JPH01178375A - One-side welding method for stainless clad steel plate - Google Patents

One-side welding method for stainless clad steel plate

Info

Publication number
JPH01178375A
JPH01178375A JP424888A JP424888A JPH01178375A JP H01178375 A JPH01178375 A JP H01178375A JP 424888 A JP424888 A JP 424888A JP 424888 A JP424888 A JP 424888A JP H01178375 A JPH01178375 A JP H01178375A
Authority
JP
Japan
Prior art keywords
welding
steel plate
stainless steel
metal
clad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP424888A
Other languages
Japanese (ja)
Other versions
JPH07102465B2 (en
Inventor
Kenichi Oikawa
笈川 研一
Junji Tanaka
順二 田中
Osamu Tanaka
治 田中
Kazuhiro Takeuma
竹馬 一紘
Tsuyoshi Kurokawa
剛志 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Mitsubishi Heavy Industries Ltd
Original Assignee
Kobe Steel Ltd
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Mitsubishi Heavy Industries Ltd filed Critical Kobe Steel Ltd
Priority to JP424888A priority Critical patent/JPH07102465B2/en
Publication of JPH01178375A publication Critical patent/JPH01178375A/en
Publication of JPH07102465B2 publication Critical patent/JPH07102465B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/32Selection of soldering or welding materials proper with the principal constituent melting at more than 1550 degrees C

Abstract

PURPOSE:To efficiently perform one-side welding by filling metal powder with specific composition in a groove and welding carbon steel plates to each other by using submerged arc welding material for stainless steel and welding the groove surface side constituted of stainless steel plates with the same kind of metal material. CONSTITUTION:Stainless clad 1 steel plates formed by cladding the stainless steel plates S on the surfaces of the carbon steel plates C are subjected to one-side welding from the stainless steel plate S clad side. In this case, the metal powder consisting of, by weight, 50-70% Cr, 20-30% Ni and the balance Fe with impurities is filled in the groove. The submerged arc welding material for the stainless steel is then used to weld the carbon steel plates to each other and an austenitic metallic structure containing 3-15% ferrite is obtained. The groove surface side constituted of the clad stainless steel plates is then welded by using the same kind of welding metal material. By this method, weld metal excellent in the corrosion resistance and the impact resistant performance is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、炭素鋼板の表面にステンレス鋼板のクラッド
されたステンレスクラッド鋼板を、ステンレス鋼板側か
ら効率良く片面溶接することができ、しかも耐食性や耐
衝撃性能のすぐれた溶接金属を得ることのできる片面溶
接方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention enables efficient single-sided welding of a stainless steel plate, in which the surface of a carbon steel plate is clad with a stainless steel plate, from the stainless steel plate side. The present invention relates to a single-sided welding method that makes it possible to obtain weld metal with excellent impact resistance.

[従来の技術] 各種の化学工業機器や海水淡水化装置あるいは原油タン
カー等の建造に当たフては、耐食性及び経済性の両要請
を同時に満足させる必要があるため、炭素鋼板の表面に
ステンレス鋼板をクラッドしたステンレスクラッド鋼板
を使用することが多い。即ち必要な強度は安価で強度の
優れた炭素鋼板によって確保し、耐食性については表層
部に比較的薄肉のステンレス鋼板をクラッドすることに
より対応しようというものである。
[Prior art] When constructing various types of chemical industrial equipment, seawater desalination equipment, crude oil tankers, etc., it is necessary to satisfy both corrosion resistance and economical requirements at the same time, so stainless steel is applied to the surface of carbon steel sheets. Stainless steel clad steel plates are often used. That is, the necessary strength is to be ensured by inexpensive and high-strength carbon steel plates, and corrosion resistance is to be achieved by cladding the surface layer with relatively thin stainless steel plates.

ところでこの様なステンレスクラッド鋼板を溶接しよう
とする場合、炭素鋼板部分とステンレス鋼板部分では母
材の化学成分が著しく異なるため、母材の希釈効果が全
く相違し同一の溶接材料を用いて一気に溶接する訳には
いかない。従って各母材の化学成分や溶接時における相
互の希釈等を考慮して溶接材料を複雑に変更しなければ
ならない。たとえば第1図(A)はステンレスクラッド
鋼板を両面溶接する場合の公知の累層例、第1図(B)
はステンレス鋼板クラッド側から片面溶接する場合の公
知の累層例を示したものであり、各累層に示した数字は
累層類を示している。即ち第1図(^)における累層■
、■および第1図(B)における累層■、■については
、ステンレス鋼板Sから合金元素が混入してくることが
ないので、炭素鋼板Cに対する共金系の溶接材料を用い
て溶接を行なう。そして炭素鋼板Cとステンレス鋼板S
の境界部付近の累N[第1図(A)の■、第1図(B)
の■]については、ステンレス鋼板が炭素鋼板によって
希釈されることを考慮し、高Ni−高Cr組成の溶接材
料(たとえば309系あるいは309Mo系など)を使
用し、マルテンサイト組織の生成に伴う割れの発生防止
を図っている。次いでステンレス鋼板S側の累層[第1
図(A)の■、第1図(B)の■]については、炭素鋼
板による希釈を考慮する必要がないので、ステンレス鋼
板Sに対する共金系の溶接材料が使用される。
By the way, when trying to weld such stainless clad steel plates, the chemical composition of the base metal is significantly different between the carbon steel plate part and the stainless steel plate part, so the dilution effect of the base metal is completely different, and it is necessary to weld them all at once using the same welding material. I can't afford to do that. Therefore, the welding materials must be changed in a complicated manner, taking into consideration the chemical composition of each base material and mutual dilution during welding. For example, Fig. 1 (A) is a known example of laminated layers when double-sided welding of stainless clad steel plates, and Fig. 1 (B)
1 shows a known example of layers in the case of single-sided welding from the cladding side of a stainless steel plate, and the number shown for each layer indicates the layer type. In other words, the formation ■ in Figure 1 (^)
, ■ and the formations ■ and ■ in Fig. 1 (B), welding is performed using a welding material similar to that of the carbon steel sheet C, since alloying elements from the stainless steel sheet S will not be mixed in. . And carbon steel plate C and stainless steel plate S
The cumulative N near the boundary [■ in Figure 1 (A), Figure 1 (B)
Regarding [■], considering that the stainless steel plate is diluted by the carbon steel plate, welding materials with a high Ni-high Cr composition (for example, 309 series or 309 Mo series) are used to prevent cracking due to the formation of martensitic structure. We are trying to prevent this from happening. Next, the formation layer on the stainless steel plate S side [first
Regarding [■ in Figure (A)] and ■ in Figure 1 (B)], there is no need to consider dilution by the carbon steel plate, so a metal-based welding material for the stainless steel plate S is used.

このようにステンレスクラッド鋼板を溶接する際には少
なくとも3種類の溶接材料を使用しなければならず、ま
た適用される溶接方法についても母材による希釈を考慮
しつつ被覆アーク溶接法によって対応するか、ソリッド
ワイヤあるいはフラックス入りワイヤを用いたガスシー
ルドアーク溶接法等を組合せて採用することが行なわれ
ており、溶接材料の種類が多く且つ溶接施工の工数が多
い為作業が煩雑で非能率的であるという問題があフた。
In this way, when welding stainless clad steel sheets, at least three types of welding materials must be used, and the welding method to be applied should be a covered arc welding method, taking into account dilution by the base material. , gas-shielded arc welding using solid wire or flux-cored wire is used in combination, but the work is complicated and inefficient because there are many types of welding materials and the number of welding steps is large. There was a problem that happened.

また、クラツド鋼板における炭素鋼板部分については、
炭素鋼用サブマージアーク溶接材料を用いて溶接の高能
率化を図る方法も検討されているが、開先精度のばらつ
きや溶接条件の変動等に起因して溶着金属の高さが安定
せず、ステンレス鋼板部の一部を溶かして溶接金層中に
CrやNiなとの合金成分が混入し、溶接金属中にマル
テンサイトが生成して硬化割れを生じ易くなり、安全性
の点で重大な欠陥となる。
In addition, regarding the carbon steel plate part of the clad steel plate,
A method of increasing the efficiency of welding using submerged arc welding materials for carbon steel is also being considered, but the height of the deposited metal is unstable due to variations in groove precision and fluctuations in welding conditions, etc. When a part of the stainless steel plate is melted, alloy components such as Cr and Ni are mixed into the weld metal layer, and martensite is generated in the weld metal, making it more likely to cause hardening cracks, which is a serious safety issue. It becomes a defect.

[発明が解決しようとする課題] 本発明は上記の様な事情に着目してなされたものであっ
て、その目的は、ステンレスクラッド鋼板を、比較的簡
単な操作で且つ溶接部に対して十分な機械的特性と耐食
性を与えることができ、しかも高溶接能率が得られる様
な片面溶接方法を提供しようとするものである。
[Problems to be Solved by the Invention] The present invention has been made in view of the above-mentioned circumstances, and its purpose is to fabricate a stainless clad steel plate with a relatively simple operation and with a sufficient welding area. The purpose of the present invention is to provide a single-sided welding method that can provide good mechanical properties and corrosion resistance, and also achieve high welding efficiency.

[課題を解決する為の手段] 本発明に係る片面溶接方法の構成は、炭素鋼板の表面に
ステンレス鋼板がクラッドされたステンレスクラッド鋼
板を、ステンレス鋼板クラッド側から片面溶接する方法
であフて、Cr : 50〜70皿量%、Ni:20〜
30!1量%、残部Feおよび不可避不純物からなる金
属粉末またはCr:45〜55!!量%、Ni:20〜
30重量%、Motto〜20重量%、残部Feおよび
不可避不純物よりなる金属粉末を開先内へ充填すると共
に、ステンレス鋼用潜弧溶接材料を用いて前記炭素鋼板
同士を溶接することにより、3〜15%のフェライトを
含むオーステナイト系金属組織を得、次いで前記クラッ
ドされたステンレス鋼板部で構成される開先表側部分を
、共金系溶接材料を用いて溶接するところに要旨を有す
るものである。
[Means for Solving the Problem] The configuration of the single-sided welding method according to the present invention is such that a stainless steel clad steel plate, in which the surface of a carbon steel plate is clad with a stainless steel plate, is welded on one side from the stainless steel plate cladding side. Cr: 50-70 plate amount%, Ni: 20-
30! Metal powder consisting of 1% by weight, balance Fe and inevitable impurities or Cr: 45-55! ! Amount%, Ni: 20~
By filling the groove with metal powder consisting of 30% by weight, Motto ~ 20% by weight, the balance being Fe and unavoidable impurities, and welding the carbon steel plates together using a submerged arc welding material for stainless steel, 3~ The gist of this method is to obtain an austenitic metal structure containing 15% ferrite, and then weld the groove front side portion made up of the clad stainless steel plate portion using a matching welding material.

[作用及び実施例] 以下実験経緯を追って本発明の構成及び作用効果を明確
にしていく。
[Operations and Examples] The structure and operation effects of the present invention will be clarified by following the experimental history.

まず本発明者らは、ステンレスクラッド鋼板における炭
素鋼板同士の溶接を、通常のステンレス鋼用サブマージ
アーク溶接材料を用いて支障なく行ない得るか否かにつ
いて検討を行なった。即ち厚さ1611III+の炭素
鋼板を第2図(A)に示す開先形状で突き合わせ、開先
裏面に耐火物系の真当材を配置し、309系の溶接ワイ
ヤを用いて第2図(B) に示す条件でタンデムサブマ
ージ片面溶接実験を行なった。尚使用した炭素鋼、30
9系溶接ワイヤおよび該溶接ワイヤによって得られる母
材希釈を受けない溶接金属の各化学成分は第1表に示す
通りであり、溶接条件は下記の通りとした6(溶接条件
) 溶接速度: 65 cm/ akin 溶接電流:先行極・・・1050A 後行極・・−700A 溶接電圧:先行極・・・37V 後行極・−40V 上記の溶接実験で溶接金属の母材への溶込み率及び溶接
金属組織を調べたところ、溶接金属の母材への溶込み率
は約SO%となり、溶接金属はマルテンサイト組織とな
り非常に脆弱で実用性に欠けるものとなることが確認さ
れた。ちなみに第3図は上記の溶接条件のもとで得られ
る溶接金属組織をシェフラーの組織図に当てはめて推定
した場合の図であり、この図からも希釈率が50%を超
える場合の溶接金属組織はマルテンサイト組織となるこ
とが分かる。
First, the present inventors investigated whether carbon steel plates in stainless clad steel plates could be welded together without any problems using a normal submerged arc welding material for stainless steel. That is, carbon steel plates with a thickness of 1611III+ are butted together with the groove shape shown in Fig. 2 (A), a refractory-based bracing material is placed on the back side of the groove, and a 309 series welding wire is used to assemble the plates as shown in Fig. 2 (B). ) A tandem submerged single-sided welding experiment was conducted under the conditions shown below. The carbon steel used was 30
The chemical components of the 9-series welding wire and the weld metal obtained by the welding wire without diluting the base metal are shown in Table 1, and the welding conditions were as follows 6 (welding conditions) Welding speed: 65 cm/akin Welding current: Leading electrode...1050A Trailing electrode...-700A Welding voltage: Leading electrode...37V Trailing electrode...-40V In the above welding experiment, the penetration rate of weld metal into the base metal and When the weld metal structure was examined, it was confirmed that the penetration rate of the weld metal into the base metal was about SO%, and the weld metal had a martensitic structure, making it extremely brittle and impractical. By the way, Figure 3 is a diagram when the weld metal structure obtained under the above welding conditions is estimated by applying it to Schaeffler's structure chart, and from this figure, the weld metal structure when the dilution rate exceeds 50% is also estimated. It can be seen that the structure becomes a martensitic structure.

本発明は上記の予備実験結果を基に、ステンレスクラッ
ド鋼板における炭素鋼板同士の溶接部に優れた物性(特
に耐割れ性)を与える為には、適正な金属組織が得られ
る様に溶接金属の化学成分を調整する必要があると考え
、その線に沿って研究を進めた。そして溶接金属の耐割
れ性を改善するには、溶接金属組織が靭性の優れた若干
のフェライトを含むオーステナイト組織となる様、該溶
接金属の化学成分を適正に調整する必要があると考えた
。そのためには母材による希釈によって生じるCrやN
iの濃度低下を外部からの合金元素の添加によって補っ
てやればよいと考え更に研究を進めた結果、ステンレス
クラッド鋼板における炭素鋼板によって構成される開先
部分内に、Cr、Ntあるいはこれらと共にMoを多量
に含有する金属粉末を充填しておけば、これらが溶接工
程で溶接金属中に混入して該溶接金属中のCr、NL、
Mo1度を高め、母材による希釈が生じた場合でも溶接
金属を靭性の優れた金属組織となし得ることが分かった
The present invention is based on the above preliminary experimental results, and in order to provide excellent physical properties (especially cracking resistance) to the weld between carbon steel sheets in stainless clad steel sheets, weld metal must be adjusted to obtain an appropriate metal structure. We believed that it was necessary to adjust the chemical components, and proceeded with our research along that line. In order to improve the cracking resistance of the weld metal, we considered that it is necessary to appropriately adjust the chemical composition of the weld metal so that the weld metal structure becomes an austenite structure containing some ferrite with excellent toughness. For this purpose, it is necessary to
We thought that the decrease in the concentration of i could be compensated for by adding alloying elements from the outside, and as a result of further research, we found that Cr, Nt, or Mo together with these elements were added to the groove part of the stainless clad steel sheet made of carbon steel. If metal powder containing a large amount of
It has been found that by increasing the Mo1 degree, the weld metal can be made to have a metal structure with excellent toughness even when dilution by the base metal occurs.

ところで溶接金属の組織に最も大きく影響する化学成分
は下記のものによって左右される。
By the way, the chemical components that have the greatest effect on the structure of weld metal are influenced by the following:

■溶接条件:溶接ワイヤの組成、溶融量および母材希釈
率 ■開先内へ充填される金属粉末の組成および充填量 従って上記項目を適正に調整し、溶接金属が高靭性の金
属組織となるのに好適な化学成分とすればよい。そのた
めの基準としては、優れた靭性を示す溶接金属の金属組
織を明確にしておく必要があると考え、次の様な実験を
行なった。その結果、3〜15%のフェライトを含むオ
ーステナイト組織が高靭性を安定して発揮し得る条件で
あることをつきとめた。そこでこの様な溶接金属組織を
得るための溶接条件を明確にすべく更に実験を進めた。
■Welding conditions: Composition of welding wire, melting amount, and base metal dilution rate ■Composition and filling amount of metal powder filled into the groove Therefore, the above items are adjusted appropriately, and the weld metal has a high toughness metal structure. A chemical component suitable for this may be used. As a standard for this purpose, we believed that it was necessary to clarify the metal structure of weld metal that exhibits excellent toughness, and conducted the following experiments. As a result, it was found that an austenite structure containing 3 to 15% ferrite is the condition under which high toughness can be stably exhibited. Therefore, further experiments were carried out to clarify the welding conditions for obtaining such a weld metal structure.

(1)溶接条件 まず被溶接材として、ケミカルタンカー等の構造材とし
て広く用いられている317Lステンレスクラッド鋼板
(板及び化学成分は第2表に示す)を選択し、第3表に
示す溶接材料を用いて炭素鋼板部分の潜弧溶接実験を行
なった。尚溶接ワイヤとしてはJIS  23321<
7)Y309&:該当する4mmφのサブマージアーク
溶接用ワイヤを使用し、充填金属粉末としては、溶接金
属が前述の好適金属組織となる最適の金属組成(この金
属組成が10〜12%Ni、16〜19%Cr。
(1) Welding conditions First, a 317L stainless clad steel plate (plate and chemical composition shown in Table 2), which is widely used as a structural material for chemical tankers, etc., was selected as the material to be welded, and welding materials shown in Table 3 were selected. We conducted submerged arc welding experiments on carbon steel plate parts using the In addition, as a welding wire, JIS 23321<
7) Y309 &: Use the corresponding 4 mmφ submerged arc welding wire, and as the filling metal powder, select the optimal metal composition (this metal composition is 10-12% Ni, 16-12% Ni, 16-12% Ni, 19% Cr.

2〜3%Moのステンレス鋼であることはシェフラーの
組織図により予め求めておいた)となる様に予備実験に
より決定しておいた「50%Cr−27%N i−14
%M o −9%Feの金属粉末」を使用した。また開
先形状は第4図(Sニステンレス鋼板、C:炭素鋼板、
Me:充填金属粉末、De:溶接金属、B:裏当材、H
;充填高さ、G:ルートギャップ、θ:開先角度)に示
す通りとし、溶接は第5図(L:先行電極、T:後行電
極)に示す如く極間路*CIL>を30.60又は90
mmに設定したタンデムサブマージアーク溶接法とした
50% Cr-27% Ni-14 was determined through preliminary experiments to be 2-3% Mo stainless steel (previously determined from Schaeffler's organizational chart).
%Mo-9%Fe metal powder" was used. In addition, the groove shape is shown in Figure 4 (S stainless steel plate, C: carbon steel plate,
Me: Filled metal powder, De: Weld metal, B: Backing material, H
; filling height, G: root gap, θ: groove angle), and welding was performed with the distance between poles *CIL> as shown in FIG. 5 (L: leading electrode, T: trailing electrode) at 30. 60 or 90
The tandem submerged arc welding method was set to mm.

溶接条件及び結果を第4表に一括して示す。尚溶接金属
の組織は、各溶接金属の化学分析値を基にシエフラー組
織図を利用して求め、また溶接割れの有無はX線透過試
験により、偏析の有無はX線マイクロアナライザーによ
り夫々確認した(これらの確認法は以下のすべての実験
例に共通する)。
The welding conditions and results are summarized in Table 4. The structure of the weld metal was determined using the Schiefler structure chart based on the chemical analysis values of each weld metal, and the presence or absence of weld cracks was confirmed by an X-ray transmission test, and the presence or absence of segregation was confirmed by an X-ray microanalyzer. (These confirmation methods are common to all experimental examples below).

(以 下 余 白) 第4表からも明らかな様にタンデムサブマージアーク溶
接法を採用する場合、溶接電極の極間距離や先行電極(
L)と後行電極(T)の電流、電圧のバランスによって
、″溶接金属の性能や組織は大きな影響を受けることが
分かる。そして符号B、C,G、Hでは極間距離が60
mn+あるいは90)と広いため、先行電極により形成
される溶融プールと後行電極により形成される溶融プー
ルがプールとしては合体せず、凝固後の成分が同一組成
とならないために溶接金属中に偏析が生じた。また符号
り、Iは先行電極の電流値が低すぎるため、先行電極に
よる溶接工程で充填金属粉末の溶融が十分に行なわれず
、ルート部に融合不良が発生するばかりでなく溶接金属
中に偏析が生じている。一方符号E、Jでは後行!極の
電流値が低すぎるため、後行電極のアークの広がりが不
足し、ビード形状が悪化する。
(Left below) As is clear from Table 4, when using the tandem submerged arc welding method, the distance between the welding electrodes and the leading electrode (
It can be seen that the performance and structure of the weld metal are greatly affected by the balance of current and voltage between the electrode (L) and the trailing electrode (T).And for symbols B, C, G, and H, the interelectrode distance is 60
mn+ or 90), so the molten pool formed by the leading electrode and the molten pool formed by the trailing electrode do not combine as a pool, and the components after solidification do not have the same composition, resulting in segregation in the weld metal. occurred. In addition, since the current value of the preceding electrode is too low, the filling metal powder is not sufficiently melted in the welding process using the preceding electrode, which not only causes fusion failure at the root but also causes segregation in the weld metal. It is occurring. On the other hand, with codes E and J, go behind! Since the current value of the pole is too low, the arc of the trailing electrode does not spread enough and the bead shape deteriorates.

これらの実験からも明らかな様に本発明でタンデムサブ
マージアーク溶接法を採用する場合は、先行電極によっ
て形成される溶融プールと後行電極によって形成される
溶融プールが合体し、且つ先行電極の溶接電流について
は充填金属粉末を完全に溶融せしめ得る様、また後行電
極の溶接電流についてはアークに十分な広がりを与えて
適正なビード形状が確保される様、各電流値及びそのバ
ランスをうまく調整することが望まれる。
As is clear from these experiments, when the tandem submerged arc welding method is adopted in the present invention, the molten pool formed by the leading electrode and the molten pool formed by the trailing electrode merge, and the welding of the leading electrode Carefully adjust each current value and balance so that the filling metal powder can be completely melted, and the welding current of the trailing electrode to give sufficient spread to the arc and ensure an appropriate bead shape. It is desirable to do so.

またタンデムサブマージアーク溶接法を採用した場合は
、単電極サブマージアーク溶接法に比べて溶接部の一点
に集中する入熱量を低く抑えることができ、その結果母
材による希釈率が低く抑えられるという効果が発揮され
るので、充填金属粉末の使用量を低減することができる
。そのため本発明ではタンデム溶接法を採用するのが最
も有利であるが、もとより単電極サブマージアーク溶接
法の適用を排除するものではない。
In addition, when tandem submerged arc welding is adopted, the amount of heat that concentrates at one point in the weld can be kept low compared to single electrode submerged arc welding, and as a result, the dilution rate by the base metal can be kept low. Therefore, the amount of filler metal powder used can be reduced. Therefore, in the present invention, it is most advantageous to employ the tandem welding method, but the application of the single electrode submerged arc welding method is of course not excluded.

ところで通常の片面溶接においては、1ブール溶接、2
ブール溶接、セミ1ブール溶接の順で溶接金属の耐割れ
性が良好になることが知られており、本発明では前述の
如く溶接金属中の偏析防止という観点から、耐割れ性に
とって最も不利な1プール溶接法を採用しなければなら
ない。それにもかかわらず良好な耐割れ性を確保するた
めには、以下に詳述する如く開先内へ充填される金属粉
末の組成および充填量が重要な意味を帯びてくる。
By the way, in normal single-sided welding, 1 boule welding, 2 boule welding
It is known that the cracking resistance of the weld metal improves in the order of boule welding and semi-one boule welding, and in the present invention, from the viewpoint of preventing segregation in the weld metal, as described above, welding One pool welding method shall be adopted. Nevertheless, in order to ensure good cracking resistance, the composition and filling amount of the metal powder filled into the groove are important, as detailed below.

(2)充填金属粉末の組成 前述の如く充填金属粉末は、母材希釈によフて生ずる溶
接金属中のCr9N i濃度の低下を補って適正な金属
組織を与える金属組成を確保する為、に用いられるもの
であり、溶接金属組織が3〜15%のフェライトを含む
オーステナイト組織となる様にNi、Or等をバランス
よく含有する金属粉末を使用する必要がある。こうした
観点から、適正な金属組織を確保するために必要とされ
る充填金属粉末の成分組成を明確にする目的で実験を行
なった。但し溶接条件は前記第4表の符号Fと同様とし
、充填金属粉末としては成分組成の異なる様々のCr 
−N i −M o −F e粉末を用いた。また充填
金属粉末の高さ11mmを被溶接材の炭素鋼板で構成さ
れる開先断面積の面積比率に換算すると、51%となり
、同表に示す溶接条件のもとて溶接を行なったときの母
材希釈率は40〜60%の範囲となる。
(2) Composition of filler metal powder As mentioned above, filler metal powder is used to compensate for the decrease in Cr9Ni concentration in the weld metal caused by dilution of the base metal and to ensure a metal composition that provides an appropriate metal structure. It is necessary to use a metal powder containing Ni, Or, etc. in a well-balanced manner so that the weld metal structure becomes an austenite structure containing 3 to 15% ferrite. From this point of view, an experiment was conducted to clarify the composition of the filling metal powder required to ensure an appropriate metal structure. However, the welding conditions are the same as the code F in Table 4 above, and various Cr powders with different compositions are used as the filling metal powder.
-Ni-Mo-Fe powder was used. In addition, when the height of the filling metal powder of 11 mm is converted to the area ratio of the cross-sectional area of the groove made of the carbon steel plate of the material to be welded, it is 51%, which is 51% when welding is performed under the welding conditions shown in the table. The base material dilution rate is in the range of 40 to 60%.

この実験で得た溶接金属の組織及び性能等を第5表に一
括して示す。
The structure, performance, etc. of the weld metal obtained in this experiment are summarized in Table 5.

(以 下 ゛茶゛巨) ・−一一ニゾ 第   5   表 第5表において符号a、d、e、g、t、mは充填金属
粉末の成分組成が適正であって、溶接金属組成が、3〜
15%のフェライトを含むオーステナイトからなる適正
な組織を有するものとなっているため、溶接割れのない
健全な溶接金属が得られている。
(Hereinafter referred to as "Brown") ・-11 Nizo Table 5 In Table 5, symbols a, d, e, g, t, and m indicate that the component composition of the filler metal powder is appropriate and the weld metal composition is correct. , 3~
Since it has an appropriate structure consisting of austenite containing 15% ferrite, a sound weld metal without weld cracking is obtained.

これに対し符号f、j、oは充填金属中のNiやCr等
が不足し、母材希釈によって生じるNiやCrの濃度低
下を十分に補うことができないため、溶接金属はマルテ
ンサイト組織となり、微細な溶接割れが生じている。ま
た符号す、にでは数%のフェライトを含むオーステナイ
ト組織を有する溶接金属は得られるものの、フェライト
量が低すぎるためやはり溶接割れが発生している。更に
符号c、nでは、逆に溶接金属組織中のフェライト量が
高すぎるため、溶接金属が脆化現象を起こし溶接割れが
生じている。
On the other hand, the symbols f, j, and o lack Ni, Cr, etc. in the filling metal and cannot sufficiently compensate for the decrease in concentration of Ni and Cr caused by dilution of the base metal, so the weld metal becomes a martensitic structure. There are minute weld cracks. In addition, although a weld metal having an austenitic structure containing several percent of ferrite can be obtained in the case of No. 2, weld cracking still occurs because the amount of ferrite is too low. Further, in cases c and n, on the contrary, the amount of ferrite in the weld metal structure is too high, so that the weld metal undergoes an embrittlement phenomenon and weld cracking occurs.

これらの実験結果より、充填金属粉末の好ましい成分組
成を求めると、 Cr:45〜55% Ni:20〜30% Mo : 10〜20% 残部:Feおよび不可避不純物 が導かれる。
From these experimental results, the preferred component composition of the filling metal powder is determined as follows: Cr: 45-55% Ni: 20-30% Mo: 10-20% Balance: Fe and unavoidable impurities.

尚充填金属粉末の好適組成は、母材希釈率、あるいは使
用する溶接ワイヤ中のCr、Ni、M。
The preferred composition of the filling metal powder is the dilution rate of the base metal or Cr, Ni, M in the welding wire used.

の量等によっても変わるので母材希釈率が高い場合は充
填金属粉末中のCr、Ni、Moの量を相対的に増加し
、同希釈率が小さい場合は上記各元素の量を相対的に減
少すべきであり、また溶接ワイヤ中のCr、Ni、Mo
含有量によっても同様の調整を行なうべきであるが、本
発明では、良好な溶接状況を確保し得る溶接条件下での
母材稀釈率が殆んどの場合40〜60%の範囲に収まっ
ていること、及び溶接ワイヤとしてステンレス鋼溶接用
サブマージアーク溶接ワイヤを使用すること、を考慮し
て、充填金属粉末の成分組成を前述の範囲に定めた。
If the base material dilution rate is high, the amounts of Cr, Ni, and Mo in the filling metal powder will be relatively increased, and if the dilution rate is low, the amounts of each of the above elements will be relatively increased. Cr, Ni, Mo in the welding wire should be reduced.
Similar adjustments should be made depending on the content, but in the present invention, the base metal dilution rate under welding conditions that can ensure good welding conditions is in the range of 40 to 60% in most cases. Considering this and the fact that a submerged arc welding wire for stainless steel welding is used as the welding wire, the composition of the filling metal powder was determined to be within the above range.

向上記ではCr −N i −M o −F e系の充
填金属粉末を用いた場合について説明したが、Cr−N
L−Fe系の充填金属粉末を用いた場合についても同様
の実験を行なったところ、 Cr:50〜70% Ni:20〜30% 残部二Feおよび不可避不純物 の組成の充填金属粉末を使用することによって、3〜1
5%のフェライトを含むオーステナイトからなる適正な
組織を有し、耐割れ性の優れた溶接金属を確保し得るこ
とが分かった。
In the above description, the case where Cr-Ni-Mo-Fe-based filling metal powder was used was explained, but Cr-N
A similar experiment was conducted using an L-Fe-based filling metal powder, and it was found that a filling metal powder with a composition of Cr: 50 to 70%, Ni: 20 to 30%, and the balance Fe and unavoidable impurities was used. 3-1 depending on
It was found that a weld metal with an appropriate structure consisting of austenite containing 5% ferrite and excellent crack resistance could be obtained.

(3)金属粉末充填量 溶接金属の化学成分は、前述の如く充填金属粉末の成分
組成によって変わってくるばかりでなく、該金属粉末の
充填量によっても当然変わってくる。そこで実際の溶接
施工を行なう際における最も好ましい充填量を明確にす
る方向で実験を行なった。
(3) Filling amount of metal powder The chemical composition of the weld metal not only changes depending on the composition of the filling metal powder as described above, but also naturally changes depending on the filling amount of the metal powder. Therefore, an experiment was conducted to clarify the most preferable filling amount for actual welding work.

即ち91II11厚の317Lクラツド鋼板を母材とし
て用いた単電極サブマージアーク溶接法、および板厚1
2a+■又は16+amの317Lクラツド鋼板を母材
として使用し、極間距離を30m+aに設定してタンデ
ムサブマージアーク溶接法、を採用し、充填金属粉末の
充填量のパラメータであるルートギャップ(第4図のし
)と充填高さ(第4図のH)を種々変化させてサブマー
ジアーク溶接を行ない、溶接金属の組織及び溶接割れの
有無等を前記と同様にして調べた。尚充填金属粉末とし
ては何れの場合もCr:50.Ni :27.Mo: 
That is, a single electrode submerged arc welding method using a 317L clad steel plate with a thickness of 91II11 as the base material, and a plate thickness of 1
A 317L clad steel plate of 2a+■ or 16+am was used as the base material, the distance between the poles was set to 30m+a, and the tandem submerged arc welding method was adopted. Submerged arc welding was carried out by varying the filling height (H in Figure 4) and the structure of the weld metal and the presence or absence of weld cracks were examined in the same manner as above. In each case, the filling metal powder was Cr:50. Ni:27. Mo:
.

14、残部Fe及び不可避不純物からなるものを使用し
た。また該金属粉末の充填量については、開先断面積に
対する充填金属粉末の占める面積比率として記載した。
No. 14, the remainder consisting of Fe and unavoidable impurities was used. The filling amount of the metal powder was expressed as the area ratio occupied by the filling metal powder to the cross-sectional area of the groove.

結果を第6.7.8.9.10.11.12表安1□1
′、・ 第6〜12表より次の様に考えることができる。
Results in table 6.7.8.9.10.11.12 1□1
',・ From Tables 6 to 12, it can be considered as follows.

(1) No、  1〜22は単電極サブマージアーク
溶接法、No、23〜67はタンデムサブマージアーク
溶接法を採用した各実施例であり、何れの方式を採用し
た場合でも本発明の規定要件に合致するかぎり割れのな
い良好な溶接金属が得られている。
(1) Nos. 1 to 22 are examples in which the single electrode submerged arc welding method was adopted, and Nos. 23 to 67 are examples in which the tandem submerged arc welding method was adopted, and regardless of which method is adopted, the specified requirements of the present invention are met. As long as they match, a good weld metal with no cracks can be obtained.

(2)第6〜12表中適正条件の欄にO印を付したもの
は本発明の規定要件を充足しており、溶接金属はオース
テナイトに3〜15%のフェライトを含む好適組織を有
するものであって、何れの場合も良好な耐割れ性が得ら
れている。
(2) Those marked with an O in the appropriate conditions column in Tables 6 to 12 satisfy the specified requirements of the present invention, and the weld metal has a suitable structure containing 3 to 15% ferrite in austenite. Good cracking resistance was obtained in all cases.

(3)第6表、7のNo、1.14、第8.9表のNo
、23.35は開先内への金属粉末充填量が不足する比
較例であり、Cr、Ni、Mo等の補充ユが不足するた
め溶接金属組織が割れ感受性の高いマルテンサイト組織
となり、ビードに縦割れあるいは横割れが生じている。
(3) No. of Table 6, 7, 1.14, No. of Table 8.9
, 23.35 is a comparative example in which the amount of metal powder packed into the groove is insufficient, and due to the lack of supplementary elements such as Cr, Ni, Mo, etc., the weld metal structure becomes a martensitic structure with high crack susceptibility, and the bead Vertical or horizontal cracks have occurred.

(4)第6.7表のNo、3.11,15、第9.10
表のNo、38.42は、やはり開先内への金属粉末充
填量が不足するため溶接金属組織がオーステナイト単相
となり、微細な割れが生じている。
(4) No. 6.7, 3.11, 15, 9.10 of Table 6.7
In No. 38.42 in the table, the amount of metal powder filled into the groove was insufficient, so the weld metal structure became an austenite single phase, and fine cracks were generated.

(5)第6.7表のNo、7.19、第8.9表のNo
、24.27,31,38、第10.11表のNo、4
13.49,57.60は、金属粉末の充填量がやや不
足する比較例であり、溶接金giI1mは、オーステナ
イトにわずかのフェライトを含むものであるが、フェラ
イト量が3%未満であるため掻く微細な割れが生じてい
る。
(5) No. in Table 6.7, No. 7.19, No. in Table 8.9
, 24.27, 31, 38, No. 4 in Table 10.11
13.49 and 57.60 are comparative examples in which the filling amount of metal powder is slightly insufficient, and weld metal giI1m contains a small amount of ferrite in austenite, but since the amount of ferrite is less than 3%, it is difficult to scratch. Cracks have occurred.

(6)第6.7.8表のNo、 6. 10.  I 
B。
(6) No. in Table 6.7.8, 6. 10. I
B.

22、第9.10表のNo、34.45、第11.12
表のNo、52.56,63.67は金属粉末の充填量
が多過ぎる場合の比較例であり、溶接金属のオーステナ
イト組織中に含まれるフェライト量が15%を超えてい
るため、脆化現象と溶接熱歪の相互作用によって横割れ
が発生している。
22, No. 9.10 of Table 34.45, No. 11.12
Nos. 52.56 and 63.67 in the table are comparative examples where the amount of metal powder filling is too large, and since the amount of ferrite contained in the austenite structure of the weld metal exceeds 15%, embrittlement occurs. Transverse cracking occurs due to the interaction between the welding temperature and the welding thermal strain.

(7)開先内へ充填される金属粉末の適正な充填量は、
厳密には該金属粉末の成分組成の他、溶接ワイヤの化学
成分、あるいは溶接条件(開先形状や溶接入熱量等)に
よフて微妙に変わってくる母材稀釈率等の影響を十分に
考慮したうえで定める必要がある。ところが現実の溶接
施工においては適正な溶接状況を確保することのできる
溶接条件は比較的狭い範囲に収まっており、前述の如く
通常の母材通常稀釈率は大抵の場合40〜60%の範囲
である。従ってこの様な母材稀釈率を基準とし、これに
前述の様な金属粉末の好適組成及び溶接ワイヤとして選
択使用されるステンレス鋼サブマージアーク溶接用ワイ
ヤの標準的成分組成並びに該金属粉末の比重等を考慮し
て、溶接金属の金属組織をオーステナイト+(3〜15
)%フェライトとするために必要な化学成分を得ること
のできる好ましい充填率を求めると35〜100%とい
う範囲を導くことができ、この好適充填率範囲は上記第
6〜12表で得られる結果と一致している。
(7) The appropriate amount of metal powder to be filled into the groove is:
Strictly speaking, in addition to the chemical composition of the metal powder, the influence of the chemical composition of the welding wire and the dilution rate of the base metal, which varies slightly depending on the welding conditions (groove shape, welding heat input, etc.), must be fully considered. It is necessary to decide after consideration. However, in actual welding work, the welding conditions that can ensure proper welding conditions are within a relatively narrow range, and as mentioned above, the normal dilution rate of the base material is usually in the range of 40 to 60%. be. Therefore, based on this base metal dilution rate, the preferred composition of the metal powder as described above, the standard composition of the stainless steel submerged arc welding wire selected as the welding wire, the specific gravity of the metal powder, etc. Considering this, the metal structure of the weld metal is changed to austenite +
)% When determining the preferred filling rate that can obtain the chemical components necessary to make ferrite, a range of 35 to 100% can be derived, and this preferred filling rate range is the result obtained in Tables 6 to 12 above. is consistent with

上記の様にして炭素鋼板によフて構成される開先底部の
溶接金属がオーステナイト+(3〜15)%フェライト
を形成し易い化学成分となる様に充填金属粉末の成分組
成及び充填率を適正に調整し、例えば309系等のステ
ンレス鋼用のサブマージアーク溶接材料を用いて溶接を
行なうと、炭素鋼板部同士の溶接部は優れた耐割れ性を
示し且つ再加熱(溶接後熱処理)を加えた様な場合でも
脆化を生ずることのない健全な溶接部となる。
The composition and filling rate of the filling metal powder are adjusted so that the weld metal at the bottom of the groove, which is made of carbon steel plates, has a chemical composition that is likely to form austenite + (3 to 15)% ferrite as described above. When properly adjusted and welded using a submerged arc welding material for stainless steel such as 309 series, the weld between carbon steel plates exhibits excellent cracking resistance and does not require reheating (post-weld heat treatment). The result is a sound weld that does not become brittle even in cases where it is added.

尚本発明でサブマージアーク溶接法を採用しているのは
、溶接入熱量を高めて溶接能率を高めようとする点にあ
り、そのため炭素鋼板部分の溶接段階でクラツド材であ
るステンレス鋼板の一部が溶融混合してくることは避け
られない。しかしながら本発明では前述の如く炭素鋼板
部分の溶接金属が高Ni、高Cr組成となる様に溶接条
件を定めているので、ステンレス鋼板の一部が溶融混合
してきても実害は生じない。
The reason why the submerged arc welding method is adopted in the present invention is to increase the welding heat input and increase the welding efficiency. Therefore, during the welding stage of the carbon steel plate part, a part of the stainless steel plate that is the clad material is used. It is inevitable that the two will melt and mix. However, in the present invention, as described above, welding conditions are determined so that the weld metal of the carbon steel plate portion has a high Ni and high Cr composition, so even if a part of the stainless steel plate is melted and mixed, no actual damage will occur.

この様にして炭素鋼板部分を溶接した後は、残されたス
テンレス鋼板により構成される開先部を共金系溶接材料
を用いて溶接すればよい。このときの開先両面はステン
レス鋼、下面は高Cr・高Ni系の合金鋼であるから、
表層部を構成する該ステンレス鋼板同士の溶接部が母材
金属の混入によって耐食性を失なう様な恐れはない。
After welding the carbon steel plate portions in this manner, the remaining groove formed by the stainless steel plate may be welded using a matching welding material. At this time, both surfaces of the groove are made of stainless steel, and the bottom surface is made of high Cr/high Ni alloy steel, so
There is no fear that the welded portions between the stainless steel plates constituting the surface layer will lose their corrosion resistance due to the contamination of the base metal.

従って該ステンレス鋼板同士の溶接部の溶接はどの様な
方法を採用してもよく、被覆アーク溶接、TIG溶接、
MIG溶接、フラックス入りワイヤを用いた溶接等を任
意に選択して採用することができ、該開先幅が広い場合
は帯状電極を用いた肉盛溶接法を採用することも有効で
ある。
Therefore, any method may be used to weld the welded portion between the stainless steel plates, including covered arc welding, TIG welding,
MIG welding, welding using flux-cored wire, etc. can be arbitrarily selected and employed, and when the groove width is wide, it is also effective to employ overlay welding using a band-shaped electrode.

次に本発明の最も代表的な実施例を示す。Next, the most typical embodiment of the present invention will be shown.

実施例1 厚さ16+nmの317Lクラツド鋼板(炭素鋼板13
mm、ステンレス鋼板:3mm)を使用し、下記の条件
で炭素鋼板部分の溶接を行なった。
Example 1 317L clad steel plate with a thickness of 16+nm (carbon steel plate 13
mm, stainless steel plate: 3 mm), and the carbon steel plate portion was welded under the following conditions.

(条件) 開先形状;第4図に準拠、但しルート幅(L):2mm
(Conditions) Groove shape: Compliant with Figure 4, however, root width (L): 2mm
.

開先角度:55度、金属粉末充填 高さ(H)  : 10.5mm (充填率:47%) 電極配置:第5図に準拠、但し極間距離=30mm、先
後電極の前傾角:5度 金属粉末:50%Cr−27%N i−14%MO−9
%Fe 溶接ワイヤ:先行電極・・・Y2O2(4mmφ)後行
電極・・・ 同 上 溶接電流:先行電極・・・750A 後行電極・・・650A 溶接電圧:先行電極・・・37V 後行電極・・・42V 溶接速度:60cpm この溶接によって第6図に示す様な炭素鋼板部分の溶接
部を得た。
Groove angle: 55 degrees, metal powder filling height (H): 10.5 mm (filling rate: 47%) Electrode arrangement: according to Fig. 5, however, distance between electrodes = 30 mm, forward inclination angle of front and rear electrodes: 5 degrees Metal powder: 50%Cr-27%Ni-14%MO-9
%Fe Welding wire: Leading electrode...Y2O2 (4mmφ) Trailing electrode... Same as above Welding current: Leading electrode...750A Trailing electrode...650A Welding voltage: Leading electrode...37V Trailing electrode ...42V Welding speed: 60 cpm Through this welding, a welded part of the carbon steel plate as shown in FIG. 6 was obtained.

次いで残されたステンレス鋼板S同士の開先部を、YF
317L−Cフラックス入すワイヤ(1,2m+nφ)
を用いて開先幅方向にウィービングしつつMAG溶接(
電流:200A、電圧:30V、速度:12cpm、ウ
ィービング幅:22mm、シールドガス:100%CO
2,25Jl/分)を行ない、ステンレスクラッド鋼板
の溶接を終えた。
Next, the grooves between the remaining stainless steel plates S were
317L-C flux wire (1,2m+nφ)
MAG welding (
Current: 200A, voltage: 30V, speed: 12cpm, weaving width: 22mm, shielding gas: 100% CO
2.25 Jl/min) to complete welding of the stainless clad steel plates.

得られた溶接金属の化学成分及びオーステナイト組織中
のフェライト量(デイロング組織図)を第13表に、ま
た該溶接部の機械的性質を第14表に示す。
The chemical composition of the obtained weld metal and the amount of ferrite in the austenite structure (Daylong structure diagram) are shown in Table 13, and the mechanical properties of the welded part are shown in Table 14.

′7”・1、 (以 下 余 白) 第13表の結果からも明らかな様に、溶接金属の金属組
織は炭素鋼板及びステンレス鋼板のいずれの部分につい
てもオーステナイトに適正量のフェライトを含む耐割れ
性の良好な組織を有すると共に、高耐食性の化学組成を
有しており、第14表に示す如く非常に優れた機械的強
度を有している。
'7''・1, (Left below) As is clear from the results in Table 13, the metallographic structure of the weld metal is a resistant structure containing an appropriate amount of ferrite in austenite for both carbon steel sheets and stainless steel sheets. It has a structure with good crackability, a chemical composition with high corrosion resistance, and as shown in Table 14, it has very excellent mechanical strength.

[発明の効果] 本発明は以上の様に構成されており、ステンレスクラッ
ド鋼板を極めて能率良く片面溶接することができる。し
かも機械的特性の優れた金属組織からなる溶接金属を形
成することができ、強度面からしてもまた耐食性の面か
らしても非常に優れた性能の溶接部を得ることができる
。その結果ステンレスクラッド鋼板の優位性を最大限有
効に発揮しつつ溶接建造物の強度欠陥をなくすことがで
きる。
[Effects of the Invention] The present invention is configured as described above, and a stainless clad steel plate can be welded on one side extremely efficiently. Moreover, it is possible to form a weld metal consisting of a metal structure with excellent mechanical properties, and it is possible to obtain a welded part with extremely excellent performance both in terms of strength and corrosion resistance. As a result, strength defects in welded structures can be eliminated while maximizing the advantages of stainless clad steel sheets.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(八) 、 (B)はステンレスクラッド鋼板の
溶接に採用される公知の累層法を示す説明図、第2図(
A) 、 (B)は実験例で採用した開先形状及び電極
配置を示す説明図、第3図はシェフラーの組織図を示す
図、第4.5図は同じく実験例で採用した開先形状及び
電極配置を示す説明図、第6図は実施例で得た炭素鋼板
部分の溶接部を示す横断面図である。 Sニステンレス鋼板  C:炭素鋼板
Figures 1 (8) and (B) are explanatory diagrams showing the known layered layer method adopted for welding stainless clad steel plates, and Figure 2 (
A) and (B) are explanatory diagrams showing the groove shape and electrode arrangement adopted in the experimental example, Figure 3 is a diagram showing Schaeffler's organizational chart, and Figure 4.5 is the groove shape also adopted in the experimental example. FIG. 6 is a cross-sectional view showing a welded portion of a carbon steel plate portion obtained in an example. S stainless steel plate C: carbon steel plate

Claims (2)

【特許請求の範囲】[Claims] (1)炭素鋼板の表面にステンレス鋼板がクラッドされ
たステンレスクラッド鋼板を、ステンレス鋼板クラッド
側から片面溶接する方法であって、Cr:50〜70重
量%、Ni:20〜30重量%、残部Feおよび不可避
不純物からなる金属粉末を開先内へ充填すると共に、ス
テンレス鋼用潜弧溶接材料を用いて前記炭素鋼板同士を
溶接することにより、3〜15%のフェライトを含むオ
ーステナイト系溶接金属組織とし、次いで前記クラッド
されたステンレス鋼板部で構成される開先表側部分を、
共金系溶接材料を用いて溶接することを特徴とするステ
ンレスクラッド鋼板の片面溶接方法。
(1) A method of welding a stainless clad steel plate in which a stainless steel plate is clad on the surface of a carbon steel plate from one side from the cladding side of the stainless steel plate, in which Cr: 50 to 70% by weight, Ni: 20 to 30% by weight, the balance being Fe. By filling the groove with metal powder consisting of unavoidable impurities and welding the carbon steel plates together using a submerged arc welding material for stainless steel, an austenitic weld metal structure containing 3 to 15% ferrite is formed. Then, the groove front side portion consisting of the clad stainless steel plate portion,
A single-sided welding method for stainless clad steel plates, which is characterized by welding using a co-metallic welding material.
(2)炭素鋼板の表面にステンレス鋼板がクラッドされ
たステンレスクラッド鋼板を、ステンレス鋼板クラッド
側から片面溶接する方法であって、Cr:45〜55重
量%、Ni:20〜30重量%、Mo:10〜20重量
%、残部Feおよび不可避不純物からなる金属粉末を開
先内へ充填すると共に、ステンレス鋼用潜弧溶接材料を
用いて、前記炭素鋼板同士を溶接することにより、3〜
15%のフェライトを含むオーステナイト系溶接金属組
織とし、次いで前記クラッドされたステンレス鋼板部で
構成される開先表側部分を、共金系溶接材料を用いて溶
接することを特徴とするステンレスクラッド鋼板の片面
溶接方法。
(2) A method of welding a stainless clad steel plate in which a stainless steel plate is clad on the surface of a carbon steel plate from one side from the stainless steel plate cladding side, in which Cr: 45 to 55% by weight, Ni: 20 to 30% by weight, Mo: By filling the groove with metal powder consisting of 10 to 20% by weight, the balance being Fe and unavoidable impurities, and welding the carbon steel plates together using a submerged arc welding material for stainless steel,
A stainless clad steel plate characterized by having an austenitic weld metal structure containing 15% ferrite, and then welding the groove surface side portion consisting of the clad stainless steel plate portion using a matching welding material. Single side welding method.
JP424888A 1988-01-11 1988-01-11 One-sided welding method of stainless clad steel plate Expired - Fee Related JPH07102465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP424888A JPH07102465B2 (en) 1988-01-11 1988-01-11 One-sided welding method of stainless clad steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP424888A JPH07102465B2 (en) 1988-01-11 1988-01-11 One-sided welding method of stainless clad steel plate

Publications (2)

Publication Number Publication Date
JPH01178375A true JPH01178375A (en) 1989-07-14
JPH07102465B2 JPH07102465B2 (en) 1995-11-08

Family

ID=11579236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP424888A Expired - Fee Related JPH07102465B2 (en) 1988-01-11 1988-01-11 One-sided welding method of stainless clad steel plate

Country Status (1)

Country Link
JP (1) JPH07102465B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268551A (en) * 2006-03-30 2007-10-18 Kobe Steel Ltd Multi-electrode one side submerged arc welding method
JP2008055462A (en) * 2006-08-31 2008-03-13 Hitachi Ltd Method for producing welding joint
US8240544B2 (en) * 2005-08-02 2012-08-14 Linde Aktiengesellschaft Introduction of nanoparticles
CN103521886A (en) * 2013-10-25 2014-01-22 武汉一冶钢结构有限责任公司 Welding method for stainless steel one-side welding double-side forming
CN103567613A (en) * 2013-11-14 2014-02-12 南车眉山车辆有限公司 Welding process for tank car with stainless steel composite plate
WO2015107701A1 (en) * 2014-01-14 2015-07-23 三菱重工業株式会社 Welding method, repair method, and reactor vessel
CN111745269A (en) * 2020-07-10 2020-10-09 首钢集团有限公司 Double-sided submerged arc welding method for stainless steel composite plate
CN115476019A (en) * 2022-09-16 2022-12-16 苏州优霹耐磨复合材料有限公司 Continuous casting roller surfacing process

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103752993B (en) * 2013-12-24 2016-07-06 上海振华重工集团(南通)传动机械有限公司 A kind of welding method of stainless steel clad plate

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8240544B2 (en) * 2005-08-02 2012-08-14 Linde Aktiengesellschaft Introduction of nanoparticles
JP2007268551A (en) * 2006-03-30 2007-10-18 Kobe Steel Ltd Multi-electrode one side submerged arc welding method
JP2008055462A (en) * 2006-08-31 2008-03-13 Hitachi Ltd Method for producing welding joint
CN103521886A (en) * 2013-10-25 2014-01-22 武汉一冶钢结构有限责任公司 Welding method for stainless steel one-side welding double-side forming
CN103567613A (en) * 2013-11-14 2014-02-12 南车眉山车辆有限公司 Welding process for tank car with stainless steel composite plate
CN103567613B (en) * 2013-11-14 2016-01-20 南车眉山车辆有限公司 A kind of stainless steel clad plate tank car welding procedure
WO2015107701A1 (en) * 2014-01-14 2015-07-23 三菱重工業株式会社 Welding method, repair method, and reactor vessel
JP2015131326A (en) * 2014-01-14 2015-07-23 三菱重工業株式会社 Welding method, repair method, and nuclear reactor vessel
US10354764B2 (en) 2014-01-14 2019-07-16 Mitsubishi Heavy Industries, Ltd. Welding method, repairing method, and nuclear reactor vessel
CN111745269A (en) * 2020-07-10 2020-10-09 首钢集团有限公司 Double-sided submerged arc welding method for stainless steel composite plate
CN115476019A (en) * 2022-09-16 2022-12-16 苏州优霹耐磨复合材料有限公司 Continuous casting roller surfacing process
CN115476019B (en) * 2022-09-16 2024-02-02 苏州优霹耐磨复合材料有限公司 Build-up welding process for continuous casting roller

Also Published As

Publication number Publication date
JPH07102465B2 (en) 1995-11-08

Similar Documents

Publication Publication Date Title
EP2402106B1 (en) Method of and machine for arc welding combining gas-shield arc welding with submerged arc welding
JP4857015B2 (en) Gas shielded arc welding flux cored wire and welding method
EP2130937B1 (en) High-strength welded steel pipe and process for manufacturing it
Jindal et al. Issues in welding of HSLA steels
KR102208029B1 (en) Electroslag welding wire, electroslag welding flux and weld joints
Layus et al. Multi-wire SAW of 640 MPa Arctic shipbuilding steel plates
KR101088212B1 (en) Flux-cored wire for stainless steel electro gas arc welding
WO2022054492A1 (en) Welding joint and method of producing welding joint
JP4930048B2 (en) Plasma arc hybrid welding method to improve joint fatigue strength of lap fillet welded joint
JPH01178375A (en) One-side welding method for stainless clad steel plate
JP6969705B1 (en) Steel wire for gas shielded arc welding, gas shielded arc welding method, and manufacturing method of gas shielded arc welded joint
EP3019304A1 (en) High fracture toughness welds in thick workpieces
CN108367376B (en) Vertical narrow groove gas shielded arc welding method
KR20010086841A (en) Pit and blow hole resistant flux-cored wire electrode for gas-shielded arc-welding of galvanized steel sheet
JP6420215B2 (en) Consumable electrode gas shield arc welding method
JP6119948B1 (en) Vertical narrow groove gas shielded arc welding method
EP0163379A2 (en) Method of welding nitrogen-containing alloys
KR100709521B1 (en) Welding joint of large heat input welding and welding method thereof
JP4766958B2 (en) Welding wire for Zn-based plated steel sheet and welding method for Zn-based plated steel sheet
CN115279528A (en) Multi-electrode gas shielded arc single-side welding method and multi-electrode gas shielded arc single-side welding device
JP6881616B2 (en) Manufacturing method of vertical narrow groove welded joint and vertical narrow groove welded joint
JP7195503B1 (en) Welded structure
EP4316727A1 (en) Filler metal for welding of dissimilar welds
JP6950294B2 (en) Manufacturing method of joints by multi-layer welding
JP4781046B2 (en) Welded joint of Zn-based plated steel sheet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees