JP3818903B2 - 半導体装置のアライメント誤差の測定用素子 - Google Patents

半導体装置のアライメント誤差の測定用素子 Download PDF

Info

Publication number
JP3818903B2
JP3818903B2 JP2001372415A JP2001372415A JP3818903B2 JP 3818903 B2 JP3818903 B2 JP 3818903B2 JP 2001372415 A JP2001372415 A JP 2001372415A JP 2001372415 A JP2001372415 A JP 2001372415A JP 3818903 B2 JP3818903 B2 JP 3818903B2
Authority
JP
Japan
Prior art keywords
conductive film
lower conductive
alignment error
insulating layer
upper conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001372415A
Other languages
English (en)
Other versions
JP2003172601A (ja
Inventor
英記 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2001372415A priority Critical patent/JP3818903B2/ja
Publication of JP2003172601A publication Critical patent/JP2003172601A/ja
Application granted granted Critical
Publication of JP3818903B2 publication Critical patent/JP3818903B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置のアライメント誤差の測定用素子に関するものである。
【0002】
【従来の技術】
半導体装置の製造工程においては、何層もの導電膜及び絶縁層を積層する。それらの膜の形成工程において、フォトリソグラフィー技術によりパターニングを行なう。その際、上下層膜間にアライメント誤差が生じる。アライメント誤差が大きければ、導電膜間の導通不良や短絡不良の原因となり、半導体装置の不良を引き起こす。半導体装置の微細化に伴い、より微細加工パターンを形成するにはアライメント誤差を少なくするとともに、半導体装置の品質維持管理や不良解析の迅速化などのためにアライメント誤差の評価方法も重要となってきている。
【0003】
従来、アライメント誤差を測定する方法としては、例えば図5に示すようなBOXインBOXパターンを用いて光学的に誤差を測定する方法が一般的である(従来技術1)。
【0004】
アライメント誤差を測定する他の方法として、例えば特開平7−29952号公報に開示されているように、トランジスタ特性を評価することにより電気的に測定する方法がある(従来技術2)。
その方法では、略台形形状の活性領域上に、その活性領域を横断するようにトランジスタの多結晶シリコンゲートを形成する。多結晶シリコンゲートの位置がずれると、トランジスタのチャネル幅が変化してドレイン電流値が変化するので、ドレイン電流値を測定することにより多結晶シリコンゲートのずれを測定できるとしている。
【0005】
アライメント誤差を測定する他の方法として、例えば特開平9−139469号公報に開示されているように、キャパシタを用いた方法が提案されている(従来技術3)。
その方法では、図6に示すように、キャパシタの下部電極と同一層でパターン形成された導電膜31a,31bと、キャパシタの上部電極と同一層でパターン形成された導電膜33a,33bとが絶縁層32を介して垂直方向で重なるように配置されてなる2つのキャパシタ35a,35bを備えた測定用素子を用い、キャパシタ35a,35bの容量値の関数により、アライメント誤差を測定している。
【0006】
【発明が解決しようとする課題】
従来技術1では、画像データを解析して誤差量を求めなければならず、さらに製造工程のバラツキに起因する測定パターンの光学的特徴の変化も測定してしまうので、この方法によるアライメント誤差の測定値は多くの誤差を含むという問題があった。さらに、画像データを解析する必要があるのでスループットが悪いという問題があった。
【0007】
従来技術2及び3は、アライメント誤差の測定を画像解析ではなく電気的な検出により行なっているので、製造工程のバラツキに起因する測定パターンの光学的特徴の変化に対する測定誤差を小さくでき、さらにスループットも従来技術1に比べて向上させることができる。
【0008】
しかし、従来技術2は、多結晶シリコンゲートのアライメント誤差しか測定することができず、メタル配線などの導電膜のアライメント誤差を測定することができないという問題があった。
【0009】
従来技術3によれば、図6に示した測定用素子を目的の導電膜層に形成することにより、目的の導電膜層のアライメント誤差を測定することができる。
しかし、図6に示すように、測定用素子においては導電膜31a,31bと導電膜33a,33bを垂直方向で交差させてキャパシタ35a,35bを形成しているため、導電膜31a,31bと導電膜33a,33bが垂直方向で交差する領域において寄生キャパシタが存在する。
【0010】
具体的には、例えばキャパシタ35aについて、導電膜31aの幅をW、アライメント誤差がない状態で導電膜31aと33aが重なる部分の長さをLAとする。導電膜31aと33aがより重なる方向にΔLAのアライメント誤差が存在するときのキャパシタ35aの容量値をC、絶縁層の膜厚をt、誘電率をεとすると、
C=ε×W×LA×(1+ΔLA/LA)/t
となる。
【0011】
アライメント誤差ΔLAを精度良く求めるには、アライメント誤差がない状態で導電膜31aと33aが重なる部分の長さLA(寄生キャパシタ成分)を小さくする必要があることが明らかである。従来技術3による方法では、キャパシタを形成するための2つの導電膜が絶縁層を介して垂直方向で重なるように配置されているので、2つの導電膜が重なる部分の長さLAに起因する寄生キャパシタが存在するため、アライメント誤差に起因する容量値の変化の測定精度が低いという問題があった。
【0012】
そこで本発明は、半導体装置のアライメント誤差を電気的にかつ高精度に測定することができる測定用素子を提供することを目的とするものである。
【0013】
【課題を解決するための手段】
本発明にかかる半導体装置のアライメント誤差の測定用素子は、絶縁層を介して形成された上層導電膜及び下層導電膜からなるキャパシタを備え、上記上層導電膜及び上記下層導電膜はアライメント誤差がない状態では垂直方向で重ならないように隣接して又は間隔をもって対向する辺が互いに平行に配置されているものである。ここで垂直方向とはウエハ表面に平行な平面に直交する方向をいう。以下、ウエハ表面に平行な平面を単に平面といい、平面内の各方向を面内方向という。
【0014】
上層導電膜及び下層導電膜の間には絶縁層が存在しているので、上層導電膜、絶縁層及び下層導電膜はキャパシタを形成する。そのキャパシタにおいて、アライメント誤差がない状態では、垂直方向で重ならないように隣接して又は間隔をもって対向する辺が互いに平行に配置されているので容量値は小さい。このときの容量値を寄生容量値とする。
【0015】
上層導電膜及び下層導電膜においてアライメント誤差が発生した場合、上層導電膜、絶縁層及び下層導電膜からなるキャパシタの容量値が変化する。その容量値変化を電気的に測定することによりアライメント誤差を測定する。アライメント誤差がない状態での寄生容量値は小さいので、アライメント誤差に起因する容量値変化を精度よく測定することができ、ひいてはアライメント誤差を精度よく測定することができる。これにより、半導体装置の品質維持管理の向上及び不良解析の迅速化を図ることができる。
【0016】
【発明の実施の形態】
本発明のアライメント誤差の測定用素子において、上記上層導電膜及び上記下層導電膜は平行に配置された対向する辺の長さが異なり、短い方の辺が長い方の辺内に収まるように配置されていることが好ましい。その結果、平行に配置された対向する辺に平行な方向のアライメント誤差の影響を排除して、平行に配置された対向する辺に直交する方向でのアライメント誤差を測定することができる。
【0017】
上記キャパシタを2つ備え、両キャパシタを互いに平行に、かつ上層導電膜、上層導電膜間の距離と、下層導電膜、下層導電膜間の距離が異なるように配置されていることが好ましい。その結果、2つのキャパシタが平行に配置された方向に平面内で直交する方向におけるアライメント誤差をさらに高精度に測定することができる。
【0018】
2つの上記キャパシタが互いに平行に、かつ上層導電膜、上層導電膜間の距離と、下層導電膜、下層導電膜間の距離が異なるように配置されたキャパシタの組を2組備え、それらの組は互いに直交する方向に配置されていることが好ましい。その結果、平面内における全方向のアライメント誤差を高精度に測定することができる。
【0019】
上記上層導電膜及び上記下層導電膜は面内方向で間隔をもって配置されており、上記上層導電膜の下層に上記下層導電膜とは間隔をもって第2下層導電膜が形成されており、上記第2下層導電膜と上記上層導電膜間の絶縁層に上記下層導電膜に対して平行にスルーホールが形成されており、上記スルーホール内には導電材料が充填されていることが好ましい。
【0020】
下層導電膜とスルーホール内の導電材料との間には絶縁層が存在するので、下層導電膜、絶縁層及び導電材料はキャパシタを形成する。この容量値の変化を測定することにより、スルーホールのアライメント誤差を測定することができる。
【0021】
上記キャパシタの容量値を測定するために、上記上層導電膜及び上記下層導電膜は、同一基板上に形成された外部接続用導電膜パッド又は容量値測定回路に接続されていることを挙げることができる。上層導電膜及び下層導電膜が外部接続用導電膜パッドに接続されている場合は外部接続用導電膜パッドを介してキャパシタの容量値を測定することができる。上層導電膜及び下層導電膜が容量値測定回路に接続されている場合は容量値測定回路によりキャパシタの容量値を測定することができる。容量値測定回路の例は例えばJames C. Chen et al./ Conference on Microelectronic Test Structures, Vol 10, March 1997, 77-80に示されている。
【0022】
【実施例】
図1は一実施例を示す図であり、(A)は平面図、(B)は(A)のA−A位置での断面図である。
下地絶縁層1上に、平面内のY方向に延びる帯状の下層導電膜3と、下層導電膜3につながる配線5が形成されている。下地絶縁層1上、下層導電膜3上及び配線5上に絶縁層7が形成されている。
【0023】
絶縁層7上に、下層導電膜3の配線5とは反対側の辺に面内方向で隣接し、かつ下層導電膜3に平行(Y方向)に延びる帯状の上層導電膜9が形成されている。上層導電膜9のY方向の長さは下層導電膜3のY方向の長さよりも短く形成されている。上層導電膜9の実線で示す位置はアライメント誤差がない状態を示し、下層導電膜3と上層導電膜5は垂直方向で重なっていない。
絶縁層7上には上層導電膜9の下層導電膜3とは反対側の辺につながる配線11も形成されている。
【0024】
絶縁層7上、上層導電膜9上及び配線11上に上層絶縁層(図示は省略)が形成されている。上層絶縁層に、配線5の下層導電膜3とは反対側の端部位置及び配線11の上層導電膜9とは反対側の端部位置に対応して、導電材料が充填されたスルーホール(図示は省略)が形成されている。上層絶縁層上には各スルーホール上に外部接続用導電膜パッド13がそれぞれ形成されている。
【0025】
下層導電膜3は、配線5及びスルーホール内に充填された導電材料を介して外部接続用導電膜パッド13に電気的に接続されている。上層導電膜9は、配線11及びスルーホール内に充填された導電材料を介して外部接続用導電膜パッド13に電気的に接続されている。これにより、下層導電膜3及び上層導電膜9に外部から電気的信号の入出力ができるようになっている。
【0026】
下層導電膜3と上層導電膜9の間には絶縁層7が存在するので、下層導電膜3、絶縁層7及び上層導電膜9はキャパシタ15を構成する。アライメント誤差がない状態では、下層導電膜3と上層導電膜9が垂直方向で重なっていないので、キャパシタ15の容量値は小さい。
【0027】
図1において、符号9’で示す一点鎖線は、X方向(平面内でY方向に直交する方向)にアライメント誤差が生じた場合の上層導電膜の位置を示している。
アライメント誤差が生じて下層導電膜3と上層導電膜9’が垂直方向で重なると、キャパシタ15の容量値が増加する。キャパシタ15の容量値を配線5,11及び外部接続用導電膜パッド13を介して測定することにより、アライメント誤差を測定することができる。アライメント誤差がない状態ではキャパシタ15の容量値は小さいので、アライメント誤差が生じて下層導電膜3と上層導電膜9が垂直方向で重なった場合にはアライメント誤差を高精度に測定することができる。
【0028】
この実施例では下層導電膜3の長さと上層導電膜9の長さを異ならせている。これにより、平行に配置された対向する辺に平行な方向(Y方向)のアライメント誤差の影響を排除して、平行に配置された対向する辺に直交する方向(X方向)でのアライメント誤差を測定することができる。
【0029】
図2は他の実施例を示す図であり、(A)は平面図、(B)は(A)のB−B位置での断面図である。図1と同じ機能を果たす部分には同じ符号を付す。
下地絶縁層1上に平面内のY方向に延びる帯状の下層導電膜3aと3bが互いに平行に形成されている。絶縁層1上には下層導電膜3aの下層導電膜3bとは反対側の辺につながる配線5aと、下層導電膜3bの下層導電膜3aとは反対側の辺につながる配線5bも形成されている。下地絶縁層1上、下層導電膜3a,3b上及び配線5a,5b上に絶縁層7が形成されている。
【0030】
絶縁層7上に、下層導電膜3aの下層導電膜3b側の辺に面内方向で隣接し、かつ下層導電膜3aに平行(Y方向)に帯状の上層導電膜9aが形成されている。上層導電膜9aの長さは下層導電膜3aの長さよりも短く形成されている。
【0031】
絶縁層7上には下層導電膜3bの下層導電膜3a側の辺に面内方向で隣接し、かつ下層導電膜3bに平行(Y方向)に帯状の上層導電膜9bも形成されている。上層導電膜9bの長さは下層導電膜3bの長さよりも短く形成されている。
【0032】
さらに絶縁層7上には上層導電膜9aの下層導電膜3aとは反対側の辺、及び上層導電膜9bの下層導電膜3bとは反対側の辺につながる上層導電膜9a,9bで共通の配線17も形成されている。
【0033】
絶縁層7上、上層導電膜9a,9b上及び配線17上に上層絶縁層(図示は省略)が形成されている。上層絶縁層に、配線5a,5bの下層導電膜3a,3bとは反対側の端部位置及び配線17上に対応して、導電材料が充填されたスルーホール(図示は省略)が形成されている。上層絶縁層上には各スルーホール上に外部接続用導電膜パッド13がそれぞれ形成されている。
【0034】
下層導電膜3a、絶縁層7及び上層導電膜9aはキャパシタ15aを構成する。下層導電膜3b、絶縁層7及び上層導電膜9bはキャパシタ15bを構成する。アライメント誤差がない状態では、下層導電膜3aと上層導電膜9a、及び下層導電膜3bと上層導電膜9bはともに垂直方向で重なっていないので、キャパシタ15a,15bの容量値は小さい。
【0035】
この実施例では、X方向にアライメント誤差が生じた場合、キャパシタ15a,15bにおいて、下層導電膜3aと上層導電膜9a、及び下層導電膜3bと上層導電膜9bのいずれか一方が垂直方向で重なった状態になる。これにより、X方向のいずれの方向にアライメント誤差が生じた場合であってもアライメント誤差を高精度に測定することができる。
【0036】
図3はさらに他の実施例を示す図であり、(A)は平面図、(B)は(A)のC−C位置での断面図、(C)はD−D位置での断面図である。図2と同じ機能を果たす部分には同じ符号を付す。
下地絶縁層1上に、平面内のY方向に延びる帯状の下層導電膜3aと3bが互いに平行に形成され、平面内のX方向(Y方向に直交する方向)に延びる帯状の下層導電膜3cと3dが互いに平行に形成されている。絶縁層1上には、配線5a、配線5b、下層導電膜3cの下層導電膜3dとは反対側の辺につながる配線5c、及び下層導電膜3dの下層導電膜3cとは反対側の辺につながる配線5dも形成されている。下地絶縁層1上、下層導電膜3a,3b上及び配線5a,5b,5c,5d上に絶縁層7が形成されている。
【0037】
絶縁層7上に、上層導電膜9a,9bが形成されている。
絶縁層7上には、下層導電膜3cの下層導電膜3d側の辺に面内方向で隣接し、かつ下層導電膜3cに平行(X方向)に帯状の上層導電膜9c、及び下層導電膜3dの下層導電膜3c側の辺に面内方向で隣接し、かつ下層導電膜3dに平行(X方向)に帯状の上層導電膜9dも形成されている。上層導電膜9cの長さは下層導電膜3cの長さよりも短く形成され、上層導電膜9dの長さは下層導電膜3dの長さよりも短く形成されている。
【0038】
さらに絶縁層7上には、上層導電膜9aの下層導電膜3aとは反対側の辺、上層導電膜9bの下層導電膜3bとは反対側の辺、上層導電膜9cの下層導電膜3cとは反対側の辺、及び上層導電膜9dの下層導電膜3dとは反対側の辺につながる上層導電膜9a,9b,9c,9dで共通の配線19も形成されている。
【0039】
絶縁層7上、上層導電膜9a,9b,9c,9d上及び配線19上に上層絶縁層(図示は省略)が形成されている。上層絶縁層に、配線5a,5b,5c,5dの下層導電膜3a,3b,3c,3dとは反対側の端部位置及び配線19上に対応して、導電材料が充填されたスルーホール(図示は省略)が形成されている。上層絶縁層上には各スルーホール上に外部接続用導電膜パッド13がそれぞれ形成されている。
【0040】
下層導電膜3a、絶縁層7及び上層導電膜9aはキャパシタ15aを構成する。下層導電膜3b、絶縁層7及び上層導電膜9bはキャパシタ15bを構成する。下層導電膜3c、絶縁層7及び上層導電膜9cはキャパシタ15cを構成する。下層導電膜3d、絶縁層7及び上層導電膜9dはキャパシタ15dを構成する。アライメント誤差がない状態では、下層導電膜3aと上層導電膜9a、下層導電膜3bと下層導電膜3b、下層導電膜3cと上層導電膜9c、及び下層導電膜3dと上層導電膜9dは垂直方向で重なっていないので、キャパシタ15a,15b,15c,15dの容量値は小さい。
【0041】
この実施例では、X方向及びY方向にアライメント誤差が生じた場合、キャパシタ15a,15b,15c,15dにおいて、下層導電膜3aと上層導電膜9a、下層導電膜3bと下層導電膜3b、下層導電膜3cと上層導電膜9c、及び下層導電膜3dと上層導電膜9dのうちの少なくとも1組が垂直方向で重なった状態になる。これにより、X方向及びY方向のいずれの方向にアライメント誤差が生じた場合であってもアライメント誤差を高精度に測定することができる。
【0042】
図4はさらに他の実施例を示す図であり、(A)は平面図、(B)は(A)のE−E位置での断面図である。
下地絶縁層1上に、平面内のY方向に延びる帯状の下層導電膜3と、下層導電膜3につながる配線5が形成されている。下地絶縁層1上には、下層導電膜3に対して配線5とは反対側に、下層導電膜3とは間隔をもって、下層導電膜3に平行に第2下層導電膜21も形成されている。第2下層導電膜21の長さは下層導電膜3の長さよりも短く形成されている。
【0043】
下地絶縁層1上、下層導電膜3上、配線5及び第2下層導電膜21上に絶縁層7が形成されている。
第2下層導電膜21上の絶縁層7にスルーホール23が形成されている。スルーホール23内には導電材料25が充填されている。
絶縁層7上に、スルーホール23を覆い、かつ面内方向で下層導電膜3とは間隔をもって上層導電膜27が形成されている。絶縁層7上には上層導電膜27の下層導電膜3とは反対側の辺につながる配線29も形成されている。
【0044】
絶縁層7上、上層導電膜27上及び配線29上に上層絶縁層(図示は省略)が形成されている。上層絶縁層に、配線5の下層導電膜3とは反対側の端部位置及び配線29の上層導電膜27とは反対側の端部位置に対応して、導電材料が充填されたスルーホール(図示は省略)が形成されている。上層絶縁層上には各スルーホール上に外部接続用導電膜パッド13がそれぞれ形成されている。
【0045】
下層導電膜3は、配線5、及び上層絶縁層に形成されたスルーホール内に充填された導電材料を介して外部接続用導電膜パッド13に電気的に接続されている。スルーホール23内に充填された導電材料25は、上層配線層27、配線29、及び上層絶縁層に形成されたスルーホール内に充填された導電材料を介して外部接続用導電膜パッド13に電気的に接続されている。これにより、下層導電膜3及び導電材料25に外部から電気的信号の入出力ができるようになっている。
【0046】
下層導電膜3と導電材料25の間には絶縁層7が存在するので、下層導電膜3、絶縁層7及び導電材料25はキャパシタを構成する。
絶縁層7に形成するスルーホールにおいてアライメント誤差が生じた場合、スルーホール23にもアライメント誤差が生じ、下層導電膜3、絶縁層7及び導電材料25からなるキャパシタの容量値が変化する。その容量値の変化を測定することによりスルーホールのアライメント誤差を測定することができる。
【0047】
この実施例では、下層導電膜3、絶縁層7及び導電材料25からなるキャパシタを1つしか備えていないが、本発明はこれに限定されるものではなく、図2に示した実施例と同様にしてキャパシタを2つ設けてもよいし、図3に示した実施例と同様にしてキャパシタを2つ設けてもよい。
【0048】
また、図1から図4に示した実施例が適用される導電膜層は、多層導電膜層構造において、いずれの導電膜層においても適用することができる。
また、図1から図4に示した実施例では、キャパシタの容量値を外部接続用導電膜パッドから直接測定するようにしているが、本発明はこれに限定されるものではなく、例えばJames C. Chen et al./ Conference on Microelectronic Test Structures, Vol 10, March 1997, 77-80に示されているような容量値測定回路を介して容量値を測定するようにしてもよい。
【0049】
以上、本発明の実施例を説明したが、本発明はこれに限定されるものではなく、特許請求の範囲に記載された本発明の範囲内で種々の変更が可能である。
【0050】
【発明の効果】
請求項1に記載の半導体装置のアライメント誤差の測定用素子では、絶縁層を介して形成された上層導電膜及び下層導電膜を備え、上記上層導電膜及び上記下層導電膜はアライメント誤差がない状態では垂直方向で重ならないように隣接して又は間隔をもって対向する辺が互いに平行に配置されているようにしたので、上層導電膜、絶縁層及び下層導電膜からなるキャパシタの容量値変化を電気的に測定することによりアライメント誤差を高精度に測定することができる。
【0051】
請求項2に記載の半導体装置のアライメント誤差の測定用素子では、上記上層導電膜及び上記下層導電膜は平行に配置された対向する辺の長さが異なり、短い方の辺が長い方の辺内に収まるように配置されているようにしたので、平行に配置された対向する辺に平行な方向のアライメント誤差の影響を排除して、平行に配置された対向する辺に直交する方向でのアライメント誤差を測定することができる。
【0052】
請求項3に記載の半導体装置のアライメント誤差の測定用素子では、上記キャパシタを2つ備え、両キャパシタを互いに平行に、かつ上層導電膜、上層導電膜間の距離と、下層導電膜、下層導電膜間の距離が異なるように配置されているようにしたので、2つのキャパシタが平行に配置された方向に平面内で直交する方向におけるアライメント誤差をさらに高精度に測定することができる。
【0053】
請求項4に記載の半導体装置のアライメント誤差の測定用素子では、2つの上記キャパシタが互いに平行に、かつ上層導電膜、上層導電膜間の距離と、下層導電膜、下層導電膜間の距離が異なるように配置されたキャパシタの組を2組備え、それらの組は互いに直交する方向に配置されているようにしたので、平面内における全方向のアライメント誤差を高精度に測定することができる。
【0054】
請求項5に記載の半導体装置のアライメント誤差の測定用素子では、上記上層導電膜及び上記下層導電膜は面内方向で間隔をもって配置されており、上記上層導電膜の下層に上記下層導電膜とは間隔をもって第2下層導電膜が形成されており、上記第2下層導電膜と上記上層導電膜間の絶縁層に上記下層導電膜に対して平行にスルーホールが形成されており、上記スルーホール内には導電材料が充填されているようにしたので、下層導電膜、絶縁層及び導電材料からなるキャパシタの容量値の変化を測定することにより、スルーホールのアライメント誤差を測定することができる。
【0055】
請求項6に記載の半導体装置のアライメント誤差の測定用素子では、上記キャパシタの容量値を測定するために、上記上層導電膜及び上記下層導電膜は、同一基板上に形成された外部接続用導電膜パッド又は容量値測定回路に接続されているようにしたので、上層導電膜、絶縁層及び下層導電膜からなるキャパシタの容量値を直接又は容量値測定回路を介して測定することができる。
【図面の簡単な説明】
【図1】図1は一実施例を示す図であり、(A)は平面図、(B)は(A)のA−A位置での断面図である。
【図2】他の実施例を示す図であり、(A)は平面図、(B)は(A)のB−B位置での断面図である。
【図3】さらに他の実施例を示す図であり、(A)は平面図、(B)は(A)のC−C位置での断面図、(C)はD−D位置での断面図である。
【図4】さらに他の実施例を示す図であり、(A)は平面図、(B)は(A)のE−E位置での断面図である。
【図5】アライメント誤差測定用素子の従来例を示す平面図である。
【図6】アライメント誤差測定用素子の他の従来例を示す平面図である。
【符号の説明】
1 下地絶縁膜
3,3a,3b,3c,3d 下層導電膜
5,5a,5b,5c,5d,11,17,19 配線
7 絶縁層
9,9a,9b,9c,9d 上層導電膜
13 外部接続用導電膜パッド
15,15a,15b,15c,15d キャパシタ
21 第2下層導電膜
23 スルーホール
25 導電材料
27 上層導電膜
29 配線

Claims (6)

  1. 絶縁層を介して形成された上層導電膜及び下層導電膜からなるキャパシタを備え、前記上層導電膜及び前記下層導電膜はアライメント誤差がない状態では垂直方向で重ならないように隣接して又は間隔をもって対向する辺が互いに平行に配置されていることを特徴とする半導体装置のアライメント誤差の測定用素子。
  2. 前記キャパシタにおいて、前記上層導電膜及び前記下層導電膜は平行に配置された対向する辺の長さが異なり、短い方の辺が長い方の辺内に収まるように配置されている請求項1に記載のアライメント誤差の測定用素子。
  3. 前記キャパシタを2つ備え、両キャパシタを互いに平行に、かつ上層導電膜、上層導電膜間の距離と、下層導電膜、下層導電膜間の距離が異なるように配置されている請求項1又は2に記載のアライメント誤差の測定用素子。
  4. 2つの前記キャパシタが互いに平行に、かつ上層導電膜、上層導電膜間の距離と、下層導電膜、下層導電膜間の距離が異なるように配置されたキャパシタの組を2組備え、それらの組は互いに直交する方向に配置されている請求項1又は2に記載のアライメント誤差の測定用素子。
  5. 前記上層導電膜及び前記下層導電膜は面内方向で間隔をもって配置されており、前記上層導電膜の下層に前記下層導電膜とは間隔をもって第2下層導電膜が形成されており、前記第2下層導電膜と前記上層導電膜間の絶縁層に前記下層導電膜に対して平行にスルーホールが形成されており、前記スルーホール内には導電材料が充填されている請求項1から4のいずれかに記載のアライメント誤差の測定用素子。
  6. 前記上層導電膜及び前記下層導電膜は、同一基板上に形成された外部接続用導電膜パッド又は容量値測定回路に接続されている請求項1から5のいずれかに記載のアライメント誤差の測定用素子。
JP2001372415A 2001-12-06 2001-12-06 半導体装置のアライメント誤差の測定用素子 Expired - Fee Related JP3818903B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001372415A JP3818903B2 (ja) 2001-12-06 2001-12-06 半導体装置のアライメント誤差の測定用素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001372415A JP3818903B2 (ja) 2001-12-06 2001-12-06 半導体装置のアライメント誤差の測定用素子

Publications (2)

Publication Number Publication Date
JP2003172601A JP2003172601A (ja) 2003-06-20
JP3818903B2 true JP3818903B2 (ja) 2006-09-06

Family

ID=19181317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001372415A Expired - Fee Related JP3818903B2 (ja) 2001-12-06 2001-12-06 半導体装置のアライメント誤差の測定用素子

Country Status (1)

Country Link
JP (1) JP3818903B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7704850B2 (en) * 2006-09-08 2010-04-27 Asml Netherlands B.V. Semiconductor device for measuring an overlay error, method for measuring an overlay error, lithographic apparatus and device manufacturing method
CN102243443A (zh) 2010-05-14 2011-11-16 北京京东方光电科技有限公司 曝光区域之间图形偏移量的检测方法及测试图形

Also Published As

Publication number Publication date
JP2003172601A (ja) 2003-06-20

Similar Documents

Publication Publication Date Title
KR100273317B1 (ko) 반도체 소자 제조 공정에서 미스얼라이먼트 측정을 위한 테스트패턴의 구조와 그 측정방법
US7688083B2 (en) Analogue measurement of alignment between layers of a semiconductor device
US7436198B2 (en) Test pattern of semiconductor device and test method using the same
KR100381151B1 (ko) 위치맞춤검출용 반도체장치
US7217581B2 (en) Misalignment test structure and method thereof
JP2718380B2 (ja) 半導体装置の電気特性検査パターン及び検査方法
JP2008218921A (ja) 位置ずれ量の測定用パターンおよび測定方法、ならびに半導体装置
JP3818903B2 (ja) 半導体装置のアライメント誤差の測定用素子
US7626402B2 (en) Semiconductor device and method of measuring sheet resistance of lower layer conductive pattern thereof
US20130078803A1 (en) Semiconductor device including a circuit area and a monitor area having a plurality of monitor layers and method for manufacturing the same
CN110364447B (zh) 半导体工艺的关键尺寸的监测结构及监测方法
US9506965B2 (en) Alternately arranged overlay marks having asymmetric spacing and measurement thereof
KR100587638B1 (ko) 오버레이 버니어 및 그를 이용한 오버레이 측정 방법
JP2000357720A (ja) 半導体装置
JPH09139469A (ja) 半導体装置におけるアライメント誤差の測定素子
JP2001291754A (ja) 導電性プラグ抵抗測定用パターンを有する半導体素子およびプロセス評価方法
JPH09260446A (ja) 半導体装置の位置ずれ測定方法
JPH10189678A (ja) 位置合わせ精度検出方法および位置合わせ精度検出装置並びにその製造方法
JPH0230173B2 (ja)
JP2005093500A (ja) 加工寸法測定用素子並びにそれを備えた半導体装置及びその製造方法
KR100519504B1 (ko) 반도체장치의 기생커패시턴스 측정 패턴 및 그측정 방법
KR20000045238A (ko) 반도체 소자 제조 공정에서의 오버레이 측정 장치 및 방법
CN117666279A (zh) 掩模板及其组件、半导体结构及其形成方法和量测方法
JP4845005B2 (ja) 半導体装置及びその製造方法
JPH07302824A (ja) パターン層の位置測定方法並びにテストパターン層及びその形成方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060613

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees