付金具14は、大径の略円筒形状を有しており、軸方向上側の開口側端部に対して、軸方向外方に向かって次第に拡開するテーパ状部22が設けられていると共に、このテーパ状部22の開口周縁部には、径方向外方に向かって広がるフランジ状部24が一体形成されている。更に、第二の取付金具14の軸方向下側の開口側端部には、軸方向下方に延びるかしめ部26が一体形成されている。   The second mounting member 14 has a large-diameter, generally cylindrical shape, and has a tapered portion 22 that gradually expands outward in the axial direction with respect to the opening side end on the upper side in the axial direction. A flange-shaped portion 24 that extends outward in the radial direction is integrally formed at the opening periphery of the tapered portion 22. Furthermore, a caulking portion 26 extending downward in the axial direction is integrally formed at the opening side end portion of the second mounting member 14 in the axial direction lower side.

さらに、第二の取付金具14の略中心軸上で、軸方向上方に離隔して、第一の取付金具12が軸直角方向に広がる状態で配設されており、互いに軸方向に対向位置せしめられていると共に、それら第一の取付金具12と第二の取付金具14の対向面間に本体ゴム弾性体16が介装されている。この本体ゴム弾性体16は、略円錐台形状とされており、軸方向上方に向かって次第に小径化するテーパ円筒形状の外周面を有している。そして、この本体ゴム弾性体16の小径側端面から軸方向下方へ差し込まれた状態で、第一の取付金具12が加硫接着されており、かかる本体ゴム弾性体16の小径側端面に対して、第一の取付金具12のストッパ部20の下面に重ね合わされて加硫接着されている。また、本体ゴム弾性体16の大径側端部外周面には、第二の取付金具14が、そのテーパ状部22の内周面において重ね合わされて加硫接着されている。要するに本実施形態では、本体ゴム弾性体16が、第一の取付金具12の外周面と第二の取付金具14の内周面に対して、それぞれ加硫接着された一体加硫成形品とされているのである。また、第一の取付金具12のストッパ部20には、緩衝ゴム28が、軸方向上方に向かって突出して、本体ゴム弾性体16と一体形成されている。   Further, the first mounting bracket 12 is arranged in a state of extending in the direction perpendicular to the axis, spaced apart upward in the axial direction on the substantially central axis of the second mounting bracket 14, so that they are opposed to each other in the axial direction. In addition, a main rubber elastic body 16 is interposed between the opposing surfaces of the first mounting bracket 12 and the second mounting bracket 14. The main rubber elastic body 16 has a substantially frustoconical shape, and has a tapered cylindrical outer peripheral surface that gradually decreases in diameter toward the upper side in the axial direction. The first mounting bracket 12 is vulcanized and bonded in a state where the main rubber elastic body 16 is inserted downward in the axial direction from the small diameter side end face of the main rubber elastic body 16, and is attached to the small diameter side end face of the main rubber elastic body 16. The first mounting bracket 12 is vulcanized and bonded to the lower surface of the stopper portion 20. Further, the second mounting bracket 14 is superimposed on the inner peripheral surface of the tapered portion 22 and vulcanized and bonded to the outer peripheral surface of the large-diameter side end portion of the main rubber elastic body 16. In short, in the present embodiment, the main rubber elastic body 16 is an integrally vulcanized molded product that is vulcanized and bonded to the outer peripheral surface of the first mounting bracket 12 and the inner peripheral surface of the second mounting bracket 14. -ing Further, a buffer rubber 28 protrudes upward in the axial direction at the stopper portion 20 of the first mounting member 12 and is integrally formed with the main rubber elastic body 16.

そして、この一体加硫成形品においては、第二の取付金具14の軸方向上側の本体ゴム弾性体16によって流体密に閉塞されており、以て、軸方向下方に向かって開口する内部凹所30が形成されている。また、第二の取付金具14の内周面には、その略全面に亘って本体ゴム弾性体と一体形成された薄肉のシールゴム層32が加硫接着されている。   In this integrally vulcanized molded product, an internal recess that is fluid-tightly closed by the main rubber elastic body 16 on the upper side in the axial direction of the second mounting bracket 14 and opens downward in the axial direction. 30 is formed. A thin seal rubber layer 32 integrally formed with the main rubber elastic body is vulcanized and bonded to the inner peripheral surface of the second mounting bracket 14 over substantially the entire surface thereof.

さらに、第二の取付金具14の軸方向上方には、ストッパ筒金具34が取り付けられている。このストッパ筒金具34は、略円筒形状を呈しており、軸方向下端部に軸方向下方に向かって次第に拡開するテーパ状部を介して軸方向下方に延びる大径筒状のかしめ部36が一体形成されている。また、ストッパ筒金具34の軸方向上端部には、径方向内方に突出する円環形状の当接突起38が一体形成されている。そして、ストッパ筒金具34が、第二の取付金具14の軸方向上側から被せられて、第二の取付金具14のフランジ状部24がストッパ筒金具34のかしめ部36でかしめ固定されることにより、第二の取付金具14に固定されていると共に、ストッパ筒金具34の当接突起38が、第一の取付金具12のストッパ部20に対して軸方向上方に離隔して対向位置せしめられている。これにより、大きな振動荷重が入力された際に、ストッパ部20が緩衝ゴム28を介して当接突起38に当接することにより、第一の取付金具12と第二の取付金具14のリバウンド方向(軸方向離隔方向)での相対的変位量が制限されるようになっている。   Furthermore, a stopper cylinder 34 is attached above the second attachment 14 in the axial direction. The stopper cylinder 34 has a substantially cylindrical shape, and a large-diameter cylindrical caulking portion 36 that extends downward in the axial direction via a tapered portion that gradually expands downward in the axial direction at the lower end in the axial direction. It is integrally formed. Further, an annular contact protrusion 38 protruding inward in the radial direction is integrally formed on the upper end portion in the axial direction of the stopper tube metal 34. Then, the stopper tube bracket 34 is covered from the upper side in the axial direction of the second mounting bracket 14, and the flange-like portion 24 of the second mounting bracket 14 is caulked and fixed by the caulking portion 36 of the stopper tube bracket 34. The abutment projection 38 of the stopper barrel 34 is fixed to the second mounting bracket 14 and is opposed to the stopper portion 20 of the first mounting bracket 12 while being spaced apart upward in the axial direction. Yes. As a result, when a large vibration load is input, the stopper portion 20 abuts against the abutment protrusion 38 via the cushioning rubber 28, thereby rebounding the first mounting bracket 12 and the second mounting bracket 14 ( The relative displacement in the axial separation direction is limited.

一方、第二の取付金具14の軸方向下方の開口部には、可撓性膜としての薄肉のゴム膜からなるダイヤフラム40が配設されている。このダイヤフラム40は、変形容易なように弛みを持たせた薄肉円板形状を有しており、外周縁部には、略円環板形状を有するリング金具42が加硫接着されている。そして、このリング金具42が第二の取付金具14の下端開口部に内挿されてかしめ部26でかしめ固定されることにより、ダイヤフラム40が第二の取付金具14に固定されている。以て、第二の取付金具14の軸方向下方の開口部が、ダイヤフラム40によって流体密に覆蓋されて、第二の取付金具14の軸方向両側を覆蓋する本体ゴム弾性体16とダイヤフラム40の対向面間において、非圧縮性流体が封入された流体室44が形成されている。なお、封入流体としては、水やアルキレングリコール,ポリアルキレングリコール,シリコーン油等が採用されるが、特に後述する流体の共振作用に基づく防振効果を有利に得るために、本実施形態では、0.1Pa・s以下の低粘性流体が好適に採用される。   On the other hand, a diaphragm 40 made of a thin rubber film as a flexible film is disposed in the opening portion in the axial direction of the second mounting member 14. The diaphragm 40 has a thin disk shape that is slack so that it can be easily deformed, and a ring fitting 42 having a substantially annular plate shape is vulcanized and bonded to the outer peripheral edge portion. The ring fitting 42 is inserted into the lower end opening of the second mounting bracket 14 and fixed by caulking at the caulking portion 26, so that the diaphragm 40 is fixed to the second mounting bracket 14. Thus, the axially lower opening of the second mounting bracket 14 is fluid-tightly covered by the diaphragm 40, and the main rubber elastic body 16 and the diaphragm 40 that covers both axial sides of the second mounting bracket 14 are covered. A fluid chamber 44 in which an incompressible fluid is enclosed is formed between the opposing surfaces. As the sealing fluid, water, alkylene glycol, polyalkylene glycol, silicone oil, or the like is employed. In order to advantageously obtain a vibration isolation effect based on the resonance action of the fluid described later, in this embodiment, 0 is used. A low-viscosity fluid of 1 Pa · s or less is preferably employed.

また、第二の取付金具14の下側開口部には、底金具46が配設されており、ダイヤフラム40の外側を覆うようにして組み付けられている。底金具46は、略有底円筒形状を呈しており、その軸方向一方の端部には、軸方向下方に向かって次第に拡開するテーパ状部を介して径方向外方に広がるフランジ状部48が一体形成されている一方、その底壁部には、軸方向下方に突出する取付ボルト50が固設されている。また、底金具46の周壁部が、水平方向(図1中、左右)に対して所定の傾斜角度で傾斜せしめられている。更に、底金具46が、第二の取付金具14に外嵌されて、そのフランジ状部48が第二の取付金具14のフランジ状部24に重ね合わされてかしめ部26でかしめ固定されることにより、第二の取付金具14に固定されている。そして、底金具46の取付ボルト50が、図示しない車両ボデーに固定されることにより、第二の取付金具14が、底金具46を介して車両ボデーに取り付けられるようになっている。なお、本実施形態では、底金具46の底壁部が略水平方向に延びるようして車両ボデーに固定されることにより、本体ゴム弾性体16の一体加硫成形品やダイヤフラム40を含むマウント本体が、車両ボデーに対して水平方向に所定の傾斜角度で傾斜配置せしめられている。なお、底金具46には、ダイヤフラム40と底金具46の間の空間を外部に連通せしめる連通孔等が、必要に応じて、設けられている。   In addition, a bottom metal fitting 46 is disposed in the lower opening of the second attachment metal 14 and is assembled so as to cover the outside of the diaphragm 40. The bottom metal fitting 46 has a substantially bottomed cylindrical shape, and at one end in the axial direction thereof, a flange-shaped portion that extends radially outward via a tapered portion that gradually expands downward in the axial direction. While 48 is integrally formed, a mounting bolt 50 protruding downward in the axial direction is fixed to the bottom wall portion thereof. Further, the peripheral wall portion of the bottom metal fitting 46 is inclined at a predetermined inclination angle with respect to the horizontal direction (left and right in FIG. 1). Furthermore, the bottom metal fitting 46 is externally fitted to the second mounting metal fitting 14, and the flange-like portion 48 is overlapped with the flange-like portion 24 of the second attachment metal fitting 14 and is caulked and fixed by the caulking portion 26. The second mounting bracket 14 is fixed. Then, the mounting bolt 50 of the bottom metal fitting 46 is fixed to a vehicle body (not shown), so that the second fitting metal 14 is attached to the vehicle body via the bottom metal fitting 46. In the present embodiment, the mount body including the integrally vulcanized molded body of the main rubber elastic body 16 and the diaphragm 40 is secured to the vehicle body so that the bottom wall portion of the bottom metal fitting 46 extends in a substantially horizontal direction. However, it is inclined with respect to the vehicle body at a predetermined inclination angle in the horizontal direction. In addition, the bottom metal fitting 46 is provided with a communication hole or the like that allows the space between the diaphragm 40 and the bottom metal fitting 46 to communicate with the outside.

さらに、第二の取付金具14の内部には、仕切部材52が収容配置されており、流体室44中に組み付けられている。この仕切部材52は、全体として略厚肉の円板形状を有しており、かかる仕切部材52が流体室44内で軸直角方向に広がった状態で第二の取付金具14に固定されることにより、流体室44が、仕切部材52を挟んだ上下両側に仕切られている。そして、仕切部材52の上側には、壁部の一部が本体ゴム弾性体16で構成された受圧室54が形成されている一方、仕切部材52の下側には、壁部の一部がダイヤフラム40で構成された平衡室56が形成されている。即ち、受圧室54は、振動入力時に本体ゴム弾性体16の弾性変形に伴って振動が入力されて内圧変動が生ぜしめられるようになっている一方、平衡室56は、ダイヤフラム40の変形に基づいて容易に容積変化が許容されて、内圧変化が吸収されるようになっている。   Further, a partition member 52 is accommodated in the second mounting bracket 14 and assembled in the fluid chamber 44. The partition member 52 has a substantially thick disk shape as a whole, and the partition member 52 is fixed to the second mounting member 14 in a state where the partition member 52 extends in the direction perpendicular to the axis in the fluid chamber 44. Thus, the fluid chamber 44 is partitioned on both upper and lower sides with the partition member 52 interposed therebetween. On the upper side of the partition member 52, a pressure receiving chamber 54 in which a part of the wall part is configured by the main rubber elastic body 16 is formed, while on the lower side of the partition member 52, a part of the wall part is formed. An equilibrium chamber 56 composed of the diaphragm 40 is formed. That is, in the pressure receiving chamber 54, vibration is input along with elastic deformation of the main rubber elastic body 16 when vibration is input, and an internal pressure fluctuation is generated, while the equilibrium chamber 56 is based on deformation of the diaphragm 40. Thus, the volume change is easily allowed and the internal pressure change is absorbed.

また、仕切部材52は、仕切部材本体58と保持金具60が互いに圧入固定されると共に、それら仕切部材本体58と保持金具60の間に可動ゴム板62が組み込まれた一つのアッセンブリとして形成されている。仕切部材本体58は、厚肉の略円板形状を有しており、その中央部分には、下方に向かって開口する円形の中央凹所64が形成されている。更に、中央凹所64の開口周縁部は、径方向に広がる環状の段差部66が形成されている。また、仕切部材本体58の外周部分には、外周面に開口して周方向に一周以上の長さで略螺旋状に延びる周溝70が形成されている。そして、この周溝70の一方の端部が連通孔72を通じて受圧室54に連通されている一方、周溝70の他方の端部が切欠き74を通じて平衡室56に連通されている。これにより、受圧室54と平衡室56を相互に連通する第一のオリフィス通路82が形成されている。   The partition member 52 is formed as one assembly in which the partition member main body 58 and the holding metal fitting 60 are press-fitted and fixed to each other, and a movable rubber plate 62 is incorporated between the partition member main body 58 and the holding metal fitting 60. Yes. The partition member main body 58 has a thick, substantially disk shape, and a circular central recess 64 that opens downward is formed at the center thereof. Further, an annular stepped portion 66 extending in the radial direction is formed at the opening peripheral edge portion of the central recess 64. In addition, a circumferential groove 70 is formed in the outer peripheral portion of the partition member main body 58 so as to open to the outer peripheral surface and extend in a spiral shape with a length of one or more rounds in the circumferential direction. One end of the circumferential groove 70 is communicated with the pressure receiving chamber 54 through the communication hole 72, while the other end of the circumferential groove 70 is communicated with the equilibrium chamber 56 through the notch 74. As a result, a first orifice passage 82 that communicates the pressure receiving chamber 54 and the equilibrium chamber 56 with each other is formed.

また、可動ゴム板62は、所定厚さの円板形状を有しており、外周縁部が厚肉リング形状とされている。そして、可動ゴム板62は、仕切部材本体58の中央凹所64の下方への開口部に配設されており、その外周縁部が、仕切部材本体58の段差部66と仕切部材本体58に圧入固定された保持金具60との間で挟持されることにより、中央凹所64の開口部を流体密に覆蓋して展張状態で配設されている。   The movable rubber plate 62 has a disc shape with a predetermined thickness, and the outer peripheral edge portion has a thick ring shape. The movable rubber plate 62 is disposed in an opening downward from the central recess 64 of the partition member main body 58, and an outer peripheral edge thereof is provided between the stepped portion 66 of the partition member main body 58 and the partition member main body 58. By being sandwiched between the holding fitting 60 that is press-fitted and fixed, the opening of the central recess 64 is fluid-tightly covered and disposed in a stretched state.

そして、このようにして仕切部材本体58と保持金具60、可動ゴム板62が相互に組み合わされてアッセンブリ化されることによって形成された仕切部材52は、第二の取付金具14における軸方向下側の開口部から嵌め込まれ、仕切部材本体58の上端部が本体ゴム弾性体16の下端部に重ね合わされて位置決めされている。また、第二の取付金具14が絞り加工されることにより、仕切部材本体58の外周面が、第二の取付金具14の内周面に対して、シールゴム層32を介して密着状態で組み付けられている。更に、仕切部材本体58の開口端部と重ね合わされた保持金具60の下端部が、第二の取付金具14にの下端開口部に嵌め込まれたリング金具42の上端部に重ね合わされており、このリング金具42が第二の取付金具14の絞り加工で流体密に嵌着固定されている。これにより、仕切部材52が、第二の取付金具14の内部において、軸方向中間部分に固定されて組み付けられている。   Thus, the partition member 52 formed by assembling the partition member main body 58, the holding bracket 60, and the movable rubber plate 62 together is the lower side in the axial direction of the second mounting bracket 14. The upper end of the partition member main body 58 is overlapped with the lower end of the main rubber elastic body 16 and positioned. Further, by drawing the second mounting bracket 14, the outer peripheral surface of the partition member main body 58 is assembled in close contact with the inner peripheral surface of the second mounting bracket 14 via the seal rubber layer 32. ing. Furthermore, the lower end portion of the holding metal fitting 60 overlapped with the opening end portion of the partition member main body 58 is overlapped with the upper end portion of the ring metal fitting 42 fitted into the lower end opening portion of the second mounting fitting 14. The ring fitting 42 is fitted and fixed in a fluid-tight manner by drawing the second mounting fitting 14. Thereby, the partition member 52 is fixed and assembled to the intermediate portion in the axial direction inside the second mounting bracket 14.

また、仕切部材52の内部には、中央凹所64が可動ゴム板62で流体密に覆蓋されることによって、壁部の一部が可動ゴム板62で構成された副液室78が形成されている。かかる副液室78は、受圧室54や平衡室56と同様に非圧縮性流体が封入されている。また、図面上には明示されていないが、第一のオリフィス通路82の長さ方向中間部分が副液室78に連通されており、第一のオリフィス通路82の一部を利用して、受圧室54と副液室78を相互に連通する第二のオリフィス通路84が形成されている。   Further, in the partition member 52, the central recess 64 is fluid-tightly covered with the movable rubber plate 62, thereby forming a sub liquid chamber 78 in which a part of the wall portion is configured by the movable rubber plate 62. ing. The sub-liquid chamber 78 is filled with an incompressible fluid, like the pressure receiving chamber 54 and the equilibrium chamber 56. Although not clearly shown in the drawing, the intermediate portion in the longitudinal direction of the first orifice passage 82 communicates with the sub liquid chamber 78, and a pressure receiving pressure is obtained by using a part of the first orifice passage 82. A second orifice passage 84 is formed to communicate the chamber 54 and the auxiliary liquid chamber 78 with each other.

特に、本実施形態では、振動入力時に受圧室54と平衡室56の間に生ぜしめられる相対的な圧力変動に基づいて、第一のオリフィス通路82を通じて流動せしめられる流体の共振作用により、エンジンシェイク等の10Hz程度の低周波大振幅振動に対して有効な防振効果が発揮されるように、第一のオリフィス通路82の通路断面積:A1と通路長さ:L1の比:A1/L1の値が適当に設定されている。   In particular, in this embodiment, the engine shake is caused by the resonance action of the fluid that flows through the first orifice passage 82 based on the relative pressure fluctuation generated between the pressure receiving chamber 54 and the equilibrium chamber 56 at the time of vibration input. In order to exhibit an effective anti-vibration effect against a low-frequency large-amplitude vibration of about 10 Hz such as, the ratio of the cross-sectional area of the first orifice passage 82: A1 to the passage length: L1: A1 / L1 The value is set appropriately.

また、本実施形態では、振動入力時に受圧室54と副液室78の間に生ぜしめられる相対的な圧力変動に基づいて、第二のオリフィス通路84を通じて流動せしめられる流体の共振作用により、アイドリング振動等の20〜40Hz程度の高周波小振幅振動に対して有効な防振効果が発揮されるように、第二のオリフィス通路84の通路断面積:A2と通路長さ:L2の比:A2/L2の値が適当に設定されている。   Further, in the present embodiment, idling is caused by the resonance effect of the fluid that flows through the second orifice passage 84 based on the relative pressure fluctuation generated between the pressure receiving chamber 54 and the sub liquid chamber 78 when vibration is input. The ratio of the cross-sectional area of the second orifice passage 84: A2 to the passage length: L2 so that an effective anti-vibration effect is exerted against high-frequency small-amplitude vibration of about 20 to 40 Hz such as vibration: A2 / The value of L2 is set appropriately.

また、本実施形態では、第一の取付金具12の軸方向下端部が、軸方向下方に延びて本体ゴム弾性体16の内部凹所30を貫通していると共に、受圧室54に露呈されている。更に、この第一の取付金具12の露呈部分に対して受圧室54に向かって開口するポケット状の凹所86が形成されている。この凹所86は、底面が半球状とされた深底の円形凹部とされている。また、凹所86の開口部分は僅かに拡径されて嵌着孔88とされている。また、本実施形態において、第一の取付金具12が金属材や硬質の合成樹脂材等の剛性の大きな材料で形成されていることにより、凹所86の内周面が、剛性の大きな剛性壁面とされている。換言すれば、第一の取付金具12の受圧室54に対して露呈された部分に設けられた剛性壁面が、受圧室54に向かって開口する有底の凹所86とされている。   In the present embodiment, the lower end portion in the axial direction of the first mounting member 12 extends downward in the axial direction and penetrates the internal recess 30 of the main rubber elastic body 16 and is exposed to the pressure receiving chamber 54. Yes. Further, a pocket-like recess 86 that opens toward the pressure receiving chamber 54 is formed in the exposed portion of the first mounting member 12. The recess 86 is a deep bottom circular recess having a hemispherical bottom surface. Further, the opening portion of the recess 86 is slightly enlarged in diameter to form a fitting hole 88. In the present embodiment, the first mounting member 12 is made of a highly rigid material such as a metal material or a hard synthetic resin material, so that the inner peripheral surface of the recess 86 has a rigid wall surface with a large rigidity. It is said that. In other words, the rigid wall surface provided in the portion exposed to the pressure receiving chamber 54 of the first mounting bracket 12 is a bottomed recess 86 that opens toward the pressure receiving chamber 54.

さらに、第一の取付金具12の受圧室54への露呈面上には、受圧ゴム板としての受圧ゴム膜90が配設されている。この受圧ゴム膜90は、凹所の86の内周面よりも一回り小さな、全体として薄肉の略半球殻形状とされた略有底円筒形状を有している。また、受圧ゴム膜90の開口端部が、略全体に亘って径方向外方に広がるようにして延びている共に、その開口端面には略円環形状の嵌着金具92が加硫接着されている。更に、受圧ゴム膜90が、底部から凹所86に嵌め入れられていると共に、嵌着金具92が、凹所86の開口部分に設けられた嵌着孔88に圧入して流体密に嵌着固定されている。これにより、受圧ゴム膜90が、凹所86の有底凹所形状に沿って受圧室54から外方に向かって凸となる形状をもって第一の取付金具12に配設されている。即ち、受圧室54における本体ゴム弾性体16とは別の壁部の一部が、受圧ゴム膜90で構成されているのである。   Further, a pressure-receiving rubber film 90 as a pressure-receiving rubber plate is disposed on the exposed surface of the first mounting member 12 to the pressure-receiving chamber 54. The pressure-receiving rubber film 90 has a substantially bottomed cylindrical shape that is slightly smaller than the inner peripheral surface of the recess 86 and has a thin hemispherical shell shape as a whole. The opening end of the pressure-receiving rubber film 90 extends so as to spread radially outward over substantially the whole, and a substantially annular fitting 92 is vulcanized and bonded to the opening end surface. ing. Further, the pressure-receiving rubber film 90 is fitted into the recess 86 from the bottom, and the fitting 92 is press-fitted into the fitting hole 88 provided in the opening portion of the recess 86 to be fluid-tightly fitted. It is fixed. As a result, the pressure-receiving rubber film 90 is disposed on the first mounting member 12 with a shape that protrudes outward from the pressure-receiving chamber 54 along the bottomed recess shape of the recess 86. That is, a part of the wall portion different from the main rubber elastic body 16 in the pressure receiving chamber 54 is constituted by the pressure receiving rubber film 90.

更にまた、受圧ゴム膜90と凹所86の対向面間には、密閉された微小空間としての空気室94が形成されている。該空気室94には、微量の空気が封入されている。なお、本実施形態にあって、空気室94への空気の封入作業は、何等限定されるものでないが、例えば、嵌着金具92を備えた受圧ゴム膜90の第一の取付金具12に対する圧入固定を大気中で行うこと等により好適に実現される。蓋し、空気室94に適当量の空気が容易に且つ速やかに封入されると共に、凹所86が密閉されるからである。   Furthermore, an air chamber 94 as a sealed minute space is formed between the opposing surfaces of the pressure-receiving rubber film 90 and the recess 86. A small amount of air is sealed in the air chamber 94. In the present embodiment, the operation of enclosing air into the air chamber 94 is not limited in any way. For example, the pressure-receiving rubber film 90 including the fitting 92 is press-fitted into the first fitting 12. It is suitably realized by performing fixing in the atmosphere. This is because the air chamber 94 is covered and an appropriate amount of air is easily and quickly sealed, and the recess 86 is sealed.

また、特に本実施形態では、マウント10の自動車への組み付けに際して、受圧室54の内部圧力が略大気圧に等しくされた状態下で、空気室94の容積Vが、好ましくはV≦1cc以下、より好ましくはV≦0.5cc以下、更に好ましくは0<V≦0.3ccの範囲に設定されている。また、受圧ゴム膜90が、受圧室54の内圧が0.6MPaに達することにより、凹所86の略全体に亘って、空気室94内の空気が十分に圧縮されて受圧ゴム膜90に対して大きな変形拘束力を発揮することで、受圧ゴム膜90の外方への弾性変形を実質的に阻止し得る状態で重ね合わされるようになっている(図1参照。)。   In particular, in the present embodiment, when the mount 10 is assembled to an automobile, the volume V of the air chamber 94 is preferably V ≦ 1 cc or less, with the internal pressure of the pressure receiving chamber 54 being substantially equal to the atmospheric pressure. More preferably, it is set in the range of V ≦ 0.5 cc or less, more preferably 0 <V ≦ 0.3 cc. In addition, when the pressure receiving rubber film 90 reaches the internal pressure of the pressure receiving chamber 54 of 0.6 MPa, the air in the air chamber 94 is sufficiently compressed over the substantially entire recess 86 to the pressure receiving rubber film 90. By exerting a large deformation restraining force, the pressure-receiving rubber film 90 is superposed in a state where elastic deformation to the outside can be substantially prevented (see FIG. 1).

また一方、受圧ゴム膜90の受圧室54側への弾性変形は、空気室94の存在によって比較的に容易に許容されるようになっており、特に、単純な圧縮収縮変形だけでなく、図2に示されているように内方に部分的に潰れるような変形態様をもって、一層容易に生ぜしめられるようになっている。   On the other hand, the elastic deformation of the pressure-receiving rubber film 90 toward the pressure-receiving chamber 54 is relatively easily allowed due to the presence of the air chamber 94. As shown in FIG. 2, it is more easily generated with a deformation mode in which it is partially collapsed inward.

上述の如き構造とされたエンジンマウント10においては、受圧室54における本体ゴム弾性体16とは別の壁部の一部が、空気室94を挟んで第一の取付金具12の凹所86と対向位置せしめられた受圧ゴム膜90で構成されていることにより、一般に、クランキング等の大きな振動荷重が入力された際に、特に受圧室54に大きな乃至は急激な負圧が発生すると、空気室94の容積膨張を利用して、受圧ゴム膜90の弾性変形に基づく液圧吸収効果が発揮されることとなり、受圧室54に惹起される衝撃的な負圧側への圧力変動が軽減される。以て、衝撃的な負圧側への圧力変動によって惹起される流体の気相分離が効果的に抑えられることとなり、気泡発生に伴う異音や振動等が効果的に軽減乃至は抑制されることから、優れた品質のエンジンマウントが供され得るのである。   In the engine mount 10 having the above-described structure, a part of the wall portion different from the main rubber elastic body 16 in the pressure receiving chamber 54 is formed with the recess 86 of the first mounting bracket 12 across the air chamber 94. In general, when a large vibration load such as cranking is input, particularly when a large or abrupt negative pressure is generated in the pressure receiving chamber 54, the pressure receiving rubber film 90 is configured to be opposed to the air. By utilizing the volume expansion of the chamber 94, a hydraulic pressure absorption effect based on elastic deformation of the pressure-receiving rubber film 90 is exhibited, and the pressure fluctuation to the negative pressure side caused in the pressure-receiving chamber 54 is reduced. . Therefore, the gas phase separation of the fluid caused by the shock pressure fluctuation to the negative pressure side is effectively suppressed, and the abnormal noise and vibration caused by the bubble generation are effectively reduced or suppressed. Therefore, an excellent quality engine mount can be provided.

しかも、本実施形態では、受圧室54から外方に向かって凸となる袋形状の受圧ゴム膜90が有底凹所形状とされた凹所86に沿って配設されていることに加えて、空気室94の容積Vが1cc以下に設定されていることにより、受圧室54における0.6MPaの圧力増大で、受圧ゴム膜90が凹所86の略全体に亘って容易に且つ速やかに当接状態とされて、該受圧ゴム膜90の膨出変形が防止されることから、特に受圧室54の正圧側の圧力変動が有効に生ぜしめられる。これにより、第一のオリフィス通路82と第二のオリフィス通路84がチューニングされた周波数域において要求される防振すべき振動入力に際しては、受圧室54と平衡室56の間に有効な圧力変動が生ぜしめられることにより、各オリフィス通路82,84を通じての流体流動量が効率的に確保されて、該流体の共振作用等に基づく防振効果が効果的に発揮され得るのである。   Moreover, in the present embodiment, in addition to the fact that the bag-shaped pressure-receiving rubber film 90 that protrudes outward from the pressure-receiving chamber 54 is disposed along the recess 86 having a bottomed recess shape. Since the volume V of the air chamber 94 is set to 1 cc or less, the pressure-receiving rubber film 90 is easily and quickly applied over substantially the entire recess 86 by a pressure increase of 0.6 MPa in the pressure-receiving chamber 54. Since the pressure-receiving rubber film 90 is prevented from bulging and deforming due to the contact state, the pressure fluctuation on the positive pressure side of the pressure-receiving chamber 54 is effectively generated. As a result, effective vibration fluctuations occur between the pressure receiving chamber 54 and the equilibrium chamber 56 at the time of vibration input to be damped required in the frequency range in which the first orifice passage 82 and the second orifice passage 84 are tuned. As a result, the amount of fluid flow through each of the orifice passages 82 and 84 is efficiently ensured, and a vibration isolation effect based on the resonance action of the fluid can be effectively exhibited.

また、特に本実施形態では、受圧ゴム膜90の底面と凹所86の底面が共に球状とされていることにより、受圧ゴム膜90の凹所86への当接に際して、受圧ゴム膜90が凹所86により一層確実な密着状態で当接せしめられて、弾性変形が拘束されることから、受圧ゴム膜90の膨出変形が一層効果的に防止されることとなる。   In particular, in this embodiment, since the bottom surface of the pressure-receiving rubber film 90 and the bottom surface of the recess 86 are both spherical, the pressure-receiving rubber film 90 is recessed when the pressure-receiving rubber film 90 contacts the recess 86. Since the elastic deformation is constrained by contact with the area 86 in a more reliable contact state, the bulging deformation of the pressure-receiving rubber film 90 is further effectively prevented.

さらに、本実施形態では、受圧ゴム膜90に加硫接着された嵌着金具92を第一の取付金具12の凹所86に圧入固定することにより、空気室94に空気が封入されるようになっていることから、例えば、受圧ゴム膜90や凹所86、空気室94の寸法を特に考慮せずに設計した場合においても、大気中で受圧ゴム膜90が凹所86に組み付けられることによって、受圧ゴム膜90と凹所86の対向面間にある程度の空気を封入した空気室94が形成される。従って、空気室94や受圧ゴム膜90、凹所86の寸法を特に厳密に設定したり、特別な作業や装置等を用いたりする必要がなく、これら空気室94や受圧ゴム膜90、凹所86が形成されることにより、目的とする特性を備えたマウントが容易に実現され得るのである。   Furthermore, in this embodiment, the fitting fitting 92 vulcanized and bonded to the pressure-receiving rubber film 90 is press-fitted and fixed in the recess 86 of the first fitting 12 so that air is sealed in the air chamber 94. Therefore, for example, even when the pressure receiving rubber film 90, the recess 86, and the dimensions of the air chamber 94 are designed without particular consideration, the pressure receiving rubber film 90 is assembled in the recess 86 in the atmosphere. An air chamber 94 in which a certain amount of air is sealed is formed between the opposing surfaces of the pressure-receiving rubber film 90 and the recess 86. Therefore, there is no need to set the dimensions of the air chamber 94, the pressure-receiving rubber film 90, and the recess 86 particularly strictly, and it is not necessary to use special operations or devices. By forming 86, a mount having the desired characteristics can be easily realized.

また、本実施形態では、第一及び第二のオリフィス通路82,84等を形成する仕切部材52を、予め大気中でアッセンブリ化して組み立てておくことが出来ることから、例えば、かかるアッセンブリ化した仕切部材52を、流体中で、本体ゴム弾性体16が加硫接着された第二の取付金具14に組み付けることで、目的とするエンジンマウント10を容易に製造することが可能となる。   In the present embodiment, the partition member 52 that forms the first and second orifice passages 82, 84, and the like can be assembled in the atmosphere in advance, so that, for example, such an assembled partition is used. The target engine mount 10 can be easily manufactured by assembling the member 52 to the second mounting bracket 14 to which the main rubber elastic body 16 is vulcanized and bonded in a fluid.

以上、本発明の一実施形態について詳述してきたが、これはあくまでも例示であり、かかる実施形態における具体的な記載によって、本発明は、何等限定されるものでなく、当業者の知識に基づいて種々なる変更、修正、改良等を加えた態様で実施可能であり、また、そのような実施態様が、本発明の趣旨を逸脱しない限り、何れも、本発明の範囲内に含まれるものであることは、言うまでもない。   As mentioned above, although one embodiment of the present invention has been described in detail, this is merely an example, and the present invention is not limited to any specific description by this embodiment, and is based on the knowledge of those skilled in the art. The present invention can be implemented with various changes, modifications, improvements, etc., and all such embodiments are within the scope of the present invention without departing from the spirit of the present invention. Needless to say, there is.

例えば、前記実施形態では、第一の取付金具の受圧室に露呈する面上に設けられた凹所が、剛性壁面とされて、受圧室の内方に向かって開口する深底の円形凹所とされていると共に、受圧ゴム膜が、凹所の形状に沿って受圧室の内方に向かって開口する有底筒体形状とされていたが、勿論かかる形態に限定されるものでない。   For example, in the embodiment described above, the recess provided on the surface exposed to the pressure receiving chamber of the first mounting bracket is a rigid wall surface, and is a deep circular recess that opens toward the inside of the pressure receiving chamber. In addition, the pressure-receiving rubber film has a bottomed cylindrical shape that opens toward the inside of the pressure-receiving chamber along the shape of the recess, but it is not limited to this form.

具体的には、例えば、第一の取付金具の受圧室に露呈する面上に、突部を該受圧室に向かって延びるように設けることにより、該突部の外周面によって剛性壁面を構成すると共に、受圧ゴム膜を、突部を略全体に亘って覆うようにして受圧室に向かって延びる有底筒体形状とすることにより、本発明の一実施形態を実現しても良い。或いは、第一の取付金具の受圧室に露呈した平坦な面を剛性壁面とすると共に、平板形状等を有する受圧ゴム膜の外周縁部を該平坦面に固着させることにより、受圧ゴム膜と平坦面の間に空気室が形成されるようにして、本発明の一実施形態を実現しても良い。   Specifically, for example, a rigid wall surface is formed by the outer peripheral surface of the protrusion by providing the protrusion on the surface exposed to the pressure receiving chamber of the first mounting bracket so as to extend toward the pressure receiving chamber. In addition, one embodiment of the present invention may be realized by forming the pressure-receiving rubber film into a bottomed cylindrical shape that extends toward the pressure-receiving chamber so as to cover the entire protrusion. Alternatively, the flat surface exposed to the pressure receiving chamber of the first mounting bracket is a rigid wall surface, and the outer peripheral edge portion of the pressure receiving rubber film having a flat plate shape or the like is fixed to the flat surface, thereby flattening the pressure receiving rubber film. One embodiment of the present invention may be realized by forming an air chamber between the surfaces.

また、前記実施形態では、凹所や受圧ゴム膜、空気室が、第一の取付金具の受圧室への露呈面上に設けられていたが、例えば、仕切部材や第二の取付金具等の受圧室に露呈された面上に設けることも可能である。   In the above embodiment, the recess, the pressure-receiving rubber film, and the air chamber are provided on the exposed surface of the first mounting bracket to the pressure-receiving chamber. For example, the partition member, the second mounting bracket, etc. It is also possible to provide on the surface exposed to the pressure receiving chamber.

また、第一のオリフィス通路や第二のオリフィス通路の大きさや形状、構造等は、要求される防振特性等に応じて適宜に設定されるものであって、何等限定されるものでない。   Further, the size, shape, structure, and the like of the first orifice passage and the second orifice passage are appropriately set according to the required vibration isolation characteristics and the like, and are not limited at all.

さらに、第二のオリフィス通路や可動ゴム板等も、必要に応じて配設されるものであり、必須の部材でない。   Further, the second orifice passage, the movable rubber plate, and the like are also provided as necessary and are not essential members.

更にまた、前記実施形態では、エンジンマウントが車両に対して傾斜配置されたものに本発明を適用したものの具体例について示していたが、車両に対して水平配置されるエンジンマウントやその他各種のエンジンマウントに対して本発明を適用することは勿論可能である。   Furthermore, in the above-described embodiments, specific examples of applying the present invention to the engine mount inclined with respect to the vehicle have been shown. However, the engine mount horizontally arranged with respect to the vehicle and other various engines Of course, the present invention can be applied to the mount.

本発明の一実施形態としてのエンジンマウントの一作動形態を示す縦断面説明図である。It is a longitudinal section explanatory view showing one operation form of an engine mount as one embodiment of the present invention. 図1におけるエンジンマウントの作動形態と別の作動形態の要部を示す縦断面説明図である。It is a longitudinal cross-sectional explanatory drawing which shows the principal part of the operation form different from the operation form of the engine mount in FIG.

符号の説明Explanation of symbols

10 エンジンマウント
12 第一の取付金具
14 第二の取付金具
16 本体ゴム弾性体
40 ダイヤフラム
54 受圧室
56 平衡室
82 第一のオリフィス通路
84 第二のオリフィス通路
86 凹所
90 受圧ゴム膜
94 空気室
DESCRIPTION OF SYMBOLS 10 Engine mount 12 1st mounting bracket 14 2nd mounting bracket 16 Main body rubber elastic body 40 Diaphragm 54 Pressure receiving chamber 56 Equilibrium chamber 82 First orifice passage 84 Second orifice passage 86 Recess 90 Pressure receiving rubber film 94 Air chamber

Claims (6)

互いに離隔配置された第一の取付部材と第二の取付部材を本体ゴム弾性体で連結する一方、該本体ゴム弾性体で壁部の一部が構成された受圧室と可撓性膜で壁部の一部が構成された平衡室を形成して、該受圧室と該平衡室にそれぞれ非圧縮性流体を封入すると共に、それら受圧室と平衡室をオリフィス通路で相互に連通せしめた流体封入式防振装置において、
前記受圧室における前記本体ゴム弾性体とは別の壁部の一部を薄肉の受圧ゴム板で構成すると共に、該受圧ゴム板を挟んで該受圧室と反対側には、該受圧ゴム板に沿って広がる剛性壁面を形成して、該受圧ゴム板と該剛性壁面との対向面間において外部空間から遮断されて密閉された微小空間を形成し、該受圧室の内圧が0.6MPaに達することにより該受圧ゴム板の該受圧室から外方への弾性変形が該剛性壁面に対する実質的な当接によって阻止されるようにする一方、該受圧ゴム板の該受圧室に向かう内方への弾性変形が該微小空間の容積膨張に基づいて許容されるようにしたことを特徴とする流体封入式防振装置。
A first mounting member and a second mounting member that are spaced apart from each other are connected by a main rubber elastic body, and a wall is formed by a pressure receiving chamber in which a part of the wall portion is configured by the main rubber elastic body and a flexible film. A fluid enclosure in which an incompressible fluid is sealed in the pressure receiving chamber and the equilibrium chamber, respectively, and the pressure receiving chamber and the equilibrium chamber are connected to each other through an orifice passage. In the type vibration isolator,
A part of the wall portion different from the main rubber elastic body in the pressure receiving chamber is constituted by a thin pressure receiving rubber plate, and on the opposite side of the pressure receiving chamber across the pressure receiving rubber plate, the pressure receiving rubber plate Forming a rigid wall surface extending along the opposite surface of the pressure-receiving rubber plate and the rigid wall surface to form a sealed micro space that is cut off from the external space, and the internal pressure of the pressure-receiving chamber reaches 0.6 MPa. Thus, the elastic deformation of the pressure-receiving rubber plate outward from the pressure-receiving chamber is prevented by substantial contact with the rigid wall surface, while the pressure-receiving rubber plate is inwardly directed toward the pressure-receiving chamber. A fluid-filled vibration damping device characterized in that elastic deformation is allowed based on the volume expansion of the minute space.
前記微小空間の容積が、前記受圧室の内部圧力が略大気圧に等しくされた状態下で1cc以下とされている請求項1に記載の流体封入式防振装置。   2. The fluid filled type vibration damping device according to claim 1, wherein the volume of the minute space is set to 1 cc or less in a state where the internal pressure of the pressure receiving chamber is substantially equal to the atmospheric pressure. 前記剛性壁面が、前記受圧室に向かって開口する有底の凹所とされている一方、該剛性壁面の形状に沿って該受圧室から外方に向かって凸となる形状をもって前記受圧ゴム板を構成して、有底凹所形状とされた該剛性壁面に沿って該受圧ゴム板を配設した請求項1又は2に記載の流体封入式防振装置。   While the rigid wall surface is a bottomed recess that opens toward the pressure receiving chamber, the pressure receiving rubber plate has a shape that protrudes outward from the pressure receiving chamber along the shape of the rigid wall surface. The fluid-filled vibration isolator according to claim 1 or 2, wherein the pressure-receiving rubber plate is disposed along the rigid wall surface having a bottomed recess shape. 前記第一の取付部材の一部が前記受圧室に露呈されており、この第一の取付部材の該受圧室への露呈面上に前記受圧ゴム板が配設されている請求項1乃至3の何れかに記載の流体封入式防振装置。   4. A part of the first mounting member is exposed to the pressure receiving chamber, and the pressure receiving rubber plate is disposed on a surface of the first mounting member exposed to the pressure receiving chamber. The fluid-filled vibration isolator according to any one of the above. 前記第二の取付部材を円筒形状として、その一方の開口部側に前記第一の取付部材を配設すると共に該一方の開口部を前記本体ゴム弾性体で流体密に覆蓋せしめる一方、該第二の取付部材の他方の開口部を前記可撓性膜で流体密に覆蓋し、更に、該第二の取付部材によって支持された仕切部材を該本体ゴム弾性体と該可撓性膜の対向面間に配設して該仕切部材を挟んだ軸方向一方の側に前記受圧室を形成すると共に軸方向他方の側に前記平衡室を形成すると共に、それら受圧室と平衡室を連通する前記オリフィス通路を該仕切部材によって形成して、該第一の取付部材を該受圧室に露呈させて、該第一の取付部材の露呈部分に前記受圧ゴム板を配設した請求項1乃至4の何れかに記載の流体封入式防振装置。   The second mounting member has a cylindrical shape, and the first mounting member is disposed on one opening side of the second mounting member, and the one opening is covered fluid-tightly with the main rubber elastic body, The other opening of the second mounting member is fluid-tightly covered with the flexible film, and the partition member supported by the second mounting member is opposed to the main rubber elastic body and the flexible film. The pressure receiving chamber is formed on one side in the axial direction with the partition member disposed between the surfaces, the equilibrium chamber is formed on the other side in the axial direction, and the pressure receiving chamber communicates with the equilibrium chamber. An orifice passage is formed by the partition member, the first mounting member is exposed to the pressure receiving chamber, and the pressure receiving rubber plate is disposed in an exposed portion of the first mounting member. The fluid-filled vibration isolator according to any one of the above. 前記第一の取付部材と前記第二の取付部材の間への振動入力時における前記受圧室の圧力変動が、該第一の取付部材と該第二の取付部材の相対変位に際しての前記本体ゴム弾性体の弾性変形に伴って該受圧室に対して直接に生ぜしめられるようになっている請求項1乃至5の何れか一項に記載の流体封入式防振装置。  The main body rubber when the pressure variation of the pressure receiving chamber at the time of vibration input between the first mounting member and the second mounting member is caused by relative displacement between the first mounting member and the second mounting member. The fluid filled type vibration damping device according to any one of claims 1 to 5, wherein the vibration filled type vibration damping device is directly generated with respect to the pressure receiving chamber in accordance with elastic deformation of the elastic body.
JP2003403893A 2003-12-03 2003-12-03 Fluid filled vibration isolator Expired - Fee Related JP4088836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003403893A JP4088836B2 (en) 2003-12-03 2003-12-03 Fluid filled vibration isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003403893A JP4088836B2 (en) 2003-12-03 2003-12-03 Fluid filled vibration isolator

Publications (2)

Publication Number Publication Date
JP2005163919A JP2005163919A (en) 2005-06-23
JP4088836B2 true JP4088836B2 (en) 2008-05-21

Family

ID=34727026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003403893A Expired - Fee Related JP4088836B2 (en) 2003-12-03 2003-12-03 Fluid filled vibration isolator

Country Status (1)

Country Link
JP (1) JP4088836B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008025745A (en) * 2006-07-21 2008-02-07 Toyo Tire & Rubber Co Ltd Vibration isolating system
KR100846038B1 (en) 2007-01-15 2008-07-11 위아 주식회사 A hydraulic engine mount foe vehicle
JP4959390B2 (en) * 2007-03-22 2012-06-20 東海ゴム工業株式会社 Fluid filled vibration isolator

Also Published As

Publication number Publication date
JP2005163919A (en) 2005-06-23

Similar Documents

Publication Publication Date Title
JP4228219B2 (en) Fluid filled vibration isolator
JP4671176B2 (en) Fluid filled vibration isolator
JP4842086B2 (en) Fluid filled vibration isolator
JP2007100875A (en) Fluid filled vibration absorbing device
JP5210558B2 (en) Vibration isolator
JP5119018B2 (en) Fluid filled vibration isolator
JP2007139024A (en) Fluid-sealed vibration control device
JP3767323B2 (en) Fluid filled vibration isolator
JP2007271004A (en) Fluid-sealed vibration isolating device
JP2003139189A (en) Fluid sealing type vibration isolation device
JP4088836B2 (en) Fluid filled vibration isolator
WO2018135312A1 (en) Vibration-damping device
JP4989620B2 (en) Liquid-filled vibration isolator
JP2010031988A (en) Fluid-sealed vibration control device
JP2009085252A (en) Fluid sealed type vibration damper
JP2008163970A (en) Fluid-sealed vibration control device
JP2006177530A (en) Fluid sealed vibration isolator
JP4075066B2 (en) Fluid filled engine mount
JP2008121716A (en) Fluid-sealed vibration isolator
JP5396336B2 (en) Fluid filled vibration isolator
JP4751740B2 (en) Fluid filled vibration isolator
JP2008196508A (en) Fluid-sealed vibration isolating device
JP5027093B2 (en) Fluid filled vibration isolator
JPH11101294A (en) Fluid-filled mount device
JP2010032023A (en) Fluid-filled vibration isolation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070822

A131 Notification of reasons for refusal

Effective date: 20070905

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20071102

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20080131

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080213

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20110307

LAPS Cancellation because of no payment of annual fees