JP2007268551A - Multi-electrode one side submerged arc welding method - Google Patents

Multi-electrode one side submerged arc welding method Download PDF

Info

Publication number
JP2007268551A
JP2007268551A JP2006095448A JP2006095448A JP2007268551A JP 2007268551 A JP2007268551 A JP 2007268551A JP 2006095448 A JP2006095448 A JP 2006095448A JP 2006095448 A JP2006095448 A JP 2006095448A JP 2007268551 A JP2007268551 A JP 2007268551A
Authority
JP
Japan
Prior art keywords
groove
electrode
filler
sectional area
submerged arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006095448A
Other languages
Japanese (ja)
Inventor
Katsutake Kobayashi
克壮 小林
Munenori Sato
統宣 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006095448A priority Critical patent/JP2007268551A/en
Publication of JP2007268551A publication Critical patent/JP2007268551A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multi-electrode one side submerged arc welding method capable of obtaining a weld joint having the excellent bead shape and the sound and excellent joint performance for an extensive joint thickness. <P>SOLUTION: A groove shape of a butted part of a member to be welded is a V-shape, and its groove angle is 30-60°C. The filling ratio of a filler in the groove to the groove sectional area is ≥2% and <25%. When the filling ratio of the filler in the groove to the groove sectional area is ≥2% and ≤15%, the current of a first electrode is 950-1,570A. When the filling ratio of the filler in the groove to the groove sectional area is >15% and ≤20%, the current of the first electrode is 1,000 to 1,580A. When the filling ratio of the filler in the groove to the groove sectional area is >20% and <25%, the current of the first electrode is 1.050 to 1,590A. In this multi-electrode one side submerged arc welding method, a backing plate is a flux-copper backing or a flux backing. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、多電極片面サブマージアーク溶接に関し、特に、フラックスと銅板を裏当材とするフラックス銅バッキング法、又はフラックスを裏当材とするフラックスバッキング法により、サブマージアーク溶接する多電極片面サブマージアーク溶接方法に関する。   The present invention relates to multi-electrode single-sided submerged arc welding, and in particular, multi-electrode single-sided submerged arc that performs submerged arc welding by a flux copper backing method using a flux and a copper plate as a backing material or a flux backing method using a flux as a backing material. It relates to a welding method.

サブマージアーク溶接方法は、被覆アーク溶接方法及びガスシールドアーク溶接方法と比して、高電流及び高速度で溶接を行えるという利点を有しており、造船、鉄骨及び橋梁等の大型鋼構造物の製造において、能率の観点から重用されている溶接法である。   The submerged arc welding method has the advantage that welding can be performed at a high current and a high speed compared to the covering arc welding method and the gas shielded arc welding method, and it can be used for large steel structures such as shipbuilding, steel frames and bridges. It is a welding method that is heavily used from the viewpoint of efficiency in manufacturing.

このサブマージアーク溶接法の中で、片面サブマージアーク溶接方法は、造船分野において平行ブロックをはじめとするパネルの板継ぎ溶接に多用されており、鋼板の表面側から裏面側まで11パスでビードを形成できる高能率な溶接方法である。また、被溶接鋼板の板厚範囲は9mmから35mm程度まで実用化されている。現状では、40mm程度の板厚についても片面サブマージアーク溶接方法の実験研究がされており、溶接施工性、溶接継手の機械的性能及びビード外観形状に対する改善要求が高まっている。   Among the submerged arc welding methods, the single-sided submerged arc welding method is widely used in the shipbuilding field for panel splicing of parallel blocks and other panels, and a bead is formed in 11 passes from the front side to the back side of the steel plate. It is a highly efficient welding method that can be performed. Moreover, the plate | board thickness range of a to-be-welded steel plate is utilized from 9 mm to about 35 mm. At present, an experimental study of a single-sided submerged arc welding method has been conducted even for a plate thickness of about 40 mm, and there is an increasing demand for improvement in welding workability, mechanical performance of welded joints, and bead appearance.

近時、造船業界をはじめとするファブリケーターにおいては、老朽化した設備の更新、及び高能率施工を目的とする溶接電極数を増設した片面サブマージアーク溶接方法が行われており、従来の施工法と比較して高電流化及び高速度化が図られている。   Recently, fabricators in the shipbuilding industry, etc., have been carrying out a single-sided submerged arc welding method with the replacement of aging equipment and an increased number of welding electrodes for the purpose of high-efficiency construction. As compared with the above, higher current and higher speed are achieved.

高電流化、及び高速度化に伴い、溶接継手の性能、及び健全性を確保するために、厳密な溶接施工法を要した種々の提案がされている。特許文献1は、開先形状をV形状とし、その開先角度、開先内充填材の粒度構成、及び充填率を規制することで、裏ビード形状の安定性が向上する溶接方法を提案している。   With the increase in current and speed, various proposals requiring a strict welding method have been made in order to ensure the performance and soundness of the welded joint. Patent Document 1 proposes a welding method in which the groove shape is a V shape, and the groove angle, the particle size configuration of the filler in the groove, and the filling rate are regulated to improve the stability of the back bead shape. ing.

また、特許文献2及び特許文献3は、開先形状をV形状とし、その開先角度、開先内充填材を被溶接材板厚の1/3から被溶接材表面の高さまでと規制することで、良好なビード形状、及び非破壊検査等で検出される高温割れを防止する溶接方法を提案している。   Further, in Patent Document 2 and Patent Document 3, the groove shape is a V shape, and the groove angle and the filler in the groove are regulated from 1/3 of the welded material plate thickness to the height of the welded material surface. Therefore, a welding method for preventing a high-temperature crack detected by a good bead shape and nondestructive inspection is proposed.

特開2005−349407JP 2005-349407 A 特開2005−319507JP-A-2005-319507 特開2005−246385JP-A-2005-246385

しかしながら、上述の従来の技術には以下に示す問題点がある。   However, the conventional techniques described above have the following problems.

溶接継手の性能及び健全性は、表裏曲げ試験及び側曲げ試験等の溶接施工承認試験方法に則った種々の機械試験によって判断される。しかしながら、溶接継手の高強度及び厚肉化、更には、溶接施工の高電流化及び高速度化に伴い、従来の溶接施工において、板厚が35mmを超える溶接継手は溶接施工承認試験で良好な結果を得ることができないという問題点がある。また、板厚が20mm程度の溶接継手においても、曲げ試験により曲げ面に割れが発生する場合がある。   The performance and soundness of the welded joint are determined by various mechanical tests in accordance with welding construction approval test methods such as front and back bending tests and side bending tests. However, as the strength and thickness of welded joints increase, and the current and speed of welding work increase, the welded joints with a plate thickness exceeding 35 mm in the conventional welding construction are good in the welding construction approval test. There is a problem that the result cannot be obtained. Even in a welded joint having a plate thickness of about 20 mm, a crack may occur on the bent surface by a bending test.

特許文献1は、良好な裏ビード形状が得られる溶接条件において、開先断面積に対する開先内充填材の充填率が50%以上と高く、電流値を高く設定しなければならない。これにより、母材希釈率が高くなり、母材の炭素等が溶接金属に混入し、第1電極により形成される溶接金属に微少な高温割れが発生する場合がある。   In Patent Document 1, under welding conditions where a good back bead shape is obtained, the filling rate of the filler in the groove with respect to the groove cross-sectional area is as high as 50% or more, and the current value must be set high. Thereby, a base material dilution rate becomes high, carbon of a base material mixes in a weld metal, and a micro hot crack may generate | occur | produce in the weld metal formed by a 1st electrode.

特許文献2及び特許文献3は、開先内充填材の充填率に対する第1電極の電流値の設定が明確ではなく、非破壊検査等で高温割れは検出されないが、曲げ試験によって顕在化する第1電極によって形成される溶接金属の微少な高温割れが発生するという問題点がある。   In Patent Document 2 and Patent Document 3, the setting of the current value of the first electrode with respect to the filling rate of the filler in the groove is not clear, and hot cracking is not detected by a nondestructive inspection or the like, but is manifested by a bending test. There is a problem that a minute hot crack of the weld metal formed by one electrode occurs.

本発明はかかる問題点に鑑みてなされたものであって、広範囲な継手板厚に対し、良好なビード形状と健全で良好な継手性能を有する溶接継手を得ることができる多電極片面サブマージアーク溶接方法を提供することを目的とする。   The present invention has been made in view of such a problem, and is a multi-electrode single-sided submerged arc welding capable of obtaining a welded joint having a good bead shape and sound and good joint performance for a wide range of joint plate thicknesses. It aims to provide a method.

本発明に係る多電極片面サブマージアーク溶接方法は、被溶接材の突き合わせ部の開先形状がV形状、その開先角度が30乃至60°であり、開先断面積に対する開先内充填材の充填率が2%以上25%未満であり、開先断面積に対する開先内充填材の充填率が2乃至15%の場合、第1電極の電流値は950乃至1570A、開先断面積に対する開先内充填材の充填率が15%を超え20%以下の場合、第1電極の電流値は1000乃至1580A、開先断面積に対する開先内充填材の充填率が20%を超え25%未満の場合、第1電極の電流値は1050乃至1590Aであることを特徴とする。   In the multi-electrode single-sided submerged arc welding method according to the present invention, the groove shape of the butt portion of the material to be welded is V-shaped, the groove angle is 30 to 60 °, and the groove filler in the groove cross-sectional area is When the filling rate is 2% or more and less than 25% and the filling rate of the filler in the groove with respect to the groove cross-sectional area is 2 to 15%, the current value of the first electrode is 950 to 1570A, and the opening with respect to the groove cross-sectional area is When the filling rate of the inner filler exceeds 15% and 20% or less, the current value of the first electrode is 1000 to 1580A, and the filling rate of the inner filler relative to the groove cross-sectional area exceeds 20% and less than 25%. In this case, the current value of the first electrode is 1050 to 1590A.

この多電極片面サブマージアーク溶接方法において、フラックス銅バッキング法又はフラックスバッキング法により、溶接することが好ましい。   In this multi-electrode single-sided submerged arc welding method, welding is preferably performed by a flux copper backing method or a flux backing method.

本発明によれば、開先形状及び開先断面積に対する開先内充填材の充填率を規制し、更に、その充填率に対して第1電極の電流値を規制することにより、薄肉及び厚肉継手において、適正な母材希釈率及び裏ビード形状が得られ、また、靭性の劣化を防ぎ、高温割れを防止することができる。これにより、板厚が9乃至40mmの広範囲な継手板厚に対し良好なビード形状及び健全且つ良好な継手性能を有する溶接継手を得ることができる。   According to the present invention, by regulating the filling rate of the filler in the groove with respect to the groove shape and the groove cross-sectional area, and further regulating the current value of the first electrode with respect to the filling rate, the thickness and thickness are reduced. In the meat joint, an appropriate base material dilution ratio and back bead shape can be obtained, deterioration of toughness can be prevented, and hot cracking can be prevented. As a result, a welded joint having a good bead shape and sound and good joint performance can be obtained for a wide range of joint plate thicknesses of 9 to 40 mm.

次に、本発明の実施形態について、添付の図面を参照して具体的に説明する。本発明者らは、上記目的を達成するために、種々実験研究を行った結果、側曲げ試験によって顕在化する高温割れは、主に第1電極によって形成される溶接金属に発生することを見出した。また、板厚が9乃至40mmの広範囲な片面サブマージアーク溶接においても、良好なビード外観、及び非破壊検査においても検出されない微少な高温割れを防止し、健全且つ良好な性能を有する溶接継手を得るために、開先形状をV形状とすること、開先断面積に対する開先内充填材の充填率を規制すること、及び開先断面積に対する開先内充填材の充填率に対し、第1電極の電流値を規制することが必須であることを見出した。即ち、開先形状及び開先内充填材の充填率に適した第1電極の電流値を規制するといった精緻な施工法、及び溶接条件を設けることにより、板厚が9乃至40mmの広範囲な継手板厚に対し良好なビード形状及び健全かつ良好な性能を有する溶接継手を得ることができる。   Next, embodiments of the present invention will be specifically described with reference to the accompanying drawings. As a result of conducting various experimental studies to achieve the above object, the present inventors have found that hot cracks that are manifested by side bending tests occur mainly in the weld metal formed by the first electrode. It was. Moreover, even in a wide range of single-sided submerged arc welding with a plate thickness of 9 to 40 mm, a good bead appearance and minute hot cracks that are not detected even in nondestructive inspection are prevented, and a welded joint having sound and good performance is obtained. Therefore, the groove shape is V-shaped, the filling rate of the filler in the groove with respect to the groove cross-sectional area is restricted, and the filling rate of the filler in the groove with respect to the groove cross-sectional area is first. It has been found that it is essential to regulate the current value of the electrode. That is, a wide range of joints with a plate thickness of 9 to 40 mm is provided by providing a precise construction method and welding conditions that regulate the current value of the first electrode suitable for the groove shape and the filling rate of the filler in the groove. A weld joint having a good bead shape and sound and good performance with respect to the plate thickness can be obtained.

以下、本発明に係る多電極片面サブマージアーク溶接方法の溶接条件の規制理由について説明する。   Hereinafter, the reasons for restricting the welding conditions of the multi-electrode single-sided submerged arc welding method according to the present invention will be described.

「開先形状:V形状」
主に、第1電極によって形成される溶接金属に発生する微小な高温割れを防止するため、母材成分の希釈率を下げる必要がある。その方法としてU形状開先等が挙げられるが、U形状開先の加工は、機械切削となりコストが増大するため不適である。また、ルートフェースを従来施工と比較し短くしたY形状は、厚肉継手において、十分な性能を確保できる諸条件範囲もあるが、加工コストは増大する。従って、開先形状をV形状とする。
"Groove shape: V shape"
Mainly, it is necessary to lower the dilution rate of the base material component in order to prevent minute hot cracks generated in the weld metal formed by the first electrode. A U-shaped groove or the like can be cited as the method, but U-shaped groove machining is unsuitable because it results in machine cutting and increases costs. In addition, the Y shape with a shorter root face compared to conventional construction has a range of conditions that can ensure sufficient performance in a thick joint, but the processing cost increases. Therefore, the groove shape is a V shape.

「開先角度:30乃至60°」
開先角度は裏ビードの形成性、及び開先断面積を変化させる。30°未満であると、裏ビードの形成が困難となり、適正な裏ビードの余盛高さ、及びビード幅を得ることができない。また、母材希釈率が高くなることで、微小な高温割れが発生し、曲げ試験により曲げ面に割れが発生する。一方、60°を越えると、裏ビードが過大となり、母材の裏面側から溶接金属が溶け落ちる可能性が増大すると共に、表ビードの余盛高さが過小となる。また、適正な母材希釈率が得られないため、靭性が劣化する。従って、開先角度を30乃至60°とする。
"Bevel angle: 30 to 60 degrees"
The groove angle changes the formability of the back bead and the groove cross-sectional area. When the angle is less than 30 °, it is difficult to form the back bead, and it is not possible to obtain an appropriate height of the back bead and a bead width. Moreover, when the base material dilution rate is increased, minute hot cracks are generated, and cracks are generated on the bending surface by a bending test. On the other hand, if it exceeds 60 °, the back bead becomes excessive, the possibility that the weld metal melts from the back surface side of the base material increases, and the surplus height of the front bead becomes excessive. Moreover, since an appropriate base material dilution rate cannot be obtained, toughness deteriorates. Therefore, the groove angle is set to 30 to 60 °.

「開先断面積に対する開先内充填材の充填率:2%以上、25%未満」
開先断面積に対する開先内充填材の充填率は裏ビードの形成性、及び母材希釈率を変化させる。2%未満であると、溶接中に母材の裏面側から溶接金属が溶け落ちる可能性が増大する。また、開先内充填材の散布量が少ないため、母材希釈率が高くなり、微小な高温割れが発生し、曲げ試験により曲げ面に割れが発生する。一方、25%を越えると、裏ビードの形成性が極端に落ち、余盛高さが過小となる。また、適正な母材希釈率が得られないため、溶接金属の機械的性能が劣化する。従って、開先断面積に対する開先内充填材の充填率を2%以上、25%未満とする。
“Filling ratio of filler in groove relative to groove cross-sectional area: 2% or more and less than 25%”
The filling rate of the filler in the groove with respect to the groove cross-sectional area changes the formability of the back bead and the base material dilution rate. If it is less than 2%, the possibility that the weld metal melts from the back side of the base metal during welding increases. Moreover, since the application amount of the filler in the groove is small, the base material dilution rate is increased, minute hot cracks are generated, and cracks are generated on the bending surface by a bending test. On the other hand, if it exceeds 25%, the formability of the back bead is extremely lowered, and the surplus height is too small. Further, since an appropriate base material dilution rate cannot be obtained, the mechanical performance of the weld metal is deteriorated. Therefore, the filling rate of the filler in the groove with respect to the groove cross-sectional area is set to 2% or more and less than 25%.

「充填材の充填率に対する第1電極の電流値」
開先形状を30乃至60°のV形状とし、開先断面積に対する開先内充填材の充填率を適正化した上で、第1電極の電流値を規制することは、母材希釈率、及び裏ビード形状を適正化する。開先内充填材の充填率に対する第1電極の電流値が本発明の規定値未満では、裏ビードの余盛高さが過小となり、適正な母材希釈率が得られないため、靭性が劣化する。一方、規定値を超えると、母材希釈率が高くなり、溶接金属の微少な高温割れが発生すると共に、入熱量が大きいため、靭性が劣化する。従って、開先断面積に対する開先内充填材の充填率が2乃至15%の場合、第1電極の電流値は950乃至1570A、開先断面積に対する開先内充填材の充填率が15%を超え、20%以下の場合、第1電極の電流値は1000乃至1580A、開先断面積に対する開先内充填材の充填率が20%を超え、25%未満の場合、第1電極の電流値は1050乃至1590Aとする。
“Current value of the first electrode relative to the filling rate of the filler”
Regulating the current value of the first electrode after making the groove shape a V shape of 30 to 60 ° and optimizing the filling rate of the filler in the groove with respect to the groove cross-sectional area is the base material dilution rate, And optimize the back bead shape. If the current value of the first electrode with respect to the filling rate of the filler in the groove is less than the specified value of the present invention, the surplus height of the back bead becomes too small and an appropriate base material dilution rate cannot be obtained. To do. On the other hand, when the specified value is exceeded, the base material dilution rate becomes high, minute hot cracks of the weld metal are generated, and the amount of heat input is large, so that the toughness deteriorates. Therefore, when the filling rate of the filler in the groove with respect to the groove cross-sectional area is 2 to 15%, the current value of the first electrode is 950 to 1570A, and the filling ratio of the filler in the groove with respect to the groove cross-sectional area is 15%. Exceeding 20% or less, the current value of the first electrode is 1000 to 1580A, and the filling rate of the filler in the groove with respect to the groove cross-sectional area exceeds 20%, and when it is less than 25%, the current of the first electrode The value is 1050 to 1590A.

適正な母材希釈率と裏ビード形状が得られ、曲げ試験の曲げ歪みによって顕在化する高温割れを防止することで、鋼構造物を構成する溶接継手の健全性を安定的に得ることができる。なお、多電極片面サブマージアーク溶接方法としてフラックス銅バッキング溶接方法、フラックスバッキング溶接方法が挙げられるが、本発明は電極数、及び溶接方法を問わず、溶接継手の健全性を安定的に得ることができる片面サブマージアーク溶接方法である。   Appropriate base material dilution ratio and back bead shape can be obtained, and by preventing high temperature cracks that are manifested by bending strain in the bending test, the soundness of the welded joints constituting the steel structure can be stably obtained. . In addition, although the flux copper backing welding method and the flux backing welding method are mentioned as the multi-electrode single-sided submerged arc welding method, the present invention can stably obtain the soundness of the welded joint regardless of the number of electrodes and the welding method. This is a single-sided submerged arc welding method.

次に、本発明の効果を実証するための実施例及び比較例について説明する。   Next, examples and comparative examples for demonstrating the effects of the present invention will be described.

試験に用いた鋼板、ワイヤの主成分、及び各電極のワイヤ径を下記表1、表2及び表3に示す。JIS Z3351 YS−S6相当のワイヤ、及びJIS Z3352 FS−BN1相当の表フラックスを使用した。図1に示す電極配置図は、4本の電極(L、T1、T2、T3)が溶接方向に沿って電極間隔30mm、170mm、30mmで一列に配置されている。Lは溶接面の法線方向から溶接方向に対して10°傾斜した後退角、T1は5°傾斜した前進角、T2は3°傾斜した前進角、T3は13°傾斜した前進角を形成している。図2に示す試験に用いた鋼板の開先形状は、板厚が20mm、または40mmの鋼板を用いる。開先形状はV形状とし、その開先角度を30乃至60°とする。ルートギャップは0乃至3mmである。これらの溶接条件において、4電極FCBサブマージアーク溶接を行った。   Tables 1, 2 and 3 below show the steel plates used in the test, the main components of the wires, and the wire diameters of the electrodes. A wire corresponding to JIS Z3351 YS-S6 and a surface flux corresponding to JIS Z3352 FS-BN1 were used. In the electrode arrangement shown in FIG. 1, four electrodes (L, T1, T2, T3) are arranged in a line at electrode intervals of 30 mm, 170 mm, and 30 mm along the welding direction. L is a receding angle inclined by 10 ° from the normal direction of the welding surface with respect to the welding direction, T1 is an advancing angle inclined by 5 °, T2 is an advancing angle inclined by 3 °, and T3 is an advancing angle inclined by 13 °. ing. The groove shape of the steel plate used in the test shown in FIG. 2 is a steel plate having a plate thickness of 20 mm or 40 mm. The groove shape is V-shaped, and the groove angle is 30 to 60 °. The root gap is 0 to 3 mm. Under these welding conditions, four-electrode FCB submerged arc welding was performed.

Figure 2007268551
Figure 2007268551

Figure 2007268551
Figure 2007268551

Figure 2007268551
Figure 2007268551

溶接中の溶接作業性を評価し、溶接後に目視による裏ビード形状の確認、及び超音波探傷試験による欠陥の有無を確認する。欠陥においては電子顕微鏡による欠陥形態の調査を実施した。さらに、溶接継手の健全性、及び機械的性能を評価するため、板厚が20mmの継手は、JIS Z2122に記載の試験片を用い、曲げ半径2t、曲げ角度180°の表裏曲げ試験を行い、曲げ面における欠陥の有無を調査する。また、JIS Z3111に記載の4号試験片を用い、鋼板の表面側から溶接金属中央部分に7mmのノッチ加工を施し、−20°においてシャルピー衝撃試験を実施した。一方、板厚が40mmの継手は、JIS Z2122に記載の試験片を用い、曲げ半径2t、曲げ角度180°の側曲げ試験を行い、曲げ面における欠陥の有無を調査する。また、JIS Z3111に記載の4号試験片を用い、鋼板の裏面側から溶接金属中央部分に7mmのノッチ加工を施し、−20°においてシャルピー衝撃試験を実施した。試験結果を下記表4、表5及び表6に示す。   The welding workability during welding is evaluated, and the back bead shape is visually confirmed after welding, and the presence or absence of defects is confirmed by an ultrasonic flaw detection test. In the defect, the defect form was investigated with an electron microscope. Furthermore, in order to evaluate the soundness and mechanical performance of the welded joint, a joint with a plate thickness of 20 mm was subjected to a front / back bending test with a bending radius of 2 t and a bending angle of 180 ° using the test piece described in JIS Z2122. Investigate the presence or absence of defects on the bending surface. In addition, a No. 4 test piece described in JIS Z3111 was used, a 7 mm notch process was performed from the surface side of the steel plate to the center of the weld metal, and a Charpy impact test was performed at -20 °. On the other hand, a joint with a plate thickness of 40 mm is subjected to a side bending test with a bending radius of 2 t and a bending angle of 180 ° using a test piece described in JIS Z2122, and the presence or absence of defects on the bending surface is investigated. In addition, a No. 4 test piece described in JIS Z3111 was used, a 7 mm notch process was applied to the center of the weld metal from the back side of the steel plate, and a Charpy impact test was performed at -20 °. The test results are shown in Table 4, Table 5 and Table 6 below.

Figure 2007268551
Figure 2007268551

Figure 2007268551
Figure 2007268551

Figure 2007268551
Figure 2007268551

本発明の実施例1乃至72の方法は、溶接作業性、ビード形状、超音波探傷試験、曲げ試験、及び−20°におけるシャルピー吸収エネルギーは良好であった。比較例73及び比較例74の方法は、開先角度が30°未満であるため、裏ビードの形成性が悪化し、裏ビードの余盛高さが過小となると共に、母材希釈率が高くなり、曲げ試験により曲げ面に割れが発生した。比較例75は、開先断面積に対する開先内充填材の充填率が2%未満であるため、鋼板の裏側から溶接金属が溶け落ちた。また、母材希釈率が高くなり、曲げ試験により曲げ面に割れが発生した。比較例76は、開先断面積に対する開先内充填材の充填率が25%を超えているため、裏ビードの余盛高さが過小となると共に、適正な母材希釈率が得られなかったため、靭性が劣化した。比較例77は、第1電極の電流が950A未満であるため、裏ビードの余盛高さが過小となると共に、適正な母材希釈率が得られなかったため、靭性が劣化した。比較例78は、第1電極の電流が1590Aを超えているため、裏ビードの余盛の高さが過大となり、第1電極によって形成される溶接金属の最終凝固部に高温割れが発生し、曲げ試験により、曲げ面に割れが発生すると共に、適正な母材希釈率が得られなかったため、靭性が劣化した。比較例79、及び比較例80は、開先角度が60°を超えているため、裏ビードの形成が過大となり溶接金属が溶け落ちた。また、表ビードの余盛高さが過小となると共に、適正な母材希釈率が得られなかったため、靭性が劣化した。比較例81及び比較例82は、開先角度が30°未満であるため、裏ビードの形成性が悪化し、裏ビードの余盛高さが過小となると共に、母材希釈率が高くなり、曲げ試験により曲げ面に割れが発生した。比較例83は、開先断面積に対する開先内充填材の充填率が2%未満であるため、鋼板の裏側から溶接金属が溶け落ちた。また、母材希釈率が高くなり、曲げ試験により曲げ面に割れが発生した。比較例84は、開先断面積に対する開先内充填材の充填率が25%を超えているため、裏ビードの余盛高さが過小となると共に、適正な母材希釈率が得られなかったため、靭性が劣化した。比較例85は、第1電極の電流が950A未満であるため、裏ビードの余盛高さが過小となると共に、適正な母材希釈率が得られなかったため、靭性が劣化した。比較例86は、第1電極の電流が1590Aを超えているため、裏ビードの余盛の高さが過大となり、第1電極によって形成される溶接金属の最終凝固部に高温割れが発生し、曲げ試験により、曲げ面に割れが発生すると共に、適正な母材希釈率が得られなかったため、靭性が劣化した。比較例87及び比較例88は、開先角度が60°を超えているため、裏ビードの形成が過大となり溶接金属が溶け落ちた。また、表ビードの余盛高さが過小となると共に、適正な母材希釈率が得られなかったため、靭性が劣化した。   In the methods of Examples 1 to 72 of the present invention, welding workability, bead shape, ultrasonic flaw detection test, bending test, and Charpy absorbed energy at −20 ° were good. In the methods of Comparative Example 73 and Comparative Example 74, since the groove angle is less than 30 °, the formability of the back bead is deteriorated, the backfill height of the back bead is too small, and the base material dilution rate is high. As a result, cracks occurred on the bending surface by the bending test. In Comparative Example 75, since the filling rate of the filler in the groove with respect to the groove cross-sectional area was less than 2%, the weld metal was melted from the back side of the steel plate. In addition, the base material dilution rate increased, and cracks occurred on the bending surface in the bending test. In Comparative Example 76, since the filling rate of the filler in the groove with respect to the groove cross-sectional area exceeds 25%, the surplus height of the back bead is too small and an appropriate base material dilution rate cannot be obtained. As a result, the toughness deteriorated. In Comparative Example 77, since the current of the first electrode was less than 950 A, the surplus height of the back bead was too small, and an appropriate base material dilution rate could not be obtained, so the toughness deteriorated. In Comparative Example 78, since the current of the first electrode exceeds 1590A, the height of the back bead is excessive, and a hot crack occurs in the final solidified portion of the weld metal formed by the first electrode, As a result of the bending test, cracks occurred on the bending surface, and an appropriate base material dilution rate could not be obtained, so the toughness deteriorated. In Comparative Example 79 and Comparative Example 80, since the groove angle exceeded 60 °, the formation of the back bead was excessive and the weld metal was melted. Further, the surplus height of the front bead was too small, and an appropriate base material dilution rate could not be obtained, so that the toughness deteriorated. In Comparative Example 81 and Comparative Example 82, since the groove angle is less than 30 °, the formability of the back bead is deteriorated, the extra height of the back bead is excessively small, and the base material dilution rate is increased. Cracks occurred on the bending surface by the bending test. In Comparative Example 83, since the filling rate of the filler in the groove with respect to the groove cross-sectional area was less than 2%, the weld metal was melted from the back side of the steel plate. In addition, the base material dilution rate increased, and cracks occurred on the bending surface in the bending test. In Comparative Example 84, since the filling rate of the filler in the groove with respect to the groove cross-sectional area exceeds 25%, the surplus height of the back bead is too small and an appropriate base material dilution rate cannot be obtained. As a result, the toughness deteriorated. In Comparative Example 85, since the current of the first electrode was less than 950 A, the surplus height of the back bead was too small, and an appropriate base material dilution rate could not be obtained, so the toughness deteriorated. In Comparative Example 86, since the current of the first electrode exceeds 1590A, the height of the back bead is excessive, and a hot crack is generated in the final solidified portion of the weld metal formed by the first electrode, As a result of the bending test, cracks occurred on the bending surface, and an appropriate base material dilution rate could not be obtained, so the toughness deteriorated. In Comparative Example 87 and Comparative Example 88, since the groove angle exceeded 60 °, the formation of the back bead was excessive, and the weld metal was melted. Moreover, since the surplus height of the front bead was too small and an appropriate base material dilution rate could not be obtained, the toughness deteriorated.

本発明は、板厚が9乃至40mmの片面サブマージアーク溶接において好適に利用できる。   The present invention can be suitably used in single-sided submerged arc welding with a plate thickness of 9 to 40 mm.

電極の配置を示す図である。It is a figure which shows arrangement | positioning of an electrode. 開先形状を示す図である。It is a figure which shows a groove shape.

符号の説明Explanation of symbols

1・・・電極
2・・・溶接方向を示す矢印
3・・・鋼板
DESCRIPTION OF SYMBOLS 1 ... Electrode 2 ... Arrow which shows welding direction 3 ... Steel plate

Claims (3)

被溶接材の突き合わせ部の開先形状がV形状、その開先角度が30乃至60°であり、開先断面積に対する開先内充填材の充填率が2%以上25%未満であり、開先断面積に対する開先内充填材の充填率が2乃至15%の場合、第1電極の電流値は950乃至1570A、開先断面積に対する開先内充填材の充填率が15%を超え20%以下の場合、第1電極の電流値は1000乃至1580A、開先断面積に対する開先内充填材の充填率が20%を超え25%未満の場合、第1電極の電流値は1050乃至1590Aであることを特徴とする多電極片面サブマージアーク溶接方法。 The groove shape of the butt portion of the welded material is V-shaped, the groove angle is 30 to 60 °, and the filling rate of the filler in the groove with respect to the groove cross-sectional area is 2% or more and less than 25%. When the filling rate of the filler in the groove with respect to the tip cross-sectional area is 2 to 15%, the current value of the first electrode is 950 to 1570A, and the filling rate of the filler in the groove with respect to the groove cross-sectional area exceeds 15% and 20 % Or less, the current value of the first electrode is 1000 to 1580A, and when the filling rate of the filler in the groove with respect to the groove cross-sectional area is more than 20% and less than 25%, the current value of the first electrode is 1050 to 1590A. A multi-electrode single-sided submerged arc welding method, characterized in that: フラックス銅バッキング法により、溶接することを特徴とする請求項1に記載の多電極片面サブマージアーク溶接方法。 The multi-electrode single-sided submerged arc welding method according to claim 1, wherein welding is performed by a flux copper backing method. フラックスバッキング法により、溶接することを特徴とする請求項1に記載の多電極片面サブマージアーク溶接方法。

The multi-electrode single-sided submerged arc welding method according to claim 1, wherein welding is performed by a flux backing method.

JP2006095448A 2006-03-30 2006-03-30 Multi-electrode one side submerged arc welding method Pending JP2007268551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006095448A JP2007268551A (en) 2006-03-30 2006-03-30 Multi-electrode one side submerged arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006095448A JP2007268551A (en) 2006-03-30 2006-03-30 Multi-electrode one side submerged arc welding method

Publications (1)

Publication Number Publication Date
JP2007268551A true JP2007268551A (en) 2007-10-18

Family

ID=38671891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006095448A Pending JP2007268551A (en) 2006-03-30 2006-03-30 Multi-electrode one side submerged arc welding method

Country Status (1)

Country Link
JP (1) JP2007268551A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102152010A (en) * 2011-04-21 2011-08-17 浙江工业职业技术学院 Method for welding bin pump
JP2014518160A (en) * 2011-07-01 2014-07-28 リンカーン グローバル,インコーポレイテッド Tandem strip cladding method, apparatus and system
KR20160105900A (en) 2014-02-12 2016-09-07 가부시키가이샤 고베 세이코쇼 One-side submerged arc welding method for multielectrode and method for producing welded product
KR20160105901A (en) 2014-02-12 2016-09-07 가부시키가이샤 고베 세이코쇼 One-side submerged arc welding method for multielectrode and method for producing welded product
CN106881518A (en) * 2015-12-15 2017-06-23 嘉兴五洲阀门有限公司 A kind of welding procedure of valve body circumferential welded seam
CN107999936A (en) * 2017-11-29 2018-05-08 中车长江车辆有限公司 A kind of welding technique for closing up seam for closed vessel
KR20190095377A (en) 2017-01-17 2019-08-14 가부시키가이샤 고베 세이코쇼 Single sided submerged arc welding method and single sided submerged arc welding device
KR20230046213A (en) 2021-09-29 2023-04-05 가부시키가이샤 고베 세이코쇼 One-side butt welding method and welded joint manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01178375A (en) * 1988-01-11 1989-07-14 Mitsubishi Heavy Ind Ltd One-side welding method for stainless clad steel plate
JP2000084672A (en) * 1998-09-08 2000-03-28 Kobe Steel Ltd Submerged arc welding method for thick steel plate
JP2000271788A (en) * 1999-03-26 2000-10-03 Nippon Steel Corp Bevel filling material for simple one side surface submerged arc welding and welding method using this material
JP2005319507A (en) * 2004-05-11 2005-11-17 Oshima Shipbuilding Co Ltd Multiple electrodes one side submerged arc welding method
JP2006035279A (en) * 2004-07-28 2006-02-09 Nippon Steel & Sumikin Welding Co Ltd Multi-electrode one side submerged arc welding method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01178375A (en) * 1988-01-11 1989-07-14 Mitsubishi Heavy Ind Ltd One-side welding method for stainless clad steel plate
JP2000084672A (en) * 1998-09-08 2000-03-28 Kobe Steel Ltd Submerged arc welding method for thick steel plate
JP2000271788A (en) * 1999-03-26 2000-10-03 Nippon Steel Corp Bevel filling material for simple one side surface submerged arc welding and welding method using this material
JP2005319507A (en) * 2004-05-11 2005-11-17 Oshima Shipbuilding Co Ltd Multiple electrodes one side submerged arc welding method
JP2006035279A (en) * 2004-07-28 2006-02-09 Nippon Steel & Sumikin Welding Co Ltd Multi-electrode one side submerged arc welding method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102152010A (en) * 2011-04-21 2011-08-17 浙江工业职业技术学院 Method for welding bin pump
JP2014518160A (en) * 2011-07-01 2014-07-28 リンカーン グローバル,インコーポレイテッド Tandem strip cladding method, apparatus and system
US9289843B2 (en) 2011-07-01 2016-03-22 Lincoln Global, Inc. Tandem strip cladding method and apparatus
KR20160105900A (en) 2014-02-12 2016-09-07 가부시키가이샤 고베 세이코쇼 One-side submerged arc welding method for multielectrode and method for producing welded product
KR20160105901A (en) 2014-02-12 2016-09-07 가부시키가이샤 고베 세이코쇼 One-side submerged arc welding method for multielectrode and method for producing welded product
CN106881518A (en) * 2015-12-15 2017-06-23 嘉兴五洲阀门有限公司 A kind of welding procedure of valve body circumferential welded seam
KR20190095377A (en) 2017-01-17 2019-08-14 가부시키가이샤 고베 세이코쇼 Single sided submerged arc welding method and single sided submerged arc welding device
CN107999936A (en) * 2017-11-29 2018-05-08 中车长江车辆有限公司 A kind of welding technique for closing up seam for closed vessel
KR20230046213A (en) 2021-09-29 2023-04-05 가부시키가이샤 고베 세이코쇼 One-side butt welding method and welded joint manufacturing method

Similar Documents

Publication Publication Date Title
JP2007268551A (en) Multi-electrode one side submerged arc welding method
WO2010137186A1 (en) Submerged arc welding method for steel plate
CN101927390A (en) Method for welding circumferential weld between metal thin-wall clad layer and base layer of clad pipe
JP2010221297A (en) Welding method of thick steel plate
RU2486996C2 (en) Method of hidden arc welding of steel material using multiple electrodes
JP2006272377A (en) Submerged arc welding method of steel material
KR102367510B1 (en) Gas shielded arc welding method of steel sheet
JP2008043974A (en) Longitudinal seam welded joint of uoe steel pipe
EP2695694A1 (en) Method of welding of elements for the power industry, particulary of sealed wall panels of power boilers using MIG/MAG and laser welding
JP6201803B2 (en) Submerged arc welds with excellent low temperature toughness
WO2014024365A1 (en) Submerged arc welding method, welded joint formed by said welding method, and steel tube having said welded joint
JP2009214127A (en) Submerged arc welding method for steel material
JP2005131708A (en) Welded structure having excellent brittle crack propagation resistance and its welding method
JP2009195957A (en) Multi-electrode submerged arc welding method of steel material
JP2008168319A (en) Butt welded joint of steel plate
EP3162489B1 (en) Method of butt welding steel plates and butt weld joint of steel plates
JP2001276969A (en) Joint welding method
JP5742091B2 (en) Submerged arc welding method for steel with excellent toughness of weld heat affected zone
JP2006281303A (en) Submerged arc welding method for high strength steel sheet
JP4259376B2 (en) UOE steel pipe manufacturing method
JP5935395B2 (en) Welding assembly groove part for square welding of four-sided box section
JP5333003B2 (en) Laser-arc hybrid welding method that achieves long fatigue life
JP5742090B2 (en) Submerged arc welding method for steel with excellent toughness of weld heat affected zone
CN114734123A (en) Welding method of Q420qE +316L composite board
JP4858936B2 (en) Method of imparting brittle crack propagation to welded structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Effective date: 20111026

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20120207

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20120612

Free format text: JAPANESE INTERMEDIATE CODE: A02