JP3814397B2 - 膨張測定装置 - Google Patents

膨張測定装置 Download PDF

Info

Publication number
JP3814397B2
JP3814397B2 JP35385697A JP35385697A JP3814397B2 JP 3814397 B2 JP3814397 B2 JP 3814397B2 JP 35385697 A JP35385697 A JP 35385697A JP 35385697 A JP35385697 A JP 35385697A JP 3814397 B2 JP3814397 B2 JP 3814397B2
Authority
JP
Japan
Prior art keywords
sample
interference
expansion
temperature
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35385697A
Other languages
English (en)
Other versions
JPH11183413A (ja
Inventor
洋 山内
暢夫 川崎
昌彦 大門
明 増村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Priority to JP35385697A priority Critical patent/JP3814397B2/ja
Publication of JPH11183413A publication Critical patent/JPH11183413A/ja
Application granted granted Critical
Publication of JP3814397B2 publication Critical patent/JP3814397B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、干渉計を利用して例えば線膨張係数などの熱膨張に関する量を測定する膨張測定装置に関する。
【0002】
【従来の技術】
一般に、温度変化に対する試料の伸びを測定(膨張測定)する場合、差動トランス(トランスフォーマー:変圧器)を利用する方法や、干渉計を利用する方法がある。これらの一例となる従来技術としては、公開特許公報昭62−124405号、昭63−252203号、平01−244350号、平04−76339号、平6−201620の各技術が挙げられる。
【0003】
【発明が解決しようとする課題】
しかしながら、上記従来の各測定装置においては、試料を各測定装置に適切な形状に加工する必要があり、試料をそのままの形状で測定にかけるということが出来なかった。
【0004】
例えば、干渉計を利用した上記特開昭62−124405号の熱膨張計では、試料のセット方法が、レーザー光を反射するミラーの上に試料を載置し、その試料の上に反射板を設置するというものであるため、試料の形状および大きさに大きな制約が課せられる。
【0005】
また、特開平01−244350号の板材料の熱膨張・収縮計測装置では、予め試料を所定長さに切り出して、該試料を四方を囲まれた設置箇所に収める必要があり、試料の形状や大きさのバリエーションは得られるものではない。
【0006】
また、特開平6−201620号の試料の熱物性評価方法及びその装置では、試料に直接レーザー光を当ててその反射を利用するため、試料の表面を精度良く加工する必要がある。
【0007】
上述の試料をそのままの形状で測定にかけられない測定装置の場合、実試料の測定において次の2つの問題が生じる。
【0008】
1つは、実試料の近くをサンプルとして切り出し、加工成形しなければならないことであり、製品の製作時にその製品の近くからサンプルとして取得できる場合は良いが、大きな製品(例えば半径800φ×厚さ200tmmの熱間成形品のような場合)でサンプルを切り出す事ができない場合は測定不可能となる。また、使用機械部品など唯一のものであり破壊が許されない場合でも測定は不可能となる。
【0009】
もう1つは、試料の膨張係数が非常に小さい場合に測定精度が上がらないという問題である。膨張係数が小さいと所定の温度変化に対して、短い試料の長さはその変化が極めて小さくしか現れず、変化の大きさを検出することが困難となる。
【0010】
ところで、膨張係数の測定を目的として開発されたものではないが、参照すべき従来技術として特開平4−172204号に開示のレーザー光波干渉測定装置がある。この技術は、試料を保持する支持板の位置のずれを、レーザー光を用いて補正するものであるが、この技術を応用して上記支持板を試料として見なすことで、極めて限定された条件、例えば線膨張係数の大きい材質で測定精度のあまり必要としないような膨張測定において、試料を非破壊で測定できる可能性があるが、一般的な膨張測定には不向きである。
【0011】
不向である理由としては、参照光と試料からの反射光を干渉させる位置が試料の外にあり、試料の膨張に関係のない光路が長く、干渉波が長い空気層や2つの反射鏡の材質の屈折率の温度係数や線膨張係数の影響を受け易く、結果として、測定精度が得られないことが挙げられる。更に、反射光を干渉させる位置が試料外に設けられているため、2つのビームスプリッタを備えた複雑な光学系が必要となり、光学的な調整が複雑で振動等外乱の影響を受け易く、結果的に、一般的な測定においても精度が得られない。
【0012】
この発明は、上記課題を解決するためになされたもので、従来難しかった大型試料をそのままの状態で非破壊にて膨張測定可能とし、即ち、最終製品或いは現在使用中の部品をそのままの状態で膨張測定可能とし、更に、この膨張測定を高い精度で実施することの可能な膨張測定装置を提供することである。
【0013】
【課題を解決するための手段】
上記課題を解決するため、
請求項1記載の発明は、試料を保持する試料保持機構と、
前記試料に温度変化を与える温度制御手段と、
前記試料の温度を検出する温度検出手段と、
レーザー光を反射する反射面を有し前記試料上に裁置可能に形成された2つの干渉板と、
これら2つの干渉板にレーザー光を反射させると共にこれら2つの反射光を互いに重ねて干渉光を出力する干渉装置と、
該干渉装置の出力および前記温度検出手段の検出出力に基づき前記試料の熱膨張に関するデータ処理を行う演算手段と
を備えた膨張測定装置とした。
【0014】
この請求項1記載の発明によれば、熱変化による試料の膨張/縮小に伴い上記2つの干渉板の間隔の長さが変化し、この間隔の長さを上記干渉装置の干渉光出力から求めて熱膨張に関するデータ処理を行うのであるが、上記2個の干渉板が試料上に載置可能に形成されたものであり、この2個の干渉板を試料上に載置することで測定を行うので、測定試料の大きさや形に制約が生じ難い。従って、大型試料をそのままの状態(非破壊にて)で膨張測定可能であり、同様に、最終製品或いは現在使用中の部品をそのままの状態で膨張測定することが可能となる。
また、内部がほぼ真空であると共にレーザー光を透過可能である前記2つの干渉板の間に配置される管体を備えても良く、そうすることで、干渉光を得るための光路の大部分を真空とすることが可能となり、空気層の温度変化の影響が極力回避され、更に高い測定精度を得ることが出来る。
【0015】
また、大型試料の膨張測定が可能であることから、干渉板の間隔を大きくすることができ、線膨張係数が非常に小さい試料においても膨張測定が容易となる。また、干渉板の載置箇所を試料の局所部分に限定することで、この局所部分の膨張測定を行うことが可能となる。従って、例えば、大きな試料において局部的に膨張のバラツキを測定したい場合でも、干渉板を被測定部を挟むように載置することで、各局部の膨張量が測定可能となり上記膨張のバラツキを得ることが可能となる。
【0016】
なお、上記試料を保持する試料保持機構は、例えば、試料の膨張/縮小を自在とさせる可動機構を備えたり、試料の厚さが変化した場合でも上記干渉板の高さを所定位置まで昇降可能とする昇降装置を備えたり、試料によっては、試料に不自然な負荷が掛かり試料が反ったりしないように保護する機構を備えるなど、適宜改良可能である。
【0017】
請求項2記載の発明は、請求項1記載の膨張測定装置において、
前記干渉装置が、前記2つの干渉板の間にレーザー光を往復させて干渉板の片側から干渉光を生じさせるフィゾー型干渉計である構成とした。
【0018】
この請求項2記載の発明によれば、干渉光を得るための光路が最小となり、且つ、この光路が試料の膨張に関係する光路からの構成されるので、空気層の温度変化の影響を最小にして、測定精度を向上させることが出来る。
また、干渉光が上記2つの干渉板のみから得られるので、その分、干渉装置の光学系の構成を単純化することが可能となり、結果として、干渉装置の光学的な調整の容易化、振動等の外部要因による影響の軽減等を計ることが出来る。
【0020】
また、請求項記載の発明のように、請求項1又は2に記載の膨張測定装置において、前記干渉板が、該干渉板の反射面の角度を調整可能な角度調整機構を備えることが好ましく、そうすることで、上面部に勾配がある試料であっても、上記干渉板を、その反射面を所定の角度に維持した状態でセットすることが可能となり、即ち、様々な形状の試料に対応して膨張測定を行うことが出来る。なお、角度調整機構に限らず、反射面の高さ方向の位置を調整可能とする調整機構を備えても良い。
【0021】
また、言うまでもないが、レーザー光の投射方向或いは前記干渉装置の光学系の配置を調整する調整機構を備えることが好ましく、そうすることで、干渉板の載置位置が精度良く決定されなかったり、試料の形状により干渉版の載置位置が所定位置からずれた場合でも、干渉装置側の調整で対応することが可能となり、測定時の作業効率の向上を計ることが出来る。
【0022】
また、請求項記載の発明のように、請求項1〜の何れかに記載の膨張測定装置において、レーザー光源として周波数安定化レーザーを用いることで、長時間かけた測定においても安定した測定精度を得ることが出来る。
【0023】
また、請求項記載の発明のように、請求項1〜の何れかに記載の膨張測定装置において、前記干渉板が、少なくとも前記試料の熱膨張を測定する測定温度領域において、前記試料とほぼ同一の熱膨張係数を有する部材から形成することにより、熱変化による膨張/収縮により干渉板が試料からずれるといった不具合を回避することが出来る。ここで、例えば、干渉板が、反射面を形成する光学系部分と、試料上に載置するためのベース部分とからなる場合には、少なくともベース部分の熱膨張係数を試料とほぼ同一にすることで上記同様の効果が得られる。
【0024】
【発明の実施の形態】
以下、この発明の実施の形態について、図1〜図5の図面を参照しながら説明する。
図1は、この実施の形態である非破壊膨張測定装置100の全体構成を示す概略構成図、図2は、非破壊膨張測定装置100を側方から眺めた側面図である。
【0025】
図1において、1はレーザー光源、2a,2bはレーザー光を拡大・平行にするレンズ系、3はビームスプリッタ、4a,4bはフィゾー型干渉計を構成する2枚の干渉板、5は干渉板間の空気層を最小にするための内部が真空になっている中空パイプ、6は測定対象となる試料、7は恒温槽、8,8は遮光絞り、9は収束レンズ、10は検出器、11は検出器のための負高圧電源、12は増幅器、13は熱電対温度計、14は熱電対のための冷接点、15は温度コントローラー、16は恒温槽に配管されている循環パイプに恒温水を循環するための恒温度循環装置、17はコンピューターである。
【0026】
図2において、1はレーザー光源、2a,2bはレンズ系、21は光学台、22は測定試料の厚さに応じてビームの高さを変えるためのリフター(昇降装置)、4a,4bは干渉板、5は中空パイプ、6は試料、24は試料保持台(試料保持機構)、7は恒温槽、16a…は恒温水循環装置16で温度変化を与えられた恒温水を循環させるための循環パイプ、25は光学系および測定系全体を支えるための除振台である。
【0027】
この実施の形態の非破壊膨張測定装置100は、図1と図2に示したように、レーザー光源1、レンズ系2a,2b、ビームスプリッタ3、干渉板4a,4b、中空パイプ5、遮光絞り8,8および収束レンズ9等からなる干渉装置と、検出器10、負高圧電源11および増幅器12等からなる光強度検出装置と、恒温槽7、恒温水循環装置16、熱電対温度計13および温度コントローラー15等からなる温度制御手段と、試料を保持する試料保持台24、光学台3、リフター22、除振台25、並びに、データ処理を行うコンピューター17等から構成されている。
【0028】
レーザー光源1は、光干渉を生起可能な可干渉距離の関係から干渉板4a,4bの間隔が200mm程度以下と短く、また、試料の線膨張係数が大きく、比較的に精密さを必要としない測定(以後、一般的膨張測定と記す。)においては、通常のガスレーザー光源を使用しても差し支えないが、試料の線膨張係数が小さい場合は、測定時間中、10-8程度に安定化した単一周波数安定化レーザー光源が必要となる。
【0029】
レーザー光源1、レンズ系2a,2b、ビームスプリッタ3には、それぞれ配置および角度の調整を行う調整機構が設けられている。
【0030】
中空パイプ5は、その内部が常に真空引きされると共に、両端にレーザー光を通過させる窓板5a,5bを備えてなり、試料6に接触しない状態で、干渉板4a,4bの間に配置される。この中空パイプ5は、干渉板4a,4bの間の空気層の温度変化が測定に影響して、精密測定を阻害しないようにするためのものである。
【0031】
図3には、干渉板4a,4bの構成図を示す。同図(a)はその縦断面図、(b)は斜視図である。
2つの干渉板4a,4bは、それぞれほぼ同一の構成をしており、ここでは一方の干渉板4aについて説明する。干渉板4aは、レーザー光を反射および透過させるための光学部43と、該干渉板4aを試料6上に載置するためのベース部41とを同一の材料で一体形成したものである。
光学部43は、レーザー光を反射するために平面上に成形された反射面43aを備え、レーザー光の一部を表面反射させ、残りを透過させる干渉板になっている。
【0032】
ベース部41は、光学部43が安定するように幅広に形成されると共に、底面部で三点支持するための2本の支持棒45,45と角度調整ネジ46とを備えて構成される。支持棒45は、その先端部をベース部45の底面から突出させた状態に設けられると共に、試料6と反射面43aの当初の位置関係が保たれることを目的に、その先端が尖り状に形成されて干渉板4aが試料6上で滑りにくいようになっている。
角度調整ネジ46は、その先端部をベース部45の底面から突出可能な状態に設けられ、該ネジを出し入れすることで、光学部43の傾きを調整するものである。角度調整ネジ46の先端部は球状に形成されている。47は、角度調整ネジ46のブッシュである。
【0033】
上記の干渉板4aの内、少なくともベース部41、好ましくは支持棒45,45、角度調整ネジ46、ブッシュ47の各部材は、所定の線膨張係数を有する材料から形成されている。そして、膨張測定が必要とする精密さの程度に応じて、この線膨張係数が、少なくとも試料の測定温度範囲内で試料の線膨張係数とほぼ同一のものを使用すると望ましい。上記部材を用いることで、温度変化による試料6の膨張/縮小に伴い、干渉板4aの接触部分も同様に膨張/縮小するため、位置ずれなどを起しにくい。
【0034】
なお、干渉板4a,4bを、上記同一の線膨張係数を有する部分において、その線膨張係数を異ならせて複数用意しておき、試料に応じて使い分けるようにすることで好適となる。
【0035】
次に、上記構成の被破壊膨張測定装置100を使用した試料6の膨張測定について説明する。
膨張測定を始める前に、先ず、試料6を試料保持台24にセットし、次に、2個の干渉板4a,4bを試料6上の所定箇所に平行な状態に載置する。例えば、試料6の部分的な線膨張係数を測定する場合には、当該測定したい部分が間に挟まれるように干渉板4a,4bを載置する。この実施の形態では、試料6の全体的な線膨張係数を測定するので、図1や図2に示すように試料6の中央を挟んで両側方の安定した箇所に載置する。
【0036】
同時に、干渉板4a,4bの反射面を互いに平行な状態にし、且つ調整ネジ46を調整して鉛直な状態にする。また、中空パイプ5を、その窓板5a,5bが干渉板4a,4bに対向するように干渉板4a,4bの間に配置する。
この状態にセットした後、恒温槽7を閉じて恒温水循環装置16を作動させ、恒温槽7内の温度が一定になるように制御する。
【0037】
次いで、レーザー光源1からレーザー光線を出力すると共に、レーザー光源1の調整機構を調整してレーザー光が干渉板4aの反射面(干渉面)43aに垂直に入射するように調整する。
レーザー光は、その一部が干渉板4aの反射面43aで反射されると共に、残りの一部が干渉板4aを通過してもう一方の干渉板4bに垂直に入射される。そして、干渉板4bの反射面で反射されて再び干渉板4aに戻り、一方の干渉板4aで反射されたレーザー光と互いに重なり合って干渉光を生じさせる。
干渉光は、ビームスプリッタ3で折り返され、収束レンズ9により検出器10に導かれる。
【0038】
この状態で、温度コントローラー15により恒温水循環装置16を作動制御して恒温槽7内の温度を変化させていく。試料6の温度は、熱電対温度計13により検知されコンピュータ17に出力される。
温度を変化させていくと、この温度変化に応じて試料6が伸縮し、試料6上に載置されている干渉板4a,4bの間隔が変化する。即ち、上記干渉光を生じさせているレーザー光の光路長が変化する。そして、この光路長の変化が上記干渉光の強度変化として現われ、検出器10および増幅器12を経てコンピュータ17に出力される。
【0039】
図4には、上記の膨張測定でコンピュータ17により表示出力される干渉光強度対温度のグラフを示す。
コンピュータ17では、上記熱電対温度計13からの出力と、干渉光の強度を表す増幅器12からの出力とから、試料6の熱膨張に関するデータ処理が行われ、例えば、図4に示すような、干渉光強度−温度のグラフが表示出力される。
【0040】
更に、コンピュータ17上で、上記データ、並びに、中空パイプ5および窓板5a,5bの熱膨張係数のデータ(或いは空気の熱膨張係数のデータも含む。)に基づいて次のような原理で計算が行われ、試料6の線膨張係数αsが求められる。
図5は、線膨張係数αsの計算方法を説明するために、干渉板4a,4bと中空パイプ5の配置構成を示す説明図である。同図中、4a,4bは干渉板、5は中空パイプ、5a,5bは窓板である。
【0041】
ここで、窓板5a,5bの厚さをそれぞれlq1,lq2、中空パイプ5の長さをlp、空気層の厚さをlair1,lair2、両干渉板4a,4b間の間隔をltotalとする。また、窓板5a,5bの厚さの合計をlq、空気層の厚さの合計をlairとして次式で表す。
【数1】
Figure 0003814397
【0042】
窓板2a,2bは同じ材料とし、その線膨張係数をαq、屈折率をnq、屈折率の温度係数をdnq/dTとする。更に、温度T0での両干渉板の間の全光路長をS0とすると次の式2が成り立つ。
【数2】
Figure 0003814397
また、温度T0から1度温度変化した時の全光路長をS1とすると次の式3が成り立つ。
【数3】
Figure 0003814397
温度T0の状態と1℃変化したときの状態との光路長の変化量ΔS(=S1−S0)は、計算に影響を与えない微小項を無視すると、式3と式2との差から次式のようになる。
【数4】
Figure 0003814397
ここで、ΔSを本発明の干渉縞の変化量として読み取れば、式3において、αS以外はすべて既知の値となるので、求める試料の線膨張係数が求められることになる。図4のグラフからΔSは次式のように求められる。
【数5】
Figure 0003814397
ところで、この実施の形態の膨張測定において、試料が800φ×200tmm(φ:半径、t:厚さ)のように極めて大きい場合、試料に対する温度変化を極めてゆっくり行わないと、試料6、窓板5a,5b、中空パイプ6が同一温度で変化せず、熱電対温度計13による温度指示値が全ての温度を正確に表さず、式2が成立しなくなる。
このような場合は、恒温水循環装置16による温度変化を極めてゆっくりなものとし、1〜2日間かけて実際の測定を行う。また、温度測定を、試料6だけでなく、窓板5a,5b、空気層に対しても行い、式3にそれぞれの温度測定値を使用することで極めて精度の高い測定を行うことが出来る。
【0043】
以上のように、この実施の形態の非破壊膨張測定装置100によれば、干渉板4a,4bを試料上に載置する構成であるため、膨張測定のための試料片を切り出す必要がなく、大きい試料や唯一の機械部品であっても非破壊で膨張の測定を行うことが出来る。また、線膨張係数が極めて小さい試料、例えば、市販されているゼロ膨張ガラス(線膨張係数α=1×10-7mm/℃)において、精密な測定をするには干渉板の間隔を大きくしなければならないが、このような場合でも、本発明によれば、大きな試料を使うので測定が容易になる。
【0044】
更に、大きな試料の局部的な膨張のバラツキを測定したい場合であっても、干渉板を被測定部を挟むように設置すれば、その間の線膨張係数が求められる。また、材料を供給するメーカにおいては、実製品で納入先に膨張という品質を保証して納入できるので、納入先に信頼性を与えることが出来る。
【0045】
なお、本発明は、この実施の形態の膨張測定装置100に限られるものではなく、例えば、試料を保持する構成、光学系の構成、試料等の温度制御を行う構成、並びに、コンピュータで行うデータ処理の内容など、具体的に示した細部構成等は発明の趣旨を逸脱しない範囲で適宜変更可能である。
【0046】
【発明の効果】
以上のように、この発明によれば、干渉板を試料上に載置することで測定を行うので、測定試料の大きさや形に制約が生じ難く、従って、大型試料をそのままの状態(非破壊にて)で膨張測定行うことが可能となる。即ち、最終製品或いは現在使用中の部品をそのままの状態で膨張測定することが可能となる。また、大型試料の膨張測定が可能であることから、線膨張係数が非常に小さい試料においても膨張測定が容易となる。
【0047】
また、干渉光に必要な光路が、試料上に載置された2個の干渉板間のみであることから、空気層の温度変化の影響を最小にして、測定精度を向上させることが出来ると共に、干渉光が上記2つの干渉板のみから得られるので、その分、干渉装置の光学系の構成を単純化することが可能となり、結果として、干渉装置の光学的な調整の容易化、振動等の外部要因による影響の軽減等を計ることが出来る。
【0048】
その他、干渉板の載置箇所を試料の局所部分に限定することで、この局所部分の膨張測定を行うことが可能となり、例えば、大きな試料において局部的に膨張のバラツキを測定したい場合でも、干渉板を被測定部を挟むように載置することで、各局部の膨張量が測定可能となり上記膨張のバラツキを得ることも可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態である非破壊膨張測定装置の全体構成を示す概略構成図である。
【図2】同、非破壊膨張測定装置を側方から眺めた側面図である。
【図3】同、非破壊膨張測定装置において使用される干渉板の構成を示すもので、(a)はその縦断面図、(b)はその斜視図である。
【図4】同、非破壊膨張測定装置のデータ処理の一例を示すもので光強度対温度のグラフである。
【図5】試料上の干渉板とパイプの配置構成を説明する説明図である。
【符号の説明】
1 レーザー光源
2a,2b レンズ系
3 ビームスプリッタ
4a,4b 干渉板
5 中空パイプ(管体)
6 試料
7 恒温槽
10 検出器
12 増幅器
13 熱電対温度計
15 温度コントローラ
16 恒温水循環装置
17 コンピュータ(演算手段)
24 試料保持台

Claims (5)

  1. 試料を保持する試料保持機構と、前記試料に温度変化を与える温度制御手段と、前記試料の温度を検出する温度検出手段と、レーザー光を反射する反射面を有し前記試料上に裁置可能に形成された2つの干渉板と、これら2つの干渉板にレーザー光を投射して反射させると共にこれら2つの反射光を互いに重ねて干渉光を出力する干渉装置と、該干渉装置の出力および前記温度検出手段の検出出力に基づき前記試料の熱膨張に関するデータ処理を行う演算手段と、内部がほぼ真空であると共にレーザー光を透過可能であり前記2つの干渉板の間に配置される管体と、を備えたことを特徴とする膨張測定装置。
  2. 前記干渉装置は、前記2つの干渉板の間にレーザー光を往復させて干渉板の片側から干渉光を生じさせるフィゾー型干渉計であることを特徴とする請求項1記載の膨張測定装置。
  3. 前記干渉板は、該干渉板の反射面の角度を調整可能な角度調整機構を備えていることを特徴とする請求項1又は2に記載の膨張測定装置。
  4. レーザー光源として周波数安定化レーザーを用いたことを特徴とする請求項1〜の何れかに記載の膨張測定装置。
  5. 前記干渉板は、少なくとも前記試料の熱膨張を測定する測定温度領域において、前記試料とほぼ同一の熱膨張係数を有する部材から形成されていることを特徴とする請求項1〜の何れかに記載の膨張測定装置。
JP35385697A 1997-12-22 1997-12-22 膨張測定装置 Expired - Fee Related JP3814397B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35385697A JP3814397B2 (ja) 1997-12-22 1997-12-22 膨張測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35385697A JP3814397B2 (ja) 1997-12-22 1997-12-22 膨張測定装置

Publications (2)

Publication Number Publication Date
JPH11183413A JPH11183413A (ja) 1999-07-09
JP3814397B2 true JP3814397B2 (ja) 2006-08-30

Family

ID=18433695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35385697A Expired - Fee Related JP3814397B2 (ja) 1997-12-22 1997-12-22 膨張測定装置

Country Status (1)

Country Link
JP (1) JP3814397B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3970510B2 (ja) * 2000-09-28 2007-09-05 三菱電機株式会社 線膨張係数測定装置
JP3897655B2 (ja) * 2002-08-02 2007-03-28 株式会社ミツトヨ 線膨張係数測定装置
JP4465965B2 (ja) * 2003-03-04 2010-05-26 株式会社Ihi 熱処理装置および熱処理方法
US7164481B2 (en) 2003-09-01 2007-01-16 Kabushiki Kaisha Ohara Coefficient of linear expansion measuring apparatus and coefficient of linear expansion measuring method
JP3908211B2 (ja) * 2003-09-01 2007-04-25 株式会社オハラ 線膨張係数測定装置及び線膨張係数測定方法
CN104297285A (zh) * 2014-09-10 2015-01-21 董赫 基于迈克尔逊干涉法的金属线胀系数测量装置
US10352678B2 (en) * 2015-09-25 2019-07-16 Mitutoyo Corporation Coefficient-of-thermal-expansion measurement method of dimension reference gauge, measuring device for coefficient of thermal expansion and reference gauge
CN106403834B (zh) * 2016-09-26 2019-12-13 中国建筑第八工程局有限公司 一种现浇混凝土变形测量系统及其测量方法
CN106767474A (zh) * 2016-11-15 2017-05-31 嘉兴学院 非接触式外墙外保温系统防护层热变形测定仪及测定方法
CN109490307B (zh) * 2019-01-24 2023-11-03 沈阳工程学院 基于小孔成像测量金属线胀系数的装置

Also Published As

Publication number Publication date
JPH11183413A (ja) 1999-07-09

Similar Documents

Publication Publication Date Title
US7450246B2 (en) Measuring device and method for determining relative positions of a positioning stage configured to be moveable in at least one direction
JP4880232B2 (ja) 位置情報を取得するためのシステムおよび方法
US4046477A (en) Interferometric method and apparatus for sensing surface deformation of a workpiece subjected to acoustic energy
JP3814397B2 (ja) 膨張測定装置
US7342666B2 (en) Method and apparatus for measuring holding distortion
JPH0432704A (ja) ギャップ測定装置および表面形状測定装置
JP3897655B2 (ja) 線膨張係数測定装置
US4925301A (en) Method and apparatus for sensing the figure of optical elements
JP2001141679A (ja) 線膨張係数測定装置
Decker et al. Gauge block calibration by optical interferometry at the National Research Council Canada
JPH08233543A (ja) 熱変形測定装置
JP2003302358A (ja) 線膨張係数測定装置
JP2007064972A (ja) 座標測定装置
Walecki et al. Low-coherence interferometric absolute distance gauge for study of MEMS structures
Gubarev et al. Calibration of a vertical-scan long trace profiler at MSFC
Imai et al. Measurement of the linear thermal expansion coefficient of thin specimens
Virdee Non-contacting straightness measurement to nanometre accuracy
JP3202183B2 (ja) レーザ光を用いたスケール及び測長方法
JP2708138B2 (ja) 平面度測定装置
JP2005214740A (ja) 位相補正値測定方法
Walecki et al. Novel low coherence metrology for nondestructive characterization of high aspect ratio micro-fabricated and micro-machined structures
JP3908211B2 (ja) 線膨張係数測定装置及び線膨張係数測定方法
Lewis et al. Fiber Optic Sensors Utilizing Surface Reflections
JP3633828B2 (ja) 構造体の制御方式
Gözönünde et al. A Multiwavelength Vacuum Environment Laser Calorimetry System

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees