JPH07102465B2 - One-sided welding method of stainless clad steel plate - Google Patents

One-sided welding method of stainless clad steel plate

Info

Publication number
JPH07102465B2
JPH07102465B2 JP424888A JP424888A JPH07102465B2 JP H07102465 B2 JPH07102465 B2 JP H07102465B2 JP 424888 A JP424888 A JP 424888A JP 424888 A JP424888 A JP 424888A JP H07102465 B2 JPH07102465 B2 JP H07102465B2
Authority
JP
Japan
Prior art keywords
welding
steel plate
metal
clad
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP424888A
Other languages
Japanese (ja)
Other versions
JPH01178375A (en
Inventor
研一 笈川
順二 田中
治 田中
一紘 竹馬
剛志 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP424888A priority Critical patent/JPH07102465B2/en
Publication of JPH01178375A publication Critical patent/JPH01178375A/en
Publication of JPH07102465B2 publication Critical patent/JPH07102465B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/32Selection of soldering or welding materials proper with the principal constituent melting at more than 1550 degrees C

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、炭素鋼板の表面にステンレス鋼板のクラッド
されたステンレスクラッド鋼板を、ステンレス鋼板側か
ら効率良く片面溶接することができ、しかも耐食性や耐
衝撃性能のすぐれた溶接金属を得ることのできる片面溶
接方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention is capable of efficiently welding one side of a stainless steel clad steel plate in which a stainless steel plate is clad to the surface of a carbon steel plate from the side of the stainless steel plate, and has corrosion resistance and The present invention relates to a single-sided welding method capable of obtaining a weld metal having excellent impact resistance performance.

[従来の技術] 各種の化学工業機器や海水淡水化装置あるいは原油タン
カー等の建造に当たっては、耐食性及び経済性の両要請
を同時に満足させる必要があるため、炭素鋼板の表面に
ステンレス鋼板をクラッドしたステンレスクラッド鋼板
を使用することが多い。即ち必要な強度は安価で強度の
優れた炭素鋼板によって確保し、耐食性については表層
部に比較的薄肉のステンレス鋼板をクラッドすることに
より対応しようというものである。
[Prior Art] In constructing various chemical industrial equipment, seawater desalination equipment, crude oil tankers, etc., it is necessary to satisfy both requirements of corrosion resistance and economy at the same time. Stainless steel clad steel plates are often used. That is, the necessary strength is secured by a carbon steel plate which is inexpensive and excellent in strength, and the corrosion resistance is dealt with by clad a relatively thin stainless steel plate on the surface layer.

ところでこの様なステンレスクラッド鋼板を溶接しよう
とする場合、炭素鋼板部分とステンレス鋼板部分では母
材の化学成分が著しく異なるため、母材の希釈効果が全
く相違し同一の溶接材料を用いて一気に溶接する訳には
いかない。従って各母材の化学成分や溶接時における相
互の希釈等を考慮して溶接材料を複雑に変更しなければ
ならない。たとえば第1図(A)はステンレスクラッド
鋼板を両面溶接する場合の公知の累層例、第1図(B)
はステンレス鋼板クラッド側から片面溶接する場合の公
知の累層例を示したものであり、各累層に示した数字は
累層順を示している。即ち第1図(A)における累層
、および第1図(B)における累層、について
は、ステンレス鋼板Sから合金元素が混入してくること
がないので、炭素鋼板Cに対する共金系の溶接材料を用
いて溶接を行なう。そして炭素鋼板Cとステンレス鋼板
Sの境界部付近の累層[第1図(A)の、第1図
(B)の]については、ステンレス鋼板が炭素鋼板に
よって希釈されることを考慮し、高Ni−高Cr組成の溶接
材料(たとえば309系あるいは309Mo系など)を使用し、
マルテンサイト組織の生成に伴う割れの発生防止を図っ
ている。次いでステンレス鋼板S側の累層[第1図
(A)の、第1図(B)の]については、炭素鋼板
による希釈を考慮する必要がないので、ステンレス鋼板
Sに対する共金系の溶接材料が使用される。
By the way, when attempting to weld such a stainless clad steel plate, the chemical composition of the base metal is remarkably different between the carbon steel plate part and the stainless steel plate part, so the dilution effect of the base metal is completely different and the same welding material is used to perform welding at once. I can't do it. Therefore, the welding material must be changed intricately in consideration of the chemical composition of each base material and mutual dilution during welding. For example, FIG. 1 (A) shows a known example of formation when stainless-clad steel plates are welded on both sides, and FIG. 1 (B).
Shows a known example of formation in the case of single-sided welding from the stainless steel plate clad side, and the numbers shown in each formation show the formation order. That is, regarding the formation shown in FIG. 1 (A) and the formation shown in FIG. 1 (B), alloy elements are not mixed in from the stainless steel plate S, and therefore eutectic welding to the carbon steel plate C is performed. Weld using the material. Regarding the formation near the boundary between the carbon steel plate C and the stainless steel plate S [in FIG. 1 (A), FIG. 1 (B)], considering that the stainless steel plate is diluted by the carbon steel plate, Ni-high Cr composition welding material (such as 309 series or 309Mo series) is used,
We are trying to prevent the occurrence of cracks due to the formation of martensite structure. Next, regarding the formation on the side of the stainless steel plate S [of FIG. 1 (A), FIG. 1 (B)], it is not necessary to consider dilution by the carbon steel plate. Is used.

このようにステンレスクラッド鋼板を溶接する際には少
なくとも3種類の溶接材料を使用しなければならず、ま
た適用される溶接方法についても母材による希釈を考慮
しつつ被覆アーク溶接法によって対応するか、ソリッド
ワイヤあるいはフラックス入りワイヤを用いたガスシー
ルドアーク溶接法等を組合せて採用することが行なわれ
ており、溶接材料の種類が多く且つ溶接施工の工数が多
い為作業が煩雑で非能率的であるという問題があった。
In this way, at least three types of welding materials must be used when welding stainless clad steel plates, and whether the applicable welding method should be covered by the covered arc welding method, taking into consideration the dilution by the base metal. , A solid wire or flux-cored wire is used in combination with a gas shielded arc welding method. Since there are many types of welding materials and many man-hours for welding work, the work is complicated and inefficient. There was a problem.

また、クラッド鋼板における炭素鋼板部分については、
炭素鋼用サブマージアーク溶接材料を用いて溶接の高能
率化を図る方法も検討されているが、開先精度のばらつ
きや溶接条件の変動等に起因して溶着金属の高さが安定
せず、ステンレス鋼板部の一部を溶かして溶接金層中に
CrやNiなどの合金成分が混入し、溶接金属中にマルテン
サイトが生成して硬化割れを生じ易くなり、安全性の点
で重大な欠陥となる。
Regarding the carbon steel plate portion of the clad steel plate,
A method for improving welding efficiency by using a submerged arc welding material for carbon steel has also been studied, but the height of the deposited metal is not stable due to variations in groove precision and changes in welding conditions, Part of the stainless steel plate is melted into the weld metal layer.
When alloy components such as Cr and Ni are mixed in, martensite is generated in the weld metal and hardening cracks easily occur, which is a serious defect in terms of safety.

[発明が解決しようとする課題] 本発明は上記の様な事情に着目してなされたものであっ
て、その目的は、ステンレスクラッド鋼板を、比較的簡
単な操作で且つ溶接部に対して十分な機械的特性と耐食
性を与えることができ、しかも高溶接能率が得られる様
な片面溶接方法を提供しようとするものである。
[Problems to be Solved by the Invention] The present invention has been made by paying attention to the above circumstances, and an object thereof is to provide a stainless clad steel plate with a relatively simple operation and sufficiently for a welded portion. The present invention aims to provide a single-sided welding method that can provide excellent mechanical properties and corrosion resistance, and can obtain high welding efficiency.

[課題を解決する為の手段] 本発明に係る片面溶接方法の構成は、炭素鋼板の表面に
ステンレス鋼板がクラッドされたステンレスクラッド鋼
板を、ステンレス鋼板クラッド側から片面溶接する方法
であって、Cr:50〜70重量%、Ni:20〜30重量%、残部Fe
および不可避不純物からなる金属粉末またはCr:45〜55
重量%、Ni:20〜30重量%、Mo:10〜20重量%、残部Feお
よび不可避不純物よりなる金属粉末を開先内へ充填する
と共に、ステンレス鋼用潜弧溶接材料を用いて前記炭素
鋼板同士を溶接することにより、3〜15%のフェライト
を含むオーステナイト系金属組織を得、次いで前記クラ
ッドされたステンレス鋼板部で構成される開先表側部分
を、共金系溶接材料を用いて溶接するところに要旨を有
するものである。
[Means for Solving the Problem] A configuration of a single-sided welding method according to the present invention is a method of single-sided welding a stainless steel clad steel plate in which a stainless steel plate is clad on a surface of a carbon steel plate from the stainless steel plate clad side. : 50-70 wt%, Ni: 20-30 wt%, balance Fe
And metal powder consisting of inevitable impurities or Cr: 45-55
Wt%, Ni: 20 to 30 wt%, Mo: 10 to 20 wt%, the metal powder consisting of the balance Fe and unavoidable impurities is filled in the groove, and the carbon steel sheet is prepared by using a latent arc welding material for stainless steel. An austenitic metallographic structure containing 3% to 15% of ferrite is obtained by welding the two together, and then the groove front side portion composed of the clad stainless steel plate portion is welded using a common metal welding material. However, it has a gist.

[作用及び実施例] 以下実験経緯を追って本発明の構成及び作用効果を明確
にしていく。
[Operations and Examples] The configuration and operation effects of the present invention will be clarified below with reference to the history of experiments.

まず本発明者らは、ステンレスクラッド鋼板における炭
素鋼板同士の溶接を、通常のステンレス鋼用サブマージ
アーク溶接材料を用いて支障なく行ない得るか否かにつ
いて検討を行なった。即ち厚さ16mmの炭素鋼板を第2図
(A)に示す開先形状で突き合わせ、開先裏面に耐火物
系の裏当材を配置し、309系の溶接ワイヤを用いて第2
図(B)に示す条件でタンデムサブマージ片面溶接実験
を行なった。尚使用した炭素鋼、309系溶接ワイヤおよ
び該溶接ワイヤによって得られる母材希釈を受けない接
続金属の各化学成分は第1表に示す通りであり、溶接条
件は下記の通りとした。
First, the present inventors examined whether or not welding of carbon steel plates in a stainless clad steel plate can be carried out without problems using a normal submerged arc welding material for stainless steel. That is, a carbon steel plate having a thickness of 16 mm is butted in a groove shape shown in Fig. 2 (A), a refractory-based backing material is arranged on the rear surface of the groove, and a second welding wire of 309 series is used.
A tandem submerged single-sided welding experiment was conducted under the conditions shown in FIG. The chemical components of the carbon steel used, the 309 series welding wire, and the connecting metal that is not diluted with the base metal obtained by the welding wire are as shown in Table 1, and the welding conditions were as follows.

(溶接条件) 溶接速度:65cm/min 溶接電流:先行極…1050A 後行極… 700A 溶接電圧:先行極…37V 後行極…40V 上記の溶接実験で溶接金属の母材への溶込み率及び溶接
金属組織を調べたところ、溶接金属の母材への溶込み率
は約50%となり、溶接金属はマルテンサイト組織となり
非常に脆弱で実用性に欠けるものとなることが確認され
た。ちなみに第3図は上記の溶接条件のもとで得られる
溶接金属組織をシェフラーの組織図に当てはめて推定し
た場合の図であり、この図からも希釈率が50%を超える
場合の溶接金属組織はマルテンサイト組織となることが
分かる。
(Welding conditions) Welding speed: 65cm / min Welding current: Leading electrode ... 1050A Trailing electrode ... 700A Welding voltage: Leading electrode ... 37V Trailing electrode ... 40V When the penetration rate of the weld metal into the base metal and the weld metal structure were examined in the above welding experiment, the penetration rate of the weld metal into the base material was about 50%, and the weld metal became a martensite structure and was very fragile. It has been confirmed that it becomes unpractical. By the way, Fig. 3 is a diagram when the weld metal structure obtained under the above-mentioned welding conditions is estimated by applying it to the Schaeffler structure diagram. From this diagram as well, the weld metal structure when the dilution rate exceeds 50% It turns out that is a martensite structure.

本発明は上記の予備実験結果を基に、ステンレスクラッ
ド鋼板における炭素鋼板同士の溶接部に優れた物性(特
に耐割れ性)を与える為には、適正な金属組織が得られ
る様に溶接金属の化学成分を調整する必要があると考
え、その線に沿って研究を進めた。そして溶接金属の耐
割れ性を改善するには、溶接金属組織が靭性の優れた若
干のフェライトを含むオーステナイト組織となる様、該
溶接金属の化学成分を適正に調整する必要があると考え
た。そのためには母材による希釈によって生じるCrやNi
の濃度低下を外部からの合金元素の添加によって補って
やればよいと考え更に研究を進めた結果、ステンレスク
ラッド鋼板における炭素鋼板によって構成される開先部
分内に、Cr,Niあるいはこれらと共にMoを多量に含有す
る金属粉末を充填しておけば、これらが溶接工程で溶接
金属中に混入して該溶接金属中のCr,Ni,Mo濃度を高め、
母材による希釈が生じた場合でも溶接金属を靭性の優れ
た金属組織となし得ることが分かった。
The present invention is based on the above preliminary experiment results, in order to give excellent physical properties (particularly crack resistance) to the welded portions of the carbon steel sheets in the stainless clad steel sheet, in order to obtain an appropriate metal structure, We thought it necessary to adjust the chemical composition, and proceeded with the research along that line. Then, in order to improve the crack resistance of the weld metal, it was considered necessary to appropriately adjust the chemical composition of the weld metal so that the weld metal structure becomes an austenite structure containing some ferrite having excellent toughness. For that purpose, Cr and Ni generated by dilution with the base material
As a result of further research, we thought that it would be better to compensate for the decrease in the concentration of Al by adding an alloying element from the outside, and as a result of further research, Cr, Ni or Mo together with these was added in the groove portion composed of the carbon steel plate in the stainless clad steel plate. If filled with a large amount of metal powder, these are mixed in the weld metal in the welding process to increase the Cr, Ni, Mo concentration in the weld metal,
It was found that the weld metal can have a metal structure with excellent toughness even when the base metal dilutes.

ところで溶接金属の組織に最も大きく影響する化学成分
は下記のものによって左右される。
By the way, the chemical composition that most affects the structure of the weld metal depends on the following.

溶接条件:溶接ワイヤの組成、溶融量および母材希釈
率 開先内へ充填される金属粉末の組成および充填量 従って上記項目を適正に調整し、溶接金属が高靭性の金
属組織となるのに好適な化学成分とすればよい。そのた
めの基準としては、優れた靭性を示す溶接金属の金属組
織を明確にしておく必要があると考え、次の様な実験を
行なった。その結果、3〜15%のフェライトを含むオー
ステナイト組織が高靭性を安定して発揮し得る条件であ
ることをつきとめた。そこでこの様な溶接金属組織を得
るための溶接条件を明確にすべく更に実験を進めた。
Welding conditions: Composition of welding wire, melting amount and base metal dilution rate Composition and filling amount of metal powder filled in the groove Therefore, the above items should be adjusted appropriately and the weld metal should have a metal structure with high toughness. It may be a suitable chemical component. As a criterion for this, it was considered necessary to clarify the metallographic structure of the weld metal exhibiting excellent toughness, and the following experiments were conducted. As a result, it has been found that an austenite structure containing 3 to 15% of ferrite is a condition capable of stably exhibiting high toughness. Therefore, further experiments were conducted to clarify the welding conditions for obtaining such a weld metal structure.

(1)溶接条件 まず被溶接材として、ケミカルタンカー等の構造材とし
て広く用いられている317Lステンレスクラッド鋼板(板
及び化学成分は第2表に示す)を選択し、第3表に示す
溶接材料を用いて炭素鋼板部分の潜弧溶接実験を行なっ
た。尚溶接ワイヤとしてはJIS Z3321のY309に該当する
4mmφのサブマージアーク溶接用ワイヤを使用し、充填
金属粉末としては、溶接金属が前述の好適金属組織とな
る最適の金属組成(この金属組成が10〜12%Ni,16〜19
%Cr,2〜3%Moのステンレス鋼であることはシェフラー
の組織図により予め求めておいた)となる様に予備実験
により決定しておいた「50%Cr−27%Ni−14%Mo−9%
Feの金属粉末」を使用した。また開先形状は第4図(S:
ステンレス鋼板、C:炭素鋼板、Me:充填金属粉末、De:溶
接金属、B:裏当材、H:充填高さ、G:ルートギャップ、
θ:開先角度)に示す通りとし、溶接は第5図(L:先行
電極、T:後行電極)に示す如く極間距離(l)を30,60
又は90mmに設定したタンデムサブマージアーク溶接法と
した。
(1) Welding conditions First, as the material to be welded, the 317L stainless clad steel plate (plates and chemical components shown in Table 2), which are widely used as structural materials such as chemical tankers, are selected, and the welding materials shown in Table 3 are selected. Was used to conduct a latent arc welding experiment on a carbon steel plate. The welding wire corresponds to JIS Z3321 Y309.
Using a wire for submerged arc welding of 4 mmφ, as the filling metal powder, the optimum metal composition (the metal composition is 10-12% Ni, 16-19
% Cr, 2 to 3% Mo stainless steel was determined in advance by Schaeffler's organizational chart.) "50% Cr-27% Ni-14% Mo -9%
Fe metal powder ”was used. The groove shape is shown in Fig. 4 (S:
Stainless steel sheet, C: Carbon steel sheet, Me: Filled metal powder, De: Weld metal, B: Backing material, H: Filling height, G: Root gap,
θ: groove angle) and welding was performed with a gap between electrodes (l) of 30,60 as shown in Fig. 5 (L: leading electrode, T: trailing electrode).
Alternatively, the tandem submerged arc welding method was set to 90 mm.

溶接条件及び結果を第4表に一括して示す。尚溶接金属
の組織は、各溶接金属の化学分析値を基にシェフラー組
織図を利用して求め、また溶接割れの有無はX線透過試
験により、偏析の有無はX線マイクロアナライザーによ
り夫々確認した(これらの確認法は以下のすべての実験
例に共通する)。
Welding conditions and results are collectively shown in Table 4. The structure of the weld metal was obtained by using a Schaeffler structure chart based on the chemical analysis value of each weld metal, and the presence or absence of weld cracks was confirmed by an X-ray transmission test, and the presence or absence of segregation was confirmed by an X-ray microanalyzer. (These confirmation methods are common to all the experimental examples below).

第4表からも明らかな様にタンデムサブマージアーク溶
接法を採用する場合、溶接電極の極間距離や先行電極
(L)と後行電極(T)の電流、電圧のバランスによっ
て、溶接金属の性能や組織は大きな影響を受けることが
分かる。そして符号B,C,G,Hでは極間距離が60mmあるい
は90mmと広いため、先行電極により形成される溶融プー
ルと後行電極により形成される溶融プールがプールとし
ては合体せず、凝固後の成分が同一組成とならないため
に溶接金属中に偏析が生じた。また符号D,Iは先行電極
の電流値が低すぎるため、先行電極による溶接工程で充
填金属粉末の溶融が十分に行なわれず、ルート部に融合
不良が発生するばかりでなく溶接金属中に偏析が生じて
いる。一方符号E,Jでは後行電極の電流値が低すぎるた
め、後行電極のアークの広がりが不足し、ビード形状が
悪化する。
As is clear from Table 4, when the tandem submerged arc welding method is adopted, the performance of the weld metal depends on the distance between the welding electrodes and the balance of the current and voltage between the leading electrode (L) and the trailing electrode (T). It turns out that organizations and organizations are greatly affected. And in the symbols B, C, G, H, since the distance between the electrodes is as wide as 60 mm or 90 mm, the molten pool formed by the leading electrode and the molten pool formed by the trailing electrode do not combine as a pool, and Segregation occurred in the weld metal because the components did not have the same composition. Further, since the current values of the leading electrodes are too low for the symbols D and I, the filling metal powder is not sufficiently melted in the welding process by the leading electrode, and not only fusion failure occurs in the root part but also segregation in the weld metal. Has occurred. On the other hand, with reference signs E and J, since the current value of the trailing electrode is too low, the arc spread of the trailing electrode is insufficient and the bead shape is deteriorated.

これらの実験からも明らかな様に本発明でタンデムサブ
マージアーク溶接法を採用する場合は、先行電極によっ
て形成される溶融プールと後行電極によって形成される
溶融プールが合体し、且つ先行電極の溶接電流について
は充填金属粉末を完全に溶融せしめ得る様、また後行電
極の溶接電流についてはアークに十分な広がりを与えて
適正なビード形状が確保される様、各電流値及びそのバ
ランスをうまく調整することが望まれる。
As apparent from these experiments, when the tandem submerged arc welding method is adopted in the present invention, the molten pool formed by the leading electrode and the molten pool formed by the trailing electrode are united, and the welding of the leading electrode is performed. Regarding the electric current, it is possible to completely melt the filled metal powder, and for the welding current of the trailing electrode, the current value and its balance are adjusted well so that the arc is sufficiently spread and the proper bead shape is secured. It is desired to do.

またタンデムサブマージアーク溶接法を採用した場合
は、単電極サブマージアーク溶接法に比べて溶接部の一
点に集中する入熱量を低く抑えることができ、その結果
母材による希釈率が低く抑えられるという効果が発揮さ
れるので、充填金属粉末の使用量を低減することができ
る。そのため本発明ではタンデム溶接法を採用するのが
最も有利であるが、もとより単電極サブマージアーク溶
接法の適用を排除するものではない。
In addition, when the tandem submerged arc welding method is adopted, the amount of heat input that concentrates at one point of the weld can be kept low compared to the single electrode submerged arc welding method, and as a result, the dilution rate by the base metal can be kept low. Is exhibited, it is possible to reduce the amount of the filled metal powder used. Therefore, the tandem welding method is most advantageous in the present invention, but the application of the single electrode submerged arc welding method is not excluded.

ところで通常の片面溶接においては、1プール溶接、2
プール溶接、セミ1プール溶接の順で溶接金属の耐割れ
性が良好になることが知られており、本発明では前述の
如く溶接金属中の偏析防止という観点から、耐割れ性に
とって最も不利な1プール溶接法を採用しなければなら
ない。それにもかかわらず良好な耐割れ性を確保するた
めには、以下に詳述する如く開先内へ充填される金属粉
末の組成および充填量が重要な意味を帯びてくる。
By the way, in normal one-sided welding, 1 pool welding, 2
It is known that the weld metal has good crack resistance in the order of pool welding and semi-1 pool welding, and the present invention is most disadvantageous for the crack resistance from the viewpoint of preventing segregation in the weld metal as described above. 1 Pool welding method must be adopted. Nevertheless, in order to secure good crack resistance, the composition and filling amount of the metal powder filled in the groove are important as will be described in detail below.

(2)充填金属粉末の組成 前述の如く充填金属粉末は、母材希釈によって生ずる溶
接金属中のCrやNi濃度の低下を補って適正な金属組織を
与える金属組成を確保する為に用いられるものであり、
溶接金属組織が3〜15%のフェライトを含むオーステナ
イト組織となる様にNi,Cr等をバランスよく含有する金
属粉末を使用する必要がある。こうした観点から、適正
な金属組織を確保するために必要とされる充填金属粉末
の成分組成を明確にする目的で実験を行なった。但し溶
接条件は前記第4表の符号Fと同様とし、充填金属粉末
としては成分組成の異なる様々のCr−Ni−Mo−Fe粉末を
用いた。また充填金属粉末の高さ11mmを被溶接材の炭素
鋼板で構成される開先断面積の面積比率に換算すると、
51%となり、同表に示す溶接条件のもとで溶接を行なっ
たときの母材希釈率は40〜60%の範囲となる。
(2) Composition of filled metal powder As described above, the filled metal powder is used to secure a metal composition that compensates for the decrease in the Cr and Ni concentrations in the weld metal caused by the dilution of the base metal and provides an appropriate metal structure. And
It is necessary to use a metal powder containing Ni, Cr, etc. in a well-balanced manner so that the weld metal structure becomes an austenite structure containing 3 to 15% of ferrite. From this point of view, an experiment was conducted for the purpose of clarifying the component composition of the filled metal powder required to secure an appropriate metal structure. However, the welding conditions were the same as those indicated by symbol F in Table 4 above, and various Cr-Ni-Mo-Fe powders having different component compositions were used as the filling metal powder. Also, when converting the height of the filled metal powder of 11 mm into the area ratio of the groove cross-sectional area composed of the carbon steel plate of the material to be welded,
It becomes 51%, and the base metal dilution rate when welding is performed under the welding conditions shown in the table is in the range of 40 to 60%.

この実験で得た溶接金属の組織及び性能等を第5表に一
括して示す。
Table 5 collectively shows the structure and performance of the weld metal obtained in this experiment.

第5表において符号a,d,e,g,i,mは充填金属粉末の成分
組成が適正であって、溶接金属組成が、3〜15%のフェ
ライトを含むオーステナイトからなる適正な組織を有す
るものとなっているため、溶接割れのない健全な溶接金
属が得られている。
In Table 5, the symbols a, d, e, g, i, m indicate that the composition of the filler metal powder is proper and that the composition of the weld metal is austenite containing 3 to 15% ferrite. As a result, a sound weld metal without weld cracks is obtained.

これに対し符号f,j,oは充填金属中のNiやCr等が不足
し、母材希釈によって生じるNiやCrの濃度低下を十分に
補うことができないため、溶接金属はマルテンサイト組
織となり、微細な溶接割れが生じている。また符号b,k
では数%のフェライトを含むオーステナイト組織を有す
る溶接金属は得られるものの、フェライト量が低すぎる
ためやはり溶接割れが発生している。更に符号c,nで
は、逆に溶接金属組織中のフェライト量が高すぎるた
め、溶接金属が脆化現象を起こし溶接割れが生じてい
る。
On the other hand, the symbols f, j, and o are insufficient in Ni, Cr, etc. in the filler metal and cannot sufficiently compensate for the decrease in Ni and Cr concentration caused by the dilution of the base metal, so the weld metal has a martensitic structure, Fine weld cracks have occurred. Also, the codes b and k
For example, although a weld metal having an austenite structure containing a few percent of ferrite can be obtained, weld cracks still occur because the ferrite content is too low. Further, with the symbols c and n, conversely, since the amount of ferrite in the weld metal structure is too high, the weld metal causes an embrittlement phenomenon and weld cracking occurs.

これらの実験結果より、充填金属粉末の好ましい成分組
成を求めると、 Cr:45〜55% Ni:20〜30% Mo:10〜20% 残部:Feおよび不可避不純物 が導かれる。
From these experimental results, when the preferable component composition of the filled metal powder is determined, Cr: 45 to 55% Ni: 20 to 30% Mo: 10 to 20% balance: Fe and inevitable impurities are derived.

尚充填金属粉末の好適組成は、母材希釈率、あるいは使
用する溶接ワイヤ中のCr,Ni,Moの量等によっても変わる
ので母材希釈率が高い場合は充填金属粉末中のCr,Ni,Mo
の量を相対的に増加し、同希釈率が小さい場合は上記各
元素の量を相対的に減少すべきであり、また溶接ワイヤ
中のCr,Ni,Mo含有量によっても同様の調整を行なうべき
であるが、本発明では、良好な溶接状況を確保し得る溶
接条件下での母材稀釈率が殆んどの場合40〜60%の範囲
に収まっていること、及び溶接ワイヤとしてステンレス
鋼溶接用サブマージアーク溶接ワイヤを使用すること、
を考慮して、充填金属粉末の成分組成を前述の範囲に定
めた。
Incidentally, the preferred composition of the filling metal powder, depending on the base metal dilution rate, or the amount of Cr, Ni, Mo in the welding wire to be used, etc., so if the base metal dilution rate is high, Cr, Ni in the filling metal powder, Mo
The amount of each element should be relatively decreased when the dilution ratio is small, and the same adjustment should be made depending on the contents of Cr, Ni and Mo in the welding wire. However, in the present invention, the dilution ratio of the base metal under welding conditions that can secure a good welding condition is in the range of 40 to 60% in most cases, and stainless steel welding as a welding wire. Using submerged arc welding wire for
In consideration of the above, the component composition of the filled metal powder was set in the above range.

尚上記ではCr−Ni−Mo−Fe系の充填金属粉末を用いた場
合について説明したが、Cr−Ni−Fe系の充填金属粉末を
用いた場合についても同様の実験を行なったところ、 Cr:50〜70% Ni:20〜30% 残部:Feおよび不可避不純物 の組成の充填金属粉末を使用することによって、3〜15
%のフェライトを含むオーステナイトからなる適正な組
織を有し、耐割れ性の優れた溶接金属を確保し得ること
が分かった。
In the above, the case where the Cr-Ni-Mo-Fe-based filling metal powder was used was described, but the same experiment was performed for the case where the Cr-Ni-Fe-based filling metal powder was used. 50 ~ 70% Ni: 20 ~ 30% balance: Fe and inevitable impurities 3 ~ 15
It was found that a weld metal having an appropriate structure composed of austenite containing 10% of ferrite and having excellent crack resistance can be secured.

(3)金属粉末充填量 溶接金属の化学成分は、前述の如く充填金属粉末の成分
組成によって変わってくるばかりでなく、該金属粉末の
充填量によっても当然変わってくる。そこで実際の溶接
施工を行なう際における最も好ましい充填量を明確にす
る方向で実験を行なった。
(3) Filling amount of metal powder The chemical composition of the weld metal not only changes depending on the component composition of the filling metal powder as described above, but naturally also changes depending on the filling amount of the metal powder. Therefore, an experiment was conducted in the direction of clarifying the most preferable filling amount in the actual welding process.

即ち9mm厚の317Lクラッド鋼板を母材として用いた単電
極サブマージアーク溶接法、および板厚12mm又は16mmの
317Lクラッド鋼板を母材として使用し、極間距離を30mm
に設定してタンデムサブマージアーク溶接法、を採用
し、充填金属粉末の充填量のパラメータであるルートギ
ャップ(第4図のL)と充填高さ(第4図のH)を種々
変化させてサブマージアーク溶接を行ない、溶接金属の
組織及び溶接割れの有無等を前記と同様にして調べた。
尚充填金属粉末としては何れの場合もCr:50,Ni:27,Mo:1
4,残部Fe及び不可避不純物からなるものを使用した。ま
た該金属粉末の充填量については、開先断面積に対する
充填金属粉末の占める面積比率として記載した。
That is, a single electrode submerged arc welding method using a 9 mm thick 317L clad steel plate as a base material, and a plate thickness of 12 mm or 16 mm
317L clad steel plate is used as the base material, and the distance between contacts is 30mm
The tandem submerged arc welding method is adopted, and the root gap (L in FIG. 4) and the filling height (H in FIG. 4) which are parameters of the filling amount of the filling metal powder are variously changed to submerge. Arc welding was performed, and the structure of the weld metal and the presence or absence of weld cracks were examined in the same manner as above.
In any case, the filling metal powder is Cr: 50, Ni: 27, Mo: 1.
4, a balance of Fe and inevitable impurities was used. Further, the filling amount of the metal powder is described as the area ratio of the filling metal powder to the groove cross-sectional area.

結果を第6、7、8、9、10、11、12表に示す。The results are shown in Tables 6, 7, 8, 9, 10, 11, and 12.

第6〜12表より次の様に考えることができる。 From Tables 6 to 12, the following can be considered.

(1)No.1〜22は単電極サブマージアーク溶接法、No.2
3〜67はタンデムサブマージアーク溶接法を採用した各
実施例であり、何れの方式を採用した場合でも本発明の
規定要件に合致するかぎり割れのない良好な溶接金属が
得られている。
(1) No. 1 to 22 are single electrode submerged arc welding methods, No. 2
Nos. 3 to 67 are examples in which the tandem submerged arc welding method is adopted, and regardless of which method is adopted, a good weld metal without cracks is obtained as long as it meets the requirements of the present invention.

(2)第6〜12表中適正条件の欄に○印を付したものは
本発明の規定要件を充足しており、溶接金属はオーステ
ナイトに3〜15%のフェライトを含む好適組織を有する
ものであって、何れの場合も良好な耐割れ性が得られて
いる。
(2) In Tables 6 to 12, those marked with "○" in the column of appropriate conditions satisfy the requirements of the present invention, and the weld metal has a suitable structure containing 3 to 15% ferrite in austenite. In all cases, good crack resistance is obtained.

(3)第6表、7のNo.1,14、第8、9表のNo.23,35は
開先内への金属粉末充填量が不足する比較例であり、C
r,Ni,Mo等の補充量が不足するため溶接金属組織が割れ
感受性の高いマルテンサイト組織となり、ビードに縦割
れあるいは横割れが生じている。
(3) Nos. 1 and 14 of Tables 6 and 7 and Nos. 23 and 35 of Tables 8 and 9 are comparative examples in which the metal powder filling amount in the groove is insufficient, and C
Since the supplemental amounts of r, Ni, Mo, etc. are insufficient, the weld metal structure becomes a martensite structure with high cracking susceptibility, and longitudinal cracks or lateral cracks occur in the beads.

(4)第6、7表のNo.3,11,15、第9、10表のNo.38,42
は、やはり開先内への金属粉末充填量が不足するため溶
接金属組織がオーステナイト単相となり、微細な割れが
生じている。
(4) No.3,11,15 of Tables 6 and 7, No.38,42 of Tables 9 and 10
In the case of, the weld metal structure becomes an austenite single phase and fine cracks occur because the metal powder filling amount in the groove is insufficient.

(5)第6、7表のNo.7,19、第8、9表のNo.24,27,3
1,36、第10、11表のNo.46,49,57,60は、金属粉末の充填
量がやや不足する比較例であり、溶接金属組織は、オー
ステナイトにわずかのフェライトを含むものであるが、
フェライト量が3%未満であるため極く微細な割れが生
じている。
(5) No.7,19 of Tables 6 and 7, No.24,27,3 of Tables 8 and 9
1, 36, No. 46, 49, 57, 60 of Tables 10 and 11 are comparative examples in which the filling amount of the metal powder is slightly insufficient, the weld metal structure contains a small amount of ferrite in austenite,
Since the ferrite content is less than 3%, extremely fine cracks occur.

(6)第6、7、8表のNo.6,10,18,22、第9、10表のN
o.34,45、第11、12表のNo.52,56,63,67は金属粉末の充
填量が多過ぎる場合の比較例であり、溶接金属のオース
テナイト組織中に含まれるフェライト量が15%を超えて
いるため、脆化現象と溶接熱歪の相互作用によって横割
れが発生している。
(6) No. 6, 10, 18, 22 in Tables 6, 7, and 8 and N in Tables 9 and 10
o.34,45, No.52,56,63,67 of Tables 11 and 12 are comparative examples when the filling amount of the metal powder is too much, and the amount of ferrite contained in the austenite structure of the weld metal is 15 %, The lateral cracking occurs due to the interaction between the embrittlement phenomenon and the welding thermal strain.

(7)開先内へ充填される金属粉末の適正な充填量は、
厳密には該金属粉末の成分組成の他、溶接ワイヤの化学
成分、あるいは溶接条件(開先形状や溶接入熱量等)に
よって微妙に変わってくる母材稀釈率等の影響を十分に
考慮したうえで定める必要がある。ところが現実の溶接
施工においては適正な溶接状況を確保することのできる
溶接条件は比較的狭い範囲に収まっており、前述の如く
通常の母材通常稀釈率は大抵の場合40〜60%の範囲であ
る。従ってこの様な母材稀釈率を基準とし、これに前述
の様な金属粉末の好適組成及び溶接ワイヤとして選択使
用されるステンレス鋼サブマージアーク溶接用ワイヤの
標準的成分組成並びに該金属粉末の比重等を考慮して、
溶接金属の金属組織をオーステナイト+(3〜15)%フ
ェライトとするために必要な化学成分を得ることのでき
る好ましい充填率を求めると35〜100%という範囲を導
くことができ、この好適充填率範囲は上記第6〜12表で
得られる結果と一致している。
(7) The proper filling amount of the metal powder filled in the groove is
Strictly speaking, in addition to the composition of the metal powder, the effects of the base metal dilution rate, which slightly changes depending on the chemical composition of the welding wire or the welding conditions (groove shape, welding heat input, etc.), should be taken into consideration. Need to be specified in. However, in the actual welding process, the welding conditions that can ensure a proper welding condition are within a relatively narrow range, and as described above, the normal base metal normal dilution ratio is usually in the range of 40 to 60%. is there. Therefore, based on such a base metal dilution rate, the preferred composition of the metal powder as described above and the standard composition of the stainless steel submerged arc welding wire selected and used as the welding wire and the specific gravity of the metal powder, etc. in view of,
When a preferable filling rate that can obtain the chemical component necessary for making the metal structure of the weld metal austenite + (3 to 15)% ferrite is obtained, a range of 35 to 100% can be derived, and this preferable filling rate is obtained. The range is consistent with the results obtained in Tables 6-12 above.

上記の様にして炭素鋼板によって構成される開先底部の
溶接金属がオーステナイト+(3〜15)%フェライトを
形成し易い化学成分となる様に充填金属粉末の成分組成
及び充填率を適正に調整し、例えば309系等のステンレ
ス鋼用のサブマージアーク溶接材料を用いて溶接を行な
うと、炭素鋼板部同士の溶接部は優れた耐割れ性を示し
且つ再加熱(溶接後熱処理)を加えた様な場合でも脆化
を生ずることのない健全な溶接部となる。
The composition and filling rate of the filling metal powder are appropriately adjusted so that the weld metal at the bottom of the groove formed by the carbon steel sheet as described above has a chemical composition that easily forms austenite + (3 to 15)% ferrite. However, for example, when welding is performed using a submerged arc welding material for stainless steel such as 309 series, the welded portion between carbon steel sheets exhibits excellent crack resistance and it seems that reheating (post-welding heat treatment) has been applied. Even in any case, the welded part is sound and does not become brittle.

尚本発明でサブマージアーク溶接法を採用しているの
は、溶接入熱量を高めて溶接能率を高めようとする点に
あり、そのため炭素鋼板部分の溶接段階でクラッド材で
あるステンレス鋼板の一部が溶融混合してくることは避
けられない。しかしながら本発明では前述の如く炭素鋼
板部分の溶接金属が高Ni,高Cr組成となる様に溶接条件
を定めているので、ステンレス鋼板の一部が溶融混合し
てきても実害は生じない。
Incidentally, the reason why the submerged arc welding method is adopted in the present invention is that the welding heat input is increased to improve the welding efficiency. Therefore, a part of the stainless steel plate that is the clad material at the welding stage of the carbon steel plate part. It is inevitable that they will be melt mixed. However, in the present invention, as described above, the welding conditions are determined so that the weld metal of the carbon steel plate portion has a high Ni and high Cr composition, and therefore, even if a part of the stainless steel sheet is melt-mixed, no actual damage occurs.

この様にして炭素鋼板部分を溶接した後は、残されたス
テンレス鋼板により構成される開先部を共金系溶接材料
を用いて溶接すればよい。このときの開先両面はステン
レス鋼、下面は高Cr・高Ni系の合金鋼であるから、表層
部を構成する該ステンレス鋼板同士の溶接部が母材金属
の混入によって耐食性を失なう様な恐れはない。
After welding the carbon steel plate portion in this manner, the groove portion formed of the remaining stainless steel plate may be welded using a common metal welding material. At this time, the groove both sides are made of stainless steel and the lower surface is made of high Cr / high Ni alloy steel, so that the welded part of the stainless steel plates forming the surface layer loses its corrosion resistance due to the mixing of the base metal. There is no fear.

従って該ステンレス鋼板同士の溶接部の溶接はどの様な
方法を採用してもよく、被覆アーク溶接、TIG溶接、MIG
溶接、フラックス入りワイヤを用いた溶接等を任意に選
択して採用することができ、該開先幅が広い場合は帯状
電極を用いた肉盛溶接法を採用することも有効である。
Therefore, any method may be used to weld the welded portions of the stainless steel plates, such as covered arc welding, TIG welding, and MIG welding.
Welding, welding using a flux-cored wire, etc. can be arbitrarily selected and adopted. When the groove width is wide, it is also effective to adopt a build-up welding method using a strip electrode.

次に本発明の最も代表的な実施例を示す。Next, the most typical embodiment of the present invention will be shown.

実施例1 厚さ16mmの317Lクラッド鋼板(炭素鋼板13mm、ステンレ
ス鋼板:3mm)を使用し、下記の条件で炭素鋼板部分の溶
接を行なった。
Example 1 A 317L clad steel plate (carbon steel plate 13 mm, stainless steel plate: 3 mm) having a thickness of 16 mm was used, and the carbon steel plate portion was welded under the following conditions.

(条件) 開先形状:第4図に準拠、但しルート幅(L):2mm、開
先角度:55度、金属粉末充填高さ(H):10.5mm(充填
率:47%) 電極配置:第5図に準拠、但し極間距離:30mm、先後電
極の前傾角:5度 金属粉末:50%Cr−27%Ni−14%Mo−9%Fe 溶接ワイヤ:先行電極…Y309(4mmφ) 後行電極… 同上 溶接電流:先行電極…750A 後行電極…650A 溶接電圧:先行電極…37V 後行電極…42V 溶接速度:60cpm この溶接によって第6図に示す様な炭素鋼板部分の溶接
部を得た。
(Conditions) Groove shape: Based on Fig. 4, except root width (L): 2mm, groove angle: 55 degrees, metal powder filling height (H): 10.5mm (filling rate: 47%) Electrode arrangement: According to Fig. 5, but distance between electrodes: 30 mm, forward tilt angle of front and rear electrodes: 5 degrees Metal powder: 50% Cr-27% Ni-14% Mo-9% Fe Welding wire: Leading electrode ... Y309 (4 mmφ) Row electrode: Same as above Welding current: Leading electrode ... 750A Trailing electrode ... 650A Welding voltage: Leading electrode ... 37V Trailing electrode ... 42V Welding speed: 60cpm Welding part of carbon steel sheet as shown in Fig. 6 is obtained by this welding. It was

次いで残されたステンレス鋼板S同士の開先部を、YF31
7L−Cフラック入りワイヤ(1.2mmφ)を用いて開先幅
方向にウィービングしつつMAG溶接(電流:200A、電圧:3
0V、速度:12cpm、ウィービング幅:22mm、シールドガス:
100%CO2、25/分)を行ない、ステンレスクラッド鋼
板の溶接を終えた。
Then, the groove portion between the remaining stainless steel plates S is
MAG welding (current: 200A, voltage: 3) while weaving in the groove width direction using 7L-C flaked wire (1.2mmφ)
0V, speed: 12cpm, weaving width: 22mm, shield gas:
100% CO 2 , 25 / min) was performed and welding of the stainless clad steel plate was completed.

得られた溶接金属の化学成分及びオーステナイト組織中
のフェライト量(ディロング組織図)を第13表に、また
該溶接部の機械的性質を第14表に示す。
Table 13 shows the chemical composition of the obtained weld metal and the amount of ferrite in the austenite structure (Dellong structure diagram), and Table 14 shows the mechanical properties of the weld.

第13表の結果からも明らかな様に、溶接金属の金属組織
は炭素鋼板及びステンレス鋼板のいずれの部分について
もオーステナイトに適正量のフェライトを含む耐割れ性
の良好な組織を有すると共に、高耐食性の化学組成を有
しており、第14表に示す如く非常に優れた機械的強度を
有している。
As is clear from the results in Table 13, the metal structure of the weld metal has a structure with good crack resistance including a proper amount of ferrite in austenite for both parts of the carbon steel plate and the stainless steel plate, and also has high corrosion resistance. It has a chemical composition of and has extremely excellent mechanical strength as shown in Table 14.

[発明の効果] 本発明は以上の様に構成されており、ステンレスクラッ
ド鋼板を極めて能率良く片面溶接することができる。し
かも機械的特性の優れた金属組織からなる溶接金属を形
成することができ、強度面からしてもまた耐食性の面か
らしても非常に優れた性能の溶接部を得ることができ
る。その結果ステンレスクラッド鋼板の優位性を最大限
有効に発揮しつつ溶接建造物の強度欠陥をなくすことが
できる。
[Advantages of the Invention] The present invention is configured as described above, and it is possible to extremely efficiently single-side weld a stainless clad steel plate. In addition, it is possible to form a weld metal having a metal structure having excellent mechanical properties, and it is possible to obtain a weld having excellent performance in terms of strength and corrosion resistance. As a result, it is possible to eliminate the strength defect of the welded structure while maximizing the superiority of the stainless clad steel plate.

【図面の簡単な説明】[Brief description of drawings]

第1図(A),(B)はステンレスクラッド鋼板の溶接
に採用される公知の累層法を示す説明図、第2図
(A),(B)は実験例で採用した開先形状及び電極配
置を示す説明図、第3図はシェフラーの組織図を示す
図、第4、5図は同じく実験例で採用した開先形状及び
電極配置を示す説明図、第6図は実施例で得た炭素鋼板
部分の溶接部を示す横断面図である。 S:ステンレス鋼板、C:炭素鋼板
FIGS. 1 (A) and 1 (B) are explanatory views showing a known formation method used for welding stainless clad steel plates, and FIGS. 2 (A) and 2 (B) are groove shapes used in experimental examples and FIG. 3 is an explanatory view showing the electrode arrangement, FIG. 3 is a view showing the organization chart of Schaeffler, FIGS. 4 and 5 are explanatory views showing the groove shape and electrode arrangement adopted in the same experimental example, and FIG. 6 is obtained in the embodiment. It is a cross-sectional view showing the welded portion of the carbon steel plate portion. S: Stainless steel plate, C: Carbon steel plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 黒川 剛志 神奈川県茅ケ崎市緑が浜7―66 (56)参考文献 特開 昭61−162274(JP,A) 特開 昭61−154776(JP,A) 特開 昭61−140378(JP,A) 特開 昭52−114455(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Takeshi Kurokawa 7-66 Midorigahama, Chigasaki City, Kanagawa Prefecture (56) References JP-A 61-162274 (JP, A) JP-A 61-154776 (JP, A) Special Kai 61-140378 (JP, A) JP 52-114455 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】炭素鋼板の表面にステンレス鋼板がクラッ
ドされたステンレスクラッド鋼板を、ステンレス鋼板ク
ラッド側から片面溶接する方法であって、Cr:50〜70重
量%、Ni:20〜30重量%、残部Feおよび不可避不純物か
らなる金属粉末を開先内へ充填すると共に、ステンレス
鋼用潜弧溶接材料を用いて前記炭素鋼板同士を溶接する
ことにより、3〜15%のフェライトを含むオーステナイ
ト系溶接金属組織とし、次いで前記クラッドされたステ
ンレス鋼板部で構成される開先表側部分を、共金系溶接
材料を用いて溶接することを特徴とするステンレスクラ
ッド鋼板の片面溶接方法。
1. A method of single-sided welding of a stainless clad steel plate in which a stainless steel plate is clad on the surface of a carbon steel plate from the stainless steel plate clad side, wherein Cr: 50 to 70% by weight, Ni: 20 to 30% by weight, An austenitic weld metal containing 3 to 15% ferrite by filling the groove with a metal powder consisting of the balance Fe and unavoidable impurities and by welding the carbon steel plates to each other using a latent arc welding material for stainless steel. A single-sided welding method for a stainless clad steel plate, which comprises forming a structure, and then welding a groove front surface part constituted by the clad stainless steel plate part using a metallurgical welding material.
【請求項2】炭素鋼板の表面にステンレス鋼板がクラッ
ドされたステンレスクラッド鋼板を、ステンレス鋼板ク
ラッド側から片面溶接する方法であって、Cr:45〜55重
量%、Ni:20〜30重量%、Mo:10〜20重量%、残部Feおよ
び不可避不純物からなる金属粉末を開先内へ充填すると
共に、ステンレス鋼用潜弧溶接材料を用いて、前記炭素
鋼板同士を溶接することにより、3〜15%のフェライト
を含むオーステナイト系溶接金属組織とし、次いで前記
クラッドされたステンレス鋼板部で構成される開先表側
部分を、共金系溶接材料を用いて溶接することを特徴と
するステンレスクラッド鋼板の片面溶接方法。
2. A method for single-sided welding of a stainless clad steel plate in which a stainless steel plate is clad on the surface of a carbon steel plate from the stainless steel plate clad side, wherein Cr: 45 to 55% by weight, Ni: 20 to 30% by weight, Mo: 10 to 20% by weight, the metal powder consisting of the balance Fe and unavoidable impurities is filled into the groove, and the carbon steel plates are welded to each other by welding the carbon steel plates to each other by using a latent arc welding material for stainless steel to form 3 to 15 % Of an austenitic weld metal structure containing ferrite, and then the groove front side part composed of the clad stainless steel plate portion is welded using a common metal welding material. Welding method.
JP424888A 1988-01-11 1988-01-11 One-sided welding method of stainless clad steel plate Expired - Fee Related JPH07102465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP424888A JPH07102465B2 (en) 1988-01-11 1988-01-11 One-sided welding method of stainless clad steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP424888A JPH07102465B2 (en) 1988-01-11 1988-01-11 One-sided welding method of stainless clad steel plate

Publications (2)

Publication Number Publication Date
JPH01178375A JPH01178375A (en) 1989-07-14
JPH07102465B2 true JPH07102465B2 (en) 1995-11-08

Family

ID=11579236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP424888A Expired - Fee Related JPH07102465B2 (en) 1988-01-11 1988-01-11 One-sided welding method of stainless clad steel plate

Country Status (1)

Country Link
JP (1) JPH07102465B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103752993A (en) * 2013-12-24 2014-04-30 上海振华重工集团(南通)传动机械有限公司 Welding method for stainless steel clad plates

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8240544B2 (en) * 2005-08-02 2012-08-14 Linde Aktiengesellschaft Introduction of nanoparticles
JP2007268551A (en) * 2006-03-30 2007-10-18 Kobe Steel Ltd Multi-electrode one side submerged arc welding method
JP2008055462A (en) * 2006-08-31 2008-03-13 Hitachi Ltd Method for producing welding joint
CN103521886B (en) * 2013-10-25 2016-02-03 武汉一冶钢结构有限责任公司 For the welding method of stainless steel single face welding and double face shaping
CN103567613B (en) * 2013-11-14 2016-01-20 南车眉山车辆有限公司 A kind of stainless steel clad plate tank car welding procedure
JP6329769B2 (en) * 2014-01-14 2018-05-23 三菱重工業株式会社 Welding method and repair method
CN111745269A (en) * 2020-07-10 2020-10-09 首钢集团有限公司 Double-sided submerged arc welding method for stainless steel composite plate
CN115476019B (en) * 2022-09-16 2024-02-02 苏州优霹耐磨复合材料有限公司 Build-up welding process for continuous casting roller

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103752993A (en) * 2013-12-24 2014-04-30 上海振华重工集团(南通)传动机械有限公司 Welding method for stainless steel clad plates
CN103752993B (en) * 2013-12-24 2016-07-06 上海振华重工集团(南通)传动机械有限公司 A kind of welding method of stainless steel clad plate

Also Published As

Publication number Publication date
JPH01178375A (en) 1989-07-14

Similar Documents

Publication Publication Date Title
JP5411820B2 (en) Flux-cored welding wire and overlay welding arc welding method using the same
JP4857015B2 (en) Gas shielded arc welding flux cored wire and welding method
EP2402106B1 (en) Method of and machine for arc welding combining gas-shield arc welding with submerged arc welding
JP5019781B2 (en) MIG arc welding method using gas shielded arc welding flux cored wire
JP5198528B2 (en) Dissimilar material joining material and dissimilar material joining method
JP5980128B2 (en) Manufacturing method of arc-welded structural members
JP4930048B2 (en) Plasma arc hybrid welding method to improve joint fatigue strength of lap fillet welded joint
JPH07102465B2 (en) One-sided welding method of stainless clad steel plate
JP3529359B2 (en) Flux-cored wire for welding galvanized steel sheet with excellent pit and blow hole resistance
JP2006224147A (en) Method for joining different materials and filler metal therefor
WO2021125280A1 (en) Steel wire for gas-shielded arc welding, gas-shielded arc welding method, and method for manufacturing gas-shielded arc welded joint
JP2010201448A (en) Filler metal for joining different materials and joining method for different materials
JP2006224145A (en) Method for joining different materials and filler metal therefor
JP4806299B2 (en) Flux cored wire
KR100709521B1 (en) Welding joint of large heat input welding and welding method thereof
JP6420215B2 (en) Consumable electrode gas shield arc welding method
EP0163379A2 (en) Method of welding nitrogen-containing alloys
RU2702168C1 (en) Method of multi-electrode arc welding in protective gas medium
Dickerson Welding of aluminum alloys
KR101091469B1 (en) PURE Ar GAS SHIELDED WELDING MIG FLUX-CORED WIRE AND MIG ARC WELDING METHOD
WO2021199815A1 (en) Multi-electrode gas-shielded single-sided arc welding method and multi-electrode gas-shielded single-sided arc welding device
JP2857329B2 (en) Gas shielded arc welding method
JP4806300B2 (en) Solid wire
JP2020015092A (en) Flux-cored wire for welding two-phase stainless steel, welding method and weld metal
JPH06210490A (en) Welding wire of zinc galvanized steel sheet and welding method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees