JP3603653B2 - Fluid-filled anti-vibration device - Google Patents

Fluid-filled anti-vibration device Download PDF

Info

Publication number
JP3603653B2
JP3603653B2 JP7406999A JP7406999A JP3603653B2 JP 3603653 B2 JP3603653 B2 JP 3603653B2 JP 7406999 A JP7406999 A JP 7406999A JP 7406999 A JP7406999 A JP 7406999A JP 3603653 B2 JP3603653 B2 JP 3603653B2
Authority
JP
Japan
Prior art keywords
frequency
orifice passage
fluid
passage
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7406999A
Other languages
Japanese (ja)
Other versions
JP2000266108A (en
Inventor
浩晃 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP7406999A priority Critical patent/JP3603653B2/en
Publication of JP2000266108A publication Critical patent/JP2000266108A/en
Application granted granted Critical
Publication of JP3603653B2 publication Critical patent/JP3603653B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Combined Devices Of Dampers And Springs (AREA)

Description

【0001】
【技術分野】
本発明は、内部に封入された流体の流動作用を利用して防振効果を得るようにした流体封入式防振装置に係り、特に複数のオリフィス通路を選択的に機能せしめることにより、複数の異なる振動に対して有効な防振効果を発揮し得る流体封入式防振装置に関するものである。
【0002】
【背景技術】
従来から、振動伝達系を構成する部材間に介装される防振連結体乃至は防振支持体の一種として、特公平2−6934号公報や特開平6−264958号公報等に記載されているように、入力振動によって弾性変形せしめられる本体ゴム弾性体で壁部の一部が構成されて振動が入力される受圧室と、変形容易な可撓性膜で壁部の一部が構成されて容積変化が許容される平衡室を形成し、それら受圧室と平衡室に非圧縮性流体を封入すると共に、それら受圧室と平衡室をそれぞれ相互に連通する低周波用オリフィス通路と高周波用第一オリフィス通路を設け、更に、該高周波用第一オリフィス通路を連通状態と遮断状態に切り換える第一のバルブ手段を設けた流体封入式防振装置が、知られている。このような防振装置では、高周波用第一オリフィス通路を遮断せしめた状態下では、低周波用オリフィス通路を流動せしめられる流体の共振作用に基づく防振効果が発揮されると共に、高周波用第一オリフィス通路を連通せしめた状態下では、高周波用第一オリフィス通路を流動せしめられる流体の共振作用に基づく防振効果が発揮されることから、低周波用オリフィス通路と高周波用第一オリフィス通路がそれぞれチューニングされた複数の異なる振動に対して、何れも有効な防振効果を得ることが出来るのであり、それ故、例えば、自動車用エンジンマウント等に適用し、低周波用オリフィス通路をシェイク等の走行時振動にチューニングすると共に、高周波用第一オリフィス通路をアイドリング振動等の停車時振動にチューニングすることによって、車両の走行時と停車時に入力される異なる振動に対して、何れも有効な防振効果を得ることが可能となるのである。
【0003】
ところで、防振装置には、より高度な防振性能が要求される場合があり、例えば複数の異なる周波数域の振動や広い周波数域の振動に対して有効な防振効果が、同時に要求される場合がある。より具体的には、例えば、自動車用エンジンマウントにおいては、車両走行時における低周波オリフィス通路によるシェイク等に対する防振効果を維持しつつ、車両停車時において、アイドリング低次振動に対する防振効果と、アイドリング高次振動に対する防振効果が、同時に要求される場合がある。
【0004】
ところが、上述の如き従来構造の防振装置では、択一的に機能せしめられる低周波用オリフィス通路と高周波用第一オリフィス通路が、何れの一つの狭い周波数域の振動に対してのみ有効な防振効果を発揮するに過ぎないために、同時に複数の又は広い周波数域の振動に対して有効な防振効果を得ることが極めて困難であった。
【0005】
なお、低周波用オリフィス通路と高周波用第一オリフィス通路に加えて、更に、高周波用第一オリフィス通路とは異なる周波数域にチューニングされて、該高周波用第一オリフィス通路と同時に機能せしめられる追加オリフィス通路を、受圧室と平衡室の間に跨がって、別途形成することも考えられる。ところが、このような追加オリフィス通路を形成すると、追加オリフィス通路の形成スペースの確保のために防振装置が大型化するだけでなく、高周波用第一オリフィス通路と追加オリフィス通路の両方を同時に連通/遮断する必要があると共に、それら高周波用第一オリフィス通路と追加オリフィス通路の流体流動量を何れも同時に確保する必要があること等から、構造が著しく複雑化して製造性や製造コストの悪化が避けられないという問題があったのである。
【0006】
【解決課題】
ここにおいて、本発明は、上述の如き事情を背景として為されたものであって、その解決課題とするところは、択一的に機能せしめられる低周波用オリフィス通路と高周波用オリフィス通路を備えた流体封入式防振装置において、高周波用オリフィス通路が機能せしめられる際に、該高周波用オリフィス通路のチューニング周波数域の入力振動だけでなく、それとは別の又は広い周波数域の入力振動に対しても有効な防振効果が発揮され得る新規な構造を、簡単で且つコンパクトな構造をもって実現することにある。
【0007】
【解決手段】
以下、このような課題を解決するために為された本発明の態様を記載する。なお、以下に記載の各態様は、任意の組み合わせで採用可能である。また、本発明の態様乃至は技術的特徴は、以下の記載のものに限定されることなく、明細書全体および図面に記載の発明思想に基づいて認識されるものであることが理解されるべきである。
【0008】
本発明の第一の態様は、入力振動によって弾性変形せしめられる本体ゴム弾性体で壁部の一部が構成されて振動が入力される受圧室と、変形容易な可撓性膜で壁部の一部が構成されて容積変化が許容される平衡室を形成し、それら受圧室と平衡室に非圧縮性流体を封入すると共に、それら受圧室と平衡室をそれぞれ相互に連通する低周波用オリフィス通路と高周波用第一オリフィス通路を設け、更に、該高周波用第一オリフィス通路を連通状態と遮断状態に切り換える第一のバルブ手段を設けた流体封入式防振装置において、前記高周波用第一オリフィス通路を通じての流体流動量を制限する第一の流量制限手段を、前記第一のバルブ手段よりも前記平衡室側に位置して設けると共に、該高周波用第一オリフィス通路における該第一のバルブ手段と該第一の流量制限手段の間の領域を前記平衡室に直接連通せしめる連通小孔を形成したことを、特徴とする。
【0009】
このような第一の態様に係る流体封入式防振装置においては、高周波用第一オリフィス通路を第一のバルブ手段で連通/遮断することにより、高周波用第一オリフィス通路の遮断状態下では、低周波用オリフィス通路を通じての流体流動が積極的に生ぜしめられて、低周波用オリフィス通路のチューニング周波数域の振動に対して、該低周波用オリフィス通路を流動せしめられる流体の共振作用に基づく防振効果が有効に発揮される一方、高周波用第一オリフィス通路の連通状態下では、低周波用オリフィス通路よりも流通抵抗が小さい高周波用第一オリフィス通路を通じての流体流動が積極的に生ぜしめられて、高周波用第一オリフィス通路のチューニング周波数域の振動に対して、該高周波用第一オリフィス通路を流動せしめられる流体の共振作用に基づく防振効果が有効に発揮されると共に、該高周波用第一オリフィス通路を通じての流体流動量が、第一の流量制限手段で制限されることにより、低周波用オリフィス通路を通じての流体流動量も有利に確保される。そこにおいて、高周波用第一オリフィス通路の連通状態下では、低周波用オリフィス通路と同時に連通小孔を通じての流体流動も許容されると共に、この連通小孔を通じての流体流動が、第一の流量制限手段による流量制限を受けることなく、低周波用オリフィス通路と同様に許容されることから、該連通小孔の流路断面積や長さを調節することによって、低周波用オリフィス通路のチューニング周波数域を変更,調節することが出来る。
【0010】
それ故、かかる流体封入式防振装置においては、高周波用第一オリフィス通路を遮断した状態下で、低周波用オリフィス通路により、該低周波用オリフィス通路がチューニングされた本来の周波数域の入力振動に対して有効な防振効果が発揮される一方、高周波用第一オリフィス通路を連通せしめた状態下で、該高周波用第一オリフィス通路による高周波振動に対する防振効果が発揮されると共に、低周波用オリフィス通路を通じての流体流動も生ぜしめられて、該低周波用オリフィス通路による防振効果も発揮される。しかも、この高周波用第一オリフィス通路の連通状態下では、連通小孔が連通状態とされることによって、低周波用オリフィス通路のチューニング周波数域が、高周波用第一オリフィス通路の遮断状態下における本来のチューニング周波数域とは異なり、該連通小孔の大きさ等に応じたチューニング周波数域とされる。その結果、高周波用第一オリフィス通路の連通状態下では、低周波用オリフィス通路が、本来の特性とは異なるチューニングが施されたオリフィス通路として機能せしめられることとなり、この低周波用オリフィス通路による防振効果と、高周波用第一オリフィス通路による防振効果が、それぞれチューニングされた互いに異なる周波数域で有効に発揮されるのである。
【0011】
従って、例えば、低周波用オリフィス通路の単体をシェイク等の低周波振動にチューニングする一方、高周波用第一オリフィス通路をアイドリング高次振動等の高周波振動にチューニングし、且つ連通小孔を、高周波用第一オリフィス通路の連通状態下で低周波用オリフィス通路のチューニング周波数域がアイドリング低次振動等の中周波数域に移行するようにチューニングすることが可能であり、それによって、車両走行時には、高周波用第一オリフィス通路を遮断状態とし、低周波用オリフィス通路を流動せしめられる流体の共振作用に基づいてシェイクに対する有効な防振効果を得ることが出来ると共に、車両停止時には、高周波用第一オリフィス通路を連通状態として、該高周波用第一オリフィス通路を流動せしめられる流体の共振作用に基づいてアイドリング高次振動に対する有効な防振効果を得ると共に、連通小孔によって調節された低周波用オリフィス通路を流動せしめられる流体の共振作用等の流動作用に基づいて、アイドリング低次振動に対する有効な防振効果を得ることが出来るのである。
【0012】
特に、本態様では、高周波用第一オリフィス通路の連通状態下において、該高周波用第一オリフィス通路とは異なる周波数域の振動に対して防振効果を発揮し得るオリフィス通路が、低周波用オリフィス通路を利用して形成されることから、簡単で且つコンパクトな構造をもって、複数のまたは広い周波数域の振動に対して、同時に有効な防振効果を発揮し得る流体封入式防振装置が有利に実現され得るのである。
【0013】
なお、上述の如き第一の態様において、第一のバルブ手段は、高周波用第一オリフィス通路を連通/遮断し得るものであれば良く、例えば、仕切弁やバタフライ弁,回転弁の如き、各種構造の弁機構などが好適に採用され得る。また、第一の流量制限手段としては、例えば、高周波用第一オリフィス通路の流体流動方向への小変位が許容された状態で配設されて、変位量の制限位置で該高周波用第一オリフィス通路を閉塞する可動板体や、外周縁部を固定的に支持されて配設され、弾性変形によって高周波用第一オリフィス通路を通じての流体流動を許容するゴム弾性板等が、好適に採用され得る。更に、連通小孔は、それ自体、連通/遮断する必要はなく、常時、連通せしめられた簡単な構造で、有利に形成され得る。
【0014】
また、本発明の第二の態様は、前記第一の態様に従う構造とされた流体封入式防振装置において、前記連通小孔を、前記低周波用オリフィス通路および前記高周波用第一オリフィス通路の何れよりも小さな流路断面積と小さな流路長さで形成したことを、特徴とする。このような本態様においては、高周波用第一オリフィス通路の特性に対する悪影響を回避しつつ、連通小孔によって、低周波用オリフィス通路のチューニング周波数を有利に変更,調節することが可能となる。
【0015】
また、本発明の第三の態様は、前記第一又は第二の態様に従う構造とされた流体封入式防振装置において、前記受圧室と前記平衡室を仕切る硬質の仕切部材を設け、該仕切部材に対して、それら受圧室と平衡室の対向方向に略直交する方向に直線的に延びる内部通路を形成し、該内部通路の一方の端部を該受圧室側に屈曲させて開口せしめると共に、他方の端部を該平衡室側に屈曲させて開口せしめることによって、前記高周波用第一オリフィス通路を構成する一方、該内部通路上に前記第一のバルブ手段を配設すると共に、該内部通路における該第一のバルブ手段よりも前記平衡室側の端部を、前記平衡室側への屈曲点を越えて更に直線的に延長して、かかる延長部分と前記平衡室を、前記連通小孔によって直接連通せしめたことを、特徴とする。このような本態様においては、高周波用第一オリフィス通路の流路長さや断面積等の設計自由度を十分に確保しつつ、連通小孔を、簡単で且つコンパクトに形成することが可能となる。
【0016】
また、本発明の第四の態様は、前記第一乃至第三の何れかの態様に従う構造とされた流体封入式防振装置において、前記受圧室と前記平衡室を相互に連通する高周波用第二オリフィス通路を設けて、該高周波用第二オリフィス通路を前記高周波用第一オリフィス通路よりも更に高周波数域にチューニングすると共に、該高周波用第二オリフィス通路を通じての流体流動量を制限する第二の流量制限手段を設ける一方、該高周波用第二オリフィス通路を連通状態と遮断状態に切り換える第二のバルブ手段を設けて、該高周波用第二オリフィス通路と前記高周波用第一オリフィス通路を択一的に連通せしめるようにしたことを、特徴とする。このような本態様においては、高周波用第一オリフィス通路の遮断状態下、高周波用第二オリフィス通路を通じての流体流動が生ぜしめられて、かかる流体の共振作用に基づく高周波数域の防振効果が発揮されると共に、この高周波用第二オリフィス通路を通じての流体流動量が第二の流量制限手段で制限されることにより、低周波用オリフィス通路を通じて流動せしめられる流体による防振効果も発揮される。その際、高周波用第一オリフィス通路が遮断されており、連通小孔も遮断状態であることから、低周波用オリフィス通路による防振効果が、連通小孔による影響を受けることなく、本来のチューニング特性に基づいて発揮される。
【0017】
従って、例えば、前記第一の態様に記載の如く、低周波用オリフィス通路の単体をシェイク等の低周波振動にチューニングする一方、高周波用第一オリフィス通路をアイドリング高次振動等の高周波振動にチューニングし、且つ連通小孔を、高周波用第一オリフィス通路の連通状態下で低周波用オリフィス通路のチューニング周波数域がアイドリング低次振動等の中周波振動に移行するようにチューニングした流体封入式防振装置において、かかる第四の態様に従って高周波用第二オリフィス通路を形成し、該高周波波用第二オリフィス通路を、アイドリング高次振動よりも更に高い走行時こもり等の高周波振動にチューニングすることによって、車両停車時には、連通小孔で調節された低周波用オリフィス通路によるアイドリング低次振動に対する防振効果と、高周波用第一オリフィス通路によるアイドリング高次振動に対する防振効果を同時に得ることが出来ると共に、車両走行時には、低周波用オリフィス通路によるシェイクに対する防振効果と、高周波第二オリフィス通路による走行こもり音に対する防振効果を同時に得ることが出来るのである。なお、第二の流量制限手段としては、第一の流量制限手段と同様、例えば、高周波用第二オリフィス通路の流体流動方向への小変位が許容された状態で配設されて、変位量の制限位置で該高周波用第二オリフィス通路を閉塞する可動板体や、外周縁部を固定的に支持されて配設され、弾性変形によって高周波用第二オリフィス通路を通じての流体流動を許容するゴム弾性板等が、好適に採用され得る。
【0018】
また、本発明の第五の態様は、前記第四の態様に従う構造とされた流体封入式防振装置において、前記第二の流量制限手段を、前記高周波用第二オリフィス通路上において、前記第二のバルブ手段よりも前記受圧室側に位置せしめたことを、特徴とする。このような本態様においては、バルブ手段に対して、第二の流量制限手段が、第一の流量制限手段とは反対側に位置して配されることから、第一の流量制限手段および第二の流量制限手段の配設スペースを有利に且つ効率的に確保することが可能となる。
【0019】
また、本発明の第六の態様は、前記第四又は第五の態様に従う構造とされた流体封入式防振装置において、前記第一の流量制限手段を、前記高周波用第一オリフィス通路における前記平衡室側への開口部に変位可能に配設されて、変位量が制限されることにより、該高周波用第一オリフィス通路を通じての流体流動量を制限する可動部材で構成すると共に、該可動部材を、前記高周波用第二オリフィス通路における前記平衡室側への開口部にまで広がって、該高周波用第一オリフィス通路および該高周波用第二オリフィス通路の両開口部を一体的に覆うように配設したことを、特徴とする。このような本態様においては、高周波用第一オリフィス通路と高周波用第二オリフィス通路における平衡室側への各開口部の形成スペースと、第一の流量制限手段の配設スペースを、共に効率的に確保することが出来、全体として防振装置のコンパクト化が可能となる。
【0020】
また、本発明の第七の態様は、前記第四乃至第六の何れかの態様に従う構造とされた流体封入式防振装置において、振動入力方向に離間して配された第一の取付部材と第二の取付部材を前記本体ゴム弾性体で連結し、該第二の取付部材によって支持された仕切部材を挟んで一方の側に前記受圧室を形成すると共に、他方の側に前記平衡室を形成する一方、該仕切部材において、前記低周波用オリフィス通路を、該仕切部材の外周部分を周方向に延びるように形成すると共に、前記高周波用第一オリフィス通路を、前記受圧室と前記平衡室の対向方向に略直交する方向に形成し、更に前記高周波用第二オリフィス通路を、前記受圧室と前記平衡室の対向方向に直線的に貫通して該高周波用第一オリフィス通路に略直交する方向に形成する一方、それら高周波用第一オリフィス通路と高周波用第二オリフィス通路の交差点に配設されて、それら高周波用第一オリフィス通路と高周波用第二オリフィス通路を択一的に連通せしめるバルブ手段によって前記第一及び第二のバルブ手段を構成したことを、特徴とする。
【0021】
このような本態様においては、高周波数域にチューニングされた高周波第一オリフィス通路とそれよりも更に高い周波数域にチューニングされた高周波第二オリフィス通路が、優れたスペース効率をもって形成され得ると共に、それら高周波第一オリフィス通路と高周波第二オリフィス通路を択一的に連通せしめるバルブ手段も、優れたスペース効率をもって組み付けることが出来る。特に、本態様においては、バルブ手段として、ロータリ弁等の回転バルブが好適に採用され、それによって、バルブ手段の配設スペースの更なる効率化が可能となる。また、本態様においては、前記第三の態様が組み合わせられて好適に採用され、それによって、連通小孔も優れたスペース効率をもって形成することが出来、流体流路の全体をよりコンパクトに形成することが可能となる。
【0022】
【発明の実施の形態】
以下、本発明を更に具体的に明らかにするために、本発明の実施形態について、図面を参照しつつ、詳細に説明する。
【0023】
先ず、図1〜4には、本発明の一実施形態としての自動車用エンジンマウント10が示されている。このエンジンマウント10は、第一の取付部材としての第一の取付金具12と第二の取付部材としての第二の取付金具14が、互いに離間して対向配置されていると共に、対向面間に介装された本体ゴム弾性体16によって弾性的に連結されている。そして、かかるエンジンマウント10は、第一の取付金具12と第二の取付金具14において、それらの一方がパワーユニット側に、他方がボデー側に、それぞれ固定的に取り付けられることによって、パワーユニットをボデーに対して防振支持せしめるようになっている。また、そのような装着状態下、このエンジンマウント10には、第一の取付金具12と第二の取付金具14の略対向方向である図1中の略上下方向にパワーユニット重量が及ぼされて、第一の取付金具12と第二の取付金具14が互いに接近する方向に本体ゴム弾性体16が弾性変形せしめられると共に、それら第一の取付金具12と第二の取付金具14の略対向方向に、防振すべき主たる振動が入力される。なお、以下の説明中、上下方向とは、原則として図1中の上下方向をいう。
【0024】
より詳細には、第一の取付金具12は、略円板形状を有しており、その外周縁部には、周上の一箇所において、径方向外方に突出して第二の取付金具14側に向かって屈曲して延び出し、先端部分が鉤状に屈曲されたストッパ突部18が一体形成されている。また、第一の取付金具12の下面中央には、略カップ形状の支持金具20が、開口部において重ね合わされて溶着されている。更にまた、第一の取付金具12の中央には、上方に向かって突出する取付ボルト22が固設されており、この取付ボルト22によって、第一の取付金具12が、図示しない自動車のパワーユニットに取り付けられるようになっている。
【0025】
一方、第二の取付金具14は、大径の略円筒形状を有する筒金具24と、大径浅底の略有底円筒形状を有する底金具26によって形成されている。筒金具24は、軸方向上端部が上方に向かって拡径するテーパ部28とされている一方、軸方向下端部には、径方向外方に広がる段差部30が形成されていると共に、該段差部30の外周縁部から軸方向下方に延びる大径筒状のかしめ部32が一体形成されている。また、筒金具24におけるテーパ部28の開口周縁部には、周上の一箇所において、径方向外方に突出して補強金具34で補強された当接突部36が一体形成されている。また一方、底金具26の開口周縁部には、径方向外方に広がるフランジ状部38が一体形成されている。そして、筒金具24の下側開口部に底金具26が重ね合わされて、底金具26のフランジ状部38に対して、筒金具24のかしめ部32がかしめ固定されており、以て、第二の取付金具14が、全体として深底の略有底円筒形状をもって形成されている。なお、底金具26の底部中央には、下方に向かって突出する取付ボルト40が固設されており、この取付ボルト40によって、第二の取付金具14が、図示しない自動車のボデーに取り付けられるようになっている。
【0026】
そして、第二の取付金具14が、軸方向上方に向かって開口するように配設されていると共に、この第二の取付金具14の開口部側に離間して、第一の取付金具12が、第二の取付金具14と略同一中心軸上に配設されている。而して、これら第一の取付金具12と第二の取付金具14の間に本体ゴム弾性体16が配設されており、この本体ゴム弾性体16によって、第一の取付金具12と第二の取付金具14が弾性的に連結されている。かかる本体ゴム弾性体16は、全体として略円錐台形状を有しており、その小径側端面に第一の取付金具12が重ね合わされ、支持金具20が小径側端面から軸方向に差し込まれて埋入された状態で、それら第一の取付金具12と支持金具20が本体ゴム弾性体16に加硫接着されている。また、本体ゴム弾性体16の大径側端部外周面には、第二の取付金具14を構成する筒金具24におけるテーパ部28の内周面が重ね合わされて加硫接着されている。要するに、本実施形態では、本体ゴム弾性体16が、第一の取付金具12および支持金具20と筒金具24を備えた一体加硫成形品として形成されており、筒金具24の軸方向上側の開口部が、本体ゴム弾性体16によって流体密に閉塞されているのである。
【0027】
なお、かかる一体加硫成形品において、第一の取付金具12側における支持金具20のテーパ付外周面と、第二の取付金具14側における筒金具24のテーパ部28は、離間して対向する略平行面とされており、それらの対向面間に本体ゴム弾性体16が介在されることにより、パワーユニット重量等の荷重が本体ゴム弾性体16に対して圧縮力として有効に作用せしめられるようにされている。また、かかる一体加硫成形品において、本体ゴム弾性体16の大径側端面には、大径凹所42が形成されて、筒金具24内に開口せしめられていると共に、筒金具24の内周面には、略全面に亘って広がる薄肉のシールゴム層43が、本体ゴム弾性体16と一体的に形成されている。更にまた、第二の取付金具14の当接突部36の表面には、緩衝ゴム44が形成されていると共に、この当接突部36を覆うように、第一の取付金具12のストッパ突部18が位置合わせされている。そして、入力される振動荷重等によって第一の取付金具12と第二の取付金具14が、大きく相対変位せしめられた際、ストッパ突部18が、緩衝ゴム44を介して、当接突部36に当接せしめられることによって、それら第一の取付金具12と第二の取付金具14の相対変位量、ひいては本体ゴム弾性体16の弾性変形量を制限するストッパ機能が発揮されるようになっている。
【0028】
さらに、かかる一体加硫成形品には、筒金具24の軸方向下側開口部から仕切部材46と、可撓性膜としてのダイヤフラム48が、順次、挿入されて嵌め込まれ、第二の取付金具14に対して固定的に組み付けられている。仕切部材46は、金属や合成樹脂等の硬質材で形成されており、筒金具24よりも僅かに小径の略円形ブロック形状を有している。また、仕切部材46における軸方向下端の外周縁部には、軸方向下方に向かって円筒状に延び出し、その突出先端部が径方向外方に屈曲されることにより、フランジ状部50が一体形成されている。そして、この仕切部材46は、筒金具24に挿入されて、外周面がシールゴム層42を介して筒金具24に密着されていると共に、フランジ状部50が、筒金具24の段差部30に重ね合わされて、底金具26のフランジ状部38と共にかしめ部32でかしめ固定されることにより、第二の取付金具14に対して固定的に取り付けられている。また、ダイヤフラム48は、変形容易な薄肉のゴム膜で形成されており、中央部分には、容易に変形するように弛みをもたせてあると共に、外周縁部には、略円環板形状の固定金具52が加硫接着されている。そして、このダイヤフラム48は、筒金具24に挿入されて、固定金具52が、筒金具24の段差部30に重ね合わされ、底金具26のフランジ状部38と共にかしめ固定されることにより、第二の取付金具14の下側開口部を流体密に覆蓋する状態で取り付けられている。なお、固定金具52の表面には、第二の取付金具14によるかしめ固定部位を流体密にシールするシールゴム層53が形成されている。
【0029】
これにより、筒金具24の両側開口部が、本体ゴム弾性体16とダイヤフラム48で流体密に覆蓋されて、内部に非圧縮性流体が封入された流体室54が形成されている。なお、封入される非圧縮性流体としては、例えば水やアルキレングリコール,ポリアルキレングリコール,シリコーン油等が採用され得、特に後述する流体の共振作用に基づく防振効果を有効に得るために、0.1Pa・s以下の低粘性流体が好適に採用される。また、非圧縮性流体の注入は、例えば、一体加硫成形品に対する仕切部材46とダイヤフラム48の組付けを流体中で行うことによって、流体室54の形成と同時に行うことも可能であるが、本実施形態では、一体加硫成形品に対する仕切部材46およびダイヤフラム48の組付けを大気中に行った後、ダイヤフラム48に加硫接着された固定金具52に穿孔された注入孔56を通じて非圧縮性流体を流体室54に注入し、その後、該注入孔56をブラインドリベット58で封止することによって、非圧縮性流体が充填されている。
【0030】
また、かかる流体室54は、筒金具24の軸方向中間部分に配された仕切部材46によって流体密に二分されており、以て、仕切部材46の上側には、壁部の一部が本体ゴム弾性体16で構成された受圧室60が形成されている一方、仕切部材46の下側には、壁部の一部がダイヤフラム48で構成された平衡室62が形成されている。即ち、受圧室60は、第一の取付金具12と第二の取付金具14の間への振動入力時に、本体ゴム弾性体16の弾性変形に基づいて振動が入力されて圧力変化が生ぜしめられる一方、平衡室62は、ダイヤフラム48の変形によって容積変化が容易に許容されることにより圧力変化が吸収,回避されるようになっているのである。なお、ダイヤフラム48を挟んで平衡室62と反対側には、ダイヤフラム48と底金具26の間に位置して、ダイヤフラム48の変形を許容する空気室64が形成されている。
【0031】
さらに、受圧室60と平衡室62を仕切る仕切部材46には、それら受圧室60と平衡室62をそれぞれ相互に連通して両室60,62間での流体流動を許容する低周波用オリフィス通路66と、高周波用第一オリフィス通路68および高周波用第二オリフィス通路70が、互いに実質的に独立して形成されている。そして、振動入力時に受圧室60と平衡室62の間に生ぜしめられる圧力差に基づいて、各オリフィス通路66,68,70を通じての流体流動が生ぜしめられることにより、各オリフィス通路66,68,70のチューニングに応じた周波数域の入力振動に対して、流体の共振作用に基づく防振効果が発揮されるようになっている。
【0032】
詳細には、先ず、仕切部材46には、上面に開口して外周部分を周方向に一周弱の長さで延びる凹溝112が設けられていると共に、該仕切部材46の上面には、薄肉円板形状の蓋金具78が、全面を覆って重ね合わされており、凹溝112が、この蓋金具78で覆蓋されている。また、該凹溝112の周方向一端部は、蓋金具78に貫設された連通孔114を通じて受圧室60に開口されている一方、該凹溝112の周方向他端部が、仕切部材46の軸方向に貫設された接続孔116を通じて、平衡室62に開口されている。これにより、凹溝112と連通孔114,接続孔116を含んで、受圧室60と平衡室62の間に跨がって延び、それら両室60,62間での流体流動を許容する低周波用オリフィス通路66が形成されている。なお、この低周波用オリフィス通路66は、本実施形態では、常時、連通状態で形成されている。
【0033】
特に、本実施形態では、かかる低周波用オリフィス通路66が、その内部を流動せしめられる流体の共振作用に基づいて、例えばシェイク振動に対して有効な防振効果(減衰効果)を発揮し得るようにチューニングされている。なお、かかるチューニングは、例えば、受圧室60や平衡室62の壁ばね剛性と、封入流体の密度等を考慮して、凹溝112や連通孔114,接続孔116の断面積:A1と長さ:L1の比:A1/L1を調節することによって、行うことが出来る。
【0034】
また、仕切部材46の上面および下面の中央部分には、上凹所72および下凹所74が形成されている。下凹所74には、第一の流量制限手段としての第一のゴム膜82が配設されている。この第一のゴム膜82は、外周縁部に略環状の固定板金具84が加硫接着されており、該固定板金具84が下凹所74の底面に重ね合わされて固定ボルト85で固着されることにより、第一のゴム膜82が、下凹所74の底面から所定距離だけ離間して該下凹所74の開口を流体密に覆う状態で、固定板金具84によって支持されている。そして、かかる配設状態下、第一のゴム膜82は、弾性変形が許容されていると共に、その下面が、平衡室62に直接に晒されている。
【0035】
また一方、上凹所72は、蓋金具78によって覆蓋されていると共に、かかる蓋金具78には、上凹所72を受圧室60に開口せしめる開口窓80,80が形成されている。また、上凹所72には、第二の流量制限手段としての第二のゴム膜76が配設されており、厚肉の外周縁部が、凹所72の底面と蓋金具78の間で挟持されることにより、該第二のゴム膜76の中央部分が、上凹所72内で弾性変形可能に配設されている。これにより、上凹所72内が、第二のゴム膜76によって、底部側と開口部側とに流体密に二分されていると共に、該第二のゴム膜76の上面に対して、受圧室60の内圧が、開口窓80,80を通じて及ぼされるようになっている。
【0036】
ここにおいて、本実施形態では、第二のゴム膜76の中央部分が、厚肉化されて、仕切部材46の上凹所72の底面と蓋金具78に略当接されて変位規制されていると共に、第二のゴム膜76よりも第一のゴム膜82の方が、肉厚寸法が小さく、且つ自由長が大きくされている。これにより、第二のゴム膜76よりも第一のゴム膜82の方が、ばね定数が小さく、容易に弾性変形が許容されるようになっている。また、これら第一のゴム膜82および第二のゴム膜76は、主にそれ自身のばね剛性によって、変形に伴う変位量が制限されるようになっており、同じ圧力が作用した場合に、第二のゴム膜76よりも第一のゴム膜82に対して大きな変位量が生ぜしめられるようになっている。
【0037】
また、仕切部材46には、軸方向中間部分を直径方向に向かって略矩形断面で直線的に貫通して延びる内部通路としての径方向孔90が形成されている。即ち、この径方向孔90は、仕切部材46の内部を、受圧室60と平衡室62の対向方向に略直交する方向に直線的に形成されており、該径方向孔90の両端開口が筒金具24で流体密に覆蓋されているいる。また、該径方向孔90の径方向両端部近くには、径方向孔90から分岐して、互いに反対の軸方向に延びる接続孔92,94が形成されている。そして、径方向孔90の一方の端部側が、接続孔92を通じて、蓋金具78に開口形成された窓部96から受圧室60に開口されていると共に、径方向孔90の他方の端部側が、接続孔94を通じて、下凹所74に開口せしめられている。これにより、径方向孔90と接続孔92,94および下凹所74を含んで、受圧室60と平衡室62の間に跨がって延び、第一のゴム膜82の弾性変形に基づいて、それら両室60,62間での流体流動を許容する高周波用第一オリフィス通路68が形成されている。特に、本実施形態では、かかる高周波用第一オリフィス通路68が、その内部を流動せしめられる流体の共振作用に基づいて、例えばアイドリング3次等のアイドリング高次振動に対して有効な防振効果を発揮し得るようにチューニングされている。なお、かかるチューニングは、低周波用オリフィス通路66と同様、例えば、受圧室60や平衡室62の壁ばね剛性と、第一のゴム膜82のばね剛性、封入流体の密度等を考慮して、径方向孔90や接続孔92,94の断面積:A2と長さ:L2の比:A2/L2を調節することによって、行うことが出来る。また、高周波用第一オリフィス通路68を通じての流体流動量は、第一のゴム膜82の弾性によって、制限されるようになっている。なお、本実施形態では、かかる高周波用第一オリフィス通路68におけるA2/L2の値が、前記低周波用オリフィス通路66におけるA1/L1の値に対して、A1/L1<A2/L2となるように設定されており、それによって、上述の如きチューニング特性が有利に実現されている。
【0038】
更にまた、仕切部材46には、中心軸上を略矩形断面をもって直線的に延びる軸方向孔86が形成されており、該軸方向孔86の両側が、上凹所72と下凹所74の各中央に開口せしめられている。これにより、軸方向孔86と上下凹所72,74を含んで、受圧室60と平衡室62の間に跨がって延び、第一及び第二のゴム膜76,82の弾性変形に基づいて、それら両室60,62間での流体流動を許容する高周波用第二オリフィス通路70が形成されている。特に、本実施形態では、かかる高周波用第二オリフィス通路70が、その内部を流動せしめられる流体の共振作用に基づいて、走行こもり音等の高周波振動に対して有効な防振効果を発揮し得るようにチューニングされている。なお、かかるチューニングは、低周波用オリフィス通路66と同様、例えば、受圧室60や平衡室62の壁ばね剛性と、第一及び第二のゴム膜82,76のばね剛性、封入流体の密度等を考慮して、軸方向孔86の断面積:A3と長さ:L3の比:A3/L3を調節することによって、行うことが出来る。また、該高周波用第二オリフィス通路70を通じての流体流動量は、第一及び第二のゴム膜82,76の弾性、特にばね定数が大きい第二のゴム膜76の弾性によって、制限されるようになっている。なお、本実施形態では、かかる高周波用第二オリフィス通路70におけるA3/L3の値が、前記低周波用オリフィス通路66におけるA1/L1の値に対して、A1/L1<A3/L3となるように設定されており、それによって、上述の如きチューニング特性が有利に実現されている。
【0039】
また、仕切部材46においては、その内部において、高周波用第一オリフィス通路68と高周波用第二オリフィス通路70が、各通路長さ方向略中央部分で互いに直交して交差しており、この交差点上を、それら高周波用の第一及び第二のオリフィス通路68,70の何れとも直交する径方向に、仕切部材46を貫通して直線的に延びるバルブ装着孔100が形成されている。そして、このバルブ装着孔100に対して、バルブ手段としてのロータリバルブ本体102が挿入されて組み付けられている。このロータリバルブ本体102は、中空円筒形状を有しており、バルブ装着孔100に嵌め込まれて、バルブ装着孔100に圧入されたバルブ押え板103で抜け出し不能に、且つ中心軸回りに回動可能に組み付けられている。また、ロータリバルブ本体102の筒壁部には、径方向一方向で対向位置する部分を内外に貫通する略矩形状の連通孔104,104が形成されており、ロータリバルブ本体102の回動位置に応じてこれらの連通孔104,104が、バルブ装着孔100の内周面における径方向孔90の開口部と、軸方向孔86の開口部との、何れかに択一的に位置合わせされて連通せしめられるようになっている。
【0040】
さらに、ロータリバルブ本体102には、軸方向一方の側に延びる駆動軸105が一体形成されており、この駆動軸105が、仕切部材46を貫通して外周面に突設されている。また、ステッピングモータ106が、第二の取付金具14の外部に配設されて、ブラケット108を介して、筒金具24に固着されており、このステッピングモータ106の出力軸110が、筒金具24に設けられた挿通窓111を通じて挿入されて、ロータリバルブ本体102の駆動軸105に連結されている。これにより、ロータリバルブ本体102が、ステッピングモータ106で回動せしめられて、高周波用第一オリフィス通路68を連通し且つ高周波用第二オリフィス通路70を遮断する回動位置と、高周波用第二オリフィス通路70を連通し且つ高周波用第一オリフィス通路68を遮断する回動位置とに、択一的に位置決めされるようになっている。なお、ステッピングモータ106の作動は、防振すべき振動の入力状態に応じて、例えば、自動車の走行状態に対応した信号(例えば、速度信号やシフトポジション信号等)に基づいて制御されることとなる。
【0041】
加えて、仕切部材46には、高周波用第一オリフィス通路68を構成する径方向孔90において、ロータリバルブ本体102よりも平衡室62側に位置する部分から分岐して、平衡室62に開口せしめられた連通小孔120が形成されている。特に、本実施形態では、径方向孔90が、屈曲点としての接続孔94の開口部位を越えて更に径方向に延長して形成されており、この延長部分と平衡室62の間に跨がって軸方向に直線的に延びる形態をもって、連通小孔120が形成されている。また、かかる連通小孔120は、下凹所74を外れて、平衡室62に開口せしめられており、これにより、連通小孔120を通じての流体流動量が、下凹所74を覆蓋する第一のゴム膜82による制限を受けることなく、許容されるようになっている。そして、この連通小孔120によって、高周波用第一オリフィス通路68におけるロータリバルブ本体102よりも平衡室62側の部分が、平衡室62に対して、常時連通されている。
【0042】
これにより、ロータリバルブ本体102で高周波用第一オリフィス通路68を遮断し、高周波用第二オリフィス通路70を連通せしめた状態下では、連通小孔120を通じての受圧室60と平衡室62の連通状態も、高周波用第一オリフィス通路68上に配されたロータリバルブ本体102で遮断されるようになっている。一方、ロータリバルブ本体102で高周波用第二オリフィス通路70を遮断し、高周波用第一オリフィス通路68を連通せしめた状態下では、連通小孔120も連通状態とされて、該連通小孔120を通じての受圧室60と平衡室62の間での流体流動が許容されるようになっている。そして、この連通小孔120を通じての流体流動は、第一のゴム膜82による流量制限を受けることなく、低周波用オリフィス通路66と同様に許容されることから、該連通小孔120の大きさ等に応じて、低周波用オリフィス通路66に設定されたチューニング特性が影響を受けて変化することとなる。
【0043】
換言すれば、ロータリバルブ本体102で高周波用第一オリフィス通路68を遮断し、高周波用第二オリフィス通路70を連通せしめた状態下では、低周波用オリフィス通路66は、連通小孔120の影響を受けることなく、低周波用オリフィス通路66単体のチューニングに従って、該低周波用オリフィス通路66を流動せしめられる流体の共振作用に基づく防振効果、即ち本実施形態においては、シェイク等の低周波振動に対する防振効果(減衰効果)を有効に発揮し得る。一方、ロータリバルブ本体102で高周波用第二オリフィス通路70を遮断し、高周波用第一オリフィス通路68を連通せしめた状態下では、連通小孔120を通じての流体流動が許容されることによって、低周波用オリフィス通路66のチューニング特性が変化せしめられることとなり、特に本実施形態においては、連通小孔120の影響を受けた低周波用オリフィス通路66を通じての流体流動作用に基づいて、アイドリング1次等のアイドリング低次振動に対する防振効果(絶縁効果)を有効に発揮し得るように、低周波用オリフィス通路66の大きさや受圧室60および平衡室62の壁ばね剛性,封入流体の密度等を考慮し、連通小孔120の通路長さや通路断面積を適当に調節することによってチューニングされている。なお、かくの如く、連通小孔120による影響は、一般に、低周波用オリフィス通路66のチューニング周波数を高周波側に移行させる方向に生ぜしめられる。また、連通小孔120によって低周波用オリフィス通路66に及ぼされる影響は、連通小孔120の大きさ、例えば通路長さや通路断面積を変更することによって調節可能であることが確認されており、一般に、連通小孔120の通路長さを短くする程、或いは通路断面積を大きくする程、連通小孔120を連通させることによって低周波用オリフィス通路66のチューニング周波数をより高周波側に移行させることが出来る。なお、本実施形態では、かかる連通小孔120におけるA4/L4の値が、前記低周波用オリフィス通路66におけるA1/L1の値および前記高周波用第一オリフィス通路68におけるA2/L2の値に対して、A1/L1<A4/L4およびA4/L4<A2/L2となるように設定されており、それによって、上述の如きチューニング特性が有利に実現されている。
【0044】
従って、上述の如き構造とされたエンジンマウント10においては、ロータリバルブ本体102の回動位置を切り換えることによって、マウント防振特性を変更することが出来るのであり、車両走行状態下では、ロータリバルブ本体102を、図示されている如き、高周波用第二オリフィス通路70を連通し、且つ高周波用第一オリフィス通路68を遮断する回動位置に保持せしめる一方、車両停止(アイドリング)状態下では、ロータリバルブ102を、図示された位置から90度だけ中心軸回りに回動させて、高周波用第一オリフィス通路68を連通し、且つ高周波用第二オリフィス通路70を遮断する回動位置に保持せしめる。
【0045】
それにより、車両走行状態下では、高周波用第二オリフィス通路70を流動せしめられる流体の共振作用に基づいて、走行こもり音等の高周波振動に対して有効な防振効果(振動絶縁効果)が発揮されると共に、低周波用オリフィス通路66を流動せしめられる流体の共振作用に基づいて、該低周波用オリフィス通路66本来のチューニングに従い、シェイク等の低周波振動に対して有効な防振効果(減衰効果)が発揮されるのである。なお、高周波用第二オリフィス通路70よりも低周波用オリフィス通路66の方が流体流動抵抗が大きいが、第二のゴム膜76で高周波用第二オリフィス通路70の流体流量が制限されることにより、低周波用オリフィス通路66を通じての流体流量も有利に確保され得る。
【0046】
また一方、車両停止状態下では、受圧室60と平衡室62の間において、高周波用第一オリフィス通路68および低周波用オリフィス通路66を通じての流体流動が許容されると共に、連通小孔120を通じての流体流動も許容される。また、低周波用オリフィス通路66よりも流体流動抵抗が小さい高周波第一オリフィス通路68を通じての流体流量が第一のゴム膜76で制限されることにより、高周波第一オリフィス通路68だけでなく、低周波用第一オリフィス通路68および連通小孔120を通じての流体流動量が、何れも有利に確保され得ることとなる。その結果、高周波用第一オリフィス通路68を流動せしめられる流体の共振作用に基づいて、アイドリング3次振動等のアイドリング高周波振動に対して有効な防振効果が発揮されると共に、連通小孔120による影響を受けてチューニングが変化せしめられた低周波用オリフィス通路66を通じて流動せしめられる流体の共振作用に基づいて、アイドリング1次振動等のアイドリング低周波振動に対して有効な防振効果が発揮されるのである。
【0047】
要するに、上述の如き構造とされたエンジンマウント10においては、単に極めて小さな連通小孔120を加えただけで、低周波用オリフィス通路66,高周波用第一オリフィス通路68および高周波用第二オリフィス通路70の三つのオリフィス通路によって、車両走行時と車両停止時の何れの状態下においても、互いに異なるチューニングが施された二つのオリフィス通路によって、複数の又は広い周波数域の振動に対して有効な防振効果が発揮されるのであり、以て、簡単でコンパクトな構造をもって、防振特性の向上が達成され得るのである。
【0048】
特に、かかるエンジンマウント10においては、単一の低周波用オリフィス通路66を、車両走行時と車両停止時の各状況下で、異なるチューニング特性を付与せしめて利用することが出来るのであり、しかも、かかる低周波用オリフィス通路66に対して、車両走行時に発揮される特性と、車両停止時に発揮される特性を、それぞれ、独立的に調節,設定することが出来ることから、大きなチューニング自由度が確保されて、要求される防振特性を容易に且つ有効に実現することが出来るといった利点がある。
【0049】
加えて、本実施形態のエンジンマウント10においては、仕切部材46の内部を直径方向に延長形成された高周波用第一オリフィス通路68を上手く利用して、第一のゴム膜82の配設領域を外れた仕切部材46の外周部分で、該高周波用第一オリフィス通路68を平衡室62に直接連通せしめる連通小孔120が、軸方向に延びる単純な直線孔形状で形成されていること、更に、高周波用第一オリフィス通路68と高周波用第二オリフィス通路70が交差する形態をもって形成されて、それらの交差点上にロータリバルブ本体102が配設されていること等によって、低周波用オリフィス通路66や高周波用の第一及び第二のオリフィス通路68,70,連通小孔120が、コンパクトで且つ簡単な構造をもって有利に形成されているのである。
【0050】
更にまた、かかるエンジンマウント10においては、仕切部材46の下面側に第一のゴム膜76が配設されていると共に、仕切部材46の上面側に第二のゴム膜82が配設されていることから、それら第一及び第二のゴム膜76,82の厚さや面積(自由長)等を、仕切部材46の大型化等を伴うことなく、有利に確保することが出来、チューニング自由度とコンパクト化の両立が有利に達成され得るのである。
【0051】
以上、本発明の実施形態について、詳述してきたが、これはあくまでも例示であって、本発明は、かかる実施形態における具体的な記載によって、何等、限定的に解釈されるものでない。
【0052】
例えば、低周波用オリフィス通路66や高周波用の第一及び第二のオリフィス通路68,70、更に連通小孔120は、要求される防振特性等に応じて、長さや断面積等を含む形状や構造を適宜に変更されるものであり、決して前記実施形態のものに限定されるものでない。
【0053】
また、高周波用第二オリフィス通路70や、第二のゴム膜76等は、何れも、マウントに要求される防振特性等に応じて採用されるものであり、必ずしも設ける必要はない。
【0054】
更にまた、高周波用第二オリフィス通路70を設ける場合でも、必ずしも高周波用第一オリフィス通路68と高周波用第二オリフィス通路70を択一的に連通させる必要はなく、高周波用第二オリフィス通路70を通じての流体流動量が、高周波用第一オリフィス通路68の連通状態下における高周波用第一オリフィス通路68や連通小孔120を通じての流体流動性に悪影響を及ぼさない程度に、第二のゴム膜76で十分に制限されるような場合には、高周波用第二オリフィス通路70を、常時、連通状態とすることも可能である。
【0055】
さらに、前記実施形態では、第一の取付金具12と第二の取付金具14が、振動入力方向一方向に離間して対向位置せしめられると共に、それらの対向面間に本体ゴム弾性体16が介装された構造の防振装置に対して、本発明を適用したものの一具体例を示したが、その他、本発明は、軸部材と、該軸部材の径方向外方に離間して配された外筒部材を、それらの径方向対向面間に介在せしめた本体ゴム弾性体で弾性連結せしめた構造を有し、FF型自動車用エンジンマウント等に好適に用いられる流体封入式の筒型マウントに対しても、適用可能である。
【0056】
加えて、前記実施形態では、本発明を自動車用エンジンマウントに適用したものの一具体例を示したが、その他、本発明は、自動車用ボデーマウントやデフマウント等、或いは自動車以外の各種装置等における防振装置に対して、何れも、同様に適用可能であることは、勿論である。
【0057】
その他、一々列挙はしないが、本発明は、当業者の知識に基づいて種々なる変更,修正,改良等を加えた態様において実施され得るものであり、また、そのような実施態様が、本発明の趣旨を逸脱しない限り、何れも、本発明の範囲内に含まれるものであることは、言うまでもない。
【0058】
【発明の効果】
上述の説明から明らかなように、本発明に従う構造とされた流体封入式防振装置においては、高周波用第一オリフィス通路の連通状態下で該高周波用第一オリフィス通路を平衡室に対してバイパスする連通小孔を設けたことにより、高周波用第一オリフィス通路の遮断状態下で特定の防振効果を発揮するようにチューニングされた低周波用オリフィス通路によって、高周波用第一オリフィス通路の連通状態下で、異なる防振効果を得ることが出来ると共に、かかる連通小孔の大きさ等を調節することによって、高周波用第一オリフィス通路の連通状態下で低周波用オリフィス通路によって発揮される防振特性を、高周波用第一オリフィス通路の遮断状態下で該低周波用オリフィス通路によって発揮される防振特性から独立して、チューニングすることが可能となる。
【0059】
すなわち、かかる流体封入式防振装置においては、一つの低周波用オリフィス通路を、異なるチューニングが施されて択一的に機能せしめられる、実質的に二つのオリフィス通路として利用することが出来るのであり、それ故、入力振動の変化等に応じて防振特性を切り換えることの出来る流体封入式防振装置が、簡単で且つコンパクトな構造をもって有利に実現可能となる。
【図面の簡単な説明】
【図1】本発明の一実施形態としての自動車用エンジンマウントを示す縦断面図であって、図4におけるI−I断面に相当する図である。
【図2】図1におけるII−II断面図である。
【図3】図1におけるIII −III 断面図である。
【図4】図1におけるIV−IV断面図である。
【符号の説明】
10 エンジンマウント
12 第一の取付金具
14 第二の取付金具
16 本体ゴム弾性体
46 仕切部材
48 ダイヤフラム
60 受圧室
62 平衡室
66 低周波用オリフィス通路
68 高周波用第一オリフィス通路
70 高周波用第二オリフィス通路
76 第二のゴム膜
82 第一のゴム膜
102 ロータリバルブ本体
120 連通小孔
[0001]
【Technical field】
The present invention relates to a fluid-filled type vibration damping device in which a vibration damping effect is obtained by utilizing a flow action of a fluid sealed therein, and in particular, by making a plurality of orifice passages selectively function, a plurality of orifice passages are provided. The present invention relates to a fluid filled type vibration damping device capable of exhibiting an effective vibration damping effect against different vibrations.
[0002]
[Background Art]
Description of the Related Art Conventionally, as a kind of a vibration-proof connecting body or a vibration-proof support interposed between members constituting a vibration transmission system, it is described in Japanese Patent Publication No. 2-6934 and Japanese Patent Application Laid-Open No. 6-264958. As described above, a part of the wall is formed by a main rubber elastic body that is elastically deformed by input vibration, and a pressure receiving chamber into which vibration is input and a part of the wall is formed by a flexible film that is easily deformed. To form an equilibrium chamber whose volume is allowed to change, fill the pressure receiving chamber and the equilibrium chamber with an incompressible fluid, and connect the pressure receiving chamber and the equilibrium chamber with each other. 2. Description of the Related Art There is known a fluid-filled type vibration damping device provided with one orifice passage and further provided with first valve means for switching the high-frequency first orifice passage between a communicating state and a blocking state. In such a vibration isolator, in a state where the first orifice passage for high frequency is blocked, the vibration isolating effect based on the resonance action of the fluid that is caused to flow through the orifice passage for low frequency is exhibited, and the first orifice for high frequency is exhibited. In a state where the orifice passages are communicated with each other, a vibration damping effect based on the resonance action of the fluid caused to flow through the first high-frequency orifice passage is exhibited, so that the low-frequency orifice passage and the first high-frequency orifice passage are respectively provided. Any effective vibration damping effect can be obtained with respect to a plurality of different tuned vibrations. Therefore, for example, the present invention is applied to an automobile engine mount or the like, and a low frequency orifice passage such as a shake is used. Tuning at the time of vibration and tuning the first orifice passage for high frequency to vibration at stop such as idling vibration And by, for different vibration input when the vehicle is stopped and during travel of the vehicle, both it becomes possible to obtain an effective vibration damping effect.
[0003]
By the way, the vibration damping device may be required to have higher vibration damping performance. For example, a vibration damping effect that is effective against vibrations in a plurality of different frequency ranges and vibrations in a wide frequency range is required at the same time. There are cases. More specifically, for example, in an engine mount for an automobile, while maintaining a vibration-proof effect against a shake or the like due to a low-frequency orifice passage when the vehicle is running, when the vehicle is stopped, a vibration-proof effect against idling low-order vibration, An anti-vibration effect against idling higher-order vibration may be required at the same time.
[0004]
However, in the vibration isolator having the conventional structure as described above, the orifice passage for low frequency and the first orifice passage for high frequency which are selectively operated are effective only for vibration in any one narrow frequency range. Since only a vibration effect is exhibited, it has been extremely difficult to obtain an effective vibration damping effect against vibrations in a plurality of or wide frequency ranges at the same time.
[0005]
In addition to the low-frequency orifice passage and the high-frequency first orifice passage, an additional orifice tuned to a frequency range different from that of the high-frequency first orifice passage so as to function simultaneously with the high-frequency first orifice passage. It is also conceivable to separately form the passage so as to extend between the pressure receiving chamber and the balancing chamber. However, when such an additional orifice passage is formed, not only does the vibration isolator increase in size to secure a space for forming the additional orifice passage, but also both the first high-frequency orifice passage for high frequency and the additional orifice passage are communicated simultaneously. It is necessary to shut off the fluid, and it is necessary to simultaneously secure the fluid flow rates of the first orifice passage for high frequency and the additional orifice passage. There was a problem that it could not be done.
[0006]
[Solution]
Here, the present invention has been made in view of the above-described circumstances, and a problem to be solved is to provide a low-frequency orifice passage and a high-frequency orifice passage that can be selectively operated. In the fluid filled type vibration damping device, when the high frequency orifice passage is made to function, not only the input vibration in the tuning frequency range of the high frequency orifice passage but also the input vibration in another or wide frequency range. An object of the present invention is to realize a novel structure capable of exhibiting an effective vibration damping effect with a simple and compact structure.
[0007]
[Solution]
Hereinafter, embodiments of the present invention made to solve such problems will be described. In addition, each aspect described below can be adopted in any combination. In addition, it should be understood that aspects or technical features of the present invention are not limited to the following description, but are recognized based on the inventive concept described in the entire specification and the drawings. It is.
[0008]
According to a first aspect of the present invention, a pressure receiving chamber in which a part of a wall is formed of a main rubber elastic body which is elastically deformed by input vibration and vibration is input, and a wall which is easily deformable by a flexible film. A low-frequency orifice that is partially configured to form an equilibrium chamber whose volume change is allowed, fills an incompressible fluid in the pressure receiving chamber and the equilibrium chamber, and communicates the pressure receiving chamber and the equilibrium chamber with each other. A high-frequency first orifice passage, and a first valve means for switching the high-frequency first orifice passage between a communicating state and a shut-off state; First flow rate limiting means for limiting the amount of fluid flowing through the passage is provided closer to the equilibrium chamber than the first valve means, and the first valve in the high frequency first orifice passage is provided. That the area between the stage and said first flow restriction means to form a small communication hole that allowed to directly communicate with the equilibrium chamber, characterized.
[0009]
In the fluid-filled type vibration damping device according to the first aspect, by communicating / blocking the first high-frequency orifice passage by the first valve means, the high-frequency first orifice passage is shut off under the closed state. Fluid flow through the low-frequency orifice passage is positively generated, preventing vibration in the tuning frequency range of the low-frequency orifice passage based on the resonance action of the fluid caused to flow through the low-frequency orifice passage. While the vibration effect is effectively exhibited, the fluid flow through the first high-frequency orifice passage having a smaller flow resistance than the low-frequency orifice passage is actively generated under the communication state of the first high-frequency orifice passage. The fluid that is caused to flow through the high-frequency first orifice passage in response to vibration in the tuning frequency range of the high-frequency first orifice passage. The vibration damping effect based on the resonance action is effectively exhibited, and the amount of fluid flowing through the high frequency first orifice passage is restricted by the first flow rate restricting means, so that the fluid flowing through the low frequency orifice passage is restricted. The flow rate is also advantageously secured. In this case, under the communication state of the first orifice passage for high frequency, the fluid flow through the communication small hole is allowed at the same time as the low frequency orifice passage, and the fluid flow through the communication small hole is restricted by the first flow rate restriction. Since the flow rate is not limited by the means and is permitted in the same manner as the low-frequency orifice passage, the tuning frequency range of the low-frequency orifice passage is adjusted by adjusting the flow path cross-sectional area and length of the communication small hole. Can be changed and adjusted.
[0010]
Therefore, in such a fluid filled type vibration damping device, the input vibration in the original frequency range in which the low frequency orifice passage is tuned by the low frequency orifice passage while the first high frequency orifice passage is shut off. While the effective vibration damping effect is exerted on the high frequency first orifice passage, the vibration damping effect against the high frequency vibration by the high frequency first orifice passage is exhibited and the low frequency The fluid flow through the orifice passage for air is also generated, and the vibration damping effect of the orifice passage for low frequency is also exhibited. Moreover, in the communication state of the first high-frequency orifice passage, the communication small hole is in the communication state, so that the tuning frequency range of the low-frequency orifice passage is originally lower than that of the high-frequency first orifice passage in the cut-off state. Is different from the tuning frequency range described above, the tuning frequency range is set according to the size of the communication small hole. As a result, under the communication state of the first high-frequency orifice passage, the low-frequency orifice passage functions as an orifice passage tuned differently from the original characteristics, and the low-frequency orifice passage prevents the low-frequency orifice passage. The vibration effect and the vibration-proof effect of the first high-frequency orifice passage are effectively exhibited in different tuned frequency ranges.
[0011]
Therefore, for example, while tuning the single orifice passage for low frequency to low frequency vibration such as shake, the first orifice passage for high frequency is tuned to high frequency vibration such as idling higher order vibration, and the communication small hole is tuned for high frequency vibration. Under the communication state of the first orifice passage, it is possible to tune the tuning frequency range of the low-frequency orifice passage so as to shift to a middle frequency region such as idling low-order vibration. With the first orifice passage closed, an effective vibration damping effect against shake can be obtained based on the resonance action of the fluid that is caused to flow through the low frequency orifice passage, and when the vehicle stops, the high frequency first orifice passage is closed. In the communicating state, resonance of the fluid caused to flow through the first high-frequency orifice passage In addition to obtaining an effective vibration damping effect against idling high-order vibration based on the application, the idling low-order vibration is performed based on the flow action such as the resonance action of the fluid that is made to flow through the low-frequency orifice passage adjusted by the communication small hole. Therefore, an effective anti-vibration effect can be obtained.
[0012]
In particular, in this aspect, the orifice passage capable of exhibiting a vibration-proof effect against vibrations in a frequency range different from that of the first high-frequency orifice passage under the communication state of the first high-frequency orifice passage is formed by the low-frequency orifice. Since it is formed using a passage, a fluid-filled type vibration damping device that can exhibit an effective vibration damping effect simultaneously with respect to a plurality of vibrations or a wide frequency range with a simple and compact structure is advantageous. It can be achieved.
[0013]
In the first embodiment as described above, the first valve means may be any as long as it can communicate / block the first orifice passage for high frequency. For example, various types of valves such as a gate valve, a butterfly valve, and a rotary valve may be used. A valve mechanism having a structure can be suitably employed. Further, as the first flow rate limiting means, for example, the high frequency first orifice is disposed in a state where a small displacement in the fluid flow direction of the high frequency first orifice passage is allowed, and the high frequency first orifice is provided at the displacement limiting position. A movable plate body that closes the passage, a rubber elastic plate that is disposed with the outer peripheral edge fixedly supported, and that allows fluid flow through the first high-frequency orifice passage by elastic deformation, or the like can be suitably used. . Furthermore, the communication ostium need not itself be connected / disconnected, but can be advantageously formed with a simple structure that is always connected.
[0014]
In a second aspect of the present invention, in the fluid-filled type vibration damping device having the structure according to the first aspect, the communication small hole is formed between the low-frequency orifice passage and the high-frequency first orifice passage. It is characterized by being formed with a smaller flow path cross-sectional area and a smaller flow path length than any of them. In this embodiment, the tuning frequency of the low-frequency orifice passage can be advantageously changed and adjusted by the communication small hole while avoiding the adverse effect on the characteristics of the first high-frequency orifice passage.
[0015]
According to a third aspect of the present invention, in the fluid filled type vibration damping device having the structure according to the first or second aspect, a hard partition member for partitioning the pressure receiving chamber and the equilibrium chamber is provided. The member has an internal passage extending linearly in a direction substantially perpendicular to the direction in which the pressure receiving chamber and the equilibrium chamber are opposed to each other, and one end of the internal passage is bent toward the pressure receiving chamber and opened. The other end is bent toward the equilibrium chamber side to open, thereby forming the first high-frequency orifice passage, and disposing the first valve means on the internal passage, and An end of the passage closer to the equilibrium chamber than the first valve means is further linearly extended beyond a bending point toward the equilibrium chamber, and the extended portion and the equilibrium chamber are connected to each other by the communication small. The feature is that they are connected directly by holes. To. In such an embodiment, the communication small hole can be formed simply and compactly while ensuring sufficient design flexibility such as the flow path length and the cross-sectional area of the first orifice passage for high frequency. .
[0016]
According to a fourth aspect of the present invention, in the fluid-filled type vibration damping device having a structure according to any one of the first to third aspects, a high-frequency second vibration communicating the pressure receiving chamber and the equilibrium chamber with each other is provided. A second orifice passage is provided to tune the second high-frequency orifice passage to a higher frequency range than the first high-frequency orifice passage, and to restrict a fluid flow amount through the second high-frequency orifice passage. And a second valve means for switching the high-frequency second orifice passage between a communicating state and a shut-off state, and selecting between the high-frequency second orifice passage and the high-frequency first orifice passage. It is characterized in that it is made to communicate with each other. In this aspect, the fluid flow through the second high-frequency orifice passage is generated under the cutoff state of the first high-frequency orifice passage, and the vibration isolation effect in the high frequency range based on the resonance action of the fluid is generated. At the same time, the amount of fluid flowing through the second high-frequency orifice passage is limited by the second flow rate restricting means, so that the fluid flowing through the low-frequency orifice passage also exerts a vibration damping effect. At this time, the first orifice passage for high frequency is blocked, and the communication small hole is also in a blocked state, so that the vibration isolation effect of the low frequency orifice passage is not affected by the communication small hole, and the original tuning is performed. Demonstrated based on characteristics.
[0017]
Therefore, for example, as described in the first aspect, the single orifice passage for low frequency is tuned to low frequency vibration such as shake, and the first orifice passage for high frequency is tuned to high frequency vibration such as idling higher order vibration. A fluid-filled vibration isolator tuned so that the tuning frequency range of the low-frequency orifice passage shifts to medium-frequency vibration such as idling low-order vibration under the communication state of the high-frequency first orifice passage. In the device, by forming a high-frequency second orifice passage according to the fourth aspect, by tuning the high-frequency wave second orifice passage to high-frequency vibrations such as run-up muffled even higher than idling higher-order vibration, When the vehicle is stopped, idling low-order vibration due to the low-frequency orifice passage adjusted by the communication small hole It is possible to simultaneously obtain the vibration damping effect against the high-order vibration of idling by the first orifice passage for high frequency and the vibration damping effect for the shake by the orifice passage for low frequency and the high frequency second orifice when the vehicle is running. The vibration damping effect against the muffled noise caused by the passage can be obtained at the same time. In addition, as the second flow rate restricting means, similarly to the first flow rate restricting means, for example, the high frequency second orifice passage is disposed in a state where a small displacement in the fluid flow direction is allowed, and the displacement amount is A movable plate that closes the high-frequency second orifice passage at the restricted position, and a rubber elastic member that is fixedly supported at an outer peripheral edge thereof and that allows fluid flow through the second high-frequency orifice passage by elastic deformation. A plate or the like can be suitably adopted.
[0018]
According to a fifth aspect of the present invention, in the fluid-filled type vibration damping device having the structure according to the fourth aspect, the second flow rate restricting unit is provided on the high-frequency second orifice passage. It is characterized by being located closer to the pressure receiving chamber than the second valve means. In this aspect, since the second flow restricting means is disposed on the opposite side of the first flow restricting means with respect to the valve means, the first flow restricting means and the second flow restricting means are disposed. It is possible to advantageously and efficiently secure a space for disposing the second flow rate restricting means.
[0019]
In a sixth aspect of the present invention, in the fluid-filled type vibration damping device having the structure according to the fourth or fifth aspect, the first flow rate restricting means is provided in the first orifice passage for high frequency. A movable member is disposed at the opening toward the equilibrium chamber so as to be displaceable, and the amount of displacement is limited so that the amount of fluid flowing through the first orifice passage for high frequency is restricted. Extending to the opening of the high-frequency second orifice passage toward the equilibrium chamber and integrally covering both openings of the high-frequency first orifice passage and the high-frequency second orifice passage. It is characterized by having been provided. In this embodiment, the space for forming each opening on the equilibrium chamber side in the first orifice passage for high frequency and the second orifice passage for high frequency and the space for disposing the first flow restricting means are both efficiently used. And the vibration isolator can be made compact as a whole.
[0020]
According to a seventh aspect of the present invention, there is provided a fluid filled type vibration damping device having a structure according to any of the fourth to sixth aspects, wherein the first mounting member is spaced apart in a vibration input direction. And the second mounting member are connected by the main rubber elastic body, the pressure receiving chamber is formed on one side with the partition member supported by the second mounting member interposed therebetween, and the equilibrium chamber is formed on the other side. On the other hand, in the partition member, the low-frequency orifice passage is formed so as to extend in a circumferential direction at an outer peripheral portion of the partition member, and the high-frequency first orifice passage is formed in the balance with the pressure receiving chamber. The high-frequency second orifice passage is formed in a direction substantially perpendicular to the facing direction of the chamber, and further penetrates the second high-frequency orifice passage linearly in the direction opposite to the pressure receiving chamber and the equilibrium chamber. While forming in the direction The first orifice passage for high frequency and the second orifice passage for high frequency are disposed at the intersection of the first orifice passage for high frequency and the second orifice passage for high frequency. And a second valve means.
[0021]
In this embodiment, the high-frequency first orifice passage tuned to a high frequency range and the high-frequency second orifice passage tuned to a higher frequency range can be formed with excellent space efficiency. The valve means for selectively connecting the high-frequency first orifice passage and the high-frequency second orifice passage can be assembled with excellent space efficiency. In particular, in the present embodiment, a rotary valve such as a rotary valve is suitably adopted as the valve means, whereby the space for disposing the valve means can be made more efficient. Further, in this aspect, the third aspect is suitably used in combination, whereby the communication small holes can also be formed with excellent space efficiency, and the entire fluid flow path is formed more compactly. It becomes possible.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, in order to clarify the present invention more specifically, embodiments of the present invention will be described in detail with reference to the drawings.
[0023]
First, FIGS. 1 to 4 show an automobile engine mount 10 as one embodiment of the present invention. In the engine mount 10, a first mounting member 12 as a first mounting member and a second mounting member 14 as a second mounting member are arranged so as to be separated from each other and opposed to each other, and between the opposed surfaces. It is elastically connected by an interposed main body rubber elastic body 16. The engine mount 10 is configured such that the power unit is fixedly mounted on the first mounting bracket 12 and the second mounting bracket 14, one of which is fixedly mounted on the power unit side and the other is fixedly mounted on the body side. On the other hand, it is designed to support vibration isolation. In such a mounted state, the power unit weight is exerted on the engine mount 10 in a substantially vertical direction in FIG. 1 which is a direction substantially opposite to the first mounting bracket 12 and the second mounting bracket 14, The main rubber elastic body 16 is elastically deformed in a direction in which the first mounting bracket 12 and the second mounting bracket 14 approach each other, and in a direction substantially opposite to the first mounting bracket 12 and the second mounting bracket 14. The main vibration to be damped is input. In the following description, the vertical direction refers to the vertical direction in FIG. 1 in principle.
[0024]
More specifically, the first mounting bracket 12 has a substantially disc shape, and has a second mounting bracket 14 that protrudes radially outward at one location on the outer peripheral edge thereof. A stopper protruding portion 18 that bends and extends toward the side and has a tip portion bent in a hook shape is integrally formed. At the center of the lower surface of the first mounting bracket 12, a substantially cup-shaped support bracket 20 is overlapped and welded at the opening. Furthermore, a mounting bolt 22 protruding upward is fixed at the center of the first mounting bracket 12, and the first mounting bracket 12 is connected to a power unit (not shown) of the vehicle by the mounting bolt 22. It can be attached.
[0025]
On the other hand, the second mounting fitting 14 is formed by a cylindrical fitting 24 having a large-diameter, substantially cylindrical shape, and a bottom fitting 26 having a large-diameter, shallow, substantially bottomed cylindrical shape. The cylindrical metal fitting 24 has a tapered portion 28 whose upper end in the axial direction increases in diameter upward, while a step portion 30 that expands radially outward is formed at the lower end in the axial direction. A large-diameter cylindrical caulking portion 32 extending axially downward from the outer peripheral edge of the step portion 30 is integrally formed. Further, an abutment projecting portion 36 which protrudes radially outward and is reinforced by a reinforcing metal member 34 is integrally formed at a peripheral portion of the opening of the tapered portion 28 of the cylindrical metal member 24. On the other hand, a flange-like portion 38 that extends radially outward is formed integrally with the peripheral edge of the opening of the bottom fitting 26. Then, the bottom fitting 26 is superimposed on the lower opening of the tubular fitting 24, and the swaged portion 32 of the tubular fitting 24 is swaged and fixed to the flange-shaped portion 38 of the bottom fitting 26. Is formed in a generally deep-bottomed, substantially bottomed cylindrical shape. At the center of the bottom of the bottom fitting 26, a mounting bolt 40 protruding downward is fixedly provided. With this mounting bolt 40, the second mounting fitting 14 is attached to a vehicle body (not shown). It has become.
[0026]
The second mounting member 14 is disposed so as to open upward in the axial direction, and is separated from the opening side of the second mounting member 14 so that the first mounting member 12 is opened. , And the second mounting bracket 14 are disposed on substantially the same central axis. Thus, a main rubber elastic body 16 is disposed between the first mounting metal 12 and the second mounting metal 14, and the first mounting metal 12 and the second Are elastically connected. The main rubber elastic body 16 has a substantially truncated conical shape as a whole, the first mounting bracket 12 is superimposed on the small-diameter side end face, and the support bracket 20 is inserted in the axial direction from the small-diameter side end face and embedded. In the inserted state, the first mounting member 12 and the supporting member 20 are vulcanized and bonded to the rubber elastic body 16. The inner peripheral surface of the tapered portion 28 of the cylindrical metal fitting 24 constituting the second fitting 14 is superposed and vulcanized and bonded to the outer peripheral surface of the large-diameter end of the main rubber elastic body 16. In short, in the present embodiment, the main rubber elastic body 16 is formed as an integrally vulcanized molded product including the first mounting bracket 12, the support bracket 20, and the cylindrical metal fitting 24, and is formed on the upper side in the axial direction of the cylindrical metal fitting 24. The opening is closed by the main rubber elastic body 16 in a fluid-tight manner.
[0027]
In such an integrally vulcanized molded product, the tapered outer peripheral surface of the support bracket 20 on the first mounting bracket 12 side and the tapered portion 28 of the cylindrical bracket 24 on the second mounting bracket 14 side are opposed to each other. The main rubber elastic body 16 is interposed between the opposing surfaces so that a load such as a power unit weight can be effectively applied to the main rubber elastic body 16 as a compressive force. Have been. In such an integrally vulcanized molded product, a large-diameter recess 42 is formed on the large-diameter side end surface of the main rubber elastic body 16, and is opened in the cylindrical metal fitting 24. On the peripheral surface, a thin seal rubber layer 43 extending over substantially the entire surface is formed integrally with the main rubber elastic body 16. Furthermore, a cushioning rubber 44 is formed on the surface of the contact protrusion 36 of the second mounting member 14, and the stopper protrusion of the first mounting member 12 is covered so as to cover the contact protrusion 36. Section 18 is aligned. When the first mounting member 12 and the second mounting member 14 are relatively displaced by an input vibration load or the like, the stopper projection 18 is brought into contact with the contact projection 36 via the buffer rubber 44. A stopper function for limiting the relative displacement amount of the first mounting member 12 and the second mounting member 14, and furthermore, the elastic deformation amount of the main rubber elastic body 16 is exerted. I have.
[0028]
Further, a partition member 46 and a diaphragm 48 as a flexible film are sequentially inserted and fitted into the integrally vulcanized molded product from the lower opening in the axial direction of the cylindrical metal fitting 24, and the second mounting metal fitting is formed. 14 is fixedly assembled. The partition member 46 is formed of a hard material such as a metal or a synthetic resin, and has a substantially circular block shape slightly smaller in diameter than the tubular metal fitting 24. Further, the outer peripheral edge of the lower end in the axial direction of the partition member 46 extends cylindrically downward in the axial direction, and the protruding tip portion is bent radially outward, so that the flange-shaped portion 50 is integrally formed. Is formed. The partition member 46 is inserted into the cylindrical metal fitting 24, the outer peripheral surface of the partition member 46 is in close contact with the cylindrical metal fitting 24 via the sealing rubber layer 42, and the flange 50 is overlapped with the step 30 of the cylindrical metal fitting 24. Then, it is fixed to the second mounting member 14 by being caulked and fixed by the caulking portion 32 together with the flange-shaped portion 38 of the bottom metal member 26. The diaphragm 48 is formed of a thin rubber film that can be easily deformed. The diaphragm 48 has a slack at a central portion so as to be easily deformed, and a substantially annular plate-shaped fixing portion at an outer peripheral edge portion. The metal fitting 52 is bonded by vulcanization. Then, the diaphragm 48 is inserted into the cylindrical metal fitting 24, the fixing metal fitting 52 is overlapped on the stepped portion 30 of the cylindrical metal fitting 24, and is caulked and fixed together with the flange-shaped part 38 of the bottom metal fitting 26, so that the second fitting is performed. It is attached in a state where the lower opening of the attachment fitting 14 is covered in a fluid-tight manner. A seal rubber layer 53 is formed on the surface of the fixing bracket 52 to seal a portion fixed by caulking by the second mounting bracket 14 in a fluid-tight manner.
[0029]
As a result, both side openings of the cylindrical metal fitting 24 are covered with the main rubber elastic body 16 and the diaphragm 48 in a fluid-tight manner, and a fluid chamber 54 in which an incompressible fluid is sealed is formed. As the incompressible fluid to be enclosed, for example, water, alkylene glycol, polyalkylene glycol, silicone oil, or the like can be adopted. A low viscosity fluid of 0.1 Pa · s or less is preferably used. Further, the injection of the incompressible fluid can be performed simultaneously with the formation of the fluid chamber 54, for example, by assembling the partition member 46 and the diaphragm 48 to the integrally vulcanized molded product in the fluid. In the present embodiment, after the partition member 46 and the diaphragm 48 are assembled to the integrally vulcanized molded product in the atmosphere, the partition member 46 and the diaphragm 48 are incompressible through an injection hole 56 formed in a fixing bracket 52 vulcanized and bonded to the diaphragm 48. The fluid is injected into the fluid chamber 54, and then the injection hole 56 is sealed with a blind rivet 58 so that the incompressible fluid is filled.
[0030]
Further, the fluid chamber 54 is fluid-tightly divided into two parts by a partition member 46 disposed at an axially intermediate portion of the cylindrical metal fitting 24. Therefore, a part of the wall portion is provided above the partition member 46 in the body. While a pressure receiving chamber 60 formed of the rubber elastic body 16 is formed, an equilibrium chamber 62 whose wall is partially formed of the diaphragm 48 is formed below the partition member 46. That is, when pressure is applied to the pressure receiving chamber 60 between the first mounting member 12 and the second mounting member 14, vibration is input based on the elastic deformation of the main rubber elastic body 16 and a pressure change is generated. On the other hand, the equilibrium chamber 62 absorbs and avoids a pressure change by easily permitting a volume change by deformation of the diaphragm 48. On the opposite side of the diaphragm 48 from the equilibrium chamber 62, an air chamber 64 is formed between the diaphragm 48 and the bottom fitting 26 to allow the deformation of the diaphragm 48.
[0031]
Further, a partition member 46 for partitioning the pressure receiving chamber 60 and the equilibrium chamber 62 has a low-frequency orifice passage through which the pressure receiving chamber 60 and the equilibrium chamber 62 communicate with each other to allow fluid flow between the two chambers 60 and 62. 66, a first high-frequency orifice passage 68 and a second high-frequency orifice passage 70 are formed substantially independently of each other. Then, based on the pressure difference generated between the pressure receiving chamber 60 and the equilibrium chamber 62 at the time of vibration input, a fluid flow is generated through each of the orifice passages 66, 68, 70, so that each of the orifice passages 66, 68, 70 is formed. With respect to the input vibration in the frequency range according to the tuning of 70, an anti-vibration effect based on the resonance action of the fluid is exhibited.
[0032]
More specifically, first, the partition member 46 is provided with a concave groove 112 which is opened on the upper surface and extends in the outer peripheral portion by a length slightly less than one circumference in the circumferential direction, and the upper surface of the partition member 46 has a thin wall. A disk-shaped lid 78 is overlaid so as to cover the entire surface, and the concave groove 112 is covered with the lid 78. One end of the groove 112 in the circumferential direction is opened to the pressure receiving chamber 60 through a communication hole 114 formed through the cover fitting 78, while the other end of the groove 112 in the circumferential direction is connected to the partition member 46. Is opened to the equilibrium chamber 62 through a connection hole 116 penetrating in the axial direction. Accordingly, the low-frequency portion including the concave groove 112, the communication hole 114, and the connection hole 116 extends across the space between the pressure receiving chamber 60 and the equilibrium chamber 62 and allows the fluid flow between the two chambers 60, 62. An orifice passage 66 is formed. In the present embodiment, the low-frequency orifice passage 66 is always formed in a communicating state.
[0033]
In particular, in the present embodiment, such a low-frequency orifice passage 66 can exhibit, for example, a vibration-proof effect (attenuation effect) that is effective against shake vibration, for example, based on the resonance effect of the fluid that flows inside the low-frequency orifice passage 66. Has been tuned to. In this tuning, for example, in consideration of the wall spring stiffness of the pressure receiving chamber 60 and the equilibrium chamber 62 and the density of the sealed fluid, the cross-sectional area of the concave groove 112, the communication hole 114, and the connection hole 116 is A1 and the length. : L1 ratio: A1 / L1.
[0034]
An upper recess 72 and a lower recess 74 are formed at the center of the upper surface and the lower surface of the partition member 46. In the lower recess 74, a first rubber film 82 as a first flow rate restricting means is provided. The first rubber film 82 has a substantially annular fixing plate 84 bonded to the outer peripheral edge thereof by vulcanization, and the fixing plate 84 is overlapped on the bottom surface of the lower recess 74 and fixed by fixing bolts 85. As a result, the first rubber film 82 is supported by the fixing metal plate 84 in a state where the first rubber film 82 is separated from the bottom surface of the lower recess 74 by a predetermined distance and covers the opening of the lower recess 74 in a fluid-tight manner. In this arrangement state, the first rubber film 82 is allowed to be elastically deformed, and its lower surface is directly exposed to the equilibrium chamber 62.
[0035]
On the other hand, the upper recess 72 is covered by a cover fitting 78, and opening windows 80, 80 for opening the upper recess 72 to the pressure receiving chamber 60 are formed in the cover fitting 78. In the upper recess 72, a second rubber film 76 as a second flow rate restricting means is provided, and a thick outer peripheral edge is formed between the bottom surface of the recess 72 and the cover fitting 78. By being sandwiched, the central portion of the second rubber film 76 is disposed in the upper recess 72 so as to be elastically deformable. Accordingly, the inside of the upper recess 72 is fluid-tightly divided into a bottom side and an opening side by the second rubber film 76, and the pressure receiving chamber is placed on the upper surface of the second rubber film 76. An internal pressure of 60 is exerted through the opening windows 80, 80.
[0036]
Here, in the present embodiment, the central portion of the second rubber film 76 is thickened, and is substantially in contact with the bottom surface of the upper recess 72 of the partition member 46 and the cover fitting 78 to regulate the displacement. At the same time, the first rubber film 82 has a smaller wall thickness and a larger free length than the second rubber film 76. Thus, the first rubber film 82 has a smaller spring constant than the second rubber film 76, and elastic deformation is easily allowed. In addition, the first rubber film 82 and the second rubber film 76 are configured such that the displacement amount due to deformation is limited mainly by their own spring stiffness, and when the same pressure acts, A larger displacement is generated for the first rubber film 82 than for the second rubber film 76.
[0037]
Further, the partition member 46 is formed with a radial hole 90 as an internal passage extending straight through the intermediate portion in the axial direction with a substantially rectangular cross section in the radial direction. That is, the radial hole 90 is formed so that the inside of the partition member 46 is linearly formed in a direction substantially orthogonal to the direction in which the pressure receiving chamber 60 and the equilibrium chamber 62 face each other. It is covered with a metal fitting 24 in a fluid-tight manner. In addition, connection holes 92 and 94 are formed near both ends in the radial direction of the radial hole 90 so as to branch off from the radial hole 90 and extend in opposite axial directions. One end of the radial hole 90 is opened to the pressure receiving chamber 60 through a connection hole 92 from a window 96 formed in the lid 78, and the other end of the radial hole 90 is connected to the other end of the radial hole 90. , Through the connection hole 94, the lower recess 74 is opened. Thus, the first rubber film 82 extends over the pressure receiving chamber 60 and the equilibrium chamber 62, including the radial holes 90, the connection holes 92 and 94, and the lower recess 74, based on the elastic deformation of the first rubber film 82. A high frequency first orifice passage 68 is formed to allow fluid flow between the two chambers 60 and 62. In particular, in the present embodiment, the first high-frequency orifice passage 68 has an effective vibration damping effect against idling high-order vibrations such as tertiary idling based on the resonance action of the fluid caused to flow through the inside. It is tuned to be able to demonstrate. Note that, like the low-frequency orifice passage 66, such tuning takes into consideration, for example, the wall spring rigidity of the pressure receiving chamber 60 and the equilibrium chamber 62, the spring rigidity of the first rubber film 82, the density of the sealed fluid, and the like. This can be achieved by adjusting the ratio of the cross-sectional area of the radial hole 90 and the connection holes 92 and 94: A2 to the length: L2: A2 / L2. The amount of fluid flowing through the first high-frequency orifice passage 68 is restricted by the elasticity of the first rubber film 82. In the present embodiment, the value of A2 / L2 in the first orifice passage 68 for high frequency is such that A1 / L1 <A2 / L2 with respect to the value of A1 / L1 in the orifice passage 66 for low frequency. , Whereby the tuning characteristics as described above are advantageously realized.
[0038]
Furthermore, the partition member 46 is formed with an axial hole 86 that extends linearly with a substantially rectangular cross section on the central axis, and both sides of the axial hole 86 are formed by the upper recess 72 and the lower recess 74. Each center is opened. Accordingly, the first and second rubber films 76 and 82 extend over the pressure receiving chamber 60 and the equilibrium chamber 62, including the axial hole 86 and the upper and lower recesses 72 and 74. Thus, a high-frequency second orifice passage 70 is formed to allow fluid flow between the two chambers 60 and 62. In particular, in the present embodiment, the high-frequency second orifice passage 70 can exhibit an effective vibration-proofing effect against high-frequency vibrations such as running noises, based on the resonance action of the fluid caused to flow inside. Has been tuned as such. The tuning is performed in the same manner as the low-frequency orifice passage 66, for example, the wall spring stiffness of the pressure receiving chamber 60 and the equilibrium chamber 62, the spring stiffness of the first and second rubber films 82 and 76, the density of the sealed fluid, and the like. In consideration of the above, the adjustment can be performed by adjusting the ratio of the sectional area: A3 of the axial hole 86 to the length: L3: A3 / L3. The amount of fluid flowing through the high frequency second orifice passage 70 is limited by the elasticity of the first and second rubber films 82 and 76, particularly the elasticity of the second rubber film 76 having a large spring constant. It has become. In the present embodiment, the value of A3 / L3 in the second orifice passage 70 for high frequency is such that A1 / L1 <A3 / L3 with respect to the value of A1 / L1 in the orifice passage 66 for low frequency. , Whereby the tuning characteristics as described above are advantageously realized.
[0039]
Further, in the partition member 46, the first high-frequency orifice passage 68 and the second high-frequency orifice passage 70 intersect each other orthogonally at a substantially central portion in the length direction of each passage. A valve mounting hole 100 that extends linearly through the partition member 46 is formed in the radial direction orthogonal to both the first and second orifice passages 68 and 70 for high frequency. A rotary valve body 102 as a valve means is inserted into the valve mounting hole 100 and assembled. The rotary valve main body 102 has a hollow cylindrical shape, is fitted into the valve mounting hole 100, cannot be pulled out by the valve pressing plate 103 pressed into the valve mounting hole 100, and is rotatable around the central axis. Has been assembled. In the cylindrical wall portion of the rotary valve body 102, communication holes 104, 104 having a substantially rectangular shape are formed to penetrate inside and outside a portion opposed to each other in one direction in the radial direction. The communication holes 104 are selectively aligned with either the opening of the radial hole 90 or the opening of the axial hole 86 in the inner peripheral surface of the valve mounting hole 100. To communicate with each other.
[0040]
Further, a drive shaft 105 extending to one side in the axial direction is formed integrally with the rotary valve body 102, and the drive shaft 105 penetrates the partition member 46 and protrudes from the outer peripheral surface. Further, a stepping motor 106 is provided outside the second mounting member 14 and is fixed to the cylindrical member 24 via a bracket 108. An output shaft 110 of the stepping motor 106 is connected to the cylindrical member 24. It is inserted through an insertion window 111 provided and connected to the drive shaft 105 of the rotary valve body 102. As a result, the rotary valve body 102 is rotated by the stepping motor 106 so as to communicate with the first high-frequency orifice passage 68 and block the second high-frequency orifice passage 70. The position is alternatively selected to be a rotation position that communicates with the passage 70 and blocks the first orifice passage 68 for high frequency. The operation of the stepping motor 106 is controlled in accordance with the input state of the vibration to be damped, for example, based on a signal (for example, a speed signal, a shift position signal, or the like) corresponding to the running state of the vehicle. Become.
[0041]
In addition, the partition member 46 branches off from the portion located on the equilibrium chamber 62 side of the rotary valve body 102 at the radial hole 90 constituting the first high-frequency orifice passage 68, and is opened to the equilibrium chamber 62. The communication small hole 120 is formed. In particular, in the present embodiment, the radial hole 90 is formed to extend further in the radial direction beyond the opening of the connection hole 94 as a bending point, and a straddle is formed between the extended portion and the equilibrium chamber 62. Thus, the communication small hole 120 is formed so as to extend linearly in the axial direction. Further, the communication small hole 120 is opened from the lower recess 74 to the equilibrium chamber 62, so that the amount of fluid flowing through the communication small hole 120 causes the first recessed portion covering the lower recess 74. Without being limited by the rubber film 82. The communication small hole 120 allows a portion of the high-frequency first orifice passage 68 closer to the equilibrium chamber 62 than the rotary valve main body 102 to always communicate with the equilibrium chamber 62.
[0042]
Thus, when the high-frequency first orifice passage 68 is blocked by the rotary valve body 102 and the high-frequency second orifice passage 70 is communicated, the communication between the pressure receiving chamber 60 and the equilibrium chamber 62 through the small communication hole 120 is established. Is also shut off by the rotary valve body 102 disposed on the high frequency first orifice passage 68. On the other hand, when the high-frequency second orifice passage 70 is blocked by the rotary valve body 102 and the high-frequency first orifice passage 68 is communicated with the high-frequency first orifice passage 68, the communication small hole 120 is also in a communicating state. The fluid flow between the pressure receiving chamber 60 and the equilibrium chamber 62 is allowed. The fluid flow through the communication small hole 120 is allowed in the same manner as the low frequency orifice passage 66 without being restricted by the flow rate of the first rubber film 82. The tuning characteristics set in the low-frequency orifice passage 66 are affected and change according to the conditions.
[0043]
In other words, when the high-frequency first orifice passage 68 is blocked by the rotary valve body 102 and the high-frequency second orifice passage 70 is communicated, the low-frequency orifice passage 66 is affected by the communication small hole 120. Without receiving the vibration, the vibration isolating effect based on the resonance action of the fluid that is caused to flow through the low-frequency orifice passage 66 in accordance with the tuning of the low-frequency orifice passage 66 alone, that is, in the present embodiment, against the low-frequency vibration such as a shake. An anti-vibration effect (attenuation effect) can be effectively exhibited. On the other hand, when the high-frequency second orifice passage 70 is blocked by the rotary valve body 102 and the high-frequency first orifice passage 68 is communicated with the high-frequency The tuning characteristic of the orifice passage 66 is changed, and in the present embodiment, in particular, based on the fluid flow action through the low-frequency orifice passage 66 affected by the communication small hole 120, the idling primary and the like are controlled. Considering the size of the low frequency orifice passage 66, the rigidity of the wall springs of the pressure receiving chamber 60 and the equilibrium chamber 62, the density of the sealed fluid, etc., so that the vibration isolating effect (insulating effect) against idling low-order vibration can be effectively exerted. Tuning is performed by appropriately adjusting the passage length and passage cross-sectional area of the communication small hole 120. As described above, the influence of the communication small hole 120 is generally generated in a direction in which the tuning frequency of the low frequency orifice passage 66 is shifted to the high frequency side. Also, it has been confirmed that the influence exerted on the low-frequency orifice passage 66 by the communication small hole 120 can be adjusted by changing the size of the communication small hole 120, for example, the passage length or the passage sectional area, Generally, as the passage length of the communication small hole 120 is shortened or the passage cross-sectional area is increased, the tuning frequency of the low-frequency orifice passage 66 is shifted to a higher frequency side by connecting the communication small hole 120. Can be done. In the present embodiment, the value of A4 / L4 in the communication small hole 120 is different from the value of A1 / L1 in the low frequency orifice passage 66 and the value of A2 / L2 in the high frequency first orifice passage 68. Thus, A1 / L1 <A4 / L4 and A4 / L4 <A2 / L2 are set, whereby the tuning characteristics as described above are advantageously realized.
[0044]
Therefore, in the engine mount 10 having the above-described structure, the mount anti-vibration characteristics can be changed by switching the rotational position of the rotary valve main body 102. When the vehicle is running, the rotary valve main body 102 can be changed. As shown in the drawing, the rotary valve 102 is held at a rotational position that communicates with the high-frequency second orifice passage 70 and shuts off the high-frequency first orifice passage 68, while the rotary valve 102 is stopped when the vehicle is stopped (idling). 102 is rotated about the central axis by 90 degrees from the position shown in the drawing, and is held at a rotation position where the high-frequency first orifice passage 68 is communicated and the high-frequency second orifice passage 70 is shut off.
[0045]
Thus, under the running condition of the vehicle, an effective vibration damping effect (vibration insulation effect) against high-frequency vibrations such as running muffled sound is exhibited based on the resonance action of the fluid that is caused to flow through the second high-frequency orifice passage 70. At the same time, based on the resonance action of the fluid that is caused to flow through the low-frequency orifice passage 66, an effective vibration damping effect (attenuation) against low-frequency vibrations such as shakes follows the original tuning of the low-frequency orifice passage 66. Effect) is exhibited. The low-frequency orifice passage 66 has a higher fluid flow resistance than the high-frequency second orifice passage 70, but the second rubber film 76 limits the fluid flow rate of the high-frequency second orifice passage 70. The fluid flow rate through the low frequency orifice passage 66 can also be advantageously secured.
[0046]
On the other hand, when the vehicle is stopped, fluid flow through the high-frequency first orifice passage 68 and the low-frequency orifice passage 66 is allowed between the pressure receiving chamber 60 and the equilibrium chamber 62, and the fluid flows through the communication small hole 120. Fluid flow is also allowed. Further, the fluid flow rate through the high-frequency first orifice passage 68, which has a smaller fluid flow resistance than the low-frequency orifice passage 66, is restricted by the first rubber film 76. The fluid flow rate through the first frequency orifice passage 68 and the communication small hole 120 can both be advantageously ensured. As a result, an effective vibration damping effect against idling high-frequency vibration such as idling tertiary vibration is exerted on the basis of the resonance action of the fluid caused to flow through the first orifice passage 68 for high frequency, and the communication small holes 120 Based on the resonance effect of the fluid flowing through the orifice passage 66 for low frequency whose tuning has been changed under the influence, an effective vibration damping effect is exhibited against idling low frequency vibration such as idling primary vibration. It is.
[0047]
In short, in the engine mount 10 having the above-described structure, the addition of the extremely small communication hole 120 merely causes the low-frequency orifice passage 66, the high-frequency first orifice passage 68, and the high-frequency second orifice passage 70. The three orifice passages provide effective vibration isolation against vibrations in a plurality or a wide frequency range by the two orifice passages tuned differently from each other in both the vehicle running state and the vehicle stopped state. The effect is exhibited, and thus, the improvement of the vibration isolation characteristics can be achieved with a simple and compact structure.
[0048]
In particular, in the engine mount 10, the single low-frequency orifice passage 66 can be used by giving different tuning characteristics under various conditions when the vehicle is running and when the vehicle is stopped. With respect to the low-frequency orifice passage 66, the characteristic exhibited when the vehicle is running and the characteristic exhibited when the vehicle is stopped can be independently adjusted and set, so that a large degree of freedom in tuning is ensured. Thus, there is an advantage that the required anti-vibration characteristics can be easily and effectively realized.
[0049]
In addition, in the engine mount 10 of the present embodiment, the area where the first rubber film 82 is provided can be reduced by making good use of the high-frequency first orifice passage 68 formed by extending the inside of the partition member 46 in the diameter direction. At the outer peripheral portion of the separated partition member 46, a communication small hole 120 for directly connecting the high-frequency first orifice passage 68 to the balancing chamber 62 is formed in a simple linear hole shape extending in the axial direction. The high-frequency first orifice passage 68 and the high-frequency second orifice passage 70 are formed to intersect with each other, and the low-frequency orifice passage 66 and the low-frequency orifice passage 66 Since the first and second orifice passages 68 and 70 and the communication small hole 120 for high frequency are advantageously formed with a compact and simple structure. That.
[0050]
Further, in the engine mount 10, the first rubber film 76 is provided on the lower surface side of the partition member 46, and the second rubber film 82 is provided on the upper surface side of the partition member 46. Therefore, the thickness and the area (free length) of the first and second rubber films 76 and 82 can be advantageously secured without increasing the size of the partition member 46, etc. Compatibility of compactness can be advantageously achieved.
[0051]
The embodiments of the present invention have been described in detail above, but these are merely examples, and the present invention is not to be construed as being limited by specific descriptions in the embodiments.
[0052]
For example, the orifice passage 66 for low frequency, the first and second orifice passages 68 and 70 for high frequency, and the communication small hole 120 have a shape including a length, a cross-sectional area, and the like according to required vibration isolation characteristics. The structure and the structure are changed as appropriate, and the present invention is not limited to the above embodiment.
[0053]
Further, the high frequency second orifice passage 70, the second rubber film 76, and the like are all adopted according to the anti-vibration characteristics required for the mount, and are not necessarily provided.
[0054]
Furthermore, even when the high-frequency second orifice passage 70 is provided, the high-frequency first orifice passage 68 and the high-frequency second orifice passage 70 do not necessarily need to be selectively communicated with each other. Of the second rubber film 76 to such an extent that the fluid flow rate through the first orifice passage 68 for high frequency or the small hole 120 does not adversely affect the fluidity under the communication state of the first orifice passage 68 for high frequency. In the case where it is sufficiently limited, the high-frequency second orifice passage 70 can be always in a communicating state.
[0055]
Further, in the above-described embodiment, the first mounting member 12 and the second mounting member 14 are separated from each other in one direction of the vibration input direction to be opposed to each other, and the main rubber elastic body 16 is interposed between the opposed surfaces. A specific example of the present invention applied to a vibration isolator having a mounted structure has been described. A fluid-filled cylindrical mount suitable for use in engine mounts for FF-type automobiles, having a structure in which the outer cylindrical members are elastically connected by a main rubber elastic body interposed between their radially opposed surfaces. Is also applicable.
[0056]
In addition, in the above-described embodiment, a specific example in which the present invention is applied to an engine mount for a vehicle has been described.In addition, the present invention relates to a body mount or a differential mount for a vehicle, or various devices other than a vehicle. Of course, any of them can be similarly applied to the vibration isolator.
[0057]
In addition, although not enumerated one by one, the present invention can be embodied in modes in which various changes, modifications, improvements, and the like are made based on the knowledge of those skilled in the art. It goes without saying that any of them is included in the scope of the present invention unless departing from the spirit of the present invention.
[0058]
【The invention's effect】
As is clear from the above description, in the fluid filled type vibration damping device having the structure according to the present invention, the high frequency first orifice passage is bypassed to the equilibrium chamber under the communication state of the high frequency first orifice passage. The communication state of the high-frequency first orifice passage is adjusted by the low-frequency orifice passage tuned so as to exhibit a specific vibration-proof effect when the high-frequency first orifice passage is shut off. In addition, different vibration damping effects can be obtained below, and by adjusting the size of the communication small holes, the vibration damping exerted by the low frequency orifice passage under the communication state of the high frequency first orifice passage. The tuning is performed independently of the vibration isolation characteristics exhibited by the low-frequency orifice passage when the first high-frequency orifice passage is shut off. Rukoto is possible.
[0059]
In other words, in such a fluid-filled type vibration damping device, one low-frequency orifice passage can be used as substantially two orifice passages that are differently tuned and function alternatively. Therefore, a fluid-filled type vibration damping device capable of switching vibration damping characteristics according to a change in input vibration or the like can be advantageously realized with a simple and compact structure.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an automobile engine mount as one embodiment of the present invention, and is a view corresponding to a II section in FIG.
FIG. 2 is a sectional view taken along line II-II in FIG.
FIG. 3 is a sectional view taken along line III-III in FIG.
FIG. 4 is a sectional view taken along line IV-IV in FIG. 1;
[Explanation of symbols]
10 Engine mount
12 First mounting bracket
14 Second mounting bracket
16 Rubber elastic body
46 Partition member
48 Diaphragm
60 pressure receiving chamber
62 Equilibrium chamber
66 Low frequency orifice passage
68 High frequency first orifice passage
70 High frequency second orifice passage
76 Second rubber film
82 First rubber film
102 Rotary valve body
120 communication hole

Claims (6)

入力振動によって弾性変形せしめられる本体ゴム弾性体で壁部の一部が構成されて振動が入力される受圧室と、変形容易な可撓性膜で壁部の一部が構成されて容積変化が許容される平衡室を形成し、それら受圧室と平衡室に非圧縮性流体を封入すると共に、それら受圧室と平衡室をそれぞれ相互に連通する低周波用オリフィス通路と高周波用第一オリフィス通路を設け、更に、該高周波用第一オリフィス通路を連通状態と遮断状態に切り換える第一のバルブ手段を設けた流体封入式防振装置において、
前記高周波用第一オリフィス通路を通じての流体流動量を制限する第一の流量制限手段を、前記第一のバルブ手段よりも前記平衡室側に位置して設けると共に、該高周波用第一オリフィス通路における該第一のバルブ手段と該第一の流量制限手段の間の領域を前記平衡室に直接連通せしめる連通小孔を形成し、更に、該受圧室と該平衡室を仕切る硬質の仕切部材を設け、該仕切部材に対して、それら受圧室と平衡室の対向方向に略直交する方向に直線的に延びる内部通路を形成し、該内部通路の一方の端部を該受圧室側に屈曲させて開口せしめると共に、他方の端部を該平衡室側に屈曲させて開口せしめることによって、前記高周波用第一オリフィス通路を構成する一方、該内部通路上に前記第一のバルブ手段を配設すると共に、該内部通路における該第一のバルブ手段よりも前記平衡室側の端部を、前記平衡室側への屈曲点を越えて更に直線的に延長して、かかる延長部分と前記平衡室を、前記連通小孔によって直接連通せしめたことを特徴とする流体封入式防振装置。
Part of the wall is composed of the main rubber elastic body that is elastically deformed by the input vibration, and the pressure receiving chamber to which the vibration is input and part of the wall is composed of the easily deformable flexible film, and the volume change is made. An allowable equilibrium chamber is formed, an incompressible fluid is sealed in the pressure receiving chamber and the equilibrium chamber, and a low-frequency orifice passage and a high-frequency first orifice passage that mutually communicate the pressure-receiving chamber and the equilibrium chamber, respectively. A fluid-filled vibration isolator provided with first valve means for switching the high-frequency first orifice passage between a communicating state and a blocking state.
First flow rate limiting means for limiting the amount of fluid flowing through the high frequency first orifice passage is provided at a position closer to the equilibrium chamber than the first valve means. A communication hole is provided for directly connecting the region between the first valve means and the first flow rate restricting means to the equilibrium chamber, and a hard partition member for dividing the pressure receiving chamber and the equilibrium chamber is provided. Forming, on the partition member, an internal passage extending linearly in a direction substantially perpendicular to the direction in which the pressure receiving chamber and the equilibrium chamber face each other, and bending one end of the internal passage toward the pressure receiving chamber. Along with opening, the other end is bent toward the equilibrium chamber side to open, thereby forming the first high-frequency orifice passage, and disposing the first valve means on the internal passage. , The internal passage The end on the equilibrium chamber side of the first valve means is further linearly extended beyond the bending point toward the equilibrium chamber, and the extended portion and the equilibrium chamber are connected to the communication small hole. A fluid-filled type vibration damping device, characterized in that the fluid communication is directly performed by the fluid.
前記連通小孔を、前記低周波用オリフィス通路および前記高周波用第一オリフィス通路の何れよりも小さな流路断面積と小さな流路長さで形成した請求項1に記載の流体封入式防振装置。The fluid filled type vibration damping device according to claim 1, wherein the communication small hole is formed with a smaller flow path cross-sectional area and a smaller flow path length than any of the low-frequency orifice passage and the high-frequency first orifice passage. . 前記受圧室と前記平衡室を相互に連通する高周波用第二オリフィス通路を設けて、該高周波用第二オリフィス通路を前記高周波用第一オリフィス通路よりも更に高周波数域にチューニングすると共に、該高周波用第二オリフィス通路を通じての流体流動量を制限する第二の流量制限手段を設ける一方、該高周波用第二オリフィス通路を連通状態と遮断状態に切り換える第二のバルブ手段を設けて、該高周波用第二オリフィス通路と前記高周波用第一オリフィス通路を択一的に連通せしめるようにした請求項1又は2に記載の流体封入式防振装置。A high-frequency second orifice passage communicating the pressure receiving chamber and the equilibrium chamber with each other is provided, and the high-frequency second orifice passage is tuned to a higher frequency range than the high-frequency first orifice passage. A second flow rate restricting means for restricting a fluid flow amount through the second orifice passage, and a second valve means for switching the high frequency second orifice passage between a communicating state and a cutoff state, and fluid-filled vibration damping device according to claim 1 or 2 as alternatively allowed to communicate with the second orifice passage with the first orifice passage for the high frequency. 前記第二の流量制限手段を、前記高周波用第二オリフィス通路上において、前記第二のバルブ手段よりも前記受圧室側に位置せしめた請求項に記載の流体封入式防振装置。4. The fluid filled type vibration damping device according to claim 3 , wherein the second flow rate restricting means is located on the high pressure second orifice passage closer to the pressure receiving chamber than the second valve means. 前記第一の流量制限手段を、前記高周波用第一オリフィス通路における前記平衡室側への開口部に変位可能に配設されて、変位量が制限されることにより、該高周波用第一オリフィス通路を通じての流体流動量を制限する可動部材で構成すると共に、該可動部材を、前記高周波用第二オリフィス通路における前記平衡室側への開口部にまで広がって、該高周波用第一オリフィス通路および該高周波用第二オリフィス通路の両開口部を一体的に覆うように配設した請求項又はに記載の流体封入式防振装置。The first flow rate restricting means is displaceably disposed at an opening of the high frequency first orifice passage toward the equilibrium chamber, and the amount of displacement is limited, whereby the high frequency first orifice passage is restricted. And a movable member that restricts the amount of fluid flowing through the high-frequency second orifice passage to the opening of the high-frequency second orifice passage toward the equilibrium chamber. The fluid filled type vibration damping device according to claim 3 or 4 , wherein the two orifices for the high frequency second orifice passage are disposed so as to integrally cover both openings. 振動入力方向に離間して配された第一の取付部材と第二の取付部材を前記本体ゴム弾性体で連結し、該第二の取付部材によって支持された仕切部材を挟んで一方の側に前記受圧室を形成すると共に、他方の側に前記平衡室を形成する一方、該仕切部材において、前記低周波用オリフィス通路を、該仕切部材の外周部分を周方向に延びるように形成すると共に、前記高周波用第一オリフィス通路を、前記受圧室と前記平衡室の対向方向に略直交する方向に形成し、更に前記高周波用第二オリフィス通路を、前記受圧室と前記平衡室の対向方向に直線的に貫通して該高周波用第一オリフィス通路に略直交する方向に形成する一方、それら高周波用第一オリフィス通路と高周波用第二オリフィス通路の交差点に配設されて、それら高周波用第一オリフィス通路と高周波用第二オリフィス通路を択一的に連通せしめるバルブ手段によって前記第一及び第二のバルブ手段を構成した請求項乃至の何れかに記載の流体封入式防振装置。The first mounting member and the second mounting member which are arranged apart from each other in the vibration input direction are connected by the main rubber elastic body, and the first mounting member and the second mounting member are arranged on one side with the partition member supported by the second mounting member interposed therebetween. While forming the pressure receiving chamber, while forming the equilibrium chamber on the other side, in the partition member, the low-frequency orifice passage is formed so that the outer peripheral portion of the partition member extends in the circumferential direction, The high-frequency first orifice passage is formed in a direction substantially orthogonal to the direction in which the pressure receiving chamber and the balancing chamber face each other, and the high-frequency second orifice passage is linearly formed in the direction in which the pressure receiving chamber and the balancing chamber face each other. The first orifice passage for high frequency is formed at a crossing point between the first orifice passage for high frequency and the second orifice passage for high frequency. Fluid-filled vibration damping device according to any one of claims 3 to 5 constitute a office passage and said first and second valve means by alternatively communicating allowed to valve means of the second orifice passage for high frequency.
JP7406999A 1999-03-18 1999-03-18 Fluid-filled anti-vibration device Expired - Fee Related JP3603653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7406999A JP3603653B2 (en) 1999-03-18 1999-03-18 Fluid-filled anti-vibration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7406999A JP3603653B2 (en) 1999-03-18 1999-03-18 Fluid-filled anti-vibration device

Publications (2)

Publication Number Publication Date
JP2000266108A JP2000266108A (en) 2000-09-26
JP3603653B2 true JP3603653B2 (en) 2004-12-22

Family

ID=13536537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7406999A Expired - Fee Related JP3603653B2 (en) 1999-03-18 1999-03-18 Fluid-filled anti-vibration device

Country Status (1)

Country Link
JP (1) JP3603653B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2831630B1 (en) * 2001-10-29 2004-01-30 Hutchinson HYDRAULIC ANTI-VIBRATION SUPPORT COMPRISING A CLIPSE DECOUPLING VALVE
JP4573861B2 (en) * 2007-10-02 2010-11-04 東洋ゴム工業株式会社 Liquid-filled vibration isolator
JP4579994B2 (en) * 2008-01-15 2010-11-10 東洋ゴム工業株式会社 Liquid-filled vibration isolator
JP5518354B2 (en) * 2009-03-23 2014-06-11 株式会社ブリヂストン Vibration isolator
JP5690665B2 (en) * 2011-06-20 2015-03-25 株式会社ブリヂストン Vibration isolator

Also Published As

Publication number Publication date
JP2000266108A (en) 2000-09-26

Similar Documents

Publication Publication Date Title
JP2843088B2 (en) Fluid-filled mounting device
JP4103008B2 (en) Fluid filled vibration isolator
JP5977141B2 (en) Fluid filled vibration isolator
JP2598987B2 (en) Fluid-filled mounting device
JP2010031989A (en) Fluid-sealed vibration control device
JP2006064119A (en) Fluid sealed-type vibration control device
JP3729107B2 (en) Fluid filled vibration isolator
JP3743304B2 (en) Fluid filled vibration isolator
JP2007085523A (en) Fluid-enclosed type vibration isolator
JP3740980B2 (en) Fluid-filled vibration isolator and manufacturing method thereof
JP4921341B2 (en) Liquid-filled vibration isolator
JP3603653B2 (en) Fluid-filled anti-vibration device
JP3039102B2 (en) Fluid-filled mounting device
JP3570278B2 (en) Fluid-filled vibration isolator
JPH0540638U (en) Fluid-filled mounting device
JP4158110B2 (en) Pneumatic switching type fluid-filled engine mount
JP3767323B2 (en) Fluid filled vibration isolator
JP4579962B2 (en) Liquid-filled vibration isolator
JP3281487B2 (en) Fluid-filled cylindrical mounting device
JP3731382B2 (en) Fluid filled vibration isolator
JP3728984B2 (en) Fluid filled vibration isolator
JP4158108B2 (en) Pneumatic switching type fluid-filled engine mount
JP4623428B2 (en) Fluid filled vibration isolator
JP3721913B2 (en) Fluid filled vibration isolator
JP4158111B2 (en) Pneumatic switching type fluid-filled engine mount

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees