JP3810394B2 - 内部加熱体装備反応管装置 - Google Patents

内部加熱体装備反応管装置 Download PDF

Info

Publication number
JP3810394B2
JP3810394B2 JP2003279952A JP2003279952A JP3810394B2 JP 3810394 B2 JP3810394 B2 JP 3810394B2 JP 2003279952 A JP2003279952 A JP 2003279952A JP 2003279952 A JP2003279952 A JP 2003279952A JP 3810394 B2 JP3810394 B2 JP 3810394B2
Authority
JP
Japan
Prior art keywords
reaction tube
internal
raw material
internal heating
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003279952A
Other languages
English (en)
Other versions
JP2005041752A (ja
Inventor
堯夫 川村
正徳 新山
稔 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP2003279952A priority Critical patent/JP3810394B2/ja
Publication of JP2005041752A publication Critical patent/JP2005041752A/ja
Application granted granted Critical
Publication of JP3810394B2 publication Critical patent/JP3810394B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

この発明は、内部加熱体装備反応管装置に関し、更に詳しくは、反応領域に供給される原料ガスが不均一に加熱されることなく、加熱によるカーボンナノチューブの生成反応を円滑に進行させることのができ、煤等の副反応生成物の生成を少なくして高純度のカーボンナノファイバーを製造することのできる内部加熱体装備反応管装置に関する。
従来より、気相成長炭素繊維は、流動気相法と称される製造方法により製造されている。この流動気相法と称される方法は、メタン、エタン、ベンゼン等の炭素化合物を含有するガスと、フェロセン、ニッケルペンタカルボニル等の有機遷移金属化合物を含有するガスと水素などのキャリアガスを混合してなる原料ガスを、加熱された反応管に注入することにより、反応管中における所定温度に加熱された加熱領域で金属触媒粒子を生成し、またこの加熱領域で浮遊する金属触媒粒子を核にしてこの核から炭素繊維を浮遊状態で成長させることにより、炭素繊維を製造する。
この気相成長炭素繊維の製造方法として、特公昭62−49363号公報、特公平4−37166号公報等に記載された方法が、連続生産が可能で生産性の高い方法と評価され、主流となっている。
この方法を利用して、従来の気相成長炭素繊維よりも更に直径の小さな気相成長炭素繊維を製造する試みがなされてきている。直径が数ナノメーターから数十ナノメーターである気相成長炭素繊維は、特にカーボンナノチューブ或いはカーボンナノファイバーと称されることがある。
これらの微細な気相成長炭素繊維を製造する一装置として、『縦型炉心管の上部から供給された触媒金属源及び炭素源ガスを熱分解することにより炭素繊維質物を生成させる反応領域を有する縦型反応手段と、前記反応領域で生成した炭素繊維質物を開口部から取り込んで縦型反応手段外に排出する排出管を有する排出手段と、前記縦型炉心管の下部から前記排出管の開口部へと流通し、前記炭素繊維質物と共に前記排出管内に流通する案内ガスを供給する案内ガス供給手段とを備えて成ることを特徴とする炭素繊維質物製造装置』が提案されている(特許文献1参照)。
特開2001−73231号公報(請求項1、図1) この特許文献1記載の炭素繊維質物製造装置を用いると、高品質、かつ高収率でカーボンナノファイバー等を製造することができる。そして、特許文献1記載の炭素繊維質物製造装置を用いて、高品質、かつ高収率を維持しつつ、より生産量を増加することが要望されるようになってきている。なお、この発明において、カーボンナノファイバーは、カーボンナノチューブを含む。
この生産量の増加の要望に応えるためには、反応管の径を大きくすること等の改良が必要である。この改良は、製造装置の規模を大きくする方向に注意が向けられている。
しかしながら、この特許文献1に記載された炭素繊維質物製造装置の構成のままで、反応管の径を大きくすると、反応管の外部に設けられた電気炉から供給される熱が輻射熱として反応管内壁から反応管中心部へ伝わるので、反応管内壁から反応管中心部に向かって均一な温度分布となるような加熱状態が実現困難である。つまり、温度ムラが反応管内で発生する。したがって、反応管内壁近傍においてカーボンナノファイバー等が生成するに十分な加熱温度となっていても、反応管の中心部においてはカーボンナノファイバーが生成するのに不十分な加熱温度と成り、その結果、反応管中心部では原料ガスが未反応となる。そのため、カーボンナノファイバーの収率が低下するのみならず、原料ガスの未分解物等の不純物がカーボンナノファイバーに混入するという問題を生じる。
逆に、反応管中心部においてカーボンナノファイバー等が生成するに十分な加熱温度に反応管を加熱すると、反応管の内壁近傍は過熱状態になりカーボンナノファイバーが生成せずに煤が発生したりして、結果的にはカーボンナノファイバーの収率が低下し、煤等の不純物がカーボンナノファイバーに混入するという問題を生じる。
この発明は、このような従来の問題点を解消し、高品質、かつ高収率で、カーボンナノファイバーを製造しつつ、カーボンナノファイバーの生産量を増加することができる内部加熱体装備反応管装置を提供することをその課題とする。なお、この発明におけるカーボンナノファイバーは、通常、直径が数ナノメーターから数十ナノメーターの気相成長炭素繊維である。したがって、この発明における「カーボンナノファイバー」は、中空で黒鉛層が一層の単層カーボンナノチューブから二層〜数十層の多層カーボンナノチューブは勿論の事、中空ではあっても黒鉛層が繊維軸に平行ではないような魚骨黒鉛構造ナノチューブ、あるいは中空ではないリボン状黒鉛繊維、その他、本装置を用いてでき得る微細な炭素繊維すべてを含む。
この発明の前記課題を解決するための手段として、
請求項1に記載の構成は、
縦方向に立設された反応管と、
この反応管の内部に設けられるとともに、この反応管の中心軸と同方向の中心軸を有する内部加熱体と、
前記反応管の外周に装着され、反応管のその外周を加熱する外部加熱手段と
触媒金属源と炭素源との混合物を含む原料ガスを前記反応管と前記内部加熱体との間に供給する原料ガス供給ノズルとを有して成ることを特徴とする内部加熱体装備反応管装置であり、
請求項2に記載の構成は、
前記反応管は、その上部に、前記反応管の内壁及び前記内部管体の外壁に沿ってキャリアガスを流通させるキャリアガス供給手段を備えて成ることを特徴とする前記請求項1に記載の内部加熱体装備反応管装置であり、
請求項3に記載の構成は、
前記原料ガス供給ノズルは、前記反応管と内部加熱体とで形成される水平断面環状の空間内に、前記原料ガスを水平断面環状に噴出する環状噴出し口を備えてなる前記請求項1又は2に記載の内部加熱体装備反応管装置であり、
請求項4に記載の構成は、
前記原料ガス供給ノズルは、前記反応管と内部加熱体とにより形成される水平断面環状の空間内に前記原料ガスを供給する複数の吹き出し口を備えて成る前記請求項1又は2に記載の内部加熱体装備反応管装置であり、
請求項5に記載の構成は、
前記触媒金属源は、有機遷移金属化合物である前記請求項1〜4のいずれか1項に記載の内部加熱体装備反応管装置であり、
請求項6に記載の構成は、
前記内部加熱体は、前記反応管と同心になるように前記反応管内に配置された内部管体と、この内部管体内に装備された内部加熱手段とを備えてなる前記請求項1〜5のいずれか1項に記載の内部加熱体装備反応管装置であり、
請求項7に記載の構成は、
縦方向に立設された反応管と、この反応管の内部に設けられるとともに、この反応管の中心軸と同方向の中心軸を有する内部加熱体とで形成される内部空間に、その上部から、触媒金属源と炭素源との混合物を含む原料ガスとを供給し、
前記反応管の外周に装着され、反応管のその外周を加熱する外部加熱手段と前記内部加熱体とによって、前記内部空間に供給された前記原料ガスを加熱することを特徴とするカーボンナノチューブの製造方法であり、
請求項8に記載の構成は、
前記内部空間に供給された原料ガスは、前記反応管の内壁に沿って流通するキャリアガスと、前記内部加熱体の外壁に沿って流通するキャリアガスとに挟まれた状態で、前記内部空間内を下降し、加熱される前記請求項7に記載のカーボンナノチューブの製造方法であり、
請求項9に記載の構成は、
前記触媒金属源は、有機遷移金属化合物である前記請求項7又は8に記載のカーボンナノチューブの製造方法である。
この発明によれば、反応管内における反応領域でその水平方向における加熱温度分布を一様にすることできることにより、高品質、かつ高収率で、大きな生産量をもってカーボンナノファイバーを製造することのできる内部加熱体装備反応管装置を提供することができる。
以下、この発明の実施の形態を図面に基づいて説明する。図1に、この発明の一例である内部加熱体装備反応管装置を組み込んでなる、一例としてのカーボンナノファイバー製造装置1が示される。
図1に示されるように、カーボンナノファイバー製造装置1は、内部加熱体装備反応管装置2と、原料ガス供給ノズル装置3と、原料ガス供給装置4と、キャリアガス供給装置5と、排出装置6を備える。
内部加熱体装備反応管装置2は、反応管7、内部加熱体8、及び外部加熱手段9を備える。
この反応管7は、縦方向に立設されたところの、例えば円筒形に形成された管であり、耐熱性の素材例えばセラミック特に炭化ケイ素(SiC)で形成されて成る。この反応管7の内部には、この反応管7の中心軸と同軸となるように配置された内部加熱体8が、配置される。
ここで、内部加熱体8は、反応管7の内部に設けられるとともに、この反応管7の中心軸と同方向の中心軸を有するものであればよく、反応管7の中心軸と同軸となる配置に限られない。例えば、反応管7の中心軸と内部加熱体8の中心軸とが偏心するように、反応管7内に内部加熱体8が配置されていてもよい。
もっとも、この発明においては、内部加熱体8により、反応管7と内部加熱体8とで形成される環状の内部空間を、その水平方向において均一に加熱するように企図するのであるから、内部加熱体8と反応管7とが同軸となり、しかも内部加熱体8の外表面と反応管7の内壁との水平方向における距離が360度の回転方向において一定であることが、好ましい。内部加熱体8の配置が前記のようであると、外部加熱手段9により加熱された反応管7から反応管7の内部に向けて放射される輻射熱により反応管7の内壁から内部加熱体8に向かって生じる温度勾配が内部加熱体8の外表面から放射される輻射熱により温度勾配が生じないように是正される。
なお、‘反応管7の中心軸と同方向の‘という表現における‘同方向‘とは、厳密な意味での、全くずれのない同軸または偏心軸を意味するものではなく、原料ガスを内部加熱体装備反応管装置2内の所定の内部空間に供給するのに差し支えない程度の角度のずれを許容する、実質的に同方向であることを意味する。
この内部加熱体8は、反応管7内における内部空間を加熱する機能を有していればよく、例えば円筒形に形成された内部管体8Aと、内部加熱手段10とで形成されることができる。前記内部管体8Aは、好適には、反応管7と同心であり、また、内部管体8Aの外表面と反応管7の内周面との水平方向における距離は、360度の回転方向において一定である。つまり、内部管体8Aと反応管7とで水平方向における断面が環状であり、軸芯方向に延在する筒状の内部空間が形成される。
この内部管体8Aは、耐熱性、耐食性の素材例えばセラミック、アルミナ、ムライト、炭化ケイ素、チッ化ケイ素など、特に炭化ケイ素(SiC)で形成されて成る。なお、内部加熱体8は、円筒形の管に限られず、三角形、四角形、五角形等の多角形状の管でもよく、また、棒状としてもよい。
内部管体8Aの内部には、内部加熱手段10が装着される。この内部加熱手段10としては、内部管体8Aを加熱することができる限りその構成について特に制限がないのであるが、この実施例においては、内部管体8Aを通常、600〜1300℃、特に、800〜1250℃に加熱することができるように、内部加熱手段10として電気ヒータ等が採用されている。この本実施形態においては、内部加熱手段10の軸線方向長さが、内部加熱体8の軸線方向長さと実質的に同じに成っている。
前述したように、前記反応管7の内部に前記内部管体8Aが同心に配置されることにより、反応管7の内壁と内部管体8Aの外表面とで水平断面が環状である筒状の内部空間が形成される。この内部空間の規模として、反応管7の内壁と内部管体8Aの外壁との半径方向における距離が、通常、30mm〜250mmであり、特に、50mm〜200mmであり、内部空間の軸線方向長さが通常、30〜500cm、特に、50〜300cmとなるように、反応管7及び内部管体8Aが設計されるのが、好ましい。
反応管7の外周には外部加熱手段9が装着される。この外部加熱手段9としては、反応管7を加熱することができる限りその構成について特に制限がないのであるが、この実施例においては、反応管7を通常、600〜1300℃、特に、800〜1250℃に加熱することができるように、外部加熱手段9として電気ヒータ等が採用されている。この実施例においては、外部加熱手段9の軸線方向長さが、反応管7の軸線方向長さと実質的に同じに成っている。
なお、本実施形態においては、内部管体8Aの内部に内部加熱手段10が装着されているが、これに限られず、内部加熱手段10のない構成で、内部管体8Aが反応管7の内部を加熱するようにしてもよい。例えば、原料ガスを流す前から、外部加熱手段9を作動させて、反応管7を加熱することで、加熱した反応管7からの輻射熱が内部管体8Aへ伝わり、この輻射熱が内部管体8Aに蓄熱される。その後、原料ガスを流した際に、蓄熱された内部管体8Aの輻射熱が原料ガスを加熱するようになる。
また、内部管体8Aの内部に、例えば、水素ガス等のキャリアガスを流し、この水素ガス等を予め加熱しておけば、この水素ガス等のキャリアガスが原料ガスを加熱するようになる。
一方、反応管7の内壁と内部管体8Aの外壁とで形成される内部空間は、外部加熱手段9により加熱された反応管7の輻射熱と、内部加熱手段10により加熱された内部管体8Aの輻射熱とにより加熱されることによって、原料ガスが分解して遷移金属粒子が生成し、この遷移金属粒子を核にしてカーボンナノファイバーが生成する反応領域と成る。
この反応管7及び内部管体8Aにより二重管が形成される。この二重管の上部には、原料ガス供給ノズル装置3が装着される。より具体的に述べると、反応管7の上端部と内部管体8Aの上端部とで形成される環状の円筒状空間に原料ガス供給ノズル装置3が、装着される。
原料ガス供給ノズル装置3は、図1に示されるように、原料ガス供給ノズル11と、キャリアガス供給手段12とを備える。図1及び図2に示されるように、この原料ガス供給ノズル11は、反応管7の上端部における内壁と内部管体8Aの上端部における外壁との間に挿入配置された外管13と内管14とで形成されるところの、水平断面が環状をなす管体であり、環状に形成されたスリットが環状噴出し口15として、内部空間に向かって開口する。
この環状噴出し口15は、その開口幅即ち外径と内径との差は、通常、0.5〜20mmであり、好ましくは0.8〜15mm、更に好ましくは、1〜10mmである。開口幅が前記範囲内にあると、この原料ガス供給ノズル11の環状噴出し口15から吹き出される原料ガスの気流が、反応管7の内壁にも接触せず、また内部管体8Aの外壁にも接触することなく、反応管7の内壁と内部管体8Aの外壁とに挟まれた内部空間内を下降していくことができる。また前記開口幅が前記下限値よりも小さいと、所定の流量で原料ガスを環状噴出し口15から噴出させようとするとその環状噴出し口15から噴出する原料ガスの線速度が大きくなり過ぎ、その結果として、キャリアガス供給手段12から噴出されるキャリアガスの線速度と原料ガスの線速度とが大きく相違することになり、キャリアガスの流れと原料ガスの流れとの間で拡散及び混合等が発生し、管壁にカーボンナノチューブが付着するという好ましくない現象が顕在化し、最終的には有効にカーボンナノファイバーを製造することができないことがある。
前記環状に開口するスリットである環状噴出し口15の位置としては、図2に示されるように、反応管7の内壁と内部管体8Aの外壁との水平断面における中間位置から、図2に示されるように、反応管7の内壁から外管13に至る環状の面積と内部管体8Aの外壁から内管14に至る環状の面積とが同じに成る位置までの間となる位置が、好ましい。また、反応管7の内壁と内部管体8Aの外壁との中間に位置してもよい。
この発明に係る内部加熱体装備反応管装置1は、キャリアガス供給手段12を備える。このキャリアガス供給手段12は、先ず第1に、反応管7と加熱体8特に内部管体8Aとで形成される内部空間内にキャリアガス供給装置5からのキャリアガスを供給することにより、この内部空間内に供給された原料ガス、及びこの原料ガスが分解して生成するカーボンナノチューブ等が反応管7の内壁及び加熱体8特に内部管体8Aの外表面に付着することを防止する。この発明に係る内部加熱体装備反応管装置においては、反応管7からの輻射熱と内部加熱体8からの輻射熱とによって内部空間内に形成される反応領域において原料ガスの均一な加熱状態を実現して高純度のカーボンナノチューブを大量生産するのであるが、さらに高純度のカーボンナノチューブを効率的に製造するには、均一な加熱状態の実現とともにガス流の乱れを防止することが重要になる。つまり、ガス流の乱れが反応領域で発生すると、原料ガスの分解物及び生成したカーボンナノチューブ等が反応管7の内壁及び内部加熱体8の表面等に付着することとなり、前記器壁に前記分解物やカーボンナノチューブがいったん付着してしまうと、付着したカーボンナノチューブが原料ガスの流れをますます乱すことになり、その結果、器壁への不純物及びカーボンナノチューブの付着量は指数関数的に増加してしまって、カーボンナノチューブを大量に、高純度で製造することができなくなる恐れを生じる。そこで、図2に示されるように、キャリアガス供給手段12は、外側ハニカム構造体12Aと内側ハニカム構造体12Bとを備える。
外側ハニカム構造体12Aは、前記外管13の外面と反応管7の内壁との間に配設される。この外側ハニカム構造体12Aは、反応管7の内壁に沿ってキャリアガス例えば水素ガスを流通させることができるように、しかもそのキャリアガスが層流と成って流通するように、水平断面がハニカム構造と成っていて、気流調整手段でもある。この外側ハニカム構造体12Aは、反応管7から放射される輻射熱を断熱して原料ガス供給ノズル11の内部が過熱されないようにする機能も有する。
また、内側ハニカム構造体12Bは、前記内管14の内壁と内部加熱体8の外壁との間に、配設される。この内側ハニカム構造体12Bは前記外側ハニカム構造体12Aと同様の構造を有し、キャリアガスが内部加熱体8の外壁に沿って層流となって流通することができるように、水平断面がハニカム構造と成っていて、気流調整手段でもある。この内側ハニカム構造体12Bは、内部加熱体8から放射される輻射熱を断熱して原料ガス供給ノズル11の内部が過熱されないようにする機能も有する。
前記キャリアガス供給手段12が存在するとは言っても、前記原料ガス供給ノズル装置3は、反応管7及び内部加熱体8の上端部において反応管7と内部加熱体8との間に原料ガス供給ノズル11を挿入しているので、反応管7の軸線方向における全体に装着された外部加熱手段9及び内部加熱体8の軸線方向における全体に設置された内部加熱手段10によって前記原料ガス供給ノズル11が加熱されることになるので、前記原料ガス供給ノズル11内が、金属触媒源である例えば有機遷移金属化合物が分解するほどの過度に加熱されることがないように、図示しない冷却手段で原料ガス供給ノズル11のガス流通路内を冷却しておくことが、好ましい。このようにしておくことにより、原料ガス供給ノズル11内で原料ガスが分解してしまうという不都合が防止される。
図1に示されるように、原料ガス供給ノズル11内には、原料ガス供給装置4により、原料ガスが供給される。
原料ガスとしては、触媒金属源と炭素源との混合物から成るガスを挙げることができる。触媒金属源は、熱分解により触媒となる金属を発生させる物質乃至化合物であれば特に制限がない。使用可能な触媒金属源としては、特開昭60−54998号公報の第3頁左上欄第9行〜同頁右上欄最下行に記載の有機遷移金属化合物、特開平9−324325号公報の段落番号[0059]に記載された有機遷移金属化合物、特開平9−78360号公報の段落番号[0049]に記載された有機遷移金属化合物等を挙げることができる。
好ましい触媒金属源としては、例えばフェロセン等の有機金属化合物、あるいは鉄カルボニル等の金属カルボニルを挙げることができる。触媒金属源は、一種単独で使用することもできるし、また複数種を併用することもできる。
また、触媒金属源は助触媒と共に使用することもできる。そのような助触媒として、前記触媒金属源から発生する触媒金属と相互作用してカーボンナノファイバーの生成を促進することのできるものであれば良く、特開平9−78360号公報の段落番号[0051]、並びに特開平9−324325号公報の段落番号[0061]に記載された含硫黄複素環式化合物及び硫黄化合物を制限なく使用することができる。好適な助触媒として、硫黄化合物特にチオフェン及び硫化水素等を挙げることができる。
炭素源は、熱分解により炭素を発生させてカーボンナノファイバーを生成させることができる化合物であれば特に制限がない。使用可能な炭素源としては、特公昭60−54998号公報の第2頁左下欄第4行〜同頁右下欄第10行に記載された炭素化合物、特開平9−324325号公報の段落番号[0060]に記載された有機化合物、特開平9−78360号公報の段落番号[0050]に記載された有機化合物等を挙げることができる。各種の炭素源の中で好適例としてベンゼン、トルエン等の芳香族炭化水素、ヘキサン、プロパン、エタン、メタン等の脂肪族炭化水素、シクロヘキサン等の脂環族炭化水素等を挙げることができる。なお、炭素源はその一種単独を使用することもできるし、また複数種を併用することもできる。
炭素源及び触媒金属源のガス(原料ガスを言う。)の全混合ガス(原料ガスおよびキャリアガスの全てを言う。)に占める割合は、好ましくは、各々0.05〜20%及び0.001〜5%、更に好ましくは各々0.1〜10%及び0.002〜3%である(ここで、%は、モル%または体積%を示す)。
また、カーボンナノファイバーが生成する時に太さ成長すると熱分解炭素が多く含有されることから、熱分解炭素の析出のない、細くて結晶性の高いカーボンナノファイバーを得るためには、炭素源の濃度を下げ、触媒金属源の濃度を上げるのが良い。
上記原料ガスを供給する原料ガス供給装置4は、図1に示されるように、原料を貯蔵する原料用タンク16と、原料用タンク16の内部に貯蔵された原料を吸引吐出する原料用ポンプ17と、原料用ポンプ17により送り込まれてきた原料をガス化する気化器18とを備え、前記気化器18でガス化されて生じた原料ガスを、第1キャリアガス流量計19から供給されるキャリアガス例えば水素ガスと共に、原料ガス供給ノズル装置3に送り込むように、形成される。
キャリアガス供給装置5は、第2キャリアガス流量計20を備え、この第2キャリアガス流量計20を通してキャリアガス例えば水素ガスをキャリアガス供給手段12に供給するように、形成される。ここで、第2キャリアガス流量計20は、複数の流量計により構成される。
このカーボンナノファイバー製造装置1は、図1に示すように、排出装置6を備える。この排出装置6は、前記内部空間内で生成したカーボンナノファイバーを含有する気流を不活性な気流で包み込むようにして反応系外に取り出すことができる限りその構造に特に制限がないのであるが、この実施例においては、反応管7の内壁と内部加熱体8の外壁とに挟まれた内部空間において、外部加熱手段9と内部加熱手段10とで加熱されることにより原料ガスから形成されたカーボンナノファイバーを前記内部空間から排出することができるように、排出管21と、案内ガス供給手段22とを有する。
前記排出管21が、図1に示されるように、反応管7の内壁と内部加熱体8の外壁とで挟まれて形成された環状の内部空間に、下方から、挿入される。図3に示されるように、挿入された前記排出管21の上部開口部21Aは、環状に開口する。上部開口部21Aの設置位置は、前記反応領域に臨む位置が好ましい。この排出管21の後端部は、図示しない排気装置が結合され、この排気装置によって排出管21の上部開口部21Aから気流を吸い込むようになっており、また、吸い込まれた気流中に存在するカーボンナノファイバーを収集する収集装置(図示せず。)が更にこの排出管21に結合される。
なお、排出管21の上部開口部21A側の形状・構造は、特に制限されるものではないが、例えば、反応管7と内部加熱体8とが略同じ長さの場合には、この上部開口部21Aは、図3にも示されるように、水平断面において略ドーナツ形状となる。また、内部加熱体8が、反応管7よりも短い場合には、例えば、上部開口部21Aは、反応管7の中心軸近傍の一箇所に形成されるようになる。
前記案内ガス供給手段22は、反応管7と内部加熱体8との下端部開口部から、反応管7と内部加熱体8との間隙に、案内ガスを送り込むように構成される。この案内ガス供給手段22は、更に具体的には、反応管7の内壁と内部加熱体8の外壁との間に配置された前記排出管21の外周壁面に沿って、案内ガスを、旋回流を形成することなく、ピストンフローにしてせり上げ、排出管21の上部開口部21Aよりわずか上方にまで前記案内ガスを到達させるように、案内ガスを供給する。この排出管21には排気装置が接続され、上部開口部21Aから排出管21の内部に気体が吸い込まれるようになっているので、上部開口部21Aよりわずか上方にまで到達した案内ガスが、上部開口部21Aから排出管21の内部に吸い込まれる。
この案内ガス供給手段22で使用される案内ガスとしては、この発明の目的を達成することができる限り、特に制限がないのであるが、反応領域において不活性なガスが好ましい。不活性な案内ガスとしては、アルゴン等の希ガス及び窒素を挙げることができる。また、反応領域に侵入しないように条件を選択することができるのであれば、あるいは、反応領域にたとえ侵入したとしても爆発等の事故を起こさない低濃度であれば、キャリアガスと同種のガス例えば水素ガスを使用することもでき、場合によっては、空気又は酸素を使用することもできる。案内ガスとして水素を採用し、キャリアガスとして水素を採用すると、水素ガスの回収再使用をすることができるので、好ましい。さらに、空気または酸素を使用した時には、未反応の原料を燃焼させる効果をもつが、爆発の危険性を避けるため、酸素濃度を5%以下、好ましくは3%以下にする必要がある。
次に、以上に述べた内部加熱体装備反応管装置1の作用について述べる。まず、原料用タンク16に、配合成分として、例えば、ベンゼン95質量%、フェロセン2質量%、チオフェン3質量%を成分とする原料を貯蔵しておく。また、第1キャリアガス流量計19および第2キャリアガス流量計20からキャリアガスとして例えば水素ガスを流す。さらに、外部加熱手段9を駆動して反応管7を900〜1300℃に加熱する。また、内部加熱手段10を駆動して内部加熱体8特に内部管体8Aを900〜1300℃に加熱する。さらに、原料ガス供給ノズル11に装備された冷却手段により、原料ガス供給ノズル11の内部を冷却して、所定の温度に保つ。
外側ハニカム構造体12Aからキャリアガスが、整流されて、反応管7の内壁に沿って、図1における破線矢印に示すように、ピストンフローとなって内部空間に流出する。内側ハニカム構造体12Bからは、キャリアガスが、整流されて、内部加熱体8の外壁に沿って、図1における破線矢印に示すように、ピストンフローとなって内部空間に流出する。
キャリアガスの流量は、反応管7及び内部加熱体8の大きさ、長さによって適宜決定されるが、通常、3〜100 cm/secの流量で供給するのが好ましい。キャリアガスの流量が前記上限値を超えると、原料ガス供給ノズル11から噴出する原料ガスがこのキャリアガスに導伴されてしまい、カーボンナノファイバーを生成するのに十分な時間をもって反応領域に原料ガスが滞留しなくなることがあり、結局カーボンナノファイバーが有効に生成し得ないことがある。
この反応管7と内部加熱体8とで形成される内部空間内においては、キャリアガスが反応管7の内壁及び内部加熱体8の外壁に沿って流通しているので、対流が起こらない。
次に、原料用ポンプ17および気化器18をそれぞれ作動させ、原料用ポンプ17により原料を原料用タンク16から気化器18に供給する。気化器18に供給された原料は、ガス化する。そして、ガス化した原料から成る原料ガスと、第1キャリアガス流量計19より供給される水素ガスとを混合した状態で、原料ガス供給ノズル11に供給する(図1中、実線の矢印参照)。
原料ガス供給ノズル11に供給された原料ガスは、環状噴出し口15から、内部空間に向けて噴射される。噴射される原料ガスの流量は、通常、1〜50L/minであるのが、好ましい。原料ガスの流量が前記上限値を超えると、原料ガスが反応管7の内壁及び/又は内部加熱体8の外壁に接触することがあり、カーボンナノファイバーを有効に生成させることができないことがある。逆に、原料ガスの流量が前記下限値よりも少ないと、カーボンナノファイバーを効率良く生成させることができないことがある。
なお、上記した、環状噴出し口15からの原料ガスの流速(A)と、外側ハニカム構造体12Aを通過して供給されるキャリアガスの流速(B)と、内側ハニカム構造体12Bを通過して供給されるキャリアガスの流速(C)とは、1:0.2〜0.8:0.3〜1.0の範囲内に設定するのが、好ましい。この範囲外であると、対流や偏流を生じ、ピストンフローにならないといった不都合を生じることがある。
原料ガス供給ノズル11の環状噴出し口15から流出する原料ガスは、反応管7の内壁と内部加熱体8の外壁とで挟まれる環状の内部空間内を、外側ハニカム構造体12Aから吹き出されたキャリアガス及び内側ハニカム構造体12Bから吹き出されたキャリアガスに挟まれた状態で、円筒状の気流となって、下降して行く。
外部加熱手段9により加熱された反応管7から放射される輻射熱及び内部加熱手段10により加熱された内部管体8Aから放射される輻射熱により、下降していく原料ガスが加熱される。加熱により遷移金属粒子が形成され、炭素源化合物の分解により生じた炭素が前記遷移金属粒子を核にしてカーボンナノファイバーが形成される。
この場合、反応管7の輻射熱と内部管体8Aの輻射熱とで原料ガスが加熱されるので、内部空間における水平断面において温度勾配がきわめて少なくなる。また、狭い幅で流出した原料ガスは、外側・内側のキャリアガス中に拡散しながら流下するので、温度同様、均一化し易い。したがって、内部空間における特に反応領域では、炭素源ガス及び触媒源ガスが共に分解して煤を発生させることがきわめて少なく、また触媒金属粒子による金属鏡が形成されることもなく、また未反応物が残留することもきわめて少なくなる。つまり、純度の高いカーボンナノファイバーが形成される。
生成したカーボンナノファイバーは下降する気流と共に下降して行き、排出管21の開口部から排出管21の内部に吸い込まれて行く。
案内ガス供給手段22からは案内ガスが、反応管7と内部加熱体8との下端部開口部に、供給される。案内ガスは、排出管21の外周壁に沿ってせり上がり、排出管21の上部開口部21Aに至ると、その上部開口部21Aから排出管21の内部に吸い込まれる。このとき、案内ガスは、反応領域で形成されたカーボンナノファイバーを含有する下降気流を包み込むようにして、カーボンナノファイバーを含有する下降気流を排出管21の内部へと吸い込まれる。
この案内ガスが排出管21内に吸い込まれることにより、前記下降気流中に存在するカーボンナノファイバーが器壁に付着することなく、図示しない収集装置へとカーボンナノファイバーが導出されて行く。
以上、この発明の一態様について説明したが、この発明は前記態様に限定されず、様々の設計変更を行うことができる。
この発明においては、原料ガス供給ノズル装置から反応管7と内部加熱体8とで形成された水平断面環状の内部空間内に供給される原料ガスを、円筒状に形成された下降気流に形成し、円筒状に下降する原料ガスの気流を、反応管7の輻射熱及び内部加熱体8特に内部管体8Aの輻射熱で加熱する。
したがって、原料ガス供給ノズル装置における原料ガス供給ノズルは、前記内部空間内で原料ガスの気流を円筒形状をした下降気流となるように、原料ガスを噴出することができる限り、図2に示されるような環状噴出し口15を有する構造に限定されることがなく、例えば図4に示される構造を有する原料ガス供給ノズルであっても良い。
図4は、原料ガス供給ノズル装置の下端部を示す説明図である。図4に示される原料ガス供給ノズル3Aが、図1又は図2に示される原料ガス供給ノズル3と異なるところは、原料ガス供給ノズルの噴出し口である。
図4に示される原料ガス供給ノズル3Aにおけるノズル本体11Aは、反応管7の上端部における内壁と内部加熱体8の上端部における外壁との間に挿入配置された外管13Aと内管14Aとで形成されるところの、水平断面が環状をなし、反応管7と内部加熱体8とで形成される内部空間に向かう環状の底面23を有する有底環状管体と、その底面23に、所定間隔毎に形成された複数の貫通噴出孔24とを備える。この貫通噴出孔24から原料ガスが内部空間に向かって噴出し、内部空間内で原料ガスの筒状下降気流が形成されるように、底面23に形成される貫通噴出孔24の個数及び開口径が決定される。
前記複数の貫通噴出孔24を有する底面23を備えるノズル本体11Aの設置位置は、図4に示されるように、反応管7の内壁と内部加熱体8の外壁との水平断面における中間位置から、図4に示されるように、反応管7の内壁から外管13Aに至る環状の面積と内部加熱体8の外壁から内管14Aに至る環状の面積とが同じに成る位置までの間となる位置が、好ましい。
前記外管13Aの外面と外側ハニカム外殻13Bとの間にはキャリアガス供給手段12の一例である外側ハニカム構造体12Aが配設される。この外側ハニカム構造体12Aの作用効果は、図2に示される原料ガス供給ノズル装置3における外側ハニカム構造体12Aの作用効果と同様である。また前記内管14Aの内側ハニカム外殻14Bとの間には、キャリアガス供給手段12の一例である内側ハニカム構造体12Bが配設される。この内側ハニカム構造体12Bの作用効果は、図2に示される原料ガス供給ノズル3における内側ハニカム構造体12Bの作用効果と同様である。
図4においては、ハニカム殻を設けることで、図2の原料ガス供給ノズル装置3に以下の機能を加えた。外側ハニカム外殻13Bと反応管7の内壁との間隙および内側ハニカム外殻14Bと内部加熱体8の外壁との間隙は、1〜10mm程度で、反応管壁への反応生成物(カーボンナノファイバー)の付着防止をより強化することができる。
上述したこの発明の実施形態によると、次のような効果が奏される。
(1) 反応管の内壁と内部加熱体8の外壁とで形成される環状筒体をなす内部空間に形成された環状筒体となった原料ガス気流に、反応管からの輻射熱及び内部加熱体からの輻射熱が放射されるので、原料ガス気流はその環状の筒体状と成った気流の外側及び内側から均一に加熱されることになる。したがって、原料ガスが均一に加熱されることにより、煤の発生及び未分解物の残留がなく、また、触媒金属を核にしてカーボンナノファイバーが生成する際の太さ成長反応が異常に起こることがなく、純度の高いカーボンナノファイバーを収率よく製造されることができる。
(2) 原料ガス供給ノズルは、原料ガスを噴射するスリット状の環状開口部を、反応管7の内壁と内部加熱体8の外壁との間に設けられていることにより、原料ガス供給ノズルは、外部加熱手段により加熱された反応管7および内部加熱手段10により加熱された内部加熱体8からの輻射熱により予熱されているので、原料ガス供給ノズルから噴射される原料ガスと内部空間内にある反応領域との温度差が大きくならず、したがって原料ガス供給ノズルから噴射される原料ガスと反応領域との温度差が大きいときに発生する副生成物の生成がなく、この点においても純度の高いカーボンナノファイバーを収率よく製造することができる。
(3) 原料ガス供給ノズルがスリット状の環状開口部を有する場合には、形状が簡単であるので、原料ガス供給ノズルを容易に形成することができる。
(4) 原料ガス供給ノズルが複数の貫通孔から成る場合には、原料ガスを収束させて噴射するので、所定の位置に原料ガスを噴射することができる。
(5) 原料ガス供給ノズル装置にキャリアガス供給手段が設けられているので、反応管7の内壁及び内部加熱体8の外壁それぞれに沿って下降するキャリアガス気流を形成することができ、反応領域で生成するカーボンナノファイバー、触媒金属源、及び炭素源が前記内壁及び外壁に接触することが防止され、これによって、浮遊状態でカーボンナノファイバーを効率良く製造することができる。
(6) 排出管と案内ガス供給手段とを有する排出装置を備えることにより、反応領域で形成されたカーボンナノファイバーを含有する下降気流を包み込むようにして前記下降気流を排出することができ、これによってカーボンナノファイバーをロスすることなく収集することができる。
なお、この発明は、前記実施形態に限定されるものではない。この発明の目的を達成できる範囲での変形、改良は、この発明に含まれるものである。
前記実施形態では、整流手段としては、ハニカム構造体を使用したが、これに限られず、ガスを整流する機能を有するものであれば、どのような構造であってもこれを使用することができ、例えば、多孔質板や平行に配列された複数のフィンの集合体等が挙げられる。
前記実施形態では、原料としては、ベンゼン95質量%、フェロセン2質量%、チオフェン3質量%を成分とする原料を使用したが、これに限られず、適宜、目的の化合物を生成するための原料を使用してもよい。その他、この発明を実施する際の具体的な構造および形状等は、この発明の目的を達成できる範囲内で他の構造等としてもよい。
図1は、この発明に係るカーボンナノファイバー製造装置の一例を示す概略図である。 図2は、図1に示される原料ガス供給ノズル先端部分の断面を示す概略図である。 図3は、図1に示される排出管の断面を示す概略図である。 図4は、この発明に係るカーボンナノファイバー製造装置に使用される原料ガス供給ノズル装置の他の例を示す概略図である。
符号の説明
1・・・カーボンナノファイバー製造装置、
2・・・内部加熱体装備反応管装置、
3・・・原料ガス供給ノズル装置、
3A・・・原料ガス供給ノズル装置、
4・・・原料ガス供給装置、
5・・・キャリアガス供給装置、
6・・・排出装置、
7・・・反応管、
8・・・内部加熱体、
8A・・・内部管体、
9・・・外部加熱手段、
10・・・内部加熱手段、
11・・・原料ガス供給ノズル、
11A・・・原料ガス供給ノズル、
12・・・キャリアガス供給手段、
12A・・・外側ハニカム構造体、
12B・・・内側ハニカム構造体、
13・・・外管、
13A・・・外管、
13B・・・外側ハニカム外殻、
14・・・内管、
14A・・・内管、
14B・・・内側ハニカム外殻、
15・・・環状噴出し口、
16・・・原料用タンク、
17・・・原料用ポンプ、
18・・・気化器、
19・・・第1キャリアガス流量計、
20・・・第2キャリアガス流量計、
21・・・排出管、
21A・・・上部開口部、
22・・・案内ガス供給手段、
23・・・底面、
24・・・貫通噴出孔


Claims (9)

  1. 縦方向に立設された反応管と、この反応管の内部に設けられるとともに、この反応管の中心軸と同方向の中心軸を有する内部加熱体と、前記反応管の外周に装着され、反応管のその外周を加熱する外部加熱手段と、触媒金属源と炭素源との混合物を含む原料ガスを前記反応管と前記内部加熱体との間に供給する原料ガス供給ノズルとを有して成ることを特徴とする内部加熱体装備反応管装置。
  2. 前記反応管は、その上部に、前記反応管の内壁及び前記内部管体の外壁に沿ってキャリアガスを流通させるキャリアガス供給手段を備えて成ることを特徴とする前記請求項1に記載の内部加熱体装備反応管装置。
  3. 前記原料ガス供給ノズルは、前記反応管と内部加熱体とで形成される水平断面環状の空間内に、前記原料ガスを水平断面環状に噴出する環状噴出し口を備えてなる前記請求項1又は2に記載の内部加熱体装備反応管装置。
  4. 前記原料ガス供給ノズルは、前記反応管と内部加熱体とにより形成される水平断面環状の空間内に前記原料ガスを供給する複数の吹き出し口を備えて成る前記請求項1又は2に記載の内部加熱体装備反応管装置。
  5. 前記触媒金属源は、有機遷移金属化合物である前記請求項1〜4のいずれか1項に記載の内部加熱体装備反応管装置。
  6. 前記内部加熱体は、前記反応管と同心になるように前記反応管内に配置された内部管体と、この内部管体内に装備された内部加熱手段とを備えてなる前記請求項1〜5のいずれか1項に記載の内部加熱体装備反応管装置。
  7. 縦方向に立設された反応管と、この反応管の内部に設けられるとともに、この反応管の中心軸と同方向の中心軸を有する内部加熱体とで形成される内部空間に、その上部から、触媒金属源と炭素源との混合物を含む原料ガスとを供給し、
    前記反応管の外周に装着され、反応管のその外周を加熱する外部加熱手段と前記内部加熱体とによって、前記内部空間に供給された前記原料ガスを加熱することを特徴とするカーボンナノチューブの製造方法。
  8. 前記内部空間に供給された原料ガスは、前記反応管の内壁に沿って流通するキャリアガスと、前記内部加熱体の外壁に沿って流通するキャリアガスとに挟まれた状態で、前記内部空間内を下降し、加熱される前記請求項7に記載のカーボンナノチューブの製造方法。
  9. 前記触媒金属源は、有機遷移金属化合物である前記請求項7又は8に記載のカーボンナノチューブの製造方法。
JP2003279952A 2003-07-25 2003-07-25 内部加熱体装備反応管装置 Expired - Fee Related JP3810394B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003279952A JP3810394B2 (ja) 2003-07-25 2003-07-25 内部加熱体装備反応管装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003279952A JP3810394B2 (ja) 2003-07-25 2003-07-25 内部加熱体装備反応管装置

Publications (2)

Publication Number Publication Date
JP2005041752A JP2005041752A (ja) 2005-02-17
JP3810394B2 true JP3810394B2 (ja) 2006-08-16

Family

ID=34265920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003279952A Expired - Fee Related JP3810394B2 (ja) 2003-07-25 2003-07-25 内部加熱体装備反応管装置

Country Status (1)

Country Link
JP (1) JP3810394B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100664545B1 (ko) * 2005-03-08 2007-01-03 (주)씨엔티 탄소나노튜브 대량합성장치 및 대량합성방법
JP2007246309A (ja) * 2006-03-14 2007-09-27 National Institute Of Advanced Industrial & Technology 単層カーボンナノチューブの製造方法
JP5157147B2 (ja) 2006-12-08 2013-03-06 株式会社デンソー カーボンナノチューブ製造装置及びその製造方法
CN101848860A (zh) * 2008-01-31 2010-09-29 日机装株式会社 碳纳米管的合成装置
JP2009298638A (ja) * 2008-06-12 2009-12-24 Hitachi Zosen Corp カーボンナノチューブ製造装置
JP5147556B2 (ja) * 2008-06-12 2013-02-20 日立造船株式会社 カーボンナノチューブ製造装置
CN104508190B (zh) * 2012-05-25 2017-12-15 索尔伏打电流公司 同心流反应器
US9951420B2 (en) * 2014-11-10 2018-04-24 Sol Voltaics Ab Nanowire growth system having nanoparticles aerosol generator
KR102358843B1 (ko) * 2019-12-19 2022-02-08 한국과학기술연구원 연속식 카본나노튜브의 제조장치

Also Published As

Publication number Publication date
JP2005041752A (ja) 2005-02-17

Similar Documents

Publication Publication Date Title
US8557190B2 (en) Carbon nanotube synthesis process apparatus
WO2001016414A1 (fr) Matiere fibreuse de carbone, dispositif de production et procede de production de ladite matiere, et dispositif de prevention de depot de ladite matiere
JP4177533B2 (ja) 微細気相成長炭素繊維製造装置、微細気相成長炭素繊維の製造方法、微細気相成長炭素繊維付着防止装置及び微細気相成長炭素繊維
KR100916330B1 (ko) 탄소나노튜브 합성 방법 및 장치
US20210257189A1 (en) Apparatus and method for plasma synthesis of carbon nanotubes
JP3810394B2 (ja) 内部加熱体装備反応管装置
KR100376202B1 (ko) 탄소나노튜브 또는 탄소나노섬유 합성용 기상합성 장치 및이를 사용한 합성방법
JP5364904B2 (ja) カーボンナノファイバー集合体の製造方法
JP4115637B2 (ja) 炭素繊維質物製造装置、炭素繊維質物の製造方法及び炭素繊維質物付着防止装置
JP4394981B2 (ja) 原料ガス供給ノズル、カーボンナノファイバー製造装置、およびカーボンナノファイバーの製造方法
JP6418690B2 (ja) カーボンナノチューブの製造装置
EP2239227B1 (en) Carbon nanotube synthesizer
JP3637177B2 (ja) 気相成長炭素繊維製造装置
JP4392283B2 (ja) カーボンナノファイバーの製造方法、およびカーボンナノファイバーの後処理方法
JP3927455B2 (ja) 気相法炭素繊維の製造法および製造装置
JPH11107052A (ja) 気相成長炭素繊維の連続製造装置及び気相成長炭素繊維の連続製造方法
JP4782504B2 (ja) 微細炭素繊維の製造装置及びその製造方法
JPH0978360A (ja) 気相成長炭素繊維の製造方法
KR101590110B1 (ko) 카본나노튜브 제조장치
JP4391900B2 (ja) カーボンナノファイバー製造装置
KR101016031B1 (ko) 탄소나노튜브 합성 장치
KR20090011785A (ko) 탄소나노튜브 합성 방법 및 장치
JP2003213531A (ja) 気相成長炭素繊維の製造方法及び気相成長炭素繊維製造装置
JPH08301699A (ja) 気相成長炭素繊維の連続製造装置および気相成長炭素繊維の連続製造方法
JP4309499B2 (ja) 気相成長炭素繊維連続製造装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060523

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150602

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees