JP3808489B2 - ハイブリッド車両の制御装置 - Google Patents

ハイブリッド車両の制御装置 Download PDF

Info

Publication number
JP3808489B2
JP3808489B2 JP2005095267A JP2005095267A JP3808489B2 JP 3808489 B2 JP3808489 B2 JP 3808489B2 JP 2005095267 A JP2005095267 A JP 2005095267A JP 2005095267 A JP2005095267 A JP 2005095267A JP 3808489 B2 JP3808489 B2 JP 3808489B2
Authority
JP
Japan
Prior art keywords
torque
motor
power
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005095267A
Other languages
English (en)
Other versions
JP2005291206A (ja
Inventor
雅信 浅川
学 仁木
晃平 花田
実 鈴木
輝男 若城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2005095267A priority Critical patent/JP3808489B2/ja
Publication of JP2005291206A publication Critical patent/JP2005291206A/ja
Application granted granted Critical
Publication of JP3808489B2 publication Critical patent/JP3808489B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Description

本発明は、内燃機関及びモータを併用して走行駆動するハイブリッド車両に搭載され、少なくとも内燃機関またはモータの何れか一方の駆動力を駆動輪に伝達するハイブリッド車両の制御装置に関する。
従来、例えば、駆動源としての内燃機関およびモータを備え、少なくとも内燃機関またはモータの何れか一方の駆動力を駆動輪に伝達して走行するハイブリッド車両において、変速機の入力軸の回転数に対して内燃機関の燃料消費量を最小とするスロットル開度を算出し、このスロットル開度と運転者のアクセル操作量とに基づき、パワープラント(つまり内燃機関およびモータ)に要求されるトルクを、内燃機関に要求されるエンジントルクとモータに要求されるモータトルクとに配分するハイブリッド車両の制御装置が知られている(例えば、特許文献1参照)。
特開平9−163509号公報
ところで、上記従来技術の一例に係るハイブリッド車両の制御装置において、例えばモータの回生作動および運転者のアクセル操作量がゼロまたはゼロ近傍の値となることで内燃機関への燃料供給が停止されるフューエルカット(F/C)の実行状態において、例えば運転者のアクセル操作量の増大が検知された時点で、燃料供給が再開されるF/C復帰状態へと移行するように設定すると、燃費が悪化してしまう虞がある。
すなわち、モータの回生作動時に運転者のアクセル操作量の増大が検知された場合であっても、例えば車両が減速状態であればモータの回生作動が継続されるため、内燃機関が不必要に始動されてしまうという問題が生じる。
本発明は上記事情に鑑みてなされたもので、燃費を向上させることが可能なハイブリッド車両の制御装置を提供することを目的とする。
上記課題を解決するために、請求項1に記載の本発明のハイブリッド車両の制御装置は、動力源としての内燃機関およびモータと、前記モータと電気エネルギーの授受を行う蓄電装置とを備え、前記内燃機関と前記モータとトランスミッションとを直列に直結し、少なくとも前記内燃機関又は前記モータの何れか一方の駆動力前記トランスミッションを介して駆動輪に伝達するハイブリッド車両の制御装置において、前記蓄電装置および補機を備えて構成される高圧電装系のエネルギー状態および車両の走行状態に応じて、前記蓄電装置にて充放電可能な電力に対応する前記モータから出力可能なモータトルクであるモータ充放電可能トルクを算出するモータ充放電可能トルク算出手段と、前記内燃機関及び前記モータからの出力トルクに対する、アクセルペダル開度に基づいて求められる目標トルクが、前記モータ充放電可能トルクと、少なくとも一部の気筒に燃料を噴射している前記内燃機関から出力可能な最小エンジントルクとを加算して得た値以下である場合に、前記内燃機関への燃料供給を停止する燃料供給停止手段と、前記車両が減速中であり前記燃料供給停止手段により前記内燃機関への燃料供給を停止しているときに、アクセルペダル開度が所定値以下の場合には前記モータトルクに対する要求値であるモータ要求トルクを前記目標トルクに応じて回生量や出力の増大量を設定するとともに所定のアクセルペダル開度に増加するまで燃料供給復帰を禁止し、燃料供給の停止を持続させるモータ要求トルク設定手段とを備えることを特徴としている。
以下、本発明の一実施形態に係るハイブリッド車両の制御装置ついて添付図面を参照しながら説明する。
図1はこの発明の実施形態に係るパラレルハイブリッド車両を示し、内燃機関E、モータM、トランスミッションTを直列に直結した構造のものである。内燃機関EおよびモータMの両方の駆動力は、例えばオートマチックトランスミッション(AT)あるいはマニュアルトランスミッション(MT)等のトランスミッションTから左右の駆動輪(前輪あるいは後輪)W,W間で駆動力を配分するディファレンシャル(図示略)を介して車両の駆動輪W,Wに伝達される。また、ハイブリッド車両の減速時に駆動輪W側からモータM側に駆動力が伝達されると、モータMは発電機として機能していわゆる回生制動力を発生し、車体の運動エネルギーを電気エネルギーとして回収する。
例えば3相のDCブラシレスモータ等からなるモータMは、パワードライブユニット(PDU)2に接続されている。パワードライブユニット2は、例えばトランジスタのスイッチング素子を複数用いてブリッジ接続してなるブリッジ回路を具備するパルス幅変調(PWM)によるPWMインバータを備え、モータMと電力(モータMの力行(駆動またはアシスト)動作時にモータMに供給される供給電力や回生動作時にモータMから出力される回生電力)の授受を行う高圧系のニッケル−水素バッテリ(バッテリ)3が接続されている。
そして、モータMの駆動及び回生作動は、制御部1からの制御指令を受けてパワードライブユニット2により行われる。すなわち、パワードライブユニット2は、例えばモータMの駆動時には、制御部1から出力されるトルク指令に基づき、バッテリ3から出力される直流電力を3相交流電力に変換してモータMへ供給する。一方、モータMの回生動作時には、モータMから出力される3相交流電力を直流電力に変換してバッテリ3を充電する。
そして、各種補機類を駆動するための12ボルトの補助バッテリ4は、DC−DCコンバータであるダウンバータ5を介して、パワードライブユニット2およびバッテリ3に対して並列に接続されている。制御部1により制御されるダウンバータ5は、パワードライブユニット2やバッテリ3の電圧を降圧して補助バッテリ4を充電する。
また、内燃機関Eのクランクシャフトには、例えばベルトおよびクラッチ等を介して、空調装置用のハイブリッドエアコンコンプレッサ(HBAC)6に具備される空調装置用モータ(図示略)の回転軸が接続され、この空調装置用モータは、空調装置用インバータ(HBAC INV)7に接続されている。空調装置用インバータ7は、パワードライブユニット2およびバッテリ3に対して並列に接続され、制御部1の制御により、パワードライブユニット2やバッテリ3から出力される直流電力を3相交流電力に変換して空調装置用モータへ供給し、ハイブリッドエアコンコンプレッサ6を駆動制御する。
すなわち、前記ハイブリッドエアコンコンプレッサ6は、少なくとも内燃機関Eの駆動力または空調装置用モータの力行動作時の駆動力の何れか一方の駆動力により、駆動負荷量、例えば冷媒の吐出容量が可変制御される。つまり、ハイブリッドエアコンコンプレッサ6における「ハイブリッド」とは、内燃機関Eと空調装置用モータの何れでも駆動できることを意味している。
なお、内燃機関Eと空調装置用モータとの間には、例えば内燃機関Eのクランクシャフトと一体に設けられたクランク軸プーリと、このクランク軸プーリと対をなし、クラッチを介して空調装置用モータの回転軸と接続可能な駆動軸と一体に設けられた駆動軸プーリと、クランク軸プーリおよび駆動軸プーリ間に掛け渡されたベルトとが備えられている。すなわち、クランク軸プーリおよび駆動軸プーリ間においては、ベルトを介して駆動力が伝達される。
内燃機関Eは、いわゆるSOHCのV型6気筒エンジンであって、一方のバンクの3つの気筒は気筒休止運転可能な可変バルブタイミング機構VTを備えた構造で、他方のバンクの3つの気筒は気筒休止運転(休筒運転)を行わない通常の動弁機構(図示せず)を備えた構造となっている。そして、気筒休止可能な3気筒は各々2つの吸気弁と2つの排気弁が油圧ポンプ11、スプールバルブ12、気筒休止側通路13、気筒休止解除側通路14を介して可変バルブタイミング機構VTにより閉状態を維持できるような構造となっている。
すなわち、内燃機関Eは、片側のバンクの3つの気筒が休止した状態の3気筒運転(休筒運転)と、両方のバンクの6気筒全部が駆動する6気筒運転(全筒運転)とが切り換えられることとなる。
具体的には、油圧ポンプ11から潤滑系配管11aを介してエンジン潤滑系へ供給される作動油の一部が、制御部1により制御されるソレノイドを具備するスプールバルブ12を介して、気筒休止可能なバンクの気筒休止側通路13に供給されると、各々ロッカーシャフト15に支持され、それまで一体で駆動していたカムリフト用ロッカーアーム16a(16b)と弁駆動用ロッカーアーム17a,17a(17b,17b)が分離して駆動可能となるため、カムシャフト18の回転により駆動するカムリフト用ロッカーアーム16a,16bの駆動力が弁駆動用ロッカーアーム17a,17bに伝達されず、吸気弁と排気弁が閉状態のままとなる。これにより3つの気筒の吸気弁と排気弁が閉状態となる休筒運転を行うことができる。
そして、内燃機関Eは制振装置(ACM:Active Control Engine Mount)19を介して車体に搭載され、制振装置19は、内燃機関Eの運転状態つまり3気筒運転(休筒運転)と6気筒運転(全筒運転)との切り替えに伴う車体振動の発生を抑制するようになっている。
また、この内燃機関Eには、スロットルバルブ(図示略)を電子制御する電子制御スロットル(ETCS:Electronic Throttle Control System)20が備えられている。
電子制御スロットル20は、例えば、運転者によるアクセルペダル(図示略)の操作量に係るアクセルペダル開度、および、例えば車両の速度(車速)VPやエンジン回転数NE等の車両の運転状態、および、例えば内燃機関EとモータMとの間のトルク配分等に基づいて制御部1にて算出されるスロットル開度に応じて、ETCSドライバを駆動し、スロットルバルブを直接的に制御する。
例えばオートマチックトランスミッション(AT)とされるトランスミッションTは、ロックアップクラッチ(LC)21を具備するトルクコンバータ22を備えて構成され、さらに、トルクコンバータ22およびトランスミッションTの変速動作を駆動制御するための油圧を発生する電動オイルポンプ23が備えられている。
なお、電動オイルポンプ23は、バッテリ3からの電力供給により制御部1により駆動制御される。
トルクコンバータ22は、内部に封入された作動油(ATF:Automatic Transmission Fluid)の螺旋流によってトルクの伝達を行うものであって、ロックアップクラッチ21の係合が解除されたLC_OFF状態では、作動油を介してモータMの回転軸からトランスミッションTの入力軸へとトルクが伝達(例えば、増幅伝達)される。
また、ロックアップクラッチ21が係合状態に設定されたLC_ON状態では、作動油を介さず直接にモータMの回転軸からトランスミッションTの入力軸へと回転駆動力が伝達される。
また、ブレーキペダル(図示略)には倍力装置BSが連係され、この倍力装置BSにはブレーキマスターパワー内負圧を検出するマスターパワー内負圧センサS9が設けられている。
また、駆動輪Wにはブレーキデバイス24が備えられ、このブレーキデバイス24は制御部1の制御によって車両の急激な挙動変化の発生を抑制するものであって、例えば、滑りやすい路面等での駆動輪Wの空転を防止したり、オーバーステアやアンダーステア等の横すべリの発生を抑制したり、制動時に駆動輪Wがロック状態となることを防止して、車両の所望の駆動力および操舵能力を確保し、車両の姿勢を安定化させると共に、クリープ力による走行を補助し、例えば内燃機関Eの停止時における勾配路での後退防止等を行う。
制御部1には、例えば、車両の速度(車速)VPを検出する車速センサS1からの検出信号と、エンジン回転数NEを検出するエンジン回転数センサS2からの検出信号と、トランスミッションTのシフトポジションSHを検出するシフトポジションセンサS3からの検出信号と、ブレーキ(Br)ペダルの操作状態BRK_SWを検出するブレーキスイッチS4からの検出信号と、アクセルペダルの操作量に係るアクセルペダル開度APを検出するアクセルペダル開度センサS5からの検出信号と、スロットル開度THを検出するスロットル開度センサS6からの検出信号と、吸気管負圧PBを検出する吸気管負圧センサS7からの検出信号と、バッテリ3の温度TBATを検出するバッテリ温度センサS8からの検出信号と、マスターパワー内負圧センサS9からの検出信号と、気筒休止時において気筒休止解除側通路14の油圧を検出するPOILセンサS10からの検出信号と、パワードライブユニット2の温度TPDUを検出するPDU温度センサS11からの検出信号と、ダウンバータ5の温度TDVを検出するDV温度センサS12からの検出信号等とが入力されている。
そして、制御部1は、例えば、ブレーキデバイス24を駆動制御して車両の挙動を安定化させるVSA(VSA:Vehicle Stability Assist)ECU31と、制振装置19を駆動制御して内燃機関Eの運転状態に起因する車体振動の発生を抑制するACMECU32と、モータMの駆動および回生作動を制御するMOTECU33と、空調装置用のハイブリッドエアコンコンプレッサ6および空調装置用インバータ7を駆動制御するA/CECU34と、例えばパワードライブユニット2およびバッテリ3およびダウンバータ5およびモータM等からなる高圧電装系の監視および保護やパワードライブユニット2およびダウンバータ5の動作制御を行うHVECU35と、FI/AT/MGECU36とを備えて構成され、各ECU31,…,36は相互に通信可能に接続されている。また、各ECU31,…,36は各種の状態量を表示する計器類からなるメータ37に接続されている。
例えば図2に示すように、FI/AT/MGECU36は、例えば内燃機関Eへの燃料供給や点火タイミング等を制御するA/F(空燃比)制御部41およびIG(イグニッション)制御部42と、トルクマネジメント部43と、パワーマネジメント部44と、エネルギーマネジメント部45とを具備するFI/MG−CPU46と、例えばトランスミッションTの変速動作およびロックアップクラッチ21の作動状態等を制御するAT−CPU47とを備えて構成されている。
トルクマネジメント部43において、ドライバ要求トルク算出部51は、例えばアクセルペダル(AP)開度と、エンジン回転数NEと、車速VPと、シフトポジションSHと、ブレーキペダルの操作状態BRK_SWと、車両制動時に駆動輪Wがロックされることをブレーキデバイス24によって防止するアンチロックブレーキ動作の作動状態ABSとの各検出信号に基づき、車両の運転者のアクセル操作に応じて運転者から要求されるトルク値(ドライバ要求トルク)を算出し、第1トルク選択部52へ出力する。
また、C/C(クルーズコントロール)制御部53は、例えば、車速センサS1にて検出される車速VPが、車両の走行速度の目標値である目標車速となるように内燃機関EおよびモータMを制御する定速走行制御時や、先行車両に対して所定車間距離を維持した状態で追従する追従走行制御時等のように、予め車両の運転者の入力操作に応じて設定された所定の走行条件を満たす走行制御時、つまりクルーズコントロール時に目標とされるトルク値(C/C要求トルク)を算出し、第1トルク選択部52へ出力する。
第1トルク選択部52は、ドライバ要求トルクまたはC/C要求トルクの何れか大きい方のトルク値を選択し、トルク切替部54へ出力する。これにより、例えばクルーズコントロール時であっても、車両の運転者によるアクセル操作に応じたドライバ要求トルクがC/C要求トルクを超える場合にはドライバ要求トルクに応じたトルクが出力されるようになっている。
トルク切替部54は、第1トルク選択部52から入力されるトルク値またはAT―CPU47から入力されるAT要求トルクの何れか一方を選択して、第2トルク選択部55へ出力する。
なお、AT―CPU47は、例えばトランスミッションTの変速制御において設定されるトルク値や、例えばロックアップクラッチ21の駆動時やシフトダウン等の変速時においてトランスミッションTの入力軸とモータMとの回転数の同期等の協調制御を行う際に目標とされるトルク値や、例えば運転者によるアクセルペダル操作およびブレーキペダル操作が同時に行われた場合等でのトランスミッションTの保護制御において設定されるトルク値のうち何れか1つのトルク値をAT要求トルクとして選択している。
また、AT―CPU47は、ロックアップクラッチ21を駆動する油圧をLCリニアソレノイドによって電子制御しており、ロックアップクラッチ21の係合状態であるLC_ON状態と、係合が解除されたLC_OFF状態とに加えて、ロックアップクラッチ21に適宜の滑りを生じさせる中間状態での作動を設定可能である。
第2トルク選択部55は、トルク切替部54から入力されるトルク値またはVSAECU31から入力されるVSA要求トルクの何れか小さい方のトルク値を選択し、このトルク値をクランク軸のトルク(クランク端トルク)、つまり駆動輪Wの実質的な回転に対する目標のトルク値として設定し、第1加算部56へ出力する。
また、補機トルク−ENGフリクション算出部57は、例えば空調装置の突出圧(PD)に基づき、補機駆動に要する補機トルク(HAC)を算出すると共に、内燃機関Eの暖機運転完了後のエンジンフリクションの値を基準とした際の低温状態でのエンジンフリクションの増大分に基づき、内燃機関Eのエンジン(ENG)フリクションに係るトルク値を算出し、第1加算部56へ出力する。
第1加算部56は、クランク端トルクと補機トルク−ENGフリクション算出部57から入力されるトルク値とを加算して得た値を、パワープラント(つまり内燃機関EおよびモータM)から出力されるトルクに対する目標トルクであるパワープラント(P/P)トルクとして設定し、トルク配分算出部58へ出力する。
トルク配分算出部58は、気筒休止制御部59から出力される内燃機関Eの休筒運転の実行有無に係る休筒判断と、パワーマネジメント部44から出力されるモータMに対する制限トルクおよび要求トルクとに基づき、内燃機関EおよびモータMの所定運転状態を指定する要求トルクモードを選択し、この選択結果に応じて、内燃機関EおよびモータMの各トルク指令に対するパワープラント(P/P)トルクの配分を設定する。
なお、気筒休止制御部59には、後述するパワーマネジメント部44から出力されるモータMに対する制限トルクが入力されており、気筒休止制御部59は、モータMに対する制限トルクに応じて休筒運転の実行有無を判定している。
パワーマネジメント部44は、例えば、HVECU35から出力されるバッテリ(BATT)保護制限電力またはエネルギーマネジメント部45から出力される充放電制限電力量の何れか小さい方に基づいてモータ(MOT)制限トルクを算出し、算出したモータ制限トルクまたはHVECU35から出力されるモータ(MOT)巻線保護制限トルクの何れか小さい方を制限トルクとして設定し、トルク配分算出部58および気筒休止制御部59へ出力する。
また、パワーマネジメント部44は、例えば、HVECU35から出力されるバッテリ(BATT)保護制限電力またはエネルギーマネジメント部45から出力される要求充放電電力量の何れか小さい方に基づいてモータ(MOT)要求トルクを算出し、算出したモータ要求トルクまたはHVECU35から出力されるモータ(MOT)巻線保護制限トルクの何れか小さい方を要求トルクとして設定し、トルク配分算出部58へ出力する。
なお、エネルギーマネジメント部45から出力される充放電制限電力量および要求充放電電力量は、例えばバッテリ3および補助バッテリ4の充電状態に応じて設定される充電および放電に対する制限量および要求量である。
また、HVECU35から出力されるバッテリ(BATT)保護制限電力は、例えばバッテリ3および補助バッテリ4および他の高圧電装機器の温度状態に応じて設定されるバッテリ3の出力電力の制限値であり、モータ(MOT)巻線保護制限トルクは、モータMの温度状態に応じて設定されるモータMの出力トルクの制限値である。
トルク配分算出部58にて算出された内燃機関Eのトルク指令は減算部60に入力されており、減算部60は内燃機関Eのトルク指令から後述するフィードバック(F/B)処理部67から入力されるトルク値を減算して得た値を目標TH算出部61へ入力する。目標TH算出部61は、入力されたトルク値に基づいて、ETCSドライバの駆動に係る電子スロットル開度THに対する目標値を算出し、第3トルク選択部62へ出力する。
第3トルク選択部62は、目標TH算出部61から入力される電子スロットル開度THの目標値またはアイドル制御部63から出力されるアイドル開度の何れか大きい方のスロットル開度値を選択し、このスロットル開度値をETCSドライバ64へ出力する。
なお、アイドル制御部63から出力されるアイドル開度は、例えば内燃機関Eのアイドル運転時において、エンジン回転数NEが所定回転数未満となることを防止するためのスロットル開度THに対する制限値である。
また、トルクマネジメント部43のENGトルク算出部65には、エアーフローメータ(AFM)66にて検出された内燃機関Eの吸気空気量(もしくは供給酸素量)の検出信号が入力され、ENGトルク算出部65は吸気空気量の検出値に基づいて内燃機関Eから出力されるENGトルクを算出し、フィードバック(F/B)処理部67および第2加算部68へ出力する。
フィードバック(F/B)処理部67は、トルク配分算出部58にて算出された内燃機関Eのトルク指令に対して、例えばエアーフローメータ66の検出値に基づくENGトルクの算出誤差や、例えば内燃機関Eの応答特性や経年劣化や内燃機関Eの量産時における性能ばらつき等をフィードバック処理によって補正するものであって、ENGトルク算出部65にて算出されたENGトルクを減算部60へ入力する。
第3加算部68は、ENGトルク算出部65にて算出されたENGトルクと、補機トルク−ENGフリクション算出部57から入力されるトルク値と、MOTECU33から入力されるモータ実トルクとを加算して得たトルク値を実トルク算出部69へ入力しており、実トルク算出部69は入力されたトルク値に基づき、実際にパワープラント(つまり内燃機関EおよびモータM)から出力される実トルク値を算出する。
なお、MOTECU33には、トルクマネジメント部43のトルク配分算出部58にて算出されたモータMのトルク指令がHVECU35を介して入力されており、MOTECU33は、入力されたトルク指令に基づき、実際にモータMから出力されるモータ実トルクを算出し、HVECU35を介してトルクマネジメント部43の第3加算部68へ入力する。
また、実トルク算出部69にて算出された実トルク値は、AT―CPU47に入力されており、この実トルク値に基づいてロックアップクラッチ21を駆動する油圧がLCリニアソレノイドによって電子制御されている。
なお、トルクマネジメント部43において算出される各トルク値は、A/F(空燃比)制御部41およびIG(イグニッション)制御部42において制御される内燃機関Eの点火タイミングや空燃比やフューエルカット(燃料供給停止)の有無等に応じて補正されるようになっている。
本実施の形態によるハイブリッド車両の制御装置は上記構成を備えており、次に、このハイブリッド車両の制御装置の動作、特に、内燃機関Eへの燃料供給が一時的に停止されるフュ−エルカット(F/C)の実行タイミングおよびフュ−エルカット(F/C)の実行中に燃料供給が再開されるF/C復帰の実行タイミングを設定する動作について説明する。
パワープラントからトランスミッションTに入力されるパワープラント(P/P)トルクに対する要求指令値であるパワープラント要求トルク最終値TQPPRQFは運転者のアクセルペダルの操作量に係るアクセルペダル開度APおよびエンジン回転数NEに応じて変化し、例えば図3に示すように、適宜のエンジン回転数NEに対して、パワープラント要求トルク最終値TQPPRQFはアクセルペダル開度APの増大に応じてAPゼロ時減速回生トルクTQAPMINFから増大傾向に滑らかに変化する。
このパワープラント要求トルク最終値TQPPRQFは、内燃機関EおよびモータMの各トルク指令つまりエンジン要求トルクTQECMDとモータ要求トルクTQMRUNとに分配されている。
そして、例えばアクセルペダル開度APが所定開度以下である場合にフューエルカット(F/C:燃料供給停止)が実行される内燃機関Eに対しては、このフューエルカット(F/C)からの復帰(F/C復帰)に伴う燃料供給の再開、つまり内燃機関Eの再始動の前後において、例えば図3に示すように、エンジン要求トルクTQECMDは、アクセルペダル開度APの変化に対して、F/C時エンジントルクTQExFC(ただし、全筒運転でのF/C時に対してx=6、休筒運転でのF/C時に対してx=3)から最小エンジントルクTQExMIN(ただし、全筒運転に対してx=6、休筒運転に対してx=3)へと急激に変化する。
このため、制御部1のFI/AT/MGECU36は、モータ要求トルクTQMRUNによって、エンジン要求トルクTQECMDに生じる急激な変化を吸収するようにしてモータMの作動状態を制御し、パワープラント要求トルク最終値TQPPRQFがアクセルペダル開度APに対して滑らかに変化するように設定する。
なお、図3においては、駆動輪Wの正転側のトルクを正とした。
ここで、制御部1のFI/AT/MGECU36は、後述するように、例えばバッテリ3の残容量SOCおよび車速VPに応じて、モータMの駆動力により走行するEV走行時にバッテリ3から放電可能な電力であるEV走行可能バッテリ端放電電力PWBEVRUNを算出する。
さらに、算出したEV走行可能バッテリ端放電電力PWBEVRUNと所定のリミット値に基づき、エネマネ充放電要求バッテリ端電力PWBEMREQを算出し、さらに、エネマネ充放電要求バッテリ端電力PWBEMREQに対応するエネマネ充放電要求トルクTQMEMREQを、パワードライブユニット2とモータMとの間における電力と動力の変換効率である所定のPDU−MOT総合効率efimaおよびモータMの回転数およびモータMを保護するための所定のトルクリミット値に基づき算出する。
これにより、エネマネ充放電要求トルクTQMEMREQは、例えば高圧電装系のエネルギー状態や車両の運転状態等に応じて変動し、例えば充電側とされる負の適宜値から放電側の正の適宜値まで変動する場合には、モータMの出力可能なモータトルクが増大する。このため、FI/AT/MGECU36は、モータトルクの増大分に応じてフューエルカット(F/C)を持続する領域(例えば、アクセルペダル開度APおよびエンジン回転数NEに対する領域)を拡大し、この拡大状態においてパワープラント要求トルク最終値TQPPRQFが所定範囲以内で増大した場合には、例えばモータMの回生作動時における回生量を低減させたり、例えばモータMの力行作動時における出力を増大させる。
例えば図3に示すように、フューエルカット(F/C)の実行中にアクセルペダル開度APが徐々に増大することに伴ってパワープラント要求トルク最終値TQPPRQFが増大する際には、エンジン要求トルクTQECMDは所定のF/C時エンジントルクTQExFC(ただし、全筒運転時:x=6、休筒運転時:x=3)となるため、モータ要求トルクTQMRUNが出力可能なモータトルクであるエネマネ充放電要求トルクTQMEMREQまで増大させられる。このときエネマネ充放電要求トルクTQMEMREQの値が、例えば図3に示す第1エネマネ充放電要求トルクTQMEMREQ1に設定されていると、アクセルペダル開度APが所定の第1アクセルペダル開度#AP1に到達するまで、あるいは、パワープラント要求トルク最終値TQPPRQFが、第1アクセルペダル開度#AP1に対応する第1要求トルクTQ1に到達するまでフューエルカット(F/C)が持続される。
また、例えば車両の減速回生状態等において、エネマネ充放電要求トルクTQMEMREQの値が、例えば図3に示す第3エネマネ充放電要求トルクTQMEMREQ3に設定され、この所定の第3エネマネ充放電要求トルクTQMEMREQ3がモータ要求トルクTQMRUNに設定されている状態において、アクセルペダル開度APが徐々に減少することに伴ってパワープラント要求トルク最終値TQPPRQFが減少する際には、エンジン要求トルクTQECMDが徐々に減少させられる。
このとき、アクセルペダル開度APが所定の第2アクセルペダル開度#AP2に到達し、パワープラント要求トルク最終値TQPPRQFが、第2アクセルペダル開度#AP2に対応する第2要求トルクTQ2に到達することで、エンジン要求トルクTQECMDが所定の最小エンジントルクTQExMIN(ただし、全筒運転時:x=6、休筒運転時:x=3)に到達した時点で、内燃機関Eへの燃料供給が停止されてフューエルカット(F/C)状態となり、エネマネ充放電要求トルクTQMEMREQの値が、例えば図3に示す第2エネマネ充放電要求トルクTQMEMREQ2に設定される。
そして、アクセルペダル開度APが所定の第2アクセルペダル開度#AP2よりも小さくなると、エンジン要求トルクTQECMDは所定のF/C時エンジントルクTQExFC(ただし、全筒運転時:x=6、休筒運転時:x=3)となり、パワープラント要求トルク最終値TQPPRQFの減少に伴い、モータ要求トルクTQMRUNが所定の第2エネマネ充放電要求トルクTQMEMREQ2から減少傾向に変化させられる。
以下に、高圧電装系のエネルギー状態に応じて設定されるバッテリ3の入出力端(例えば、図1においてパワードライブユニット2およびダウンバータ5および空調装置用インバータ7が接続される入出力端)でのEV走行可能放電電力つまりモータMの駆動力により車両を走行させることが可能な放電電力であるEV走行可能バッテリ端放電電力PWBEVRUNを算出する処理についてフローチャートを参照して説明する。
先ず、図4に示すステップS01においては、例えば図5に示すようにバッテリ3の残容量QBATの増加に伴って増加傾向に変化するEV走行可能放電電力残容量補正係数KEVRUNQBのテーブル#KEVRUNQBTを検索し、EV走行可能放電電力残容量補正係数KEVRUNQBを設定する。
次に、ステップS02においては、例えば図6に示すように車速VPの増加に伴って減少傾向に変化するEV走行可能放電電力車速補正係数KEVRUNVPのテーブル#KEVRUNVPTを検索し、EV走行可能放電電力車速補正係数KEVRUNVPを設定する。
そして、ステップS03においては、所定のバッテリ最大放電電力#PWBDMAXつまりバッテリ3の定格放電電力に、EV走行可能放電電力残容量補正係数KEVRUNQBと、EV走行可能放電電力車速補正係数KEVRUNVPとを乗算して得た値を、EV走行可能バッテリ端放電電力PWBEVRUNに設定し、一連処理を終了する。
以下に、エネマネ充放電要求バッテリ端電力PWBEMREQを算出する処理についてフローチャートを参照して説明する。
先ず、図7に示すステップS11においては、後述するEV走行許可判定処理つまりモータMの駆動力により車両を走行させることが可能であるか否かを判定する処理を実行する。
次に、ステップS12においては、モータMの駆動力により車両を走行させることを許可するEV走行許可フラグF_EVRUNOKのフラグ値が「1」か否かを判定する。
この判定結果が「NO」である場合、つまりEV走行不許可の場合には、ステップS13に進み、エネマネ充放電要求電力(今回値)pwbemrqwに、例えば所定のマップ検索等により取得される車両走行時の目標充放電バッテリ端電力PWBERRUNを設定し、後述するステップS15に進む。
一方、この判定結果が「YES」である場合、つまりEV走行許可の場合には、ステップS14に進み、エネマネ充放電要求電力(今回値)pwbemrqwにEV走行可能バッテリ端放電電力PWBEVRUNを設定し、後述するステップS15に進む。
ステップS15においては、エネマネ充放電要求電力(今回値)pwbemrqwが、前回の処理にて算出したエネマネ充放電要求バッテリ端電力PWBEMREQ以上であるか否かを判定する。
この判定結果が「YES」である場合、つまり増加側である場合には、ステップS16に進み、一次遅れのフィルタ処理に対する係数kfemreqwに所定の増加側係数KFEMREUを設定し、後述するステップS18に進む。
一方、この判定結果が「NO」である場合、つまり減少側である場合には、ステップS17に進み、一次遅れのフィルタ処理に対する係数kfemreqwに所定の増加側係数KFEMREUを設定し、ステップS18に進む。
ステップS18においては、エネマネ充放電要求電力(今回値)pwbemrqwに対して、急激なトルク変動を抑制するための一次遅れのフィルタ処理を実行する。
次に、ステップS19においては、エネマネ充放電要求電力(今回値)pwbemrqwと、バッテリ温度抑制放電電力リミットPWBTPSDと、バッテリ電圧保護放電電力リミットPWBVPSDとのうち何れか小さい値を、新たにエネマネ充放電要求電力(今回値)pwbemrqwに設定することで、車両走行時の目標充放電電力上限リミット処理を実行する。
次に、ステップS20においては、エネマネ充放電要求電力(今回値)pwbemrqwと、バッテリ温度抑制充電電力リミットPWBTPSRと、バッテリ電圧保護充電電力リミットPWBVPSRとのうち何れか大きい値を、新たにエネマネ充放電要求バッテリ端電力PWBEMREQに設定することで、車両走行時の目標充放電電力下限リミット処理を実行し、一連の処理を終了する。
なお、放電電力の符号を正とすれば、バッテリ温度抑制充電電力リミットPWBTPSRと、バッテリ電圧保護充電電力リミットPWBVPSRとは、負となり、ステップS20において最大値を選択することは、エネマネ充放電要求電力(今回値)pwbemrqwとバッテリ温度抑制充電電力リミットPWBTPSRとバッテリ電圧保護充電電力リミットPWBVPSRとのうち、絶対値が最も小さい値を選択することと同等である。
以下に、上述したステップS11におけるEV走行許可判定処理についてフローチャートを参照して説明する。
先ず、図8に示すステップS21においては、車両が減速状態でF/C実行中であるか否かを判定する。
この判定結果が「YES」である場合には、後述するステップS23に進む。
一方、この判定結果が「NO」である場合には、ステップS22に進み、モータMの駆動力により車両を走行させることを許可するEV走行許可フラグF_EVRUNOKのフラグ値に「0」を設定(EV走行不許可)して、一連の処理を終了する。
ステップS23においては、バッテリ3の状態が所定の許可状態、つまりモータMの駆動力により車両を走行させる際にモータMへ所望の電力供給を行うことが可能な状態であるか否かを判定する。
この判定結果が「NO」である場合には、上述したステップS22に進む。
一方、この判定結果が「YES」である場合には、ステップS24に進む。
ステップS24においては、車速VPが所定範囲以内またはシフトポジションSHが所定位置以上であってエンジン回転数NEが所定範囲以内、つまりモータMの駆動力により車両を走行させる際に要求される所望の走行状態であるか否かを判定する。
ステップS24での判定結果が「NO」である場合には、上述したステップS22に進む。
一方、ステップS24での判定結果が「YES」である場合には、ステップS25に進む。
ステップS25においては、EV走行許可フラグF_EVRUNOKのフラグ値に「1」を設定(EV走行許可)して、一連の処理を終了する。
以下に、エネマネ充放電要求バッテリ端電力PWBEMREQに応じてエネマネ充放電要求トルクTQMEMREQを算出する処理についてフローチャートを参照して説明する。
先ず、図9に示すステップS31においては、エネマネ充放電要求バッテリ端電力PWBEMREQに所定のフィードバック処理を実行して得た値から、例えば12ボルトの各種補機類等の消費電力である高圧補機負荷電力を減算して得た値として設定されるエネマネ充放電要求PDU端電力PWPEMREQ、つまり高圧電装系のエネルギー状態に応じて設定されるパワードライブユニット(PDU)2の入出力端(例えば、図1においてバッテリ3およびダウンバータ5および空調装置用インバータ7が接続される入出力端)での充放電要求電力に、パワードライブユニット2とモータMとの間における電力と動力の変換効率である所定のPDU−MOT総合効率efimaを乗算して得た値を、モータMの回転軸に対する出力であるエネマネ充放電要求軸出力pwmemreqに設定する。なお、PDU−MOT総合効率efimaは、例えばエネマネ充放電要求PDU端電力PWPEMREQおよびモータMの回転数およびパワードライブユニット2の入力電力に基づき算出される。
次に、ステップS32においては、後述するように、例えば、電力値であるエネマネ充放電要求軸出力pwmemreqとモータMの回転数に基づき、クランクシャフトの軸端(クランク端)つまりモータMの回転軸でのトルクを算出し、算出したトルクに対して駆動時にモータMを保護するためのモータ保護駆動トルクリミットTQMPRTDおよび回生作動時にモータMを保護するためのモータ保護回生トルクリミットTQMPRTRに基づき上下限リミット処理を行い、電力値であるエネマネ充放電要求軸出力pwmemreqをトルク値に変換してなるエネマネ要求電力変換値TQMEMRQTを算出する。
そして、ステップS33においては、エネマネ要求電力変換値TQMEMRQTをエネマネ充放電要求トルクTQMEMREQに設定し、一連の処理を終了する。
以下に、上述したステップS32でのエネマネ要求電力変換値TQMEMRQTを算出する処理についてフローチャートを参照して説明する。
図10に示す処理においては、出力(電力)powerおよび周期revolutionおよび上限値upperおよび下限値lowerを引数とし、トルクtorqueを戻り値として、出力(電力)powerと周期revolutionより、軸端のトルクを算出し、算出したトルクに上下限リミット処理を行う。
先ず、図10に示すステップS35においては、周期revolution(モータMの回転数と同等)がゼロであるか否かを判定する。
この判定結果が「NO」の場合には、後述するステップS41に進む。
一方、この判定結果が「YES」の場合には、ステップS36に進む。
ステップS36においては、出力(電力)power(エネマネ充放電要求軸出力pwmemreqと同等)がゼロであるか否かを判定する。
この判定結果が「NO」の場合には、後述するステップS38に進む。
一方、この判定結果が「YES」の場合には、ステップS37に進み、トルクtorque(エネマネ要求電力変換値TQMEMRQTと同等)にゼロを設定して、一連の処理を終了する。
また、ステップS38においては、出力(電力)power(エネマネ充放電要求軸出力pwmemreqと同等)がゼロよりも大きいか否かを判定する。
この判定結果が「YES」の場合には、ステップS39に進み、トルクtorque(エネマネ要求電力変換値TQMEMRQTと同等)に上限値upper(モータ保護駆動トルクリミットTQMPRTDと同等)を設定して、一連の処理を終了する。後述するステップS38に進む。
一方、この判定結果が「NO」の場合には、ステップS40に進み、トルクtorque(エネマネ要求電力変換値TQMEMRQTと同等)に下限値lower(モータ保護回生トルクリミットTQMPRTRと同等)を設定して、一連の処理を終了する。
また、ステップS41においては、出力(電力)powerを周期revolutionで除算して得た値に所定の単位換算係数#PWR2TRQを乗算して得た値を、トルク値torqueclに設定する。
次に、ステップS42においては、トルク値torqueclが上限値upperよりも大きいか否かを判定する。
この判定結果が「YES」の場合には、上述したステップS39に進む。
一方、この判定結果が「NO」の場合には、ステップS43に進む。
次に、ステップS43においては、トルク値torqueclが下限値lowerよりも小さいか否かを判定する。
この判定結果が「YES」の場合には、上述したステップS40に進む。
一方、この判定結果が「NO」の場合には、ステップS44に進み、トルクtorque(エネマネ要求電力変換値TQMEMRQTと同等)にトルク値torqueclを設定して、一連の処理を終了する。
以下に、エネマネ充放電要求トルクTQMEMREQに応じてエンジン要求トルクTQECMDとモータ要求トルクTQMRUNとを設定する処理についてフローチャートを参照して説明する。
先ず、図11に示すステップS51においては、内燃機関Eが休筒運転状態であるか否かを判定する。
この判定結果が「NO」の場合には、後述するステップS55に進む。
一方、この判定結果が「YES」の場合には、ステップS52に進む。
ステップS52においては、パワープラント要求トルク最終値TQPPRQFが、最小エンジントルク(休筒)TQE3MINとエネマネ充放電要求トルクTQMEMREQとを加算して得た値よりも大きいか否かを判定する。
この判定結果が「NO」の場合には、ステップS53に進み、エンジン要求トルクTQECMDにF/C時エンジントルク(休筒)TQE3FCを設定して内燃機関Eのフューエルカット(F/C)を実行すると共に、モータ要求トルクTQMRUNにパワープラント要求トルク最終値TQPPRQFからエンジン要求トルクTQECMDを減算して得た値を設定し、一連の処理を終了する。
一方、この判定結果が「YES」の場合には、ステップS54に進み、エンジン要求トルクTQECMDにパワープラント要求トルク最終値TQPPRQFからエネマネ充放電要求トルクTQMEMREQを減算して得た値を設定して内燃機関Eへの燃料供給を実行すると共に、モータ要求トルクTQMRUNにエネマネ充放電要求トルクTQMEMREQを設定し、一連の処理を終了する。
また、ステップS55においては、パワープラント要求トルク最終値TQPPRQFが、最小エンジントルク(全筒)TQE6MINとエネマネ充放電要求トルクTQMEMREQとを加算して得た値よりも大きいか否かを判定する。
この判定結果が「YES」の場合には、上述したステップS54に進む。
一方、この判定結果が「NO」の場合には、ステップS56に進み、エンジン要求トルクTQECMDにF/C時エンジントルク(全筒)TQE6FCを設定してフューエルカット(F/C)を実行すると共に、モータ要求トルクTQMRUNにパワープラント要求トルク最終値TQPPRQFからエンジン要求トルクTQECMDを減算して得た値を設定し、一連の処理を終了する。
上述したように、本実施の形態によるハイブリッド車両の制御装置によれば、例えばバッテリ3の残容量SOCおよび車速VP(または、シフトポジションSH、エンジン回転数NE)およびフューエルカット(F/C)の実行状態等の高圧電装系でのエネルギー状態および車両の運転状態、さらには、PDU−MOT総合効率efimaおよびモータMの回転数およびモータMを保護するための所定のトルクリミット値等に基づいて、出力可能なモータトルクであるエネマネ充放電要求トルクTQMEMREQが設定されることにより、例えば不必要に内燃機関Eが再始動されてしまうことを防止して、EV走行により所望の駆動力を確保しつつ燃費を向上させることができる。
しかも、フューエルカット(F/C)の実行中において、単にモータMの回生作動を行うか否かを設定するだけではなく、回生作動に対して回生量を制御することができると共に、モータMの力行作動が可能となり、車両の走行状態を多様化させることができ、車両の走行挙動に対して運転者の意志を適切に反映することが可能となる。
本発明の一実施形態に係るハイブリッド車両の制御装置の構成図である。 図1に示す制御部の機能ブロック図である。 適宜のエンジン回転数NEに対し、アクセルペダル開度APの変化に伴うエネマネ充放電要求トルクTQMEMREQおよびエンジン要求トルクTQECMDおよびモータ要求トルクTQMRUNの変化を示すグラフ図である。 EV走行可能バッテリ端放電電力PWBEVRUNを算出する処理を示すフローチャートである。 バッテリの残容量QBATの増加に伴って増加傾向に変化するEV走行可能放電電力残容量補正係数KEVRUNQBを示すグラフ図である。 車速VPの増加に伴って減少傾向に変化するEV走行可能放電電力車速補正係数KEVRUNVPを示すグラフ図である。 エネマネ充放電要求バッテリ端電力PWBEMREQを算出する処理を示すフローチャートである。 EV走行許可判定処理を示すフローチャートである。 エネマネ充放電要求トルクTQMEMREQを算出する処理を示すフローチャートである。 エネマネ要求電力変換値TQMEMRQTを算出する処理を示すフローチャートである。 エネマネ充放電要求トルクTQMEMREQに応じてエンジン要求トルクTQECMDとモータ要求トルクTQMRUNとを設定する処理を示すフローチャートである。
符号の説明
1 制御部
3 バッテリ(蓄電装置)
35 HVECU(蓄電装置状態検知手段)
36 FI/AT/MGECU(制御装置)
ステップS12〜ステップS20 電力算出手段
ステップS31〜ステップS33 モータ充放電可能トルク算出手段、上限モータトルク算出手段
ステップS53、ステップS56 燃料供給停止手段、モータ要求トルク設定手段、EV走行制御手段

Claims (1)

  1. 動力源としての内燃機関およびモータと、前記モータと電気エネルギーの授受を行う蓄電装置とを備え、前記内燃機関と前記モータとトランスミッションとを直列に直結し、少なくとも前記内燃機関又は前記モータの何れか一方の駆動力前記トランスミッションを介して駆動輪に伝達するハイブリッド車両の制御装置において、
    前記蓄電装置および補機を備えて構成される高圧電装系のエネルギー状態および車両の走行状態に応じて、前記蓄電装置にて充放電可能な電力に対応する前記モータから出力可能なモータトルクであるモータ充放電可能トルクを算出するモータ充放電可能トルク算出手段と、
    前記内燃機関及び前記モータからの出力トルクに対する、アクセルペダル開度に基づいて求められる目標トルクが、前記モータ充放電可能トルクと、少なくとも一部の気筒に燃料を噴射している前記内燃機関から出力可能な最小エンジントルクとを加算して得た値以下である場合に、前記内燃機関への燃料供給を停止する燃料供給停止手段と、
    前記車両が減速中であり前記燃料供給停止手段により前記内燃機関への燃料供給を停止しているときに、アクセルペダル開度が所定値以下の場合には前記モータトルクに対する要求値であるモータ要求トルクを前記目標トルクに応じて回生量や出力の増大量を設定するとともに所定のアクセルペダル開度に増加するまで燃料供給復帰を禁止し、燃料供給の停止を持続させるモータ要求トルク設定手段とを備えることを特徴とするハイブリッド車両の制御装置。
JP2005095267A 2005-03-29 2005-03-29 ハイブリッド車両の制御装置 Expired - Fee Related JP3808489B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005095267A JP3808489B2 (ja) 2005-03-29 2005-03-29 ハイブリッド車両の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005095267A JP3808489B2 (ja) 2005-03-29 2005-03-29 ハイブリッド車両の制御装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003192313A Division JP3746775B2 (ja) 2003-07-04 2003-07-04 ハイブリッド車両の制御装置

Publications (2)

Publication Number Publication Date
JP2005291206A JP2005291206A (ja) 2005-10-20
JP3808489B2 true JP3808489B2 (ja) 2006-08-09

Family

ID=35324393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005095267A Expired - Fee Related JP3808489B2 (ja) 2005-03-29 2005-03-29 ハイブリッド車両の制御装置

Country Status (1)

Country Link
JP (1) JP3808489B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4797995B2 (ja) * 2007-01-10 2011-10-19 トヨタ自動車株式会社 ロックアップクラッチを備えた自動変速機を搭載した車両の制御装置および制御方法
JP5077179B2 (ja) * 2008-10-09 2012-11-21 トヨタ自動車株式会社 内燃機関の制御装置
JP5581787B2 (ja) * 2010-04-08 2014-09-03 トヨタ自動車株式会社 駆動力制御装置
JP5545359B2 (ja) * 2010-07-22 2014-07-09 トヨタ自動車株式会社 車両制御システム
EP2631136B1 (en) 2010-10-22 2016-04-06 Hino Motors Ltd. Vehicle, control method, and program
EP2799677B1 (en) 2011-12-27 2017-08-02 Toyota Jidosha Kabushiki Kaisha Exhaust control apparatus for internal combustion engine
KR101646553B1 (ko) * 2014-12-15 2016-08-09 현대오트론 주식회사 가속페달 입력 처리 장치 및 방법
KR101826563B1 (ko) 2016-04-11 2018-03-22 현대자동차 주식회사 마일드 하이브리드 차량의 제어 방법 및 장치
CN112937314B (zh) * 2021-03-04 2023-03-21 广西玉柴机器股份有限公司 一种再生模式提升扭矩平顺性的方法及装置
CN113847126B (zh) * 2021-09-10 2022-09-27 东风汽车集团股份有限公司 混动车辆及其ecu,gpf的被动再生控制方法和装置

Also Published As

Publication number Publication date
JP2005291206A (ja) 2005-10-20

Similar Documents

Publication Publication Date Title
JP3746775B2 (ja) ハイブリッド車両の制御装置
JP3665060B2 (ja) ハイブリッド車両の制御装置
JP3926774B2 (ja) ハイブリッド車両の制御装置
JP3808489B2 (ja) ハイブリッド車両の制御装置
JP3701660B2 (ja) ハイブリッド車両の制御装置
JP3934093B2 (ja) ハイブリット車両の制御装置
JP4271682B2 (ja) モータ駆動車両の制御装置
US6943460B2 (en) Control device for hybrid vehicle
EP1493604B1 (en) Control apparatus for hybrid vehicle
US6843337B2 (en) Control system and method for hybrid vehicle
WO2006009256A1 (ja) ハイブリッド車両の制御装置
JP3652692B2 (ja) ハイブリッド車両の制御装置
JP2005023887A (ja) ハイブリッド車両の制御装置
JP2010269642A (ja) ハイブリッド車両の制動制御装置
JP3652693B2 (ja) ハイブリッド車両の制御装置
JP4361509B2 (ja) ハイブリッド車両の制御装置
JP4176567B2 (ja) ハイブリッド車両の制御装置
JP4364567B2 (ja) ハイブリッド車両の制御装置
JP2005045858A (ja) ハイブリッド車両の制御装置
JP2005024048A (ja) ハイブリッド車両の制御装置
JP2005027467A (ja) ハイブリッド車両の制御装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060517

R150 Certificate of patent or registration of utility model

Ref document number: 3808489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140526

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees