JP3808213B2 - Submerged arc welding method for thick steel plate - Google Patents
Submerged arc welding method for thick steel plate Download PDFInfo
- Publication number
- JP3808213B2 JP3808213B2 JP25406798A JP25406798A JP3808213B2 JP 3808213 B2 JP3808213 B2 JP 3808213B2 JP 25406798 A JP25406798 A JP 25406798A JP 25406798 A JP25406798 A JP 25406798A JP 3808213 B2 JP3808213 B2 JP 3808213B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- welding
- penetration
- groove
- arc welding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Arc Welding In General (AREA)
- Butt Welding And Welding Of Specific Article (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は高能率な厚板鋼板のサブマージアーク溶接方法に関し、特に鉄骨の厚板箱型柱の角継手の溶接に好適の厚板鋼板のサブマージアーク溶接方法に関する。
【0002】
【従来の技術】
近年の建築物は高層化に合わせて、居住性の改善及び空間の有効活用の目的から、柱数を減らし、柱間隔を広げる等の設計方針が採られている。このため、柱に使用される板厚が厚くなる傾向にある。特に、高層建築に使用される柱は箱型形状のものが多く、柱を作成する際は四隅をサブマージアーク溶接で1ランの溶接で終了させるのが一般的である。従来の溶接技術では開先形状、溶接材料及び溶接条件の選定によって、2電極溶接で60mm程度までの板厚を確保することが可能である。
【0003】
【発明が解決しようとする課題】
しかしながら、近時、厚さが60mmを超えるような箱型柱が比較的多く使用されるようになってきた。このような場合は、前述の如く、従来、1ランで溶接できるのは、厚さが60mmまでであるから、予め開先底部をCO2溶接等で下盛りしておき、その上をサブマージアーク溶接で1ラン溶接を行うという溶接施工法が採られている。しかしながら、このような施工方法は、柱製作する上での溶接工数が極めて多く、このため非能率である。従って、厚さが60mmを超えるような厚板の高能率且つ低コストの溶接方法の開発が要望されている。
【0004】
本発明はかかる問題点に鑑みてなされたものであって、板厚が60mmを超える場合でも1ランで溶接することができ、しかも60mm以下の板厚の場合には溶接能率を高めることができ、良好な継手品質が得られる厚板鋼板のサブマージアーク溶接方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明に係る厚板鋼板のサブマージアーク溶接方法は、厚さt(mm)が50mm以上の厚板鋼板を片側から1ランの溶接で100%の溶込みを確保する2又は3電極を使用したサブマージアーク溶接方法において、V型の開先を設け、開先角度を10乃至20°、開先底部の間隙を8乃至15mm、ルートフェイスを0乃至20mm、最終電極のワイヤ径を6.4乃至7.2mm、最終電極以外の電極のワイヤ径を4.8乃至6.4mmとし、第1電極の電流LI(A)、第2電極以降の電極の電流TI(A)が下記数式1を満足するように設定し、且つ第1電極と第2電極との電極間距離及び第2電極と第3電極との電極間距離を40乃至100mmに保持し、且つ鉄若しくは鉄合金の粉末又は粒子を開先内に10乃至25mmの高さに充填してサブマージアーク溶接することを特徴とする。
【0006】
【数1】
25t≦LI≦35t
20t≦TI≦30t
【0007】
このサブマージアーク溶接方法において、前記第1電極の電極傾斜を2乃至10°の後退角、前記第2電極以降の電極の電極傾斜を2乃至10°の前進角とすることが好ましい。
【0008】
【発明の実施の形態】
本発明者等は、上記従来技術の課題を解決すべく、種々研究実験を繰り返した結果、本発明の特許請求の範囲に記載の要件を満足することにより、この課題を解決することができることを見いだした。本発明はこのような知見に基いて完成されたものである。以下、本発明の特許請求の範囲に規定する要件の規定又は数値限定理由について説明する。
【0009】
▲1▼開先形状
特に2電極溶接によって1ラン溶接の適用範囲の拡大を狙うためには、溶接部の健全性を損なわずに、如何にして溶着量を確保するかが課題である。そこで開先形状について種々検討した結果、V型の開先形状において、開先角度を10乃至20°、開先底部の間隙を8乃至15mm、ルートフェイスを0乃至20mmにすることで、2電極溶接で厚さが約70乃至80mm程度の厚板まで1ラン溶接することが可能になり、且つ健全な溶込み形状が得られる。
【0010】
開先角度が10°未満では縦長の溶込み形状になって、高温割れが発生し易くなり、また、開先壁が垂直に近く、溶融金属がうまく馴染まず、融合不良及びスラグ巻き込みが発生し易くなる。開先角度が20°を超えると溶接断面積が広くなり過ぎることから、特に2電極溶接では溶着量の確保ができなくなり、適用板厚の拡大を図ることができない。
【0011】
開先底部の間隙が8mm未満では安定した溶込み深さを確保することが難しく、特に電極の中心がねらい位置からずれたりしたときは、溶込み不良が発生し易くなる。開先底部の間隙が15mmを超えると、溶接断面積が広くなり過ぎることから、特に2電極溶接では溶着量の確保ができなくなり、適用板厚の拡大を図ることができない。
【0012】
ルートフェイスは20mmを超えると、先行電極により形成される溶込み形状が縦長となり、また後行電極による溶込み深さの確保が難しくなり、先行電極により形成された溶接金属に高温割れが発生し易くなる。
【0013】
▲2▼電極径
2及び3電極溶接で特に厚板を1ランで溶接する場合、溶着量を確保し、健全な溶込み形状と溶込み深さ及び良好なビードを得るためには、各電極に使用する電極径の影響が大きい。溶込み深さの確保と溶着量の確保が主な役割となる最終電極以外の電極は直径を4.8乃至6.4mmにすることが好ましく、電極径が4.8mm未満では、電流を高めることで溶着量は確保できるものの、溶込み深さの安定性が欠けることと、溶込み幅が狭くなることから、耐高温割れ性の点から不利になり、また開先底部の間隙が広い場合、融合不良が発生し易くなるので、好ましくない。電極径が6.4mmを超えると、開先底部の間隙が狭い場合及び開先角度が小さい場合に、溶込み深さを確保できなかったり、溶け込みが不安定になる。また、最終電極の電極径は健全な溶込み形状と溶着量を確保するため及び良好なビードを得るために、6.4乃至7.2mmが好ましく、電極径が6.4mm未満では溶込み深さは確保できるものの、十分な溶込み幅と安定したビード幅及びビード形状が得られない。電極径が7.2mmを超えると、溶込み幅とビード幅は十分確保することができるが、健全な溶込み深さが確保することができない。
【0014】
▲3▼第1電極と第2電極との電極間距離及び第2電極と第3電極との電極間距離
第1電極と第2電極との電極間距離は第1電極で形成された溶接金属の縦割れを回避するうえで重要であり、40乃至100mmの範囲が好ましく、40mm未満では第1電極と第2電極で形成された溶接金属が一体となって、結果的に縦長の溶接金属が形成され、高温割れが発生し易くなる。また、電極間距離が100mmを超えると、第2電極による十分な溶込み深さが確保できないために第1電極で形成された縦長の溶接金属が多く残り、縦割れが発生しやすくなる。
【0015】
第2電極と第3電極との電極間距離は第3電極による健全な溶込み深さと、安定した良好なビードを確保する上で重要であり、40乃至100mmの範囲が好ましく、40mm未満では第2電極と第3電極によって形成される溶接金属とが一体になって、ビード幅が狭い場合には縦長の溶込形状になって縦割れが発生しやすくなるので、避ける必要がある。また、100mmを超えると第1及び第2電極によって生成したスラグが凝固し、安定して溶融することができなくなり、ビード幅の不揃いが生じ、ビード形状が乱れることから好ましくない。
【0016】
▲4▼各電極の電流
各電極に使用する電流は板厚に応じた溶着量を確保し、十分な溶込み深さを得、良好なビードを得る目的から選定しなければならないが、各板厚共に各電極の電流は下式にあてはまるものを使用することによって、上記目的を達成することができる。板厚をt(mm)とした場合に、第1電極の電流が25t未満では十分な溶込み深さと、必要溶着量を確保できず、また、第1電極の電流が35tを超えると、溶込みが深過ぎて高温割れが発生し易くなる。第2電極の電流が20t未満では、第2電極による十分な溶込み深さが確保できないために、第1電極で形成された縦長の溶接金属が多く残り、縦割れが発生し易くなる。第2電極の電流が30tを超えると、第1電極と第2電極で形成された溶接金属が一体となって、結果的に縦長の溶接金属が形成され、高温割れが発生し易くなることと、溶融地が不安定になって安定したビード形成が難しくなる。第3電極の電流が20t未満では、第3電極による十分な溶込み深さが確保できないために、第2電極で形成された縦長の溶接金属が多く残り、縦割れが発生し易くなる。第3電極の電流が30tを超えると、溶融地が不安定になって安定したビード形成が難しくなる。
【0017】
▲5▼開先内充填剤
開先内充填剤は溶着量の補助と溶込み深さを更に安定させるために有効であり、成分としては鉄を主体とした粉状又は粒状のものが溶融性の点で好ましい。また、充填高さとしては上記目的から10乃至25mm程度が良く、10mm未満では上記効果が得られず、また25mmを超えると溶着量を確保する上では極めて有効であるが、溶込み深さが確保できなくなるという問題点がある。
【0018】
▲6▼電極傾斜
電極傾斜は溶込み深さ及びビード幅の調整に有効であり、溶込み深さを確保することが大きな役割である第1電極は2乃至10°の後退角にすると、更に安定した溶込み深さが得られ、また、溶込み形状とビードの安定形成が主な役割である第2及び第3電極は2乃至10°の前進角にすると、更に安定した溶込み形状と安定したビードが得られる。
【0019】
▲7▼その他
本方法に用いるフラックスは大入熱用のボンドフラックスであれば特に特定するものではないが、鉄粉を含有する大入熱用ボンドフラックスが中でも好ましい。
【0020】
【実施例】
次に、本発明の実施例について本発明の範囲から外れる比較例と比較して説明する。下記表1に示す鋼板を表2に示す鋼線ソリッドワイヤ及び表3に示すボンドフラックスを使用して、2電極及び3電極による1ラン溶接を実施した。溶接試験内容を下記表4乃至表7に、また溶接試験結果を下記表8に示す。但し、表4乃至7において、図1に示すように、θは開先角度、Gは開先底部の間隙、Sはルートフェイスである。また、表4乃至7において、本発明の各請求項で規定する範囲を超えるものについて、下線を付して表示した。
【0021】
本発明の請求項1の規定を全て満たしている実施例A乃至Mは十分な溶着量と外観及び形状が良好な溶接ビードが得られ、溶込み深さ及び形状も健全且つ安定した結果が得られた。なお、実施例Cは請求項1及び3を満足するものであり、その他の実施例は請求項1乃至3の全てを満足するものである。
【0022】
一方、比較例Nは開先角度θが狭すぎたために、先行電極による溶込み幅が狭く高温縦割りが発生した。比較例Oは先行電極の電流が高過ぎたために、溶込み深さが過剰で、形状が梨型となって高温割れが発生した。比較例Pは後行電極の電流が不足したために、溶込みが浅くなり先行電極によって形成された縦長の溶接金属に小さな縦割れが発生した。比較例Qは開先角度が広過ぎたために、溶着量が不足した。比較例RはルートフェイスSが大き過ぎるために先行電極によって形成された溶接金属の溶込み幅が狭く、割れは発生しなかったものの不健全な溶込み形状になった。比較例Sは開先底部の間隙Gが狭過ぎ、先行電極による溶込み深さが不足した。比較例Tは開先内充填剤の散布高さが高過ぎ、先行電極による溶込み深さが不足した。比較例Uは後行電極の電極径が太過ぎ、溶込み深さが浅くなって、先行電極によって形成された縦長の溶接金属が残り、また、ビード幅も必要以上に広くなり好ましくない結果であった。比較例Vは開先底部の間隙Gが広すぎたため、ビード形状において余盛量が不足した。比較例Wは先行電極の電流が高過ぎると共に、後行電極の電流が不足したため、先行電極による溶込み深さが深過ぎ、かつ後行電極による溶込みが浅くなったために、先行電極によって形成された溶接金属に高温縦割れが発生した。比較例Xは先行電極と後行電極との電極間距離が広過ぎたために、先行電極によって形成された溶接金属と後行電極によって形成された溶接金属の間に融合不良が発生した。比較例Yは先行電極と後行電極との電極間距離が狭過ぎたために、先行電極によって形成された溶接金属と後行電極によって形成された溶接金属が一体となって、割れは発生しなかったものの、必要以上に溶込み深さが深くなりすぎ、好ましくない溶込み形状になった。比較例Zは後行電極(第2電極)の電流が高過ぎたために、先行電極によって形成された溶接金属と後行電極によって形成された溶接金属が一体となり、且つ溶込み幅が狭くなったために高温縦割れが発生した。
【0023】
【表1】
【0024】
【表2】
【0025】
【表3】
【0026】
【表4】
【0027】
【表5】
【0028】
【表6】
【0029】
【表7】
【0030】
【表8】
【0031】
【発明の効果】
以上説明したように、本発明によれば、板厚が60mmを超えるような厚板鋼板であっても、1ランで溶接することができ、また、板厚が60mm以下の場合には溶接能率を高めることができ、良好な継手品質を得ることができる。
【図面の簡単な説明】
【図1】溶接試験方法を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a highly efficient submerged arc welding method for thick steel plates, and more particularly, to a submerged arc welding method for thick steel plates suitable for welding corner joints of steel thick plate box columns.
[0002]
[Prior art]
In recent years, design policies such as reducing the number of columns and increasing the interval between columns have been adopted for the purpose of improving habitability and effective use of space in accordance with the increase in the number of buildings. For this reason, it exists in the tendency for the plate | board thickness used for a pillar to become thick. In particular, columns used in high-rise buildings are often box-shaped, and when creating columns, the four corners are generally terminated by submerged arc welding and one run of welding. In the conventional welding technique, it is possible to secure a plate thickness of up to about 60 mm by two-electrode welding by selecting the groove shape, welding material, and welding conditions.
[0003]
[Problems to be solved by the invention]
Recently, however, a relatively large number of box columns having a thickness exceeding 60 mm have been used. In such a case, as described above, since the thickness that can be welded in one run is up to 60 mm, the bottom of the groove is preliminarily deposited by CO 2 welding or the like, and the top is submerged arc. The welding construction method of performing one run welding by welding is adopted. However, such a construction method has a very large number of welding steps for manufacturing the column, and is therefore inefficient. Accordingly, there is a demand for the development of a high-efficiency and low-cost welding method for thick plates having a thickness exceeding 60 mm.
[0004]
The present invention has been made in view of such problems, and even when the plate thickness exceeds 60 mm, welding can be performed in one run, and in the case of a plate thickness of 60 mm or less, the welding efficiency can be increased. An object of the present invention is to provide a method of submerged arc welding of thick steel plates that can provide good joint quality.
[0005]
[Means for Solving the Problems]
The submerged arc welding method for thick steel plates according to the present invention uses two or three electrodes that ensure 100% penetration by welding one plate from one side to a thick steel plate having a thickness t (mm) of 50 mm or more. In the submerged arc welding method, a V-shaped groove is provided, the groove angle is 10 to 20 °, the gap at the groove bottom is 8 to 15 mm, the root face is 0 to 20 mm, and the wire diameter of the final electrode is 6.4 to 7.2 mm, the wire diameter of the electrodes other than the final electrode is 4.8 to 6.4 mm, and the current LI (A) of the first electrode and the current TI (A) of the electrodes after the second electrode satisfy the following formula 1. And the distance between the first electrode and the second electrode and the distance between the second electrode and the third electrode are kept at 40 to 100 mm, and iron or iron alloy powder or particles 10-25mm height in the groove Characterized by submerged arc welding and filled.
[0006]
[Expression 1]
25t ≦ LI ≦ 35t
20t ≦ TI ≦ 30t
[0007]
In this submerged arc welding method, the receding angle of the electrode slope before Symbol first electrode 2 to 10 °, it is preferable that the advancing angle of the electrode slope of the second electrode subsequent electrode 2 to 10 °.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
As a result of repeating various research experiments in order to solve the above-described problems of the prior art, the present inventors are able to solve this problem by satisfying the requirements described in the claims of the present invention. I found it. The present invention has been completed based on such knowledge. Hereinafter, the definition of the requirement or the reason for limiting the numerical value defined in the claims of the present invention will be described.
[0009]
▲ 1 ▼ by Hirakisakikatachi like especially 2 electrode welding to aim at expanding coverage of 1 run welding, without compromising the integrity of the welds, a problem or to secure a deposition rate in the how. Therefore, as a result of various investigations on the groove shape, the V-shaped groove shape has a groove angle of 10 to 20 °, a gap at the groove bottom of 8 to 15 mm, and a root face of 0 to 20 mm. It is possible to perform one-run welding to a thick plate having a thickness of about 70 to 80 mm by welding, and a sound penetration shape can be obtained.
[0010]
If the groove angle is less than 10 °, it becomes a vertically long penetration shape, and hot cracking is likely to occur. Also, the groove wall is nearly vertical, the molten metal does not fit well, poor fusion and slag entrainment occur. It becomes easy. If the groove angle exceeds 20 °, the weld cross-sectional area becomes too large, and in particular with two-electrode welding, it is impossible to ensure the amount of welding, and the applied plate thickness cannot be increased.
[0011]
If the gap at the bottom of the groove is less than 8 mm, it is difficult to ensure a stable penetration depth. In particular, when the center of the electrode is displaced from the target position, poor penetration is likely to occur. If the gap at the bottom of the groove exceeds 15 mm, the weld cross-sectional area becomes too large. Therefore, particularly in the case of two-electrode welding, the amount of welding cannot be secured, and the applied plate thickness cannot be increased.
[0012]
If the root face exceeds 20 mm, the penetration shape formed by the leading electrode becomes vertically long, and it becomes difficult to secure the penetration depth by the trailing electrode, and high temperature cracking occurs in the weld metal formed by the leading electrode. It becomes easy.
[0013]
(2) Electrode diameter 2 and 3 electrode welding, especially when welding thick plates in one run, in order to secure the amount of welding and obtain a sound penetration shape and penetration depth and good bead, The influence of the electrode diameter used for the is large. It is preferable that the diameter of the electrodes other than the final electrode whose main roles are to secure the penetration depth and the welding amount is 4.8 to 6.4 mm. When the electrode diameter is less than 4.8 mm, the current is increased. Although the welding amount can be secured, the lack of stability of the penetration depth and the narrower penetration width are disadvantageous in terms of resistance to hot cracking, and the gap at the bottom of the groove is wide. This is not preferable because poor fusion tends to occur. When the electrode diameter exceeds 6.4 mm, the penetration depth cannot be secured or the penetration becomes unstable when the gap at the groove bottom is narrow and the groove angle is small. Also, the electrode diameter of the final electrode is preferably 6.4 to 7.2 mm in order to ensure a sound penetration shape and welding amount and to obtain a good bead, and if the electrode diameter is less than 6.4 mm, the penetration depth However, a sufficient penetration width and a stable bead width and bead shape cannot be obtained. When the electrode diameter exceeds 7.2 mm, a sufficient penetration width and bead width can be ensured, but a sound penetration depth cannot be ensured.
[0014]
(3) The distance between the first electrode and the second electrode and the distance between the second electrode and the third electrode The distance between the first electrode and the second electrode is formed by the first electrode. This is important in avoiding vertical cracks in the weld metal, and is preferably in the range of 40 to 100 mm. If it is less than 40 mm, the weld metal formed by the first electrode and the second electrode is integrated, resulting in a longitudinally long shape. The weld metal is formed and hot cracking is likely to occur. If the distance between the electrodes exceeds 100 mm, a sufficient depth of penetration by the second electrode cannot be secured, so that a large amount of the vertically long weld metal formed by the first electrode remains, and vertical cracks are likely to occur.
[0015]
The interelectrode distance between the second electrode and the third electrode is important for ensuring a sound penetration depth by the third electrode and a stable and good bead, and is preferably in the range of 40 to 100 mm. When the weld metal formed by the two electrodes and the third electrode is integrated and the bead width is narrow, it becomes a vertically long penetration shape and a vertical crack is likely to occur. On the other hand, if the thickness exceeds 100 mm, the slag generated by the first and second electrodes is solidified and cannot be stably melted, resulting in uneven bead widths and an undesirable bead shape.
[0016]
(4) Current of each electrode The current used for each electrode must be selected for the purpose of securing a sufficient amount of welding according to the plate thickness, obtaining a sufficient penetration depth, and obtaining a good bead. However, the above-mentioned object can be achieved by using the currents of the respective electrodes that satisfy the following formulas for each plate thickness. When the plate thickness is t (mm), if the current of the first electrode is less than 25 t, sufficient penetration depth and necessary welding amount cannot be secured, and if the current of the first electrode exceeds 35 t, The cracks are too deep and hot cracks are likely to occur. If the current of the second electrode is less than 20 t, a sufficient depth of penetration by the second electrode cannot be ensured, so that a large amount of vertically long weld metal formed by the first electrode remains, and vertical cracks are likely to occur. When the current of the second electrode exceeds 30 t, the weld metal formed by the first electrode and the second electrode is integrated, and as a result, a vertically long weld metal is formed, and high temperature cracking is likely to occur. The melted land becomes unstable and stable bead formation becomes difficult. When the current of the third electrode is less than 20 t, a sufficient depth of penetration by the third electrode cannot be ensured, so that a large amount of vertically long weld metal formed by the second electrode remains, and vertical cracks are likely to occur. When the current of the third electrode exceeds 30 t, the melted land becomes unstable and stable bead formation becomes difficult.
[0017]
(5) Filler in the groove The filler in the groove is effective for assisting the amount of welding and further stabilizing the depth of penetration, and the component is a powdery or granular material mainly composed of iron. A thing is preferable at the point of a meltability. The filling height is preferably about 10 to 25 mm for the above purpose, and if it is less than 10 mm, the above effect cannot be obtained, and if it exceeds 25 mm, it is extremely effective in securing the welding amount, but the penetration depth is There is a problem that it cannot be secured.
[0018]
(6) Electrode inclination The electrode inclination is effective in adjusting the penetration depth and the bead width, and the first electrode, whose role is to ensure the penetration depth, has a receding angle of 2 to 10 °. In this case, a more stable penetration depth is obtained, and the second and third electrodes, whose main roles are the formation of the penetration shape and the bead, are more stable when the advance angle is 2 to 10 °. A penetration shape and a stable bead can be obtained.
[0019]
(7) Others The flux used in this method is not particularly specified as long as it is a bond flux for large heat input, but a bond flux for large heat input containing iron powder is particularly preferable.
[0020]
【Example】
Next, examples of the present invention will be described in comparison with comparative examples that are out of the scope of the present invention. Using the steel wire solid wire shown in Table 2 and the bond flux shown in Table 3, the steel plate shown in Table 1 below was subjected to one-run welding with two electrodes and three electrodes. The contents of the welding test are shown in Tables 4 to 7 below, and the results of the welding test are shown in Table 8 below. However, in Tables 4 to 7, as shown in FIG. 1, θ is the groove angle, G is the gap at the groove bottom, and S is the root face. In Tables 4 to 7, those exceeding the range specified in each claim of the present invention are indicated with an underline.
[0021]
In Examples A to M that satisfy all the provisions of claim 1 of the present invention, a weld bead having a sufficient welding amount, good appearance and shape is obtained, and the penetration depth and shape are sound and stable. It was. In addition, Example C satisfies claims 1 and 3, and the other examples satisfy all of claims 1 to 3.
[0022]
On the other hand, in Comparative Example N, since the groove angle θ was too narrow, the penetration width by the leading electrode was narrow and high-temperature vertical splitting occurred. In Comparative Example O, since the current of the leading electrode was too high, the penetration depth was excessive, the shape became a pear shape, and hot cracking occurred. In Comparative Example P, since the current of the trailing electrode was insufficient, the penetration became shallow, and a small vertical crack occurred in the vertically long weld metal formed by the preceding electrode. In Comparative Example Q, since the groove angle was too wide, the amount of welding was insufficient. In Comparative Example R, since the root face S was too large, the penetration width of the weld metal formed by the preceding electrode was narrow, and although the crack did not occur, an unhealthy penetration shape was obtained. In Comparative Example S, the gap G at the groove bottom was too narrow, and the penetration depth by the leading electrode was insufficient. In Comparative Example T, the distribution height of the filler in the groove was too high, and the penetration depth by the leading electrode was insufficient. In Comparative Example U, the electrode diameter of the trailing electrode is too large, the penetration depth becomes shallow, the vertically long weld metal formed by the preceding electrode remains, and the bead width becomes wider than necessary, which is an undesirable result. there were. In Comparative Example V, since the gap G at the groove bottom was too wide, the amount of surplus in the bead shape was insufficient. In Comparative Example W, the current of the leading electrode was too high, and the current of the trailing electrode was insufficient. High temperature vertical cracks occurred in the weld metal. In Comparative Example X, the interelectrode distance between the preceding electrode and the succeeding electrode was too wide, so that a poor fusion occurred between the weld metal formed by the preceding electrode and the weld metal formed by the succeeding electrode. In Comparative Example Y, since the distance between the leading electrode and the trailing electrode is too small, the weld metal formed by the leading electrode and the welding metal formed by the trailing electrode are integrated, and no cracks occur. However, the penetration depth became too deep than necessary, resulting in an undesirable penetration shape. In Comparative Example Z, because the current of the trailing electrode (second electrode) was too high, the welding metal formed by the leading electrode and the welding metal formed by the trailing electrode were integrated, and the penetration width was narrowed. High temperature vertical cracks occurred.
[0023]
[Table 1]
[0024]
[Table 2]
[0025]
[Table 3]
[0026]
[Table 4]
[0027]
[Table 5]
[0028]
[Table 6]
[0029]
[Table 7]
[0030]
[Table 8]
[0031]
【The invention's effect】
As described above, according to the present invention, even a thick steel plate having a thickness exceeding 60 mm can be welded in one run, and if the thickness is 60 mm or less, the welding efficiency is improved. And good joint quality can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing a welding test method.
Claims (2)
25t≦LI≦35t
20t≦TI≦30tIn a submerged arc welding method using two or three electrodes that secure 100% penetration by welding one run from one side of a thick steel plate having a thickness t (mm) of 50 mm or more, a V-shaped groove is provided, The groove angle is 10 to 20 °, the gap at the groove bottom is 8 to 15 mm, the root face is 0 to 20 mm, the wire diameter of the final electrode is 6.4 to 7.2 mm, and the wire diameter of the electrodes other than the final electrode is 4 .8 to 6.4 mm, the current LI (A) of the first electrode and the current TI (A) of the electrode after the second electrode are set so as to satisfy the following formula, and the first electrode and the second electrode The inter-electrode distance and the inter-electrode distance between the second electrode and the third electrode are maintained at 40 to 100 mm, and iron or iron alloy powder or particles are filled in the groove to a height of 10 to 25 mm and submerged. Thick steel plate characterized by arc welding Submerged arc welding method.
25t ≦ LI ≦ 35t
20t ≦ TI ≦ 30t
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25406798A JP3808213B2 (en) | 1998-09-08 | 1998-09-08 | Submerged arc welding method for thick steel plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25406798A JP3808213B2 (en) | 1998-09-08 | 1998-09-08 | Submerged arc welding method for thick steel plate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000084672A JP2000084672A (en) | 2000-03-28 |
JP3808213B2 true JP3808213B2 (en) | 2006-08-09 |
Family
ID=17259769
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25406798A Expired - Lifetime JP3808213B2 (en) | 1998-09-08 | 1998-09-08 | Submerged arc welding method for thick steel plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3808213B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006035279A (en) * | 2004-07-28 | 2006-02-09 | Nippon Steel & Sumikin Welding Co Ltd | Multi-electrode one side submerged arc welding method |
JP2007268551A (en) * | 2006-03-30 | 2007-10-18 | Kobe Steel Ltd | Multi-electrode one side submerged arc welding method |
CN113172302A (en) * | 2021-04-12 | 2021-07-27 | 中煤北京煤矿机械有限责任公司 | Welding method for fusion welding of hydraulic support structural part |
-
1998
- 1998-09-08 JP JP25406798A patent/JP3808213B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2000084672A (en) | 2000-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2000167670A (en) | Fillet welding method of high strength thick plate steel | |
JP3808213B2 (en) | Submerged arc welding method for thick steel plate | |
JPH11138266A (en) | Tandem submaerged arc welding method | |
JP2860060B2 (en) | Single-sided submerged arc welding method | |
JP3148055B2 (en) | Single-sided submerged arc welding method | |
JPH0729206B2 (en) | High-speed submerged arc welding method using multiple electrodes | |
JPS5946716B2 (en) | Narrow gap submerged arc welding method | |
JPH06234075A (en) | High-speed gas shielded arc welding method | |
JPS5966978A (en) | Multielectrode submerged arc welding method | |
US7371994B2 (en) | Buried arc welding of integrally backed square butt joints | |
JP4707949B2 (en) | Multi-electrode single-sided submerged arc welding method | |
JPH0532155B2 (en) | ||
JP3120907B2 (en) | Single-sided submerged arc welding method | |
JPH0852572A (en) | Gas shielded metal-arc welding method | |
JP6607677B2 (en) | Four-electrode single-sided single-layer submerged arc welding method | |
Gurevitch et al. | Metallurgical and technological features of titanium alloy welding when using fluxes | |
JPH06328254A (en) | High heat input one side submerged arc welding method | |
JP3706892B2 (en) | 4-electrode single-sided submerged arc welding method | |
JPH08281436A (en) | Two-electrode horizontal fillet welding submerged arc welding method for t-joint | |
JPH0215312B2 (en) | ||
JPH0252174A (en) | Multiple electrode submerged arc welding method | |
JP3102821B2 (en) | Single-sided gas shielded arc welding method for in-plane tack joints | |
JP2001121266A (en) | Method for submerged arc welding | |
JPS5827027B2 (en) | Narrow gap submerged arc welding method | |
JPH01241380A (en) | Submerged arc welding method for square joint part |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041228 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051004 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051122 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060516 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060517 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100526 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100526 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110526 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110526 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120526 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120526 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130526 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140526 Year of fee payment: 8 |
|
EXPY | Cancellation because of completion of term |