JPS62187193A - Method and device for growing single crystal - Google Patents

Method and device for growing single crystal

Info

Publication number
JPS62187193A
JPS62187193A JP2677286A JP2677286A JPS62187193A JP S62187193 A JPS62187193 A JP S62187193A JP 2677286 A JP2677286 A JP 2677286A JP 2677286 A JP2677286 A JP 2677286A JP S62187193 A JPS62187193 A JP S62187193A
Authority
JP
Japan
Prior art keywords
boat
heat
heat sink
temperature
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2677286A
Other languages
Japanese (ja)
Other versions
JPH0699211B2 (en
Inventor
Kiyoteru Yoshida
清輝 吉田
Natami Nishibe
西部 名民
Yuzo Kashiyanagi
柏柳 雄三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2677286A priority Critical patent/JPH0699211B2/en
Publication of JPS62187193A publication Critical patent/JPS62187193A/en
Publication of JPH0699211B2 publication Critical patent/JPH0699211B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To surely grow a single crystal by rendering the temp. of a melt lower than that of a boat wall by a combination of a heat sink and a cooling pipe, and controlling the generation of a crystal body on the inner wall of the boat. CONSTITUTION:For example, the melt 27 of indium phosphide is prepared in the boat 13 to grow a single crystal. A soaking state is formed over the whole length of the boat 13 by using an electric furnace 16, an auxiliary heater 24, and the heat sink 21. Then the growth of a single crystal is started, for example, by a temp. gradient solidification method. Although a temp. profile is given by the electric furnace 16 as before, heat absorption by the heat sink 21 and the cooling pipe 20 and auxiliary heating by the auxiliary heater 24 are simultaneously carried out. Consequently, heat flows as shown by the arrow on the inside and outside of the boat 13, and the heat from the auxiliary heater 14 enters the inside of the boat from the outer periphery of the boat 13 and flows toward the heat sink 21 through the melt 27 and a seed 14. Accordingly, the temp. of the melt 27 is made lower than that of the wall of the boat 13, the generation of nuclei from the inner wall surface of the boat 13 is controlled, and the single crystal from the seed 14 is surely grown.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、化合物半導体の単結晶育成方法および装置に
係り、特に横型のボート成長法における熱演を制御して
確実に単結晶を育成する方法および装置に関するもので
ある。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a method and apparatus for growing single crystals of compound semiconductors, and more particularly to a method and apparatus for reliably growing single crystals by controlling heat production in a horizontal boat growth method. It is something.

〔従来技術とその問題点〕[Prior art and its problems]

温度勾配凝固法により化合物半導体の単結晶を成長させ
る場合、電気炉内の温度をシード部から融液部へと徐々
に下げていくだけでは融液内の熱流、特に固液界面の熱
流の制御がむずかしく、成長途中で多結晶化してしまう
ことが多い。これは水平ブリッジマン法の場合も同様で
ある。
When growing single crystals of compound semiconductors using the temperature gradient solidification method, it is difficult to control the heat flow in the melt, especially at the solid-liquid interface, by simply lowering the temperature in the electric furnace gradually from the seed section to the melt section. It is difficult and often becomes polycrystalline during growth. This also applies to the horizontal Bridgman method.

そこで、融液部の熱流を制御し、低転位密度の単結晶を
製造するために種々の改良がなされている。例えば特開
昭55−62882号公報に開示された方法は、ボート
上部に冷却ガス吹き付は装置を設置することにより成長
界面を自由に制御し、低転位密度単結晶を速い成長速度
で成長させるようにしたものである。
Therefore, various improvements have been made to control the heat flow in the melt and to produce single crystals with low dislocation density. For example, the method disclosed in Japanese Patent Application Laid-Open No. 55-62882 installs a cooling gas blowing device on top of the boat to freely control the growth interface and grow a low dislocation density single crystal at a high growth rate. This is how it was done.

しかし電気炉内上部に冷却ガス吹き付は装置を設けただ
けでは、融液内の熱の流れを精密に制御することは困難
である。特に燐化インジウムのように、積層欠陥エネル
ギーが18erg/cm″と砒化ガリウムの3分の1程
度で、きわめて双晶が発生しやすいものでは、微妙な熱
のゆらぎで多結晶化が起きてしまうという問題がある。
However, it is difficult to precisely control the flow of heat within the melt simply by providing a cooling gas blowing device in the upper part of the electric furnace. In particular, in materials such as indium phosphide, which has a stacking fault energy of 18 erg/cm'', which is about one-third that of gallium arsenide, and which is extremely prone to twinning, polycrystallization occurs due to subtle thermal fluctuations. There is a problem.

したがって燐化インジウムその他の単結晶化の難しい化
合物半導体の単結晶を製造するためには、さらに精密な
熱流制御が要求される。
Therefore, in order to produce single crystals of indium phosphide and other compound semiconductors that are difficult to single-crystallize, even more precise heat flow control is required.

〔問題点の解決手段とその作用〕[Means for solving problems and their effects]

温度勾配凝固法により燐化インジウム単結晶の育成を行
った場合、電気炉の内壁とボート内の温度分布を実際に
測定してみると、第8図に示すようにボート内の燐化イ
ンジウム融液の温度Aが電気炉内壁の温度Bより高くな
っていることが多い。
When indium phosphide single crystals are grown using the temperature gradient solidification method, when we actually measure the temperature distribution on the inner wall of the electric furnace and inside the boat, we find that the indium phosphide molten inside the boat is The temperature A of the liquid is often higher than the temperature B of the inner wall of the electric furnace.

このような温度状態では、燐化インジウム融液からボー
ト壁を通ってボート外に逃げていく熱流が存在すること
になり、ボート内壁面に結晶核が発生しやすくなる。こ
のため多結晶化が起こり易く、単結晶をつくることが極
めて困難である。
In such a temperature state, there is a heat flow that escapes from the indium phosphide melt to the outside of the boat through the boat wall, and crystal nuclei are likely to be generated on the inner wall surface of the boat. For this reason, polycrystalization tends to occur, making it extremely difficult to produce a single crystal.

そこで本発明は、ボート内の温度を周囲より下げ、ボー
ト外の周囲からボート内に向けての熱流を生じさせてボ
ート内壁面での核の発生を抑制し、単結晶を確実に育成
できるようにしたものである。
Therefore, the present invention lowers the temperature inside the boat compared to the surroundings, generates a heat flow from the outside of the boat toward the inside of the boat, suppresses the generation of nuclei on the inner wall of the boat, and makes it possible to reliably grow single crystals. This is what I did.

すなわち本発明は、電気炉により加熱される石英アンプ
ル内の低温部に揮発性元素を置き、高温部に金属元素を
収容したボートを置いて、温度勾配凝固法または水平ブ
リッジマン法により上記ボート内に化合物半導体の融液
を作成した後、単結晶を育成する方法において、上記ボ
ートのシード端側にヒートシンクを熱的に結合させ、か
つヒートシンクの周囲に炉外に通じる冷却管を設けて、
上記ボート内の熱をシードを通してヒートシンクの方に
吸収すると共に、上記ボートの周囲に補助ヒータを設け
て熱を供給し、これにより上記ボート内の温度をボート
外の温度より低く保った状態で、熱が常にボートの周囲
からボート内の融液内に供給されるようにして単結晶を
育成することを特徴とするものである。
That is, in the present invention, a volatile element is placed in a low-temperature part of a quartz ampoule heated by an electric furnace, a boat containing a metal element is placed in a high-temperature part, and the temperature gradient solidification method or horizontal Bridgman method is used to cool the volatile element in the boat. In the method of growing a single crystal after creating a compound semiconductor melt, a heat sink is thermally coupled to the seed end side of the boat, and a cooling pipe leading to the outside of the furnace is provided around the heat sink,
Absorbing the heat inside the boat through the seeds toward the heat sink, and providing heat by providing an auxiliary heater around the boat, thereby keeping the temperature inside the boat lower than the temperature outside the boat, This method is characterized by growing a single crystal by constantly supplying heat from around the boat into the melt inside the boat.

またこの方法を実施するのに使用される本発明の装置は
、一端側に揮発性元素を置き、他端側に金属元素を収容
したボートを置いた石英アンプルを、上記一端側を低温
部、他端側を高温部とした電気炉内に水平に設置してな
る単結晶育成装置において、上記ボートのシード端側に
接触するように設置されたヒートシンクと、上記石英ア
ンプルの外側に上記ヒートシンクを囲むように設置され
た端部が炉外に通じる冷却管と、上記石英アンプルの外
側に上記ボートを囲むように設置された少なくとも上下
に分割されている補助ヒータと、上記冷却管と補助ヒー
タの間に設置された断熱板とを備えたことを特徴とする
ものである。
The apparatus of the present invention used to carry out this method includes a quartz ampoule in which a volatile element is placed on one end and a boat containing a metal element is placed on the other end. In a single crystal growth apparatus installed horizontally in an electric furnace with the other end as a high temperature section, the heat sink is installed so as to be in contact with the seed end side of the boat, and the heat sink is installed outside the quartz ampoule. a cooling pipe whose end communicates outside the furnace; an auxiliary heater which is divided into at least an upper and a lower part and which is installed outside the quartz ampoule so as to surround the boat; and a combination of the cooling pipe and the auxiliary heater. It is characterized by comprising a heat insulating plate installed between the two.

〔実施例〕〔Example〕

以下本発明の実施例を図面を参照して詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図ないし第4図は本発明の単結晶育成方法に用いる
装置の一例を示す0図において、1)は内部を真空にし
た石英アンプル、12はその一端側に設置された揮発性
元素たとえば燐、13は他端側に設置されたボートであ
る。ボート13内には金属元素たとえばインジウムが収
容されており、その一端側にはシード14が設置されて
いる。15は石英アンプル1)内の燐の蒸気圧を制御す
る低温側電気炉、16は所定の温度プロファイルでボー
ト13側を加熱する高温側電気炉である。
1 to 4 show an example of the apparatus used in the single crystal growth method of the present invention, in which 1) is a quartz ampoule whose interior is evacuated; 12 is a volatile element placed on one end of the ampoule; Rin, 13 is a boat installed on the other end side. A metal element such as indium is housed in the boat 13, and a seed 14 is installed at one end of the boat 13. 15 is a low-temperature side electric furnace that controls the vapor pressure of phosphorus in the quartz ampule 1), and 16 is a high-temperature side electric furnace that heats the boat 13 side with a predetermined temperature profile.

本発明の方法は、燐12を蒸発させ、それをインジウム
内に拡散させることによりボート13内に燐化インジウ
ムの融液を作成した後、高温側電気炉15内の温度プロ
ファイルを徐々に変化させるか、あるいは炉内の温度プ
ロファイルをそのままにして、電気炉またはアンプルを
徐々に移動させるかして、ボート13内にシード14側
から単結晶を成長させていくという点では従来と同じで
ある。
The method of the present invention involves creating a melt of indium phosphide in a boat 13 by evaporating phosphorus 12 and diffusing it into indium, and then gradually changing the temperature profile in the high-temperature electric furnace 15. Alternatively, the method is the same as the conventional method in that the single crystal is grown in the boat 13 from the seed 14 side by gradually moving the electric furnace or the ampoule while leaving the temperature profile in the furnace as it is.

本発明はこのような方法において、ボート13の外側か
ら内側に向けての熱流をつくり出すため、さらに次のよ
うな構成を採用している。
In this method, the present invention further employs the following configuration in order to create a heat flow from the outside to the inside of the boat 13.

まず石英アンプルll内には、ボート13のシード棚の
先端に接触させて熱伝導率のよいヒートシンク21を設
置する。また石英アンプル1)の外側のヒートシンク2
1の周囲には、ヒートシンク21を冷却するための冷却
管22を設置する。冷却管22は端部を電気炉16外に
導出し、その中に冷却用の不活性ガスを流すようにする
。この不活性ガスの流量を調整することによりヒートシ
ンク21から放出される熱量を#御する。なお冷却管2
2は電気炉16内の所定の位置に設置されており、石英
アンプル1)はそのリング部に通して設置されることに
なる。
First, a heat sink 21 with good thermal conductivity is installed in the quartz ampoule 11 in contact with the tip of the seed shelf of the boat 13. Also, the heat sink 2 on the outside of the quartz ampoule 1)
A cooling pipe 22 for cooling the heat sink 21 is installed around the heat sink 21 . The end of the cooling pipe 22 is led out of the electric furnace 16, and an inert gas for cooling is allowed to flow therein. By adjusting the flow rate of this inert gas, the amount of heat released from the heat sink 21 is controlled. In addition, cooling pipe 2
2 is installed at a predetermined position within the electric furnace 16, and the quartz ampoule 1) is inserted through the ring portion thereof.

また冷却管22のボート13寄りにはフランジ状の断熱
板23を設置し、冷却管22による熱的な外乱をボート
13付近に与えないようになっている。
Further, a flange-shaped heat insulating plate 23 is installed near the boat 13 of the cooling pipe 22 to prevent thermal disturbances caused by the cooling pipe 22 from being applied to the vicinity of the boat 13.

さらに石英アンプル1)の外側であってボート13の周
囲に相当する位置には、軸線方向および周方向に分割さ
れた多数の補助ヒータ24が設置されている。個々の補
助ヒータ24は、例えば第5図に示すようにほぼ半円筒
形の石英材25にカンタル線やパイロマックス線などの
高温用ヒータ線26を適当なパターンで固定したもので
、それぞれ独立して発熱量を制御できるようになってい
る。補助ヒータ24を軸線方向に複数に分割する理由は
、電気炉16だけでは実現しにくいボート13付近の均
熱を取りやすくするためと、軸線方向の温度分布を微調
整するためである。また補助ヒータ24を上下に二分割
した理由は、上下の発熱量を調整して電気炉16内にお
ける上下方向の温度差をなくすためである。なお補助ヒ
ータは周方向に例えば四分割し、上下左右から温度調整
を行うようにすることもできる。
Further, a large number of auxiliary heaters 24 divided in the axial direction and the circumferential direction are installed outside the quartz ampoule 1) at positions corresponding to the periphery of the boat 13. Each auxiliary heater 24 is, for example, a semi-cylindrical quartz material 25 with high-temperature heater wires 26 such as Kanthal wire or Pyromax wire fixed in an appropriate pattern, as shown in FIG. The amount of heat generated can be controlled by The reason why the auxiliary heater 24 is divided into a plurality of parts in the axial direction is to make it easier to uniformly heat the vicinity of the boat 13, which is difficult to achieve with the electric furnace 16 alone, and to finely adjust the temperature distribution in the axial direction. The reason why the auxiliary heater 24 is divided into upper and lower halves is to adjust the amount of heat generated in the upper and lower halves to eliminate temperature differences in the vertical direction within the electric furnace 16. Note that the auxiliary heater may be divided into four parts in the circumferential direction, and the temperature may be adjusted from the top, bottom, left, and right.

さて、ボート13内に燐化インジウム融液27を作成し
た後、単結晶を育成するには、まず電気炉16、補助ヒ
ータ24およびヒートシンク21を用いてボート13の
ほぼ全長にわたる均熱状態をつくり、その後、例えば温
度勾配凝固法により結晶成長を開始する。温度プロファ
イルは従来同様、電気炉16により与えられるが、その
温度プロファイルを保った状態で、さらにヒートシンク
21および冷却管22による吸熱と、補助ヒータ24に
よる補助加熱が行われる。その結果ボート13内外の熱
の流れは第6図の矢印のようになる。つまり補助ヒータ
24から供給された熱がボート13外の周囲からボート
13内に入り、燐化インジウム融液27、シード14を
通ってヒートシンク21へと流れることになる。したが
ってこの状態ではボート13の壁より融液27内の温度
が低くなり、ボート13の内壁面からの核発生が抑えら
れ、シード14からの単結晶が確実に成長することにな
る。
Now, after creating the indium phosphide melt 27 in the boat 13, in order to grow a single crystal, first create a uniform heating condition over almost the entire length of the boat 13 using the electric furnace 16, the auxiliary heater 24, and the heat sink 21. Then, crystal growth is started, for example, by a temperature gradient solidification method. The temperature profile is provided by the electric furnace 16 as in the conventional case, but while the temperature profile is maintained, heat absorption by the heat sink 21 and cooling pipe 22 and auxiliary heating by the auxiliary heater 24 are performed. As a result, the heat flows inside and outside the boat 13 as shown by the arrows in FIG. In other words, the heat supplied from the auxiliary heater 24 enters the boat 13 from around the outside of the boat 13, passes through the indium phosphide melt 27 and the seeds 14, and flows to the heat sink 21. Therefore, in this state, the temperature in the melt 27 is lower than that in the wall of the boat 13, suppressing the generation of nuclei from the inner wall surface of the boat 13, and ensuring that the single crystal from the seed 14 grows.

第7図はこの結晶成長過程における温度分布を示す。す
なわち、温度勾配凝固法の全過程においてボート13内
の燐化インジウム融液の温度Aが電気炉16の内壁の温
度Bよりも低くなっている。このような温度分布を与え
ることは単結晶の育成に極めてを効である。
FIG. 7 shows the temperature distribution during this crystal growth process. That is, in the entire process of the temperature gradient solidification method, the temperature A of the indium phosphide melt in the boat 13 is lower than the temperature B of the inner wall of the electric furnace 16. Providing such a temperature distribution is extremely effective for growing single crystals.

ところで、通常の横型の電気炉内には、上下に20〜3
0℃の温度差が存在する(上部が高い)。このような温
度差の存在は一方向凝固の成長に悪影響を及ぼす、この
ような温度差は、上記実施例のように上下に分割された
補助ヒータを電気炉内に設置し、それぞれの補助ヒータ
への供給電力を調整することにより除去することができ
る。また補助ヒータは、電気炉内の軸線方向における温
度分布の均熱長に影響を与えなければ、上下に一つずつ
設置すればよい、もし均熱長に影響が出る場合は、補助
ヒータを軸線方向にも複数に分割し、それぞれの発熱量
を調整することにより、所要の均熱長がとれるようにす
ればよい。
By the way, in a normal horizontal electric furnace, there are 20 to 3
There is a temperature difference of 0°C (higher at the top). The existence of such a temperature difference has a negative effect on the growth of unidirectional solidification.Such a temperature difference can be solved by installing an auxiliary heater divided into upper and lower parts in the electric furnace as in the above embodiment. This can be removed by adjusting the power supplied to the In addition, if the auxiliary heater does not affect the soaking length of the temperature distribution in the axial direction in the electric furnace, it is sufficient to install one at the top and one at the top. By dividing it into a plurality of parts in the direction and adjusting the amount of heat generated in each part, the required soaking length can be obtained.

また上記実施例では、ヒートシンクの周囲の冷却管の巻
き数を1sきとしたが、さらに吸熱効果を高めたい場合
は、2巻き以上としてもよい。ただしその場合は、結晶
成長部に熱的外乱を極力与えないようにするため、断熱
板の厚さを厚くする必要がある。
Further, in the above embodiment, the number of turns of the cooling pipe around the heat sink is 1 second, but if it is desired to further enhance the heat absorption effect, the number of turns of the cooling pipe around the heat sink may be 2 or more. However, in that case, it is necessary to increase the thickness of the heat insulating plate in order to minimize thermal disturbance to the crystal growth area.

また温度勾配凝固法により結晶を育成する場合、石英ア
ンプルの低温部(揮発性元素を置くゾーン)の温度分布
との兼ね合いで、成長過程での温度勾配が大きくとれな
いときは、ボートを上記とは逆向き、つまりシード棚が
揮発性元素の反対側に位置するように設置することがあ
る。その場合は当然、ヒートシンクおよび冷却管を石英
アンプルの端部側に設置することになる。
In addition, when growing crystals using the temperature gradient solidification method, if a large temperature gradient cannot be maintained during the growth process due to the temperature distribution of the low-temperature part of the quartz ampoule (the zone where volatile elements are placed), use the boat as described above. may be installed in the opposite direction, with the seed shelf located on the opposite side of the volatile element. In that case, the heat sink and cooling pipe will naturally be installed on the end side of the quartz ampoule.

なお上記実施例では、主として温度勾配凝固法に本発明
を適用した場合を説明したが、本発明は水平ブリッジマ
ン法にも同様に適用可能である。
In the above embodiments, the present invention was mainly applied to the temperature gradient solidification method, but the present invention is equally applicable to the horizontal Bridgman method.

また上記実施例では、燐化インジウム単結晶の育成につ
いて説明したが、本発明はそれ以外の化合物半導体単結
晶の育冑にも適用可能である。
Furthermore, in the above embodiments, the growth of indium phosphide single crystals has been described, but the present invention is also applicable to the growth of other compound semiconductor single crystals.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、温度勾配凝固法ま
たは水平ブリッジマン法により単結晶を育成する際に、
ヒートシンク、冷却管および補助ヒータの組合せにより
、ボート外の周回からボート内に入った熱が化合物半導
体の融液を通り、シードを通ってヒートシンクへと流れ
る熱流をつくり出し、融液の温度がボート壁の温度より
低くなるようにしたので、ボート内壁面での結晶核の発
生が抑制され、単結晶を確実に育成することができる。
As explained above, according to the present invention, when growing a single crystal by the temperature gradient solidification method or the horizontal Bridgman method,
The combination of the heat sink, cooling tube, and auxiliary heater creates a heat flow in which heat enters the boat from the orbit outside the boat, passes through the compound semiconductor melt, passes through the seeds, and flows to the heat sink, causing the temperature of the melt to drop to the boat wall. Since the temperature is set to be lower than , generation of crystal nuclei on the inner wall surface of the boat is suppressed, and single crystals can be grown reliably.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の単結晶育成方法に使用する装置の一実
施例を示す断面図、第2図ないし第4図はそれぞれ第1
図のn−n線、m−m線、IV−IV線における断面図
、第5図は同装置に使用する補助ヒータの斜視図、第6
図は本発明の方法におけるボート内外の熱の流れを示す
説明図、第7図は本発明の方法で温度勾配凝固法を実施
したときの温度分布を示すグラフ、第8図は従来の温度
勾配凝固法における温度分布を示すグラフである。 1)〜石英アンプル、12〜燐、13〜ボート、14〜
シード、15〜低温側電気炉、16〜高温側電気炉、2
1〜ヒートシンク、22〜冷却管、23〜断熱板、24
第1図 Z7燐化インジウム融液 第6図
FIG. 1 is a sectional view showing an embodiment of the apparatus used in the single crystal growth method of the present invention, and FIGS.
5 is a perspective view of the auxiliary heater used in the device;
The figure is an explanatory diagram showing the flow of heat inside and outside the boat in the method of the present invention, Figure 7 is a graph showing the temperature distribution when the temperature gradient solidification method is implemented by the method of the present invention, and Figure 8 is a graph showing the conventional temperature gradient solidification method. It is a graph showing temperature distribution in a solidification method. 1) ~quartz ampoule, 12~phosphorus, 13~boat, 14~
Seed, 15 - low temperature side electric furnace, 16 - high temperature side electric furnace, 2
1-heat sink, 22-cooling pipe, 23-insulation board, 24
Figure 1 Z7 indium phosphide melt Figure 6

Claims (2)

【特許請求の範囲】[Claims] (1)電気炉により加熱される石英アンプル内の低温部
に揮発性元素を置き、高温部に金属元素を収容したボー
トを置いて、温度勾配凝固法または水平ブリッジマン法
により上記ボート内に化合物半導体の融液を作成した後
、単結晶を育成する方法において、上記ボートのシード
端側にヒートシンクを熱的に結合させ、かつヒートシン
クの周囲に炉外に通じる冷却管を設けて、上記ボート内
の熱をシードを通してヒートシンクの方に吸収すると共
に、上記ボートの周囲に補助ヒータを設けて熱を供給し
、これにより上記ボート内の温度をボート外の温度より
低く保った状態で、熱が常にボートの周囲からボート内
の融液内に供給されるようにして単結晶を育成すること
を特徴とする単結晶育成方法。
(1) A volatile element is placed in the low temperature part of a quartz ampoule heated by an electric furnace, a boat containing a metal element is placed in the high temperature part, and the compound is placed in the boat using the temperature gradient solidification method or the horizontal Bridgman method. In the method of growing a single crystal after creating a semiconductor melt, a heat sink is thermally coupled to the seed end side of the boat, and a cooling pipe leading to the outside of the furnace is provided around the heat sink, and the inside of the boat is heated. heat is absorbed through the seeds toward the heat sink, and auxiliary heaters are provided around the boat to provide heat, thereby keeping the temperature inside the boat lower than the temperature outside the boat, so that the heat is constantly absorbed. A single crystal growth method characterized by growing a single crystal by supplying it from around a boat into a melt inside the boat.
(2)一端側に揮発性元素を置き、他端側に金属元素を
収容したボートを置いた石英アンプルを、上記一端側を
低温部、他端側を高温部とした電気炉内に水平に設置し
てなる単結晶育成装置において、上記ボートのシード端
側に設置されたヒートシンクと、上記石英アンプルの外
側に上記ヒートシンクを囲むように設置された端部が炉
外に通じる冷却管と、上記石英アンプルの外側に上記ボ
ートを囲むように設置された少なくとも上下に分割され
ている補助ヒータと、上記冷却管と補助ヒータの間に設
置された断熱板とを備えていることを特徴とする単結晶
育成装置。
(2) A quartz ampoule containing a volatile element on one end and a boat containing a metal element on the other end is placed horizontally in an electric furnace with one end as a low-temperature section and the other end as a high-temperature section. In the single crystal growth apparatus installed, a heat sink installed on the seed end side of the boat, a cooling pipe installed outside the quartz ampoule so as to surround the heat sink, the end of which communicates with the outside of the furnace; An auxiliary heater installed outside the quartz ampoule so as to surround the boat and divided into at least an upper and lower part, and a heat insulating plate installed between the cooling pipe and the auxiliary heater. Crystal growth equipment.
JP2677286A 1986-02-12 1986-02-12 Single crystal growth method and apparatus Expired - Lifetime JPH0699211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2677286A JPH0699211B2 (en) 1986-02-12 1986-02-12 Single crystal growth method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2677286A JPH0699211B2 (en) 1986-02-12 1986-02-12 Single crystal growth method and apparatus

Publications (2)

Publication Number Publication Date
JPS62187193A true JPS62187193A (en) 1987-08-15
JPH0699211B2 JPH0699211B2 (en) 1994-12-07

Family

ID=12202586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2677286A Expired - Lifetime JPH0699211B2 (en) 1986-02-12 1986-02-12 Single crystal growth method and apparatus

Country Status (1)

Country Link
JP (1) JPH0699211B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167294A (en) * 1987-12-24 1989-06-30 Asahi Glass Co Ltd Production of single crystal of group iii-v compound
JPH0234592A (en) * 1988-07-22 1990-02-05 Furukawa Electric Co Ltd:The Growing method for compound semiconductor single crystal
JPH0283290A (en) * 1988-09-20 1990-03-23 Furukawa Electric Co Ltd:The Process for growing compound semiconductor single crystal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167294A (en) * 1987-12-24 1989-06-30 Asahi Glass Co Ltd Production of single crystal of group iii-v compound
JPH0234592A (en) * 1988-07-22 1990-02-05 Furukawa Electric Co Ltd:The Growing method for compound semiconductor single crystal
JPH0283290A (en) * 1988-09-20 1990-03-23 Furukawa Electric Co Ltd:The Process for growing compound semiconductor single crystal

Also Published As

Publication number Publication date
JPH0699211B2 (en) 1994-12-07

Similar Documents

Publication Publication Date Title
CN110983429A (en) Single crystal furnace and monocrystalline silicon preparation method
US3798007A (en) Method and apparatus for producing large diameter monocrystals
US4597949A (en) Apparatus for growing crystals
WO2003005417A3 (en) Method and apparatus for growing semiconductor crystals with a rigid support
WO1991002832A1 (en) Method for directional solidification of single crystals
JPS62187193A (en) Method and device for growing single crystal
CN116163007A (en) Silicon carbide crystal growth device
JPH08750B2 (en) Single crystal growth method and apparatus using high-pressure synthesizer
JPH11349392A (en) Method and apparatus for producing single crystal
KR20020045765A (en) Growing apparatus of a single crystal ingot
JPH0359040B2 (en)
JPH0234592A (en) Growing method for compound semiconductor single crystal
JP2534341B2 (en) Single crystal growth equipment
JP3788077B2 (en) Semiconductor crystal manufacturing method and manufacturing apparatus
GB2200576A (en) Method of growing single crystal of compound semiconductor and apparatus therefor
JPS6033297A (en) Pulling device for single crystal semiconductor
JP4117813B2 (en) Method for producing compound semiconductor single crystal
CN116163006A (en) Preparation method of silicon carbide crystal
JPH05319973A (en) Single crystal production unit
TWI512153B (en) A crystal growth temperature of the gradient control apparatus and method
JPH06340493A (en) Apparatus for growing single crystal and growing method
JPH03279284A (en) Production of compound semiconductor single crystal
CN116590793A (en) Water cooling device and single crystal furnace
JPS6335492A (en) Growth of compound semiconductor crystal
JPS63170300A (en) Apparatus for producing single crystal for compound semiconductor