JP3825353B2 - Ceramic substrate for multiple chip resistors - Google Patents

Ceramic substrate for multiple chip resistors Download PDF

Info

Publication number
JP3825353B2
JP3825353B2 JP2002092547A JP2002092547A JP3825353B2 JP 3825353 B2 JP3825353 B2 JP 3825353B2 JP 2002092547 A JP2002092547 A JP 2002092547A JP 2002092547 A JP2002092547 A JP 2002092547A JP 3825353 B2 JP3825353 B2 JP 3825353B2
Authority
JP
Japan
Prior art keywords
holes
ceramic substrate
outermost
hole
multiple chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002092547A
Other languages
Japanese (ja)
Other versions
JP2003297616A (en
Inventor
央介 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002092547A priority Critical patent/JP3825353B2/en
Publication of JP2003297616A publication Critical patent/JP2003297616A/en
Application granted granted Critical
Publication of JP3825353B2 publication Critical patent/JP3825353B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Non-Adjustable Resistors (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、セラミック製の多連チップ抵抗器を形成するのに用いる多連チップ抵抗器用セラミック基板に関するものである。
【0002】
【従来の技術】
図4は一般的な多連チップ抵抗器を示す斜視図である。この多連チップ抵抗器10は、両側面が凹凸に形成された長尺状のセラミック基板11上の対向する凹部12間に抵抗体膜13を備えたもので、各抵抗体膜13はその両端の凹部12に被着された端面電極膜15とそれぞれ電気的に接続されるとともに、保護膜14によって被覆されるようになっていた。
【0003】
また、このような多連チップ抵抗器10を形成するには、図5に示すような縦横の分割溝32,33と、例えば横方向の分割溝32上に等間隔で形成された複数の貫通孔35を備え、最外に位置する縦横の分割溝32a,33aで仕切られた領域を製品部34、最外に位置する縦横の分割溝32a,33aからセラミック基板31の外辺31a,31bまでの領域をダミー部36とした多連チップ抵抗器用セラミック基板31が用いられ、まず、セラミック基板31の貫通孔35の内壁面及び開口部周辺に端面電極膜15を印刷、焼き付けした後、セラミック基板31の一方の主面側に抵抗体膜13を印刷、焼き付けし、次にレーザートリミングにより抵抗体膜13の抵抗値を設定した後、抵抗体膜13上に保護膜14を印刷、焼き付けし、次いで横方向の分割溝32に沿って一次ブレイクした後、縦方向の分割溝33に沿って二次ブレイクすることにより、図4に示すような多連チップ抵抗器10を製造するようになっていた。
【0004】
ところで、多連チップ抵抗器用セラミック基板31を製造するには、まず、セラミックグリーンシートを用意し、図6(a)に示すように、複数の孔40aを有する下パンチ40上に載せたセラミックグリーンシート39の表面に、断面形状がV字状をした刃先部を有する金型41を押し当てて縦横の分割溝32、33を形成した後、図6(b)に示すように、横方向の分割溝32上の所定位置を、先端面が平坦な円柱状をした打ち抜きピン42で打ち抜いて複数の貫通孔35を穿孔した後、セラミックグリーンシート39を焼成することにより製造するようになっていた(特開平10−156821号公報参照)。
【0005】
【発明が解決しようとする課題】
ところで、打ち抜きピン42により分割溝32上に貫通孔35を打ち抜く際、セラミックグリーンシート39には貫通孔35が広がる方向に引っ張り応力が発生するが、分割溝32の延設方向に発生する引っ張り応力については、分割溝32の形成によって密度が高くなっているため、貫通孔35の形状に殆ど影響を及ぼすことがなく、また、分割溝32に対して垂直方向に発生する引っ張り応力については、隣り合う分割溝35上に貫通孔35を形成する際に生じる応力によって互いに打ち消し合うように働くため、貫通孔35の形状に殆ど影響を及ぼすことがない。
【0006】
しかしながら、最外に位置する分割溝32a上の貫通孔35aには、貫通孔35aの一部がかかるダミー部側より引っ張り応力が作用しないため、最外に位置する分割溝32a上に形成する貫通孔35aの形状だけ図7に示すような楕円状に変形するといった課題があった。
【0007】
その為、この後の端面電極膜15の形成時において、最外に位置する分割溝32a上の貫通孔35には、均一な膜厚を持った端面電極膜15を形成することができず、酷い時には不良品となるため、歩留りを向上させることができないといった課題があった。
【0008】
【課題を解決するための手段】
そこで、本発明は上記課題に鑑み、セラミック基板の少なくとも一方の主面に縦横に形成された分割溝と、上記縦方向又は横方向のいずれか一方の分割溝上に等間隔で穿孔された複数の貫通孔を備え、最外に位置する縦横の分割溝で仕切られた領域を製品部、最外に位置する縦横の分割溝からセラミック基板の外辺までの領域をダミー部とした多連チップ抵抗器用セラミック基板において、貫通孔が形成されている最外に位置する分割溝の外側に、上記最外に位置する分割溝上の貫通孔と同等の間隔で複数のダミー孔を設けたことを特徴とする。
【0009】
なお、上記ダミー孔と最外に位置する分割溝上の貫通孔との最短距離は、製品部の隣り合う分割溝上に形成された貫通孔間の間隔と同等とすることが好ましい。
【0010】
【発明の実施の形態】
以下、本発明の実施形態について説明する。
【0011】
図1は本発明の多連チップ抵抗器用セラミック基板の一例を示す平面図である。
【0012】
この多連チップ抵抗器用セラミック基板1は、セラミック基板1の少なくとも一方の主面に横方向の分割溝2と縦方向の分割溝3を有し、上記横方向の分割溝2上に等間隔で穿孔された複数の貫通孔5を備え、最外に位置する縦横の分割溝2a,3aで仕切られた領域を製品部4、最外に位置する縦横の分割溝2a,3aからセラミック基板1の外辺1a,1bまでの領域をダミー部6としてある。
【0013】
多連チップ抵抗器用セラミック基板1を形成するセラミックスとしては、特に限定するものではなく、アルミナ、ジルコニア、ムライト、窒化珪素、窒化アルミニウム等を主成分とするセラミック焼結体を用いることができる。なお、各分割溝2,3の断面形状はV字状としてあり、また、貫通孔5の平面形状は円形としてある。
【0014】
そして、本発明の多連チップ抵抗器用セラミック基板1では、貫通孔5aが形成されている最外に位置する分割溝2aの外側に、即ち最外に位置する横方向の分割溝2a上の貫通孔5aの一部がかかるダミー部6aに、最外に位置する分割溝2a上の貫通孔5aと同等の間隔で複数のダミー孔7を穿孔したことを特徴とする。
【0015】
即ち、図1に示す多連チップ抵抗器用セラミック基板1を製造するには、まず、セラミックグリーンシートを用意し、図2(a)に示すように、複数の孔20aを有する下パンチ20上に載せたセラミックグリーンシート9の表面に、断面形状がV字状をした刃先部を有する金型21を押し当てて縦横の分割溝を形成した後、図2(b)に示すように、横方向の分割溝2上の所定位置を、先端面が平坦な円柱状をした打ち抜きピン22で打ち抜いて複数の貫通孔5を穿孔するのであるが、この時、最外に位置する横方向の分割溝2a上に形成する貫通孔5aの一部がかかるダミー部6aにも打ち抜きピン23によって最外に位置する分割溝2a上の貫通孔5aと同等の間隔で複数のダミー部7を穿孔することにより、最外に位置する分割溝2a上の貫通孔5aに対し、分割溝2aに垂直な方向の引っ張り応力を両側から作用させることができるため、貫通孔5aの変形を防ぎ、図3に示すように、他の貫通孔5と同様に平面形状を円形とすることができる。
【0016】
その為、分割溝2,3と貫通孔5を形成したセラミックグリーンシート9を所定の温度で焼成することにより、製品部4に形成される全ての貫通孔5の寸法精度を安定させることができるため、端面電極膜の形成時における成膜不良を防ぎ、不良品の発生をなくすことができることから、歩留りを向上させることができる。
【0017】
ところで、このような効果を奏するためには、ダミー部6aに形成するダミー孔7と最外に位置する横方向の分割溝2a上に形成する貫通孔5aとの最短距離Lは、製品部4の隣り合う分割溝2上に形成された貫通孔5間の間隔Wに近づけることが好ましく、望ましくは同等とすることが好ましい。
【0018】
なぜなら、ダミー孔7と貫通孔5aとの最短距離Lが、製品部4の隣り合う分割溝2上に形成された貫通孔5間の間隔Wより大きくなったり、小さくなり過ぎると、打ち抜きピン22により最外に位置する横方向の分割溝2a上に貫通孔5aを穿孔する際、製品部側から作用する引っ張り応力とダミー部側から作用する引っ張り応力の大きさに差があるため、相互に相殺させることができず、最外に位置する横方向の分割溝2a上に形成する貫通孔5aの寸法を安定させることができないからで、ダミー孔7と貫通孔5aとの最短距離Lを、製品部4の隣り合う分割溝2上に形成された貫通孔5間の間隔Wと同等とすることで、製品部側から作用する引っ張り応力とダミー部側から作用する引っ張り応力の大きさを等しくし、互いの引っ張り応力を相殺することができるため、最外に位置する横方向の分割溝2a上に形成する貫通孔5aの寸法を安定させることができる。
【0019】
なお、本発明において、ダミー孔7と貫通孔5aとの最短距離Lが、製品部4の隣り合う分割溝2上に形成された貫通孔5間の間隔Wと同等であるとは、貫通孔5間の間隔Wを1とした時、最短距離Lが間隔Wに対して0.8〜1.2の範囲内にある場合を言う。
【0020】
以上、本発明の実施形態について示したが、本発明は上述した実施形態だけに限定されるものではなく、例えば、貫通孔5の平面形状としては円形をしたものだけに限らず、楕円形、菱形や正方形等の四角形をしたものでも良く、また、分割性を考慮してダミー部6にダミーの分割溝を形成してもかまわない。
【0021】
このように、本発明の要旨を逸脱しない範囲であれば、改良や変更したものにも適用できることは言う迄もない。
【0022】
【実施例】
ここで、図1に示す本発明の多連チップ抵抗器用セラミック基板1と、図5に示す従来の多連チップ抵抗器用セラミック基板31を各々20枚ずつ製作し、最外に位置する横方向の分割溝2a,32a上に形成する貫通孔5a,35aの寸法精度について比較する実験を行った。
【0023】
また、本発明の多連チップ抵抗器用セラミック基板1においては、最外に位置する横方向の分割溝2a上に形成する貫通孔5aからダミー部6aに形成するダミー孔7までの最短距離Lを異ならせたものも用意し、同様に実験を行った。
【0024】
本実験に用いる多連チップ抵抗器用セラミック基板1,31は、いずれもアルミナ含有量が96重量%のアルミナセラミックスにより形成し、その外辺寸法が60.0×51.2mm、板厚が0.37mmの板状体とした。
【0025】
そして、分割により取り出す多連チップ抵抗器は4連とするとともに、その外辺寸法を2.0mm×1.0mmとし、板状体の長辺方向に46列、短辺方向に16列形成されるように縦横の分割溝2,3,32,33を形成するとともに、横方向の分割溝2,32上には合計で3008個の貫通孔5,35を穿孔するようにして従来の多連チップ抵抗器用セラミック基板31を製作した。
【0026】
また、本発明の多連チップ抵抗器用セラミック基板1にあっては、最外に位置する横方向の分割溝2a上に形成される貫通孔5aの一部がかかるダミー部6aに、最外に位置する分割溝2a上の貫通孔5aと同等の間隔で複数のダミー孔7を穿孔して形成した。
【0027】
ただし、いずれも貫通孔5,35及びダミー孔7の平面形状を円形とし、その穴径は0.14mmとした。
【0028】
そして、図3及び図7に示すように、最外に位置する横方向の分割溝2a,32a上の貫通孔5a,35aの延設方向における径(X)と貫通孔5a,35aに垂直な方向における径(Y)とを測定し、長短差を算出することにより貫通孔5a,35aの真円度を評価するようにした。
【0029】
結果は表1に示す通りである。
【0030】
【表1】

Figure 0003825353
【0031】
この結果、表1により判るように、ダミー孔を持たない従来の多連チップ抵抗器用セラミック基板31は、最外に位置する貫通孔35aの長短差は最大で0.028mmもあった。
【0032】
これに対し、本発明の多連チップ抵抗器用セラミック基板1はダミー孔7を形成するようにしたことにより、従来の多連チップ抵抗器用セラミック基板31と比較して最外に位置する貫通孔5aの長短差を小さくできることが判る。
【0033】
また、製品部4の隣り合う分割溝2上の貫通孔5間の間隔Wを1とした時の最外の貫通孔5aからダミー孔7までの最短距離Lを0.8〜1.2とすることにより、最外に位置する貫通孔5aの長短差の最大値を0.01mm以下とすることができ、特に優れていた。
【0034】
【発明の効果】
以上のように、本発明によれば、セラミック基板の少なくとも一方の主面に縦横に形成された分割溝と、上記縦方向又は横方向のいずれか一方の分割溝上に等間隔で穿孔された複数の貫通孔を備え、最外に位置する縦横の分割溝で仕切られた領域を製品部、最外に位置する縦横の分割溝からセラミック基板の外辺までの領域をダミー部とした多連チップ抵抗器用セラミック基板において、最外に位置する分割溝上の貫通孔の一部がかかるダミー部に、最外に位置する分割溝上の貫通孔と同等の間隔で複数のダミー孔を設けたことによって、最外に位置する分割溝上の貫通孔の変形を抑え、他の貫通孔と同程度の寸法精度に保つことができる。特に、上記ダミー孔と最外に位置する分割溝上の貫通孔との最短距離を、製品部の隣り合う分割溝上に形成された貫通孔間の間隔と同等とすることで、最外に位置する分割溝上の貫通孔の寸法をより安定させることができる。
【0035】
その為、多連チップ抵抗器用セラミック基板を用いれば、不良品を発生させることがなく、製品部より良品の多連チップ抵抗器を取り出すことができる。
【図面の簡単な説明】
【図1】本発明の多連チップ抵抗器用セラミック基板の一例を示す平面図である。
【図2】(a)(b)は本発明の多連チップ抵抗器用セラミック基板の製造工程を説明するための断面図である。
【図3】本発明の多連チップ抵抗器用セラミック基板の最外に位置する分割溝上に形成された貫通孔を拡大した平面図である。
【図4】一般的な多連チップ抵抗器を示す斜視図である。
【図5】従来の多連チップ抵抗器用セラミック基板の一例を示す平面図である。
【図6】(a)(b)は従来の多連チップ抵抗器用セラミック基板の製造工程を説明するための断面図である。
【図7】従来の多連チップ抵抗器用セラミック基板の最外に位置する分割溝上に形成された貫通孔を拡大した平面図である。
【符号の説明】
1:多連チップ抵抗器用セラミック基板
2:横方向の分割溝
2a:最外に位置する横方向の分割溝
3:縦方向の分割溝
3a:最外に位置する縦方向の分割溝
4:製品部
5:貫通孔
5a:最外に位置する分割溝上の貫通孔
6:ダミー部
6a:最外に位置する分割溝上の貫通孔の一部がかかるダミー部
7:ダミー孔
9:セラミックグリーンシート
10:多連チップ抵抗器
11:セラミック基板
12:凹部
13:抵抗体膜
14:保護膜
15:端面電極膜
20:下パンチ
20a:孔
21:金型
22,23:打ち抜きパンチ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ceramic substrate for a multiple chip resistor used for forming a multiple chip resistor made of ceramic.
[0002]
[Prior art]
FIG. 4 is a perspective view showing a general multiple chip resistor. This multiple chip resistor 10 is provided with a resistor film 13 between opposing concave portions 12 on a long ceramic substrate 11 having both side surfaces formed with irregularities, and each resistor film 13 has both ends thereof. In addition to being electrically connected to the end face electrode films 15 deposited on the recesses 12, they were covered with the protective film 14.
[0003]
Further, in order to form such a multiple chip resistor 10, vertical and horizontal dividing grooves 32 and 33 as shown in FIG. 5 and, for example, a plurality of through holes formed at equal intervals on the horizontal dividing groove 32 are used. A region provided with a hole 35 and partitioned by vertical and horizontal dividing grooves 32a and 33a located at the outermost part extends from the product portion 34, vertical and horizontal dividing grooves 32a and 33a to the outer sides 31a and 31b of the ceramic substrate 31. A ceramic substrate 31 for a multiple chip resistor having a dummy portion 36 as a region is used. First, the end face electrode film 15 is printed and baked around the inner wall surface and the opening of the through hole 35 of the ceramic substrate 31, and then the ceramic substrate After the resistor film 13 is printed and baked on one main surface side of 31, and the resistance value of the resistor film 13 is set by laser trimming, the protective film 14 is printed and baked on the resistor film 13, After the primary break along the horizontal dividing groove 32, the multiple chip resistor 10 as shown in FIG. 4 is manufactured by performing a secondary break along the vertical dividing groove 33. It was.
[0004]
By the way, in order to manufacture the ceramic substrate 31 for the multiple chip resistors, first, a ceramic green sheet is prepared and, as shown in FIG. 6A, the ceramic green placed on the lower punch 40 having a plurality of holes 40a. After forming the vertical and horizontal divided grooves 32 and 33 on the surface of the sheet 39 by pressing a mold 41 having a cutting edge portion having a V-shaped cross section, as shown in FIG. A predetermined position on the dividing groove 32 is punched with a punching pin 42 having a cylindrical shape with a flat tip surface, and a plurality of through holes 35 are punched, and then the ceramic green sheet 39 is fired. (See JP-A-10-156821).
[0005]
[Problems to be solved by the invention]
By the way, when the through hole 35 is punched on the dividing groove 32 by the punching pin 42, tensile stress is generated in the ceramic green sheet 39 in the direction in which the through hole 35 expands, but tensile stress generated in the extending direction of the dividing groove 32. Since the density is increased by the formation of the dividing groove 32, the shape of the through hole 35 is hardly affected, and the tensile stress generated in the direction perpendicular to the dividing groove 32 is adjacent. Since it works so as to cancel each other by the stress generated when the through holes 35 are formed on the matching divided grooves 35, the shape of the through holes 35 is hardly affected.
[0006]
However, since a tensile stress does not act on the through-hole 35a on the outermost division groove 32a from the side of the dummy portion where a part of the through-hole 35a is applied, the through-hole formed on the outermost division groove 32a. Only the shape of the hole 35a has a problem of being deformed into an elliptical shape as shown in FIG.
[0007]
Therefore, when the end face electrode film 15 is formed later, the end face electrode film 15 having a uniform film thickness cannot be formed in the through hole 35 on the outermost divided groove 32a. Since it is a defective product when it is severe, there is a problem that the yield cannot be improved.
[0008]
[Means for Solving the Problems]
Therefore, in view of the above problems, the present invention provides a plurality of divided grooves formed vertically and horizontally on at least one main surface of the ceramic substrate, and a plurality of holes formed at equal intervals on either the vertically or horizontally divided grooves. Multiple chip resistors with through-holes, with the product area as the area partitioned by the outermost vertical and horizontal dividing grooves and the dummy area from the outermost vertical and horizontal dividing grooves to the outer edge of the ceramic substrate The ceramic ceramic substrate is characterized in that a plurality of dummy holes are provided on the outer side of the outermost divided groove where the through holes are formed at the same interval as the through holes on the outermost divided grooves. To do.
[0009]
The shortest distance between the dummy hole and the through hole on the outermost divided groove is preferably equal to the interval between the through holes formed on the adjacent divided grooves of the product portion.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0011]
FIG. 1 is a plan view showing an example of a ceramic substrate for multiple chip resistors of the present invention.
[0012]
This multiple chip resistor ceramic substrate 1 has a horizontal dividing groove 2 and a vertical dividing groove 3 on at least one main surface of the ceramic substrate 1, and is equidistantly arranged on the horizontal dividing groove 2. A plurality of perforated through holes 5 are provided, and the region partitioned by the outermost vertical and horizontal dividing grooves 2a and 3a is defined as the product portion 4, and the outermost vertical and horizontal dividing grooves 2a and 3a A region up to the outer sides 1a and 1b is a dummy portion 6.
[0013]
The ceramic forming the ceramic substrate 1 for the multiple chip resistor is not particularly limited, and a ceramic sintered body mainly composed of alumina, zirconia, mullite, silicon nitride, aluminum nitride, or the like can be used. The sectional shape of each of the dividing grooves 2 and 3 is V-shaped, and the planar shape of the through hole 5 is circular.
[0014]
And in the ceramic substrate 1 for multiple chip resistors of this invention, it penetrates on the outer side of the dividing groove 2a located on the outermost side where the through-hole 5a is formed, that is, on the lateral dividing groove 2a located on the outermost side. A plurality of dummy holes 7 are perforated in the dummy portion 6a to which a part of the hole 5a is applied at the same interval as the through hole 5a on the outermost division groove 2a.
[0015]
That is, in order to manufacture the multiple chip resistor ceramic substrate 1 shown in FIG. 1, first, a ceramic green sheet is prepared and, as shown in FIG. 2A, on the lower punch 20 having a plurality of holes 20a. After forming the vertical and horizontal divided grooves on the surface of the placed ceramic green sheet 9 by pressing a mold 21 having a V-shaped cutting edge portion to form a vertical and horizontal divided groove, as shown in FIG. A plurality of through holes 5 are perforated by punching a predetermined position on the divided groove 2 with a punching pin 22 having a flat tip end and a cylindrical shape. By punching a plurality of dummy portions 7 at the same interval as the through holes 5a on the outermost divided grooves 2a by the punching pins 23, the dummy portions 6a to which a part of the through holes 5a formed on 2a are also applied. , The outermost dividing groove 2 Since the tensile stress in the direction perpendicular to the dividing groove 2a can be applied to the upper through-hole 5a from both sides, the through-hole 5a is prevented from being deformed, and as shown in FIG. The planar shape can be circular.
[0016]
Therefore, the dimensional accuracy of all the through holes 5 formed in the product part 4 can be stabilized by firing the ceramic green sheet 9 in which the divided grooves 2 and 3 and the through holes 5 are formed at a predetermined temperature. Therefore, it is possible to prevent film formation failure during the formation of the end face electrode film and eliminate the occurrence of defective products, thereby improving the yield.
[0017]
By the way, in order to achieve such an effect, the shortest distance L between the dummy hole 7 formed in the dummy portion 6a and the through hole 5a formed in the laterally divided groove 2a located on the outermost side is set to the product portion 4 Are preferably close to the interval W between the through holes 5 formed on the adjacent divided grooves 2, and preferably equal to each other.
[0018]
This is because if the shortest distance L between the dummy hole 7 and the through hole 5a becomes larger or smaller than the interval W between the through holes 5 formed on the adjacent divided grooves 2 of the product portion 4, the punching pin 22 When the through hole 5a is drilled on the laterally divided groove 2a located at the outermost position, there is a difference between the tensile stress acting from the product side and the tensile stress acting from the dummy side. Since the dimensions of the through holes 5a formed on the outermost laterally divided grooves 2a cannot be stabilized, the shortest distance L between the dummy holes 7 and the through holes 5a cannot be offset. By making it equal to the interval W between the through holes 5 formed on the adjacent divided grooves 2 of the product part 4, the tensile stress acting from the product part side is equal to the tensile stress acting from the dummy part side. And pull each other It is possible to offset the force, the size of the through holes 5a to be formed in the lateral direction of the dividing groove 2a on which is located outermost can be stabilized.
[0019]
In the present invention, the shortest distance L between the dummy hole 7 and the through hole 5a is equivalent to the interval W between the through holes 5 formed on the adjacent divided grooves 2 of the product part 4. When the interval W between 5 is 1, the shortest distance L is in the range of 0.8 to 1.2 with respect to the interval W.
[0020]
The embodiment of the present invention has been described above, but the present invention is not limited to the above-described embodiment. For example, the planar shape of the through hole 5 is not limited to a circular shape, but an oval shape, A rectangular shape such as a rhombus or a square may be used, and a dummy dividing groove may be formed in the dummy portion 6 in consideration of the dividing property.
[0021]
In this manner, it goes without saying that the present invention can be applied to an improved or changed version as long as it does not depart from the gist of the present invention.
[0022]
【Example】
Here, 20 each of the multi-chip resistor ceramic substrate 1 of the present invention shown in FIG. 1 and the conventional multi-chip resistor ceramic substrate 31 shown in FIG. An experiment was conducted to compare the dimensional accuracy of the through holes 5a and 35a formed on the divided grooves 2a and 32a.
[0023]
In the ceramic substrate 1 for a multiple chip resistor of the present invention, the shortest distance L from the through hole 5a formed on the outermost lateral dividing groove 2a to the dummy hole 7 formed in the dummy portion 6a is set. Different things were prepared and the experiment was conducted in the same way.
[0024]
The ceramic substrates 1 and 31 for multiple chip resistors used in this experiment are both made of alumina ceramics having an alumina content of 96% by weight, the outer dimension is 60.0 × 51.2 mm, and the plate thickness is 0. A 37 mm plate-shaped body was obtained.
[0025]
Then, the multiple chip resistors taken out by division are made into four series, and the outer dimension is 2.0 mm × 1.0 mm, and 46 rows are formed in the long side direction of the plate-like body and 16 rows are formed in the short side direction. The vertical and horizontal dividing grooves 2, 3, 32, 33 are formed in this manner, and a total of 3008 through holes 5, 35 are drilled on the horizontal dividing grooves 2, 32. A ceramic substrate 31 for chip resistors was manufactured.
[0026]
Further, in the ceramic substrate 1 for a multiple chip resistor of the present invention, a part of the through hole 5a formed on the laterally divided groove 2a located on the outermost side is placed on the dummy portion 6a on the outermost side. A plurality of dummy holes 7 were formed by drilling at the same interval as the through holes 5a on the divided grooves 2a.
[0027]
However, in all cases, the planar shapes of the through holes 5 and 35 and the dummy hole 7 were circular, and the hole diameter was 0.14 mm.
[0028]
As shown in FIGS. 3 and 7, the diameter (X) in the extending direction of the through holes 5a, 35a on the laterally divided grooves 2a, 32a located at the outermost position is perpendicular to the through holes 5a, 35a. The roundness of the through-holes 5a and 35a was evaluated by measuring the diameter (Y) in the direction and calculating the difference between the lengths.
[0029]
The results are as shown in Table 1.
[0030]
[Table 1]
Figure 0003825353
[0031]
As a result, as can be seen from Table 1, in the conventional multiple chip resistor ceramic substrate 31 having no dummy holes, the length difference between the outermost through holes 35a was 0.028 mm at the maximum.
[0032]
On the other hand, the multi-chip resistor ceramic substrate 1 of the present invention is formed with the dummy holes 7 so that the through-hole 5a located at the outermost position as compared with the conventional multi-chip resistor ceramic substrate 31 is provided. It can be seen that the difference in length can be reduced.
[0033]
Further, the shortest distance L from the outermost through hole 5a to the dummy hole 7 when the interval W between the through holes 5 on the adjacent divided grooves 2 of the product part 4 is 1 is 0.8 to 1.2. By doing so, the maximum value of the length difference of the outermost through-hole 5a can be made 0.01 mm or less, which is particularly excellent.
[0034]
【The invention's effect】
As described above, according to the present invention, the divided grooves formed vertically and horizontally on at least one main surface of the ceramic substrate and the plurality of holes formed at equal intervals on either the vertically or horizontally divided grooves. A multiple chip with a through-hole, the product section as the area partitioned by the vertical and horizontal dividing grooves located at the outermost part, and the dummy area as the area from the vertical and horizontal dividing grooves located at the outermost position to the outer side of the ceramic substrate In the ceramic substrate for resistors, by providing a plurality of dummy holes at the same interval as the through holes on the outermost divided grooves in the dummy part where a part of the through holes on the outermost divided grooves is provided, It is possible to suppress the deformation of the through hole on the outermost division groove and maintain the same dimensional accuracy as other through holes. In particular, the shortest distance between the dummy hole and the through hole on the outermost divided groove is equal to the interval between the through holes formed on the adjacent divided grooves of the product part, so that it is located on the outermost side. The dimension of the through hole on the dividing groove can be further stabilized.
[0035]
Therefore, if a ceramic substrate for multiple chip resistors is used, a defective multiple chip resistor can be taken out from the product section without generating defective products.
[Brief description of the drawings]
FIG. 1 is a plan view showing an example of a ceramic substrate for multiple chip resistors of the present invention.
2A and 2B are cross-sectional views for explaining a manufacturing process of a ceramic substrate for a multiple chip resistor according to the present invention.
FIG. 3 is an enlarged plan view of a through hole formed on a dividing groove located on the outermost side of the ceramic substrate for a multiple chip resistor of the present invention.
FIG. 4 is a perspective view showing a general multiple chip resistor.
FIG. 5 is a plan view showing an example of a conventional ceramic substrate for multiple chip resistors.
6A and 6B are cross-sectional views for explaining a manufacturing process of a conventional ceramic substrate for multiple chip resistors.
FIG. 7 is an enlarged plan view of a through hole formed on a dividing groove located on the outermost side of a conventional ceramic substrate for multiple chip resistors.
[Explanation of symbols]
1: Ceramic substrate 2 for multiple chip resistors: Horizontal dividing groove 2a: Outermost horizontal dividing groove 3: Vertical dividing groove 3a: Outermost vertical dividing groove 4: Product Part 5: Through hole 5a: Through hole on the outermost division groove 6: Dummy part 6a: Dummy part on which a part of the through hole on the outermost division groove is applied 7: Dummy hole 9: Ceramic green sheet 10 : Multiple chip resistor 11: Ceramic substrate 12: Recess 13: Resistor film 14: Protective film 15: End face electrode film 20: Lower punch 20 a: Hole 21: Die 22, 23: Punching punch

Claims (2)

セラミック基板の少なくとも一方の主面に縦横に形成された分割溝と、上記縦方向又は横方向のいずれか一方の分割溝上に等間隔で穿孔された複数の貫通孔を備え、最外に位置する縦横の分割溝で仕切られた領域を製品部、最外に位置する縦横の分割溝からセラミック基板の外辺までの領域をダミー部とした多連チップ抵抗器用セラミック基板において、貫通孔が形成されている最外に位置する分割溝の外側に、上記最外に位置する分割溝上の貫通孔と同等の間隔で複数のダミー孔を設けたことを特徴とする多連チップ抵抗器用セラミック基板。It is provided with division grooves formed vertically and horizontally on at least one main surface of the ceramic substrate, and a plurality of through holes drilled at equal intervals on one of the division grooves in the vertical direction or the horizontal direction, and is located at the outermost position. Through holes are formed in the ceramic substrate for multiple chip resistors, where the area partitioned by the vertical and horizontal dividing grooves is the product part, and the area from the outermost vertical and horizontal dividing grooves to the outer side of the ceramic substrate is the dummy part. A ceramic substrate for a multiple chip resistor, wherein a plurality of dummy holes are provided on the outer side of the outermost divided groove at intervals equal to the through holes on the outermost divided groove. 上記ダミー孔と最外に位置する分割溝上の貫通孔との最短距離が、製品部の隣り合う分割溝上に形成された貫通孔間の間隔と同等であることを特徴とする請求項1に記載の多連チップ抵抗器用セラミック基板。The shortest distance between the dummy hole and the through hole on the outermost divided groove is equal to the interval between the through holes formed on the adjacent divided grooves of the product portion. Ceramic substrate for multiple chip resistors.
JP2002092547A 2002-03-28 2002-03-28 Ceramic substrate for multiple chip resistors Expired - Fee Related JP3825353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002092547A JP3825353B2 (en) 2002-03-28 2002-03-28 Ceramic substrate for multiple chip resistors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002092547A JP3825353B2 (en) 2002-03-28 2002-03-28 Ceramic substrate for multiple chip resistors

Publications (2)

Publication Number Publication Date
JP2003297616A JP2003297616A (en) 2003-10-17
JP3825353B2 true JP3825353B2 (en) 2006-09-27

Family

ID=29386668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002092547A Expired - Fee Related JP3825353B2 (en) 2002-03-28 2002-03-28 Ceramic substrate for multiple chip resistors

Country Status (1)

Country Link
JP (1) JP3825353B2 (en)

Also Published As

Publication number Publication date
JP2003297616A (en) 2003-10-17

Similar Documents

Publication Publication Date Title
KR101536068B1 (en) Wiring substrate, multi-pattern wiring substrate, and manufacturing method therefor
KR20210136028A (en) Method for manufacturing nitride ceramic substrate and nitride ceramic substrate
JP3825353B2 (en) Ceramic substrate for multiple chip resistors
KR101514172B1 (en) Wiring board, multi-pattern wiring board, and method for producing same
JP4018933B2 (en) Ceramic substrate and manufacturing method thereof
JP3838810B2 (en) Ceramic substrate for electronic parts
JP3847210B2 (en) Ceramic substrate having divided grooves and manufacturing method thereof
JP2003133111A (en) Method for manufacturing ceramic substrate for multiple chip resistor
JP3610173B2 (en) Ceramic substrate having dividing grooves
JP2004167963A (en) Manufacturing method for ceramic substrate having splitting groove
JP2008016587A (en) Method of manufacturing ceramic laminated layer substrate
JP4562413B2 (en) Drilling die and method for punching ceramic green sheet using the same
JP2003046206A (en) Ceramic substrate having dividing groove and its dividing method
US11658082B2 (en) Wiring substrate and method of manufacturing the same
JP4683752B2 (en) Ceramic substrate having dividing grooves
JPH10156821A (en) Ceramic base having division grooves and resistor using the same
JP3301927B2 (en) Method of manufacturing ceramic substrate having divided grooves
JP2001130948A (en) Ceramics substrate for electronic part
JP3325483B2 (en) Method of manufacturing glaze substrate for thermal head
JPH11314972A (en) Ceramic substrate and its production
JP4331838B2 (en) Manufacturing method of ceramic substrate
JPH11186011A (en) Ceramic board
JPH11163478A (en) Ceramic substrate having dividing groove
JPH0740325A (en) Manufacture of ceramic board
JP2004179554A (en) Method for manufacturing ceramic substrate and chip resistor and chip resistor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060629

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees