JP3814893B2 - Crystal growth crucible and crystal growth apparatus using the same - Google Patents

Crystal growth crucible and crystal growth apparatus using the same Download PDF

Info

Publication number
JP3814893B2
JP3814893B2 JP30245596A JP30245596A JP3814893B2 JP 3814893 B2 JP3814893 B2 JP 3814893B2 JP 30245596 A JP30245596 A JP 30245596A JP 30245596 A JP30245596 A JP 30245596A JP 3814893 B2 JP3814893 B2 JP 3814893B2
Authority
JP
Japan
Prior art keywords
crystal
crucible
growth
raw material
crystal growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30245596A
Other languages
Japanese (ja)
Other versions
JPH10130090A (en
Inventor
良宏 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP30245596A priority Critical patent/JP3814893B2/en
Publication of JPH10130090A publication Critical patent/JPH10130090A/en
Application granted granted Critical
Publication of JP3814893B2 publication Critical patent/JP3814893B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、GaP、GaAs、InP等の化合物結晶をその成分元素の蒸気圧を印加しつつ垂直ブリッジマン法若しくは垂直温度勾配凝固法により製造するための結晶育成用ルツボと結晶育成装置に係り、特に、異常成長を抑制し種結晶の収容位置から上方側へ向かって化合物結晶を安定して成長させることができる結晶育成用ルツボと結晶育成装置の改良に関するものである。
【0002】
【従来の技術】
GaP、GaAs、InP等の化合物結晶を垂直ブリッジマン法若しくは垂直温度勾配凝固法により製造する場合、解離圧の高い成分元素(As、P)の解離を抑制するためあるいは積極的に化合物結晶の組成を制御するため種々の施策が図られている。例えば、解離抑制策としては、結晶育成用ルツボ内の原料融液上にB23等の液体封止剤をのせると共に、所定温度での解離成分元素の蒸気圧以上になるように不活性ガスを上記液体封止剤表面に対し印加しながら結晶成長させる方法が採られている。また、組成制御策としては、成長容器内の上方側に結晶育成用ルツボを配置し、かつ、成長容器内の下方側に解離圧の高い成分元素が収容された蒸気圧制御用リザーバーを配置すると共に、結晶育成用ルツボ内の原料融液面に対し解離圧の高い上記成分元素の蒸気を印加しながら結晶成長させる方法が採られている。そして、前者の方法に較べて後者の方法がより高品質な結晶を製造することができ、高品質結晶を得る方法として用いられている。
【0003】
ところで、解離圧の高い成分元素の蒸気を印加しながら垂直ブリッジマン法若しくは垂直温度勾配凝固法により化合物結晶を成長させる結晶育成装置としては、従来、図3に示すような構造の装置が利用されている。
【0004】
すなわち、この結晶育成装置は、図3に示すように略垂直に配置された縦型の成長容器aと、この成長容器aの上方側に配置され目的とする化合物結晶の原料と種結晶がこの種結晶を下側にして収容される略円筒形状の結晶育成用ルツボbと、上記成長容器aの下方側に配置されかつ上記化合物結晶の解離圧の高い成分元素が収容されると共にこの成分元素の蒸気を結晶育成用ルツボ内の原料融液面に供給するリザーバー(蒸気供給部)cとでその主要部が構成され、かつ、成長容器aの周囲に配置されたヒータd1、d2の作用により成長容器aの上方側が高温部に、また成長容器aの下方側が低温部に設定されると共に、上記リザーバーcは成長容器aの最も温度が低い部位に配置されている。また、蒸気圧制御は上記リザーバーcの温度を制御することにより行われる。
【0005】
また、上記成長容器aは図3に示すように圧力容器e内に配置されており、成長容器a内の空間は圧力容器e内で独立し、成長容器a内圧にバランスする不活性ガスが圧力容器e内に供給され、成長容器aがその内圧により破損されることを防止している。
【0006】
尚、上記成長容器aは石英製の封管等のように密閉容器が主として用いられるが、グラファイト製や窒化ホウ素製のセミシールド容器が適用されることもある。GaPのように結晶育成温度が石英の軟化点を越える化合物結晶を抵抗ヒータを使用して製造する場合はセミシールド容器としなければならないが、GaAsやInP等の化合物結晶を製造する場合には密閉容器、セミシールド容器のいずれも使用できるからである。
【0007】
また、化合物結晶を育成する成長容器aの高温部における縦方向の温度分布は、種結晶上端の温度は融点に設定され、かつ、高温部の上が高く下が低い温度分布に設定される。また、温度勾配は小さい方が望ましく、例えば、GaPやGaAsの場合には2〜10℃/cmとされている。また、結晶育成中、成長容器aの低温部には均熱帯(解離圧の高い成分元素が原料の解離圧に等しい蒸気圧をもつ温度)が設けられ、蒸気圧制御が施される。
【0008】
これ等の温度分布を実現するため、成長容器aにおける高温部と低温部は互いに独立して温度制御がなされている。一般的に、上記高温部も低温部も円筒型で同径のヒータd1、d2が同軸状に数段重ねて用いられ、かつ、上記高温部と低温部間には熱伝導率の小さい材料(断熱材)が配置されている。
【0009】
そして、化合物結晶の製造は、成長容器aにおける上記温度分布の状態から徐々に降温することによって種結晶から上方へと結晶を育成し、その後室温まで冷却して終了する。
【0010】
また、従来の結晶育成装置においては、結晶育成用ルツボ内の原料を融解した後、種結晶の上端を融解して種付けとし、その後、結晶育成用ルツボを設定温度の低い下方へ徐々に移動させる(垂直ブリッジマン法)ことにより、あるいは、成長容器aにおける高温部のヒータd1の設定温度を徐々に下げる(垂直温度勾配凝固法)ことにより固液界面を上方へ移動させる。すなわち、化合物結晶を種結晶の収容位置から上方側へ向かって育成させていく(通常成長)。
【0011】
【発明が解決しようとする課題】
ところで、従来の結晶育成装置における上記化合物結晶の結晶育成過程では、固液界面と原料融液上面(固気界面)の温度差が徐々に小さくなっていく。この結晶育成過程の終盤では、原料融液上面の温度が固液界面の温度より低くなってしまう現象が起こる場合がある。この現象が起こると原料融液上面に結晶核が生じ、原料融液上面から固液界面側へ向かって結晶が成長することになる(この現象を異常成長と称する)。この異常成長が一度起こると、それまでの通常成長(種結晶の収容位置から上方側へ向かって結晶が成長する)と異常成長とが同時に進行しこの2つの成長結晶がぶつかった所で結晶育成が終了することになる。
【0012】
そして、異常成長した結晶は、通常成長した結晶とは成長方位が当然異なるため製品とはならない。従って、原料融液上面の温度が固液界面の温度より低くなる現象が起きて異常成長した場合、化合物結晶の製造収率を下げてしまう問題点を有していた。
【0013】
上記問題点は、例えば、結晶育成温度が高く(融点1465℃)かつ雰囲気圧力が高い(融点におけるリン蒸気圧が35kg/cm2 )GaP結晶を育成する場合に生じやすかった。これは、GaP結晶の育成の際、原料融液上方のガス対流が激しく、原料融液上面の温度振動が高くなるためであった。
【0014】
本発明はこの様な問題点に着目してなされたもので、その課題とするところは、垂直ブリッジマン法若しくは垂直温度勾配凝固法における原料融液上面の温度が固液界面の温度より低くなる現象を防止して異常成長を抑制すると共に、種結晶から上方への通常成長を安定して進行させることができ、高収率で化合物結晶を育成できる結晶育成用ルツボと結晶育成装置を提供することにある。
【0015】
【課題を解決するための手段】
すなわち、請求項1に係る発明は、
略垂直に配置された縦型の成長容器内の上方側に配置され、化合物結晶の原料と種結晶がこの種結晶を下側にして収容されると共に、上記原料を加熱しその融液面に対し成長容器内の下方側から供給される上記化合物結晶の解離圧の高い成分元素の蒸気を印加させながら上記種結晶の収容位置から上方側へ向かって化合物結晶を順次成長させる垂直ブリッジマン法若しくは垂直温度勾配凝固法に適用される結晶育成用ルツボを前提とし、
底部側に種結晶収容部を有しかつその内径が下方側から上方側へ向かって連続的に大きくなる略円筒形状のルツボ本体と、このルツボ本体の内周壁面にその外周縁が係止されかつ解離圧の高い上記成分元素の蒸気を通過させる通気孔を有する円形状の仕切板とで構成され、かつ、この仕切板の上記係止位置が原料融液の液面より上方側に設定されていることを特徴とするものである。
【0016】
そして、この発明に係る結晶育成用ルツボによれば、ルツボ本体内において原料融液の液面より上方側に円形状の仕切板が配置され、ルツボ本体上方側の空間と原料融液上面との間が仕切られるため、ルツボ本体内の原料融液上方の高温のガス対流による原料融液上部の温度変動が抑制される。
【0017】
従って、垂直ブリッジマン法若しくは垂直温度勾配凝固法において固液界面と原料融液上面の温度差が小さくなる結晶育成過程の終盤においても、原料融液上面の温度を固液界面の温度より高く保持することが可能になるため、原料融液上面から固液界面側へ向かう異常成長を抑制することができる。
【0018】
また、上記仕切板は解離圧の高い成分元素の蒸気を通過させる通気孔を有しているため、従来と同様に、ルツボ本体内において原料融液面に対し解離圧の高い成分元素の蒸気を印加しながら結晶成長させることが可能となる。
【0019】
尚、本発明に係る結晶育成用ルツボを、ルツボの外周部より中心部の方に高い温度分布が形成され易い構成の結晶育成装置に組込む場合、成分元素の蒸気圧を原料融液面に印加させるための通気孔は仕切板の中心部位に設けることが望ましい。この様に設けた場合、原料融液上面で結晶核が生ずるのを抑制するのに有効だからである。請求項2〜3はこの様な技術的理由によりなされている。
【0020】
すなわち、請求項2に係る発明は、
請求項1記載の発明に係る結晶育成用ルツボを前提とし、
上記仕切板の中心部位に、内径2mm以下の複数の通気孔が設けられていることを特徴し、
また、請求項3に係る発明は、
上記仕切板の中心部位に、その内径が仕切板の半径以下である単一の通気孔が設けられていることを特徴とする。
【0021】
次に、請求項4に係る発明は本発明に係る結晶育成用ルツボが適用された結晶育成装置に関する。
【0022】
すなわち、請求項4に係る発明は、
略垂直に配置された縦型の成長容器と、この成長容器の上方側に配置され化合物結晶の原料と種結晶がこの種結晶を下側にして収容される結晶育成用ルツボと、上記成長容器の下方側に配置されかつ上記化合物結晶の解離圧の高い成分元素が収容されると共にこの成分元素の蒸気を結晶育成用ルツボ内の原料融液面に供給する蒸気供給部とを具備し、垂直ブリッジマン法若しくは垂直温度勾配凝固法により上記化合物結晶を育成させる結晶育成装置を前提とし、
上記結晶育成用ルツボが請求項1〜3のいずれかに記載の結晶育成用ルツボにより構成されていることを特徴とするものである。
【0023】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して詳細に説明する。
【0024】
すなわち、本発明に係る結晶育成用ルツボ1は、図1(A)に示すように底部側に種結晶収容部10を有しかつその内径が下方側から上方側へ向かって連続的に大きくなる略円筒形状のルツボ本体11と、このルツボ本体11の内周壁面にその外周縁が係止されかつ解離圧の高い成分元素の蒸気を通過させる通気孔13を有する円形状の仕切板12とで構成されるものである。尚、ルツボ本体11における壁面の勾配角は原則として任意であるが、通常、1〜3度の範囲に設定される(従来の壁面は傾いておらず勾配角は0度である)。
【0025】
そして、図1(A)に示すように上記ルツボ本体11内に目的とする化合物結晶の原料(通常、目的とする化合物結晶は化合物単結晶であり、この場合、原則として化合物多結晶が上記原料となるが、場合によっては化合物合成前の成分元素を原料としてもよい)2と種結晶3を投入し、かつ、投入された原料2上に上記仕切板12をのせた後、この結晶育成用ルツボ1を図2に示す結晶育成装置5の成長容器50内の所定位置にセットし、昇温させる。この昇温により、原料2と種結晶3の上端が融解したとき(結晶育成開始時)のルツボ本体11内の断面を図1(B)に示す。そして、上記仕切板12の係止位置が図1(B)に示されるように原料融液2’の液面より上方側に配置されるように、ルツボ本体11の内径と仕切板12の大きさが調整されている。尚、通常、仕切板12の係止位置は原料融液2’の液面から数mmの部位に設定される。
【0026】
また、上記仕切板12としては、中心部位にのみ通気孔13を設けたものや、2mm以下の複数の通気孔が設けられたもの等が例示され、これ等通気孔を通じて成長容器50内の下方側に配置されたリザーバー6から供給される解離圧の高い成分元素の蒸気が印加される。尚、上記仕切板12の材質は、成分元素やルツボ本体11との反応性がなくかつ問題となる不純物を発生させない材料なら任意であるが、好ましくはルツボ本体11の材質と同じである方がよい。例えば、ルツボ本体として石英が適用されている場合には石英製の仕切板を適用できるが、P−BN(熱分解窒化ホウ素)製の仕切板を適用してもよい。
【0027】
次に、本発明に係る結晶育成装置は、底部側に種結晶収容部を有しかつその内径が下方側から上方側へ向かって連続的に大きくなる略円筒形状のルツボ本体と、このルツボ本体の内周壁面にその外周縁が係止されかつ解離圧の高い成分元素の蒸気を通過させる通気孔を有する円形状の仕切板とで構成される結晶育成用ルツボが組込まれる点を除き、従来の結晶育成装置と略同一である。
【0028】
すなわち、本発明に係る結晶育成装置5は、図2に示すように略垂直に配置された縦型の成長容器50と、この成長容器50の上方側に配置され化合物結晶の原料と種結晶が収容される上述の結晶育成用ルツボ1と、上記成長容器50の下方側に配置されかつ化合物結晶の解離圧の高い成分元素が収容されると共にこの成分元素の蒸気を結晶育成用ルツボ1内の原料融液面に供給するリザーバー6とでその主要部が構成され、かつ、上記成長容器50の外周近傍で結晶育成用ルツボ1の配置部位には3つの円筒型ヒータ71,71,71が設けられていると共に、成長容器50の外周近傍でリザーバー6の配置部位には1つの円筒型ヒータ72が設けられている。また、従来の装置と同様に、上記成長容器50は図2に示すように圧力容器8内に配置されており、成長容器50内の空間は圧力容器8内で独立し、成長容器50内圧にバランスする不活性ガスが圧力容器8内に供給され、成長容器50がその内圧により破損されないようになっている。
【0029】
そして、本発明に係る結晶育成用ルツボ並びに結晶育成装置においては、ルツボ本体内において原料融液の液面より上方側に円形状の仕切板が配置され、ルツボ本体上方側の空間と原料融液上面との間が仕切られるため、ルツボ本体内の原料融液上方の高温のガス対流による原料融液上部の温度変動が抑制される。従って、垂直ブリッジマン法若しくは垂直温度勾配凝固法において固液界面と原料融液上面の温度差が小さくなる結晶育成過程の終盤においても、原料融液上面の温度を固液界面の温度より高く保持することが可能になるため、原料融液上面から固液界面側へ向かう異常成長を抑制することができる利点を有している。
【0030】
【実施例】
次に、実施例により本発明をより具体的に説明する。
【0031】
尚、この実施例に係る結晶育成装置は、GaP単結晶の製造に供され、かつ、図2に示した装置と同一の構造を具備している。
【0032】
まず、結晶育成用ルツボ1のルツボ本体11はP−BN(熱分解窒化ホウ素)にて構成され、その円筒部下端(すなわち、図1Aの100で示す内壁面の勾配が急に大きくなる肩部上端)の内径が51.0mmに設定されていると共に、上記円筒部下端より上側の内壁面の勾配角は2度に設定されている。
【0033】
また、結晶育成用ルツボ1の仕切板12は、ルツボ本体11と同様にP−BNにて構成された外径56.0mmの円形状板から成り、その中心部には内径2mmの5個の通気孔13が設けられている。
【0034】
この結晶育成用ルツボ1内に820gの原料(GaP多結晶)を投入すると、略円筒形状の長さ80mmのGaP単結晶が得られ、かつ、上記仕切板12のルツボ本体11内係止位置は、原料融液2’の上方6mmに設定される。
【0035】
次に、上記成長容器50は、図2に示すようにリーク孔51が設けられたグラファイト製のセミシールド容器を適用した。また、この成長容器50の結晶を育成する高温部と蒸気圧を制御する低温部は、円筒型で同径のグラファイト製ヒータ71,71,71,72を同軸状に4段重ねて配置しこれ等ヒータにより加熱した。
【0036】
そして、上記高温部の3つのヒータ71,71,71における制御温度は上から順にそれぞれ1480℃、1475℃、1420℃に設定され、また、種結晶3上端位置の温度は融点(1465℃)に設定され、高温部の上が高く下が低い温度分布を形成した。また、温度勾配は、種結晶の収容部位で20℃/cm、その上のルツボ本体11内で5〜10℃/cmであった。また、低温部におけるリザーバー6底部のヒータ制御温度を595℃に、リザーバー6内の温度を578℃に設定した。
【0037】
また、成長容器50内のリン蒸気とArガス(不活性ガス)の分圧はそれぞれ35kg/cm2 、10kg/cm2 に設定し、また、圧力容器8内のArガス圧(成長容器外圧)は45kg/cm2 に設定した。
【0038】
そして、上記結晶育成用ルツボ1が組込まれた実施例に係る結晶育成装置により、上述したように820gの原料から略円筒形状で長さ80mmのGaP単結晶を高い収率で製造することができた。
【0039】
【発明の効果】
請求項1〜3記載の発明に係る結晶育成用ルツボによれば、ルツボ本体内において原料融液の液面より上方側に円形状の仕切板が配置されルツボ本体上方側の空間と原料融液上面との間が仕切られるため、ルツボ本体内の原料融液上方の高温のガス対流による原料融液上部の温度変動が抑制される。
【0040】
従って、垂直ブリッジマン法若しくは垂直温度勾配凝固法において固液界面と原料融液上面の温度差が小さくなる結晶育成過程の終盤においても原料融液上面の温度を固液界面の温度より高く保持することが可能になるため、原料融液上面から固液界面側へ向かう異常成長を抑制できる効果を有する。
【0041】
また、上記仕切板は解離圧の高い成分元素の蒸気を通過させる通気孔を有しているため、従来と同様、ルツボ本体内において原料融液面に対し解離圧の高い成分元素の蒸気を印加しながら結晶成長させることが可能となる。
【0042】
他方、請求項4記載の発明に係る結晶育成装置によれば、請求項1〜3のいずれかに記載の結晶育成用ルツボが組込まれているため、垂直ブリッジマン法若しくは垂直温度勾配凝固法における原料融液上面の温度が固液界面の温度より低くなる現象を防止して異常成長を抑制すると共に、種結晶から上方への通常成長を安定して進行させることができ、高収率で化合物結晶を育成できる効果を有している。
【図面の簡単な説明】
【図1】図1(A)及び図1(B)は本発明の実施の形態を示す結晶育成用ルツボの断面図。
【図2】本発明の実施の形態を示す結晶育成装置の断面図。
【図3】従来例に係る結晶育成装置の断面図。
【符号の説明】
1 結晶育成用ルツボ
2 原料
2’原料融液
3 種結晶
10 種結晶収容部
11 ルツボ本体
12 仕切板
13 通気孔
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a crucible for crystal growth and a crystal growth apparatus for manufacturing a compound crystal such as GaP, GaAs, InP, etc. by a vertical Bridgman method or a vertical temperature gradient solidification method while applying a vapor pressure of its constituent elements. In particular, the present invention relates to an improvement of a crystal growth crucible and a crystal growth apparatus that can suppress abnormal growth and stably grow a compound crystal from the seed crystal accommodation position upward.
[0002]
[Prior art]
When producing a compound crystal such as GaP, GaAs, InP, etc. by the vertical Bridgman method or the vertical temperature gradient solidification method, the composition of the compound crystal is actively controlled to suppress dissociation of component elements (As, P) having a high dissociation pressure. Various measures are taken to control the above. For example, as a measure for suppressing dissociation, a liquid sealing agent such as B 2 O 3 is placed on the raw material melt in the crystal growth crucible, and the dissociation component element at a predetermined temperature is not higher than the vapor pressure. A method of crystal growth while applying an active gas to the surface of the liquid sealant is employed. As a composition control measure, a crucible for crystal growth is arranged on the upper side in the growth vessel, and a vapor pressure control reservoir containing a component element having a high dissociation pressure is arranged on the lower side in the growth vessel. At the same time, a method of growing crystals while applying vapors of the above component elements having a high dissociation pressure to the raw material melt surface in the crystal growth crucible is employed. The latter method can produce higher quality crystals than the former method, and is used as a method for obtaining high quality crystals.
[0003]
By the way, as a crystal growth apparatus for growing a compound crystal by a vertical Bridgman method or a vertical temperature gradient solidification method while applying a vapor of a component element having a high dissociation pressure, an apparatus having a structure as shown in FIG. 3 has been conventionally used. ing.
[0004]
That is, this crystal growth apparatus includes a vertical growth vessel a arranged substantially vertically as shown in FIG. 3, and a raw material and a seed crystal of a target compound crystal arranged above the growth vessel a. A substantially cylindrical crucible for crystal growth b accommodated with the seed crystal on the lower side, and a component element which is disposed on the lower side of the growth vessel a and has a high dissociation pressure of the compound crystal, and this component element And a reservoir (steam supply unit) c that supplies the vapor of the material to the surface of the raw material melt in the crystal growth crucible, and the action of heaters d1 and d2 arranged around the growth vessel a The upper side of the growth vessel a is set as a high temperature portion, and the lower side of the growth vessel a is set as a low temperature portion, and the reservoir c is arranged at the lowest temperature of the growth vessel a. The vapor pressure control is performed by controlling the temperature of the reservoir c.
[0005]
Further, the growth vessel a is arranged in a pressure vessel e as shown in FIG. 3, the space in the growth vessel a is independent in the pressure vessel e, and an inert gas that balances the internal pressure of the growth vessel a is pressurized. It is supplied into the container e and prevents the growth container a from being damaged by the internal pressure.
[0006]
The growth vessel a is mainly a closed vessel such as a quartz tube, but a semi-shield vessel made of graphite or boron nitride may be applied. When a compound crystal having a crystal growth temperature exceeding the softening point of quartz, such as GaP, is manufactured using a resistance heater, it must be a semi-shielded container. However, when a compound crystal such as GaAs or InP is manufactured, it is hermetically sealed. This is because both containers and semi-shielded containers can be used.
[0007]
The temperature distribution in the vertical direction in the high temperature part of the growth vessel a for growing the compound crystal is set such that the temperature at the upper end of the seed crystal is set to the melting point and the temperature is high above the high temperature part and low below. Further, it is desirable that the temperature gradient is small. For example, in the case of GaP or GaAs, the temperature gradient is set to 2 to 10 ° C./cm. Further, during crystal growth, a soaking zone (a temperature at which a component element having a high dissociation pressure has a vapor pressure equal to the dissociation pressure of the raw material) is provided in the low temperature portion of the growth vessel a, and vapor pressure control is performed.
[0008]
In order to realize these temperature distributions, the high temperature part and the low temperature part in the growth vessel a are temperature-controlled independently of each other. In general, the high-temperature part and the low-temperature part are cylindrical, and the same diameter heaters d1 and d2 are coaxially stacked in several stages, and a material having a low thermal conductivity between the high-temperature part and the low-temperature part ( Heat insulating material) is arranged.
[0009]
Then, the production of the compound crystal is completed by growing the crystal upward from the seed crystal by gradually lowering the temperature from the temperature distribution state in the growth vessel a, and then cooling to room temperature.
[0010]
Further, in the conventional crystal growth apparatus, after melting the raw material in the crystal growth crucible, the upper end of the seed crystal is melted to be seeded, and then the crystal growth crucible is gradually moved downward at a lower set temperature. The solid-liquid interface is moved upward by (vertical Bridgman method) or by gradually lowering the set temperature of the heater d1 in the high temperature part of the growth vessel a (vertical temperature gradient solidification method). That is, the compound crystal is grown upward from the seed crystal accommodation position (normal growth).
[0011]
[Problems to be solved by the invention]
By the way, in the crystal growth process of the compound crystal in the conventional crystal growth apparatus, the temperature difference between the solid-liquid interface and the raw material melt upper surface (solid-gas interface) gradually decreases. At the end of this crystal growth process, a phenomenon may occur in which the temperature of the upper surface of the raw material melt becomes lower than the temperature of the solid-liquid interface. When this phenomenon occurs, crystal nuclei are formed on the upper surface of the raw material melt, and crystals grow from the upper surface of the raw material melt toward the solid-liquid interface (this phenomenon is referred to as abnormal growth). Once this abnormal growth occurs, the normal growth up to that point (the crystal grows upward from the seed crystal accommodation position) and the abnormal growth proceed simultaneously, and crystal growth occurs where the two grown crystals collide. Will end.
[0012]
An abnormally grown crystal is not a product because the growth orientation is naturally different from that of a normally grown crystal. Therefore, when the phenomenon that the temperature of the upper surface of the raw material melt is lower than the temperature of the solid-liquid interface occurs and grows abnormally, the production yield of the compound crystal is lowered.
[0013]
The above-mentioned problems are likely to occur when growing a GaP crystal having a high crystal growth temperature (melting point: 1465 ° C.) and a high atmospheric pressure (phosphorus vapor pressure at the melting point is 35 kg / cm 2 ), for example. This is because when the GaP crystal is grown, the gas convection above the raw material melt is intense, and the temperature oscillation on the upper surface of the raw material melt increases.
[0014]
The present invention has been made paying attention to such problems, and the problem is that the temperature of the upper surface of the raw material melt in the vertical Bridgman method or the vertical temperature gradient solidification method is lower than the temperature of the solid-liquid interface. Provided are a crystal growth crucible and a crystal growth apparatus capable of preventing abnormal phenomena and suppressing abnormal growth, allowing stable normal growth upward from a seed crystal, and capable of growing a compound crystal in high yield. There is.
[0015]
[Means for Solving the Problems]
That is, the invention according to claim 1
It is arranged on the upper side in a vertical growth vessel arranged substantially vertically, and the raw material and seed crystal of the compound crystal are accommodated with the seed crystal on the lower side, and the raw material is heated to the melt surface. On the other hand, a vertical Bridgman method for sequentially growing compound crystals from the seed crystal storage position upward while applying vapors of component elements having a high dissociation pressure of the compound crystals supplied from the lower side in the growth vessel, or Assuming a crucible for crystal growth applied to the vertical temperature gradient solidification method,
A substantially cylindrical crucible body having a seed crystal accommodating part on the bottom side and whose inner diameter continuously increases from the lower side to the upper side, and the outer peripheral edge of the crucible body are locked to the inner peripheral wall surface of the crucible body. And a circular partition plate having a vent hole for allowing the vapor of the component element having a high dissociation pressure to pass therethrough, and the locking position of the partition plate is set above the liquid surface of the raw material melt. It is characterized by that.
[0016]
And according to the crucible for crystal growth according to the present invention, the circular partition plate is disposed above the liquid surface of the raw material melt in the crucible body, and the space above the crucible main body and the upper surface of the raw material melt Since the space is partitioned, temperature fluctuations in the upper part of the raw material melt due to high-temperature gas convection above the raw material melt in the crucible body are suppressed.
[0017]
Therefore, the temperature of the upper surface of the raw material melt is kept higher than the temperature of the solid-liquid interface even at the end of the crystal growth process in which the temperature difference between the solid-liquid interface and the upper surface of the raw material melt becomes smaller in the vertical Bridgman method or the vertical temperature gradient solidification method. Therefore, abnormal growth from the upper surface of the raw material melt toward the solid-liquid interface can be suppressed.
[0018]
Further, since the partition plate has a vent hole through which the vapor of the component element having a high dissociation pressure passes, the vapor of the component element having a high dissociation pressure with respect to the raw material melt surface in the crucible body as in the conventional case. Crystals can be grown while being applied.
[0019]
In addition, when the crucible for crystal growth according to the present invention is incorporated in a crystal growth apparatus having a structure in which a high temperature distribution is easily formed in the center portion rather than the outer peripheral portion of the crucible, the vapor pressure of the component element is applied to the raw material melt surface. It is desirable to provide the ventilation hole for making it in the center part of a partition plate. This is because such an arrangement is effective in suppressing the formation of crystal nuclei on the upper surface of the raw material melt. Claims 2 to 3 are made for such technical reasons.
[0020]
That is, the invention according to claim 2
Based on the crucible for crystal growth according to the invention of claim 1,
A plurality of ventilation holes having an inner diameter of 2 mm or less are provided in the central portion of the partition plate,
The invention according to claim 3
A single ventilation hole having an inner diameter equal to or less than a radius of the partition plate is provided at a central portion of the partition plate.
[0021]
Next, the invention according to claim 4 relates to a crystal growth apparatus to which the crystal growth crucible according to the present invention is applied.
[0022]
That is, the invention according to claim 4
A vertical growth vessel arranged substantially vertically, a crucible for crystal growth arranged on the upper side of the growth vessel and containing the raw material and seed crystal of the compound crystal with the seed crystal on the lower side, and the growth vessel And a vapor supply unit that contains a component element having a high dissociation pressure of the compound crystal and supplies a vapor of this component element to the raw material melt surface in the crucible for crystal growth, On the premise of a crystal growth apparatus for growing the above compound crystal by the Bridgeman method or the vertical temperature gradient solidification method,
The said crystal growth crucible is comprised by the crystal growth crucible in any one of Claims 1-3.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0024]
That is, the crystal growth crucible 1 according to the present invention has a seed crystal accommodating portion 10 on the bottom side as shown in FIG. 1A and its inner diameter continuously increases from the lower side to the upper side. A substantially cylindrical crucible main body 11 and a circular partition plate 12 having an outer peripheral edge locked to an inner peripheral wall surface of the crucible main body 11 and having a vent hole 13 through which vapor of a component element having a high dissociation pressure passes. It is composed. The slope angle of the wall surface in the crucible body 11 is arbitrary in principle, but is usually set in the range of 1 to 3 degrees (the conventional wall surface is not tilted and the slope angle is 0 degree).
[0025]
As shown in FIG. 1A, the target compound crystal raw material (usually the target compound crystal is a compound single crystal in the crucible body 11, and in this case, in principle, the compound polycrystal is the above raw material. (In some cases, the component elements before compound synthesis may be used as raw materials.) 2 and seed crystal 3 are charged, and after the partition plate 12 is placed on the charged raw material 2, the crystal is grown. The crucible 1 is set at a predetermined position in the growth vessel 50 of the crystal growing apparatus 5 shown in FIG. FIG. 1B shows a cross section in the crucible body 11 when the upper ends of the raw material 2 and the seed crystal 3 are melted by this temperature rise (at the start of crystal growth). Then, the inner diameter of the crucible body 11 and the size of the partition plate 12 are arranged so that the locking position of the partition plate 12 is disposed above the liquid surface of the raw material melt 2 ′ as shown in FIG. Has been adjusted. Normally, the locking position of the partition plate 12 is set at a location several mm from the liquid level of the raw material melt 2 ′.
[0026]
Examples of the partition plate 12 include those provided with a vent hole 13 only in the central portion, those provided with a plurality of vent holes of 2 mm or less, and the like. A vapor of a component element having a high dissociation pressure supplied from a reservoir 6 disposed on the side is applied. The material of the partition plate 12 is arbitrary as long as it is a material that does not react with the constituent elements and the crucible body 11 and does not generate a problematic impurity, but is preferably the same as the material of the crucible body 11. Good. For example, when quartz is applied as the crucible body, a partition plate made of quartz can be applied, but a partition plate made of P-BN (pyrolytic boron nitride) may be applied.
[0027]
Next, a crystal growth apparatus according to the present invention includes a substantially cylindrical crucible body having a seed crystal accommodating part on the bottom side and an inner diameter continuously increasing from the lower side toward the upper side, and the crucible body. Except for the point that a crucible for crystal growth composed of a circular partition plate having a vent hole through which the outer peripheral edge is locked to the inner peripheral wall surface and the vapor of the component element having a high dissociation pressure passes is incorporated. This is almost the same as the crystal growth apparatus.
[0028]
That is, the crystal growth apparatus 5 according to the present invention includes a vertical growth vessel 50 arranged substantially vertically as shown in FIG. 2, and a raw material and a seed crystal of a compound crystal arranged above the growth vessel 50. The crucible 1 for crystal growth to be accommodated and the component element which is disposed below the growth vessel 50 and has a high dissociation pressure of the compound crystal are accommodated, and the vapor of this component element is contained in the crucible 1 for crystal growth. The main part is constituted by the reservoir 6 supplied to the raw material melt surface, and three cylindrical heaters 71, 71, 71 are provided in the vicinity of the outer periphery of the growth vessel 50 at the location where the crystal growing crucible 1 is disposed. In addition, one cylindrical heater 72 is provided near the outer periphery of the growth vessel 50 at the location where the reservoir 6 is disposed. Similarly to the conventional apparatus, the growth vessel 50 is arranged in the pressure vessel 8 as shown in FIG. 2, and the space in the growth vessel 50 is independent in the pressure vessel 8, and the growth vessel 50 has an internal pressure. An inert gas to be balanced is supplied into the pressure vessel 8 so that the growth vessel 50 is not damaged by the internal pressure.
[0029]
In the crucible for crystal growth and the crystal growth apparatus according to the present invention, a circular partition plate is arranged above the liquid surface of the raw material melt in the crucible main body, and the space above the crucible main body and the raw material melt Since the space between the upper surface of the raw material melt and the upper surface is partitioned, temperature fluctuations in the upper portion of the raw material melt due to high-temperature gas convection above the raw material melt in the crucible body are suppressed. Therefore, the temperature of the upper surface of the raw material melt is kept higher than the temperature of the solid-liquid interface even at the end of the crystal growth process in which the temperature difference between the solid-liquid interface and the upper surface of the raw material melt becomes smaller in the vertical Bridgman method or the vertical temperature gradient solidification method. Therefore, there is an advantage that abnormal growth from the upper surface of the raw material melt toward the solid-liquid interface side can be suppressed.
[0030]
【Example】
Next, the present invention will be described more specifically with reference to examples.
[0031]
The crystal growth apparatus according to this example is used for manufacturing a GaP single crystal and has the same structure as the apparatus shown in FIG.
[0032]
First, the crucible body 11 of the crystal growth crucible 1 is made of P-BN (pyrolytic boron nitride), and the lower end of the cylindrical portion (that is, the shoulder portion where the gradient of the inner wall surface shown by 100 in FIG. 1A suddenly increases). The inner diameter of the upper end is set to 51.0 mm, and the gradient angle of the inner wall surface above the lower end of the cylindrical portion is set to 2 degrees.
[0033]
Similarly to the crucible body 11, the partition plate 12 of the crystal growing crucible 1 is formed of a circular plate having an outer diameter of 56.0 mm, which is formed of P-BN, and has five inner diameters of 2 mm at the center. A vent hole 13 is provided.
[0034]
When 820 g of raw material (GaP polycrystal) is charged into the crystal growing crucible 1, a substantially cylindrical GaP single crystal having a length of 80 mm is obtained, and the engagement position of the partition plate 12 in the crucible body 11 is as follows. And 6 mm above the raw material melt 2 ′.
[0035]
Next, as the growth vessel 50, a graphite semi-shielded vessel provided with a leak hole 51 as shown in FIG. 2 was applied. In addition, the high temperature part for growing the crystal of the growth vessel 50 and the low temperature part for controlling the vapor pressure are arranged by arranging four cylindrical heaters 71, 71, 71, 72 having the same diameter in a coaxial manner. Heated with an equal heater.
[0036]
The control temperatures of the three heaters 71, 71, 71 in the high temperature part are set to 1480 ° C., 1475 ° C., and 1420 ° C. in this order from the top, and the temperature at the upper end position of the seed crystal 3 is set to the melting point (1465 ° C.). The temperature distribution was set, and the temperature distribution was high above the high temperature part and low below. Further, the temperature gradient was 20 ° C./cm at the seed crystal accommodation site and 5 to 10 ° C./cm in the crucible body 11 thereabove. Further, the heater control temperature at the bottom of the reservoir 6 in the low temperature portion was set to 595 ° C., and the temperature in the reservoir 6 was set to 578 ° C.
[0037]
Also, set each partial pressure of phosphorus vapor and Ar gas in the growth vessel 50 (inert gas) to 35kg / cm 2, 10kg / cm 2, also, Ar gas pressure in the pressure vessel 8 (growth vessel external pressure) Was set to 45 kg / cm 2 .
[0038]
And, as described above, a GaP single crystal having a substantially cylindrical shape and a length of 80 mm can be produced at a high yield from 820 g of raw material by the crystal growth apparatus according to the embodiment in which the crystal growth crucible 1 is incorporated. It was.
[0039]
【The invention's effect】
According to the crucible for crystal growth according to any one of claims 1 to 3, a circular partition plate is disposed above the liquid surface of the raw material melt in the crucible main body, and the space above the crucible main body and the raw material melt Since the space between the upper surface of the raw material melt and the upper surface is partitioned, temperature fluctuations in the upper portion of the raw material melt due to high-temperature gas convection above the raw material melt in the crucible body are suppressed.
[0040]
Therefore, in the vertical Bridgman method or the vertical temperature gradient solidification method, the temperature of the upper surface of the raw material melt is kept higher than the temperature of the solid-liquid interface even in the final stage of the crystal growth process where the temperature difference between the solid-liquid interface and the upper surface of the raw material melt becomes small. This makes it possible to suppress abnormal growth from the upper surface of the raw material melt toward the solid-liquid interface.
[0041]
In addition, since the partition plate has a vent hole through which the vapor of the component element having a high dissociation pressure passes, the vapor of the component element having a high dissociation pressure is applied to the raw material melt surface in the crucible body as in the conventional case. It is possible to grow crystals while doing so.
[0042]
On the other hand, according to the crystal growth apparatus according to the invention of claim 4, since the crucible for crystal growth according to any one of claims 1 to 3 is incorporated, in the vertical Bridgman method or the vertical temperature gradient solidification method Prevents the phenomenon that the temperature of the upper surface of the raw material melt is lower than the temperature of the solid-liquid interface, suppresses abnormal growth, and allows normal growth upward from the seed crystal to proceed stably. It has the effect of growing crystals.
[Brief description of the drawings]
FIGS. 1A and 1B are cross-sectional views of a crystal growth crucible showing an embodiment of the present invention.
FIG. 2 is a cross-sectional view of a crystal growth apparatus showing an embodiment of the present invention.
FIG. 3 is a cross-sectional view of a crystal growth apparatus according to a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Crystal growth crucible 2 Raw material 2 'Raw material melt 3 Seed crystal 10 Seed crystal accommodating part 11 Crucible body 12 Partition plate 13 Vent

Claims (4)

略垂直に配置された縦型の成長容器内の上方側に配置され、化合物結晶の原料と種結晶がこの種結晶を下側にして収容されると共に、上記原料を加熱しその融液面に対し成長容器内の下方側から供給される上記化合物結晶の解離圧の高い成分元素の蒸気を印加させながら上記種結晶の収容位置から上方側へ向かって化合物結晶を順次成長させる垂直ブリッジマン法若しくは垂直温度勾配凝固法に適用される結晶育成用ルツボにおいて、
底部側に種結晶収容部を有しかつその内径が下方側から上方側へ向かって連続的に大きくなる略円筒形状のルツボ本体と、このルツボ本体の内周壁面にその外周縁が係止されかつ解離圧の高い上記成分元素の蒸気を通過させる通気孔を有する円形状の仕切板とで構成され、かつ、この仕切板の上記係止位置が原料融液の液面より上方側に設定されていることを特徴とする結晶育成用ルツボ。
It is arranged on the upper side in a vertical growth vessel arranged substantially vertically, and the raw material and seed crystal of the compound crystal are accommodated with the seed crystal on the lower side, and the raw material is heated to the melt surface. On the other hand, a vertical Bridgman method in which a compound crystal is sequentially grown from the seed crystal housing position upward while applying a vapor of a component element having a high dissociation pressure of the compound crystal supplied from the lower side in the growth vessel, or In the crucible for crystal growth applied to the vertical temperature gradient solidification method,
A substantially cylindrical crucible body having a seed crystal accommodating part on the bottom side and having an inner diameter that continuously increases from the lower side toward the upper side, and an outer peripheral edge of the crucible body on the inner peripheral wall surface. And a circular partition plate having a vent hole through which the vapor of the component element having a high dissociation pressure passes, and the locking position of the partition plate is set above the liquid surface of the raw material melt. A crucible for crystal growth characterized by
上記仕切板の中心部位に、内径2mm以下の複数の通気孔が設けられていることを特徴とする請求項1記載の結晶育成用ルツボ。The crucible for crystal growth according to claim 1, wherein a plurality of air holes having an inner diameter of 2 mm or less are provided in a central portion of the partition plate. 上記仕切板の中心部位に、その内径が仕切板の半径以下である単一の通気孔が設けられていることを特徴とする請求項1記載の結晶育成用ルツボ。The crucible for crystal growth according to claim 1, wherein a single air hole whose inner diameter is equal to or less than a radius of the partition plate is provided at a central portion of the partition plate. 略垂直に配置された縦型の成長容器と、この成長容器の上方側に配置され化合物結晶の原料と種結晶がこの種結晶を下側にして収容される結晶育成用ルツボと、上記成長容器の下方側に配置されかつ上記化合物結晶の解離圧の高い成分元素が収容されると共にこの成分元素の蒸気を結晶育成用ルツボ内の原料融液面に供給する蒸気供給部とを具備し、垂直ブリッジマン法若しくは垂直温度勾配凝固法により上記化合物結晶を育成させる結晶育成装置において、
上記結晶育成用ルツボが請求項1〜3のいずれかに記載の結晶育成用ルツボにより構成されていることを特徴とする結晶育成装置。
A vertical growth vessel arranged substantially vertically, a crystal growth crucible arranged above the growth vessel and containing a raw material and a seed crystal of the compound crystal with the seed crystal on the lower side, and the growth vessel And a vapor supply unit for containing a component element having a high dissociation pressure of the compound crystal and supplying a vapor of the component element to the raw material melt surface in the crucible for crystal growth. In a crystal growth apparatus for growing the compound crystal by the Bridgeman method or the vertical temperature gradient solidification method,
A crystal growth apparatus, wherein the crystal growth crucible is constituted by the crystal growth crucible according to any one of claims 1 to 3.
JP30245596A 1996-10-28 1996-10-28 Crystal growth crucible and crystal growth apparatus using the same Expired - Fee Related JP3814893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30245596A JP3814893B2 (en) 1996-10-28 1996-10-28 Crystal growth crucible and crystal growth apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30245596A JP3814893B2 (en) 1996-10-28 1996-10-28 Crystal growth crucible and crystal growth apparatus using the same

Publications (2)

Publication Number Publication Date
JPH10130090A JPH10130090A (en) 1998-05-19
JP3814893B2 true JP3814893B2 (en) 2006-08-30

Family

ID=17909153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30245596A Expired - Fee Related JP3814893B2 (en) 1996-10-28 1996-10-28 Crystal growth crucible and crystal growth apparatus using the same

Country Status (1)

Country Link
JP (1) JP3814893B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104911690B (en) * 2015-07-01 2017-09-19 清远先导材料有限公司 The growing method and grower of a kind of indium phosphide single crystal

Also Published As

Publication number Publication date
JPH10130090A (en) 1998-05-19

Similar Documents

Publication Publication Date Title
EP0068021B1 (en) The method and apparatus for forming and growing a single crystal of a semiconductor compound
US8231727B2 (en) Crystal growth apparatus and method
JP5497053B2 (en) Single crystal germanium crystal growth system, method and substrate
CN111088524B (en) Large-size silicon carbide single crystal, substrate, preparation method and used device
JP2012126644A (en) Method and apparatus for growing semiconductor crystal with a rigid support with carbon doping, resistivity control and thermal gradient control
EP0992618B1 (en) Method of manufacturing compound semiconductor single crystal
US4904336A (en) Method of manufacturing a single crystal of compound semiconductor and apparatus for the same
CN211497863U (en) Crucible assembly for preparing single crystal by PVT method and crystal growth furnace
JP3814893B2 (en) Crystal growth crucible and crystal growth apparatus using the same
JPS6027683A (en) Resistant heater for single crystal production apparatus
JPH08750B2 (en) Single crystal growth method and apparatus using high-pressure synthesizer
EP2501844A1 (en) Crystal growth apparatus and method
JP4117813B2 (en) Method for producing compound semiconductor single crystal
JPH01317188A (en) Production of single crystal of semiconductor and device therefor
JP7439723B2 (en) How to grow silicon single crystals
JP2733898B2 (en) Method for manufacturing compound semiconductor single crystal
JPH0234592A (en) Growing method for compound semiconductor single crystal
JP2677859B2 (en) Crystal growth method of mixed crystal type compound semiconductor
JPH1087306A (en) Pyrolytic boron nitride vessel
JPS62187193A (en) Method and device for growing single crystal
JPH0475880B2 (en)
JPH02212390A (en) Single crystal producing device
JP2014156373A (en) Manufacturing apparatus for sapphire single crystal
JPS60122791A (en) Pulling up method of crystal under liquid sealing
JPH0558772A (en) Production of compound semiconductor single crystal

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060529

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees